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Abstract. We prove that a model atom having one bound state will be fully ionized by a time
periodic potential of arbitrary strength r and frequency ω. Starting with the system in the bound
state, the survival probability is for small r given by e−�t for times of order �−1 ∼ r−2n, where n is
the minimum number of ‘photons’ required for ionization (with large modifications at resonances).
For late times the decay is as t−3 with the power law modulated by oscillations. As r increases,
the time over which there is exponential decay becomes shorter and the power law behaviour starts
earlier. Results are for a parametrically excited one-dimensional system with zero-range potential
but comparison with analytical works and with experiments indicates that many features are general.

1. Introduction

The solution of the Schrödinger equation with a time-dependent potential leading to transitions
between bound and free states of a quantum system is clearly of great theoretical and practical
interest. Fermi’s golden rule (based on a deep physical interpretation of first-order perturbation
theory) gives the decay exponent of the survival probability for a system in a bound state
subjected to a weak external oscillating potential, with frequency ω > ω0 = −Eb/h̄ and
Eb the energy of the bound state [1]. The approaches used to go beyond the golden rule
include higher-order perturbation theory, semi-classical phase–space analysis, Floquet theory,
complex dilation, exact results for small fields and numerical integration of the time-dependent
Schrödinger equation [1–16]. These works have yielded both theoretical understanding and
good agreement with dissociation experiments in strong laser fields. In particular they have
been very successful in elucidating much of the rich structure found in the experiments on
multiphoton ionization of Rydberg atoms by microwave fields [2–6]. Explicit results for
realistic systems require, of course, the use of some approximations whose reliability is not
easy to establish a priori.

It would clearly be desirable to have examples for which one could compute the time
evolution of an initially bound state and thus the ionization probability for all values of the
frequency and strength of the oscillating potential to as high accuracy as desired without any
uncontrolled approximations. This is the motivation for the present work, which describes
new exact results relating to ionization of a very simple model atom by an oscillating field
(potential) of arbitrary strength and frequency. While our results hold for arbitrary strength
perturbations, the predictions are particularly explicit and sharp in the case where the strength
of the oscillating field is small relative to the binding potential—a situation commonly
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encountered in practice. Going beyond perturbation theory we rigorously prove the existence
of a well defined exponential decay regime, which is followed, for late times when the survival
probability is already very low, by a power law decay. This is true no matter how small the
frequency. The times required for ionization are however very dependent on the perturbing
frequency. For a harmonic perturbation with frequency ω the logarithm of the ionization time
grows as r−2n, where r is the normalized strength of the perturbation and n is the number of
‘photons’ required for ionization. This is consistent with conclusions drawn from perturbation
theory and other methods (the approach in [8] being the closest to ours), but is, as far as
we know, the first exact result in this direction. We also obtain, via controlled schemes,
such as continued fractions and convergent series expansions, results for strong perturbing
potentials.

Quite surprisingly our results reproduce many features of the experimental curves for the
multiphoton ionization of excited hydrogen atoms by a microwave field [3]. These features
include both the general dependence of the ionization probabilities on field strength as well
as the increase in the lifetime of the bound state when −nh̄ω, n integer, is very close to
the binding energy. Such ‘resonance stabilization’ is a striking feature of the Rydberg level
ionization curves [3]. These successes and comparisons with analytical results [1–11] suggest
that the simple model we shall now describe contains many of the essential ingredients of the
ionization process in real systems.

1.1. Description of the model

The unperturbed Hamiltonian in our model is

H0 = − h̄2

2m

d2

dy2
− gδ(y) g > 0 − ∞ < y < ∞. (1)

H0 has a single bound state ub(y) = √
p0e−p0|y|, p0 = m

h̄2 g with energy −h̄ω0 = −h̄2p2
0/2m

and a continuous uniform spectrum on the positive real line, with generalized eigenfunctions

u(k, y) = 1√
2π

(
eiky − p0

p0 + i|k|ei|ky|
)

− ∞ < k < ∞

and energies h̄2k2/2m.
Beginning at some initial time, say t = 0, we apply a parametric perturbing potential

−gη(t)δ(y), i.e. we change the parameter g in H0 to g(1 + η(t)) and solve the time-dependent
Schrödinger equation for ψ(y, t),

ψ(y, t) = θ(t)ub(y)e
iω0t +

∫ ∞

−∞
�(k, t)u(k, y)e−i h̄k

2

2m t dk (t � 0) (2)

with initial values θ(0) = 1,�(k, 0) = 0. This gives the survival probability |θ(t)|2, as well
as the fraction of ejected electrons |�(k, t)|2 dk with (quasi-) momentum in the interval dk.

