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Abstract. We overview applications exponential asymptotics and analyzable
function theory to difference equations, in defining an analog of the Painlevé
property for them and we sketch the conclusions with respect to the solvability
properties of first order autonomous ones. It turns out that if the Painlevé
property is present the equations are explicitly solvable and in the contrary
case, under further assumptions, the integrals of motion develop singularity
barriers. We apply the method to the logistic map xn+1 = axn(1−xn) where
it turns out that the only cases with the Painlevé property are a = −2, 0, 2 and
4 for which explicit solutions indeed exist; in the opposite case an associated
conjugation map develops singularity barriers.

1. Introduction

We present an outline of new methods for determining the position and the type of
singularities of a certain kind of solutions of difference equations [17] and use this
information to perform Painlevé analysis on them. The approach relies on advances
in exponential asymptotics and the theory of analyzable functions [10, 11, 23, 13,
14, 15, 16, 18, 20, 21, 25, 26, 34, 45]. The main concepts are discussed first.

Analyzable functions. Introduced by Jean Écalle, these are mostly analytic func-
tions which at singular points are completely described by transseries, much in the
same way as analytic functions are represented at regular points by convergent se-
ries. In contrast with analytic functions (which are not closed under division) and
with meromorphic functions (which fail to be stable under integration and compo-
sition) analyzable ones are conjectured to be closed under all operations whence
the grand picture of this theory, that all functions of natural origin are analyzable.
In particular, solutions of many classes of differential and difference equations have
been shown to be analyzable.

Transseries. Also introduced by J. Ecalle, transseries represent the “ultimate”
generalization of Taylor series. Transseries are formal asymptotic combinations of
power series, exponentials and logarithms and contain a wealth of information not
only about local but also about global behavior of functions. One of the simplest
nontrivial examples of a transseries is

Key words and phrases. Borel summation; Exponential asymptotics; Singularity analysis;
Painlevé transcendents.
1In the sense stemming from Stokes original papers and the one favored in exponential asymp-
totics literature, Stokes lines are those where a small exponential is purely real; on an antistokes
line the exponential becomes purely oscillatory .
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(1.1)
∞∑

k=0

k!
xk+1

+ Ce−x (x → +∞)

What distinguishes the expression (1.1) from a usual asymptotic expansion is the
presence beyond all orders of the principal series of an exponentially small term
which cannot be captured by classical Poincaré asymptoticity. More general trans-
series arising in generic ordinary differential and difference equations are doubly
infinite series whose terms are powers of x multiplied by exponentials (see e.g.
(2.3)). These transseries can be determined algorithmically and usually diverge
factorially, but can be shown to be Borel summable in a suitable sense in some sec-
tor. In this sector the function to which the transseries sums has good analyticity
properties and on the edges of the sector typically singularities appear.

The correspondence between the formal universe and actual functions. Envisaged
by Écalle to be a “total” isomorphism implemented by generalized Borel summa-
tion, the correspondence has been established rigorously in a number of problems
including ODEs, difference equations and PDEs.

2. Difference equations: the isolated movable singularity property
(IMSP)

The problem of integrability has been and is a subject of substantial research.
In the context of differential equations there exist numerous effective criteria of
integrability, among which a crucial role is played by the Painlevé test (for extensive
references see e.g. [33]).

An analog of the Painlevé property for difference equations turns out to be more
delicate to define.

In the context of solvability, various methods have been proposed by Joshi [38],
Ablowitz et al. [1], Ramani and Grammaticos (see references in [36]), Conte and
Musette [12]. See also [1] for a comparative discussion of the various approaches
in the literature. None of these is a proper extension of the Painlevé test. One
difficulty resides in continuing the solutions x(n) of a difference equation, which are
defined on a discrete set, to the complex plane of the independent variable n in a
natural and effective fashion. The embedding of x(n) must be done in such a way
that properties are preserved. It is important for the effectiveness of the analysis
that this embedding x(n)<x(z) is natural, constructive and unique under proper
conditions.

It is of course crucial that we are given infinitely many values of the function
x(n); since the accumulation point of n is infinity, the behavior of x at ∞ is key, and
then the question boils down to when infinitely many values determine function,
and in which class.

To illustrate a point we start with a rather trivial example. Assume that x(n)
is expressed as a convergent power series in powers of 1/n

xn =
∞∑

k=1

ckn−k

We would then naturally define x(n) < x(z) by
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x(z) =
∞∑

k=1

ckz−k

for large enough z. Uniqueness is ensured by the analyticity at ∞ of x(z). Still by
analyticity, < preserves all properties.

We cannot rely merely on analytic continuation since there are very few classes
of equations where solutions are given by convergent power series. However, as
discovered by Écalle and proved in detail very recently in a general setting by
Braaksma [11], a wide class of arbitrary order difference equations admit formal
solutions as Borel summable transseries. The class considered by Braaksma is of
the form

(2.1) xn+1 = G(xn, n) =
(

Λ̂ +
1
n

Â

)
xn + g(n,xn)

where G analytic at ∞ in n and at 0 in xn, under genericity assumptions [11]. In
particular a nonresonance condition is imposed

(2.2) µm = k · µ mod 2πi

with k ∈ Nn iff k = em. Transseries solutions for these equations have many
similarities to transseries solutions of differential equations. With some m1, 0 ≤
m1 ≤ n,

(2.3) x̃(n) =
∑

k∈Nm1

Cke−k·µnnk·aỹk(n)

In (2.3) µ = (µ1, ..., µm1) and a = (a1, ..., am1) depend only on the recurrence (they
are the eigenvalues of Λ̂, Â, respectively), C is a free parameter and ỹk are formal
series in negative integer powers of n, independent on C. The number m1 is chosen
so that all the exponentials in (2.3) tend to zero in the chosen sector.

Braaksma showed that ỹk(n) are Borel summable uniformly in k. Let Yk =
L−1ỹk(n). Then Yk(p) are analytic in a neighborhood of R+ (in fact in a larger
sector). Defining

(2.4) yk =
∫ ∞

0

e−npYk(p)dp

we have uniform estimates |yk| < Ak and thus the series

(2.5) x(n) =
∑

k∈Nm1

Cke−k·µnnk·ayk(n)

is classically convergent for large enough n. Braaksma showed that x(n) is an actual
solution of (2.1). It is natural to replace n by z in (2.4) and define:

(2.6) x(z) =
∑

k∈Nm1

Cke−k·µzzk·ayk(z)

If z and all constants are real and µi < 0, the functions (2.6) are special cases
of Écalle’s analyzable functions. As explained before we are allowing for z and
constants to be complex, under restriction <(k · µz) > 0.
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It is crucial that the values of y(n) for all large enough n uniquely determine
the expansion. In [17] it is shown that under suitable conditions, two distinct
analyzable functions cannot agree on a set of points accumulating at infinity. Below
is a simplified version of a theorem in [17].

Theorem 1 ([17]). Assume

(Z · µ = 0 mod 2πi with Z ∈ Zp) ⇔ Z = 0

and x(z) =
∑

k∈Nm1 Cke−k·µzzk·ayk(z). If x(n) = 0 for all large enough n ∈ N,
then x(z) is identically zero.

Analyzable functions behave in most respects as analytic functions. Among the
common properties, particularly important is the uniqueness of the extension from
sets with accumulation points, implying the principle of permanence of relations.
Under the assumptions [11] that ensure Borel summability, we have the following.

Definition 2. If

x(n) =
∑

k∈Nm1

Cke−k·µnnk·ayk(n)

then we call

x(z) =
∑

k∈Nm1

Cke−k·µzzk·ayk(z)

the analyzable embedding of x(n) from N to a sector in C.

Having now a suitable procedure of analytic continuation, we can define the isolated
movable singularity property, an extension of the Painlevé property to difference
equations, in a natural fashion. In analogy with the case of differential equations
we require that all solutions are free from “bad” movable singularities.

Definition 3. A difference equation has the IMSP if all movable singularities of
all its solutions are isolated.

Notes. (i) We use the common convention that isolated singularity exclude
branch points, clusters of poles and barriers of singularities.

(ii) To determine the singularities, transasymptotic matching methods intro-
duced for differential equations in [18], can be extended with little changes to dif-
ference equations.