This problem can be reduced to the solution of an integral equation [17]. Setting

θ(t) = 1 + 2i
∫ t

0
Y (s) ds (3)

�(k, t) = 2|k|√
2π(1 − i|k|)

∫ t

0
Y (s)ei(1+k2)s ds (4)

Y (t) satisfies the integral equation

Y (t) = η(t)

{
1 +

∫ t

0
[2i + M(t − t ′)]Y (t ′) dt ′

}
(5)
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where we have set p0 = ω0 = h̄ = 2m = g

2 = 1 and

M(s) = 2i

π

∫ ∞

0

u2e−is(1+u2)

1 + u2
du = 1

2

√
i

π

∫ ∞

s

e−iu

u3/2
du.

2. Results

Our first exact result is the following: when η(t) is a trigonometric polynomial,

η(t) =
n∑

j=1

[Aj sin(jωt) + Bj cos(jωt)] (6)

the survival probability |θ(t)|2 tends to zero as t → ∞, for all ω > 0. That is, there will be
full ionization for arbitrary strength and frequency of the oscillating field.

Since the main features of the argument are already present in the simplest case η =
r sin(ωt) we now specialize to this case. The asymptotics of Y (t) are obtained from its
Laplace transform y(p) = ∫ ∞

0 e−ptY (t) dt , which satisfies the functional equation (cf (5))

y(p) = ir

2

{
y(p + iω)√

1 − ip + ω − 1
− y(p − iω)√

1 − ip − ω − 1

}
+

rω

ω2 + p2
(7)

with the boundary condition y(p) → 0 as Im (p) → ±∞ (the relevant branch of the square
root is (1−ip−ω)1/2 = −i(ω−1+ip)1/2 for ω > 1). We show that the solution of (7) with the
given boundary conditions is unique and analytic for Re (p) > 0, and its only singularities on
the imaginary axis are square root branch points. This in turn implies that |Y (t)| does indeed
decay in an integrable way.

The ideas of the proof carry through directly to the more general periodic potential (6)
and we have obtained analogous results for a two-delta-function reference potential [18].

Full ionization is in fact expected (for entropic reasons) to hold generically, but has, as
far as we know, only been proven before for small amplitude of the oscillating potential with
ω > 1 [10, 11], or for sufficiently random perturbations [10].

The detailed behaviour of the system as a function of t , ω and r is obtained from a
precise study of the singularities of y(p) in the whole complex p-plane. Here we discuss them
for small r; below, the symbol ε describes error bounds of order O(r2−δ), 1

2 < δ < 1. At
p = {inω − i : n ∈ Z}, y has square root branch points and y is analytic in the right half
plane and also in an open neighbourhood N of the imaginary axis with cuts through the branch
points. As |Im (p)| → ∞ in N we have |y(p)| = O(rω|p|−2). If |ω − 1

n
| > Cnε, n ∈ Z

+, for
some constants Cn, then for small r the function y has a unique pole pm in each of the strips
−mω > Im (p) + 1 ± ε > −mω −ω,m ∈ Z · Re (pm), is strictly independent of m and gives
the exponential decay of θ .

The analytic structure of y is indicated in figure 1 where the dotted lines represent (the
square root) branch cuts and the dark circles are simple poles. The function Y is the inverse
Laplace transform of y

Y (t) = 1

2π i

∫
C

epty(p) dp (8)

where the contour of integration C can be initially taken to be the imaginary axis iR, since y

is continuous there and decays as p−2 for large p.
We then show that C can be pushed through the poles, collecting the appropriate residues,

and along the branch cuts as shown in figure 1. The residue at the pole pm is proportional
to e(p0+imω)t while the (rapidly convergent) integral along the mth branch cut is (as seen by
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Figure 1. Singularities of y and relevant inverse Laplace contours.