3. Classification of some difference equations with IMSP.
Solvability.

We look at autonomous difference equations of the form xn+1 = G(xn) where G
is meromorphic and has attracting fixed points. A more general analysis is given
in [17]. We then write

(3.1) xn+1 = G(xn) := axn + F (xn)

and restrict for simplicity to the case F (0) = F ′(0) = 0 and 0 < |a| < 1. There is
a one-parameter family of solutions presented as simple transseries convergent for
large enough n, of the form
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(3.2) xn = xn(C) =
∞∑

k=1

enk ln aCkDk

for given values of Dk, independent of C. The analyzable embedding of x, cf.
Definition 2, reads

(3.3) x(z) = x(z;C) =
∞∑

k=1

ezk ln aCkDk

which is analytic for large enough z. To look for the IMSP, we find the properties
of x(z) beyond the domain of convergence of (3.3), and find the singular points of
x(z).

Note. Because equation (3.1) is nonlinear, although (3.3) has one continuous
parameter, there may be more solutions. This issue is addressed in ([17]).

3.1. Embedding versus properties of the conjugation map. By the Poincaré
conjugation theorem applied to xn+1 = G(xn) there exists a unique map φ with
the properties

(3.4) φ(0) = 0, φ′(0) = 1 and φ analytic at 0

and such that xn = φ(Xn) implies Xn+1 = aXn. The map φ is a conjugation map
of xn+1 with its linearization Xn+1. We have Xn = anX0 = Can.

We obtain an extension of x from N to C through

(3.5) xn = φ(Can) < x(z) := φ(Caz)

Then the conjugation map satisfies the equation

φ(az) = G(z) = aφ(z) + F (φ(z))

As expected by the uniqueness of the embedding in Definition 2 we have the
following.

Lemma 4. (i) For equations of the type (3.1) under the given assumptions, the
embeddings through analyzability and via the conjugation map, cf. (3.5) agree.

(ii) The solutions x(z;C) have only isolated movable singularities iff φ has only
isolated singularities.

Corollary A necessary condition for (3.1) to have the IMSP is that the conjugation
map φ, around every stable fixed point of G and of those of its iterates which are
meromorphic (of the form G[m] = G ◦ · · · ◦G m times) extends analytically into the
complex plane, except for isolated singularities.

3.2. Autonomous equations with the IMSP. In ([17]) we classify the equations
of the form (3.1) with respect to the IMSP. In a way analog to the case of ODEs
of first order, only Riccati equations have this property. On the other hand, these
equations are explicitly solvable, and thus autonomous equations of the first order
which have the IMSP can be solved in closed form.
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Theorem 5. The equation (3.1) under the given assumptions fails to have the
IMSP unless, for some c ∈ C,

(3.6) G(z) =
az

1 + cz

In case (3.6 we have: 1/xn = a−n(C − c/(a− 1)) + c/(a− 1)

It is also very interesting to see that in the case of failure of the IMSP the analytic
properties of the solutions preclude the existence of nice constants of motion. This
is discussed in the next section.

3.3. Case of failure of IMSP. We illustrate this situation when G polynomial.
The surprising conclusion is that for polynomial G without the IMSP, constants of
motion (defined as functions C(x, n) constant along trajectories) develop barriers
of singularities along some fractal closed curves ∂Kp, see below. In a neighborhood
of the origin, the function φ is invertible, and thus for small x we derive from
xn = φ(anC) that C = a−nQ(xn) where Q = φ−1.

In Fig. 1. we depict the Julia set ∂Kp of a simple map. In that case, in the
compact set bounded by Kp consists in the initial conditions for which the solution
of the iteration converges to zero. The Julia set is a closed curve of nontrivial fractal
dimension. For a comprehensive discussion of Julia sets and iterations of rational
maps see [5].

Theorem 6. Assume G is a polynomial map with an attracting fixed point at the
origin. Denote by Kp (cf. Fig. 1) the maximal connected component of the origin
in the Fatou set of G.

Then the domain of analyticity of Q is Kp, and ∂Kp is a barrier of singularities
of Q.

The proofs of these results can be found in [17]. The logistic map discussed in
relative detail in the next section represents a very simple illustration of some of
the relevant phenomena.