(This figure is in colour only in the electronic version, see www.iop.org)

standard Laplace integral techniques) a function whose large-t behaviour is Kmeimωt t−3/2

(the −3/2 power arises from the fact that y has square root branch points; Km is some
constant).

A detailed analysis along these lines yields [18, 19],

θ(t) = e−γ (r;ω)tFω(t) +
∞∑

m=−∞
e(miω−i)thm(t) (9)

where Fω is periodic, of period 2πω−1, and hm(t) ∼ ∑∞
j=0 cm,j t

−3/2−j for large t in more
than a half plane centred on the positive real half-line. Not too close to resonances, i.e. when
|ω − n−1| > ε, for all integer n, |Fω(t)| = 1 + O(r2) and its Fourier coefficients decay faster
than r |2m||m|−|m|/2. Also, the sum in (9) does not exceed O(r2t−3/2) for large t , and the hm

decrease with m faster than r |m|.
By equation (9), for times of order 1/� where � = 2Re (γ ), the survival probability for

ω not close to a resonance decays as exp(−�t). This is illustrated in figure 2, where it is seen
that for r � 0.5 the exponential decay holds up to times at which the survival probability is
extremely small. Note also the slow decay forω = 0.8, when ionization requires the absorption
of two photons. For even larger r one can note in the figure oscillatory behaviour. This is
expected from equation (9).

When r is larger (inset in figure 2) the ripples of |Fω(t)| are visible and
the polynomial-oscillatory behaviour starts sooner. Since the amplitude of the late
asymptotic terms is O(r2) for small r , increased r can yield a higher late-time survival
probability. This phenomenon, sometimes referred to as ‘adiabatic stabilization’ [14, 20],
can be associated with the perturbation-induced probability of back-transitions to the
well.



Exact results for the ionization of a model quantum system 6315

1.5; 0.3

1.3; 0.3

1.3; 1/4

1.3; 0.2

0.8; 0.3
rω;

t
600400200

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

lo
g 10

2
θ

806040200

0

-1

-2

-3

-4

-5

-6
(Numerical integration) ω=2; r=1

ω=2;r=0.5

ω=2;r=1.5

Figure 2. Plot of log10 |θ(t)|2 versus time in units of ω−1
0 for several values of ω and r . The main

graph was calculated from (9) and the inset used numerical integration of (5).

Using continued fractions � can be calculated convergently for any ω and r . For small r
we have

� ∼




√
ω − 1

r2

ω
if ω ∈ (1 + ε,∞)

√
2ω − 1

(1 − √
1 − ω)2

r4

8ω
if ω ∈ ( 1

2 + ε, 1 − ε)

. . . . . .

2−2n+2
√
nω − 1∏

m<n(1 − √
1 − mω)2

r2n

nω
if ω ∈ ( 1

n
+ ε, 1

n−1 − ε).

(10)

Equation (10) agrees with the results of perturbation theory. Thus, for ω > 1, � is given
by Fermi’s golden rule [1] since the transition matrix element between the bound state with
energy −1 and the continuum state with energy k2 is

|〈ub(y)|δ(y)u(k, y)〉|2 = 1

2π

k2

1 + k2
(11)

while the density of states is 2π
k

.
The behaviour of � is different at the resonances ω−1 ∈ N. For instance, whereas if ω is

not close to 1, the scaling of � implied by (10) is r2 when ω > 1 and r4 when 1
2 < ω < 1,

when ω − 1 = r2/
√

2 we find

� ∼
(

21/4

8
− 23/4

16

)
r3.

In figure 3 we plot the behaviour of �−1, as a function of ω, for a small value of r . The
curve is made up of smooth (roughly self-similar) pieces for ω in the intervals (n−1, (n−1)−1)
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Figure 3. log10 �−1 as a function of ω/ω0 at r = 0.01. At r = 0.2 (inset) a shift of the resonance
is visible. In the inset the continued fraction was used, while for the main figure the data were
extrapolated from (10).

corresponding to ionization by n photons. At resonances (for small r these occur for ω−1

close to an integer), the coefficient of r2n, the leading term in �, goes to zero. This yields an
enhanced stability of the bound state against ionization by perturbations with such frequencies.
The origin of this behaviour is, in our d = 1 model, the vanishing of the matrix element in (11)
at k = 0. This behaviour should hold quite generally in d = 3 where there is a factor k in �

originating from the energy density of states near k = 0. As r increases these resonances shift
in the direction of increased frequency. For small r and ω = 1 the shift in the position of the
resonance, sometimes called the dynamic Stark effect [1], is about r2√

2
.