4. Analysis of the logistic map at the superstable fixed point infinity

We show that the equation xn+1 = axn(1−xn) has the IMSP iff a ∈ {−2, 0, 2, 4}.
The case a = 0 needs no analysis. Otherwise, taking y = 1/x we get

(4.1) yn+1 =
y2

n

a(yn − 1)

For small y0, the leading order form of equation (4.1) is yn+1 = −a−1y2
n whose

solution is −y2n

0 a−2n+1. It is then convenient to seek solutions of (4.1) in the form
yn = F (y2n

0 a−2n

) whence the initial condition implies F (0) = 0, F ′(0) = −a.
Denoting y2n

0 a−2n

= z, the functional relation satisfied by F is

(4.2) F (z2) =
F (z)2

a(F (z)− 1)
= H(F (z)) (F (0) = 0, F ′(0) = −a)

Lemma 7. (i) There exists a unique analytic function F in the neighborhood of
the origin satisfying (4.2) and such that F (0) = 0 and F ′(0) = −a. This F has
only isolated singularities in C if and only if a ∈ {−2, 2, 4}. In the latter case, the
equations (4.2) and (4.1) can be solved explicitly (see (4.5), (4.8) and (4.9)). If
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F (z) 6= 4/a in D1 then F is analytic in D1, otherwise F has infinitely many branch
points in D1, of the form z2n ∈ {a1, ..., aM}; M < ∞, accumulating at S1, and F
is analytic in D1 with cuts at the branch points.

If a 6∈ {−2, 2, 4} then the unit circle S1 is a barrier of singularities of F .
(ii) If a 6∈ {−2, 2, 4} then ∂Kp is a barrier of singularities of the constant of

motion Q = F−1 (cf. Theorem 6).

4.1. Proof of Lemma 7.

4.1.1. Analyticity at zero. We write

(4.3) F (z) =
a

2
F (z2)− 1

2

√
a2F (z2)2 − 4aF (z2)

(with the choice of branch consistent with F (0) = 0, F ′(0) = −a), and take F (z) =
−az + h(z). This leads to the equation for h

(4.4) h(z) = az+
a

2
(h(z2)−az2)− 1

2

√
4a2z2 − 4ah(z2) + a2(h(z2)− az2)2 = N (h)

It is straightforward to show that, for small ε, N is contractive in the ball of radius
|a|2 in the space of functions of the form h(z) = z2u(z), where u is analytic in
the disk D = {z : ‖z‖ < ε} with the norm ‖h‖ = supD |u|. The corresponding
F is analytic for small z and is a conjugation map between (4.1) and its small-y
approximation.

4.1.2. We first determine the singularities of F in D1.
We let Br0 be the open disk of radius r0 centered at the origin and Bc

r0
be its

closure.
For small r0 both sides of (4.3) are well defined and analytic in Bc

r0
. In the

annulus A = Bc
r0
\Br2

0
, F has no zeros, otherwise by (4.3) F would have an infinite

number of zeros accumulating at zero. We let 0 < minF = min{|F (z)| : z ∈ A}.
We can choose r0 small enough so that 4/a > maxF = max{|F (z)| : z ∈ A}.

The right side of (4.2) remains analytic in any region in which F (z2) 6∈ {0, 4/a}.
As before, F cannot be zero.

Let r1 be the largest r so that we have F 6= 4/a in Br1 . If r1 = 1 then F is
analytic in D1.

Otherwise, we let r(n) = r
1/2n

1 . Since F is analytic in Bc
r1

, there are finitely
many points {z11, ..., z1m1} = S1 ⊂ Bc

r1
, such that F (zi) = 4/a. We draw radial

cuts from the points S1,N = {z : z2n ∈ S1, n = 0, 1, ...} to the unit circle, and
let C1 be their union. Then, by (4.3), F has analytic continuation in Bc

r(1) \ C1.
Thus F has analytic continuation Bc

r(2) \ C1, except possibly on the set of points
in z ∈ Bc

r(2) \ C1 such that F (z2) = H(F (z)) = 4/a, that is, except for those
z ∈ Bc

r(2) \ C1 such that F (z4) = H(4/a). Since z4 ∈ Bc
r(0) there are finitely many

such points, {z21, ..., z2m2} = S2. We make cuts at the points S2,N = {z : z2n ∈
S2, n = 0, 1, ...} and denote by C2 their union with C1. Now we see that F can be
inductively analytically continued to Br(m) \Cm, where a new set Sm is defined by
the condition Hm−1(4/a) = F (z2m

). Since F is analytic in Bc
r(0), for every n there

are finitely many such points. But for large enough n we have |Hm(zm)| < minF
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and there are no more exceptional points. The total number of of points in ∪Sm is
finite.