In figure 4 we plot the strength of the perturbation r , required to make |θ(t)|2 = 1
2 for

a time of about 700 oscillations of the perturbing field, i.e. time is measured in units of ω−1,
as a function of ω. Also included in this figure are experimental results taken from table 1
in [3] (see also figures 13 and 18 there for the ionization of a hydrogen atom by a microwave
field for approximately the same number of oscillations). In this still ongoing beautiful series
of experiments [3–5], the atom is initially in an excited state with principal quantum number
n0 ranging from 32 to 90. The ‘natural frequency’ ω0 is there taken to be that of an average
transition from n0 to n0 ± 1, so ω0 ∼ n−3

0 . The strength of the microwave field F is then
normalized to the strength of the nuclear field in the initial state, which scales as n−4

0 . The plot
there is thus of n4

0F versus n3
0ω. To compare the results of our model with the experimental

ones we had to relate r to n4
0F , and, given the difference between the hydrogen atom perturbed

by a polarized electric field V1 = xF sin(ωt) and our model, this is clearly not something that
can be done in a unique way. We therefore simply tried to find a correspondence between n4

0F

and r which would give the best visual fit. Somewhat to our surprise these fits for different
values of ω/ω0 all turned out to have values of r close to 3n4

0F .
A correspondence of the same order of magnitude is obtained by comparing the

perturbation-induced shifts of bound state energies in our model and in hydrogen. We note
that the maximal values of r in figure 4 are still within the regime where only a few terms in (9)
are sufficient.

In figure 5 we plot |θ(t)|2 versus r for a fixed t and two different values of ω. These
frequencies are chosen to correspond to the values of ω/ω0 in the experimental curves, figure 1



Exact results for the ionization of a model quantum system 6317

0ω/ω

--Experiment [3]

Eq. (10)--

10.80.60.40.2

0.12

0.1

0.08

0.06

0.04

0.02

0.36

0.30

0.24

0.18

0.12

0.06

n  F4

0r

Figure 4. Threshold amplitudes for 50% ionization versus ω/ω0, calculated from equation (10),
and in the experiment [3]. In the calculation, the dynamic Stark effect was approximated using an
averaged r over the range.

in [5] and 1(b) in [3]. The agreement is very good for ω/ω0 ≈ 0.1116 and reasonable for
the larger ratio. Our model essentially predicts that when the fields are not too strong the
experimental survival curves for a fixed n3

0ω (away from the resonances) should behave

essentially as exp(−C[n4
0F ]

2
n3

0ω ωt) with C depending on n3
0ω but, to first approximation,

independent of n4
0F .

3. Concluding remarks

Given the simplicity of our model, the similarity (using a minimal numbers of adjustable
parameters) to the experiments on hydrogen atoms was surprising to us. As already noted these
experimental results and in particular the resonances can be understood quite well, including
some details, by performing calculations on the full hydrogen atom or a one-dimensional
version of it [2–6]. Still, it is interesting to see that similar structures arise also in very simple
models. This suggests that various features of the ionization process have a certain universal
character. To really pin down the reason for this universality will require much further work.

We note that for ω > ω0, in the limit of small amplitudes r , a predominantly exponential
decay of the survival probability followed by a power-law decay was proved in [11] for
three-dimensional models with quite general local binding potentials having one bound state,
perturbed by r cos(ωt)V (y), where V is a local potential. Our results for general ω and r

can be thought of as arising from a rigorous Borel summation of the formal (exponential)
asymptotic expansion of Y for t → ∞. These methods can be extended to other systems [17]
including, we hope, realistic ones.
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Figure 5. Ionization fraction at fixed t (corresponding to 300 oscillations) as a function of
amplitude.
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