If there is one branch point, then there are infinitely many. Indeed, there is
analytic continuation to any neighborhood of a branch point z0, and if z2

1 = z0

then z1 is a branch point too, otherwise by F would be, by (4.2), single-valued
at z0. In this case S1 is a singularity barrier since the points in Sj,N accumulate
towards S1.

If F is not analytic in D1, then the proposition is proved.

4.1.3. Likewise, if F is analytic in D1 but not meromorphic in D1 ∪ S1, then S1 is
a bariier of singularities. Indeed, if z1 ∈ S1 is a non-meromorphic point of F , then
so are all the points on S1 such that z2n

= z1.

4.1.4. Now we assume F is analytic in D1 and mermorphic in D1 ∪ S1.
We claim that unless a = −2, the point z = 1 is a singular point of F . A

Taylor series expansion F =
∑∞

k=0 ck(z − 1)k gives c0 = 0 or c0 = a/(a − 1). It is
straightforward to see that c0 = 0 implies ck = 0 for all k, that is F ≡ 0, which is
not possible.

Therefore c0 = a/(a − 1) in which case direct calculation shows that, unless
a = −2, all ck for all large k are zero, which is not possible since a nontrivial
polynomial does not satisfy (4.2), because of blow-up of the right side when F = 1.

For a = −2, (4.2) has the explicit solution

(4.5) F (z) =
2z

z2 + z + 1

It remains to look at the cases when z = 1 is a singular point of F .

4.1.5. Now z = 1 is a pole; we obtain from (4.2)

(4.6) lim
z→1

aF (z2)
F (z)

= 1

If F (z) =
∑∞

k=−p ck(z − 1)k is the Laurent series of F at z = 1, then for the
coefficient of the highest order pole to be nonzero, we must have

(4.7) a = 2p, p ∈ N

For a = 2, (4.2) has the explicit solution

(4.8) F (z) =
2z

z − 1

For a = 4 the solution of (4.2) is

(4.9) F (z) = − 4z

(z − 1)2
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4.1.6. We are left with the cases a = 2p, p > 2.
We know that F (z) 6= 0 for z ∈ D1; furthermore, F (z) 6= 0 in S1 as well,

otherwise F (z0) = 0 implies that F (z) = 0 for all z ∈ S1 such that z2n

= z0 and
F ≡ 0. Thus zg = z/F is analytic in D1 ∪ S1. The function g satisfies the relation

(4.10) g(z2) = ag(z)(1− g(z))

From this and the analiticity of zg in D1 ∪ S1 it follows that zg is entire. If g
is bounded, then g is linear. Otherwise M(r) = max{|g(z)| : |z| = r} → ∞,
while the recurrence gives M(22n

) ≤ (2aM(2))2
n

= B2n

. With 22n

= b we have
M(b) ≤ bln B/ ln 2 and thus Q(z) = zg(z) is a polynomial.

If z is not on the unit circle, then g′ 6= 0 otherwise g′ would have infinitely many
zeros. Since (g(z2))′ = ag′(1 − 2g) we also have g 6= 1/2 outside the unit circle.
Unless g is constant, there is a z0 ∈ S1 with g(z0) = 1/2, and thus g(z2

0) = a/4.
For a > 5 it is easy to check that H(m)(4/a) → 0. Thus g(z2m

0 ) → ∞, a
contradiction.

(ii) Since F is invertible near the origin, Q is analytic near the origin, where it
satisfies the relation Q2(z) = Q(z2/(az− 1). The rest of the proof follows the lines
of (i).
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Paris 141 pp. 555-558 (1905).
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