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Abstract We show that there exists a rational change of coordinates of
Painlev�e's P1 equation y00 = 6y2 + x and of the elliptic equation y00 = 6y2

after which these two equations become analytically equivalent in a region in
the complex phase space where y and y0 are unbounded. The region of equiv-
alence comprises all singularities of solutions of P1 (i.e. outside the region
of equivalence, solutions are analytic). The Painlev�e property of P1 (that
the only movable singularities are poles) follows as a corollary. Conversely,
we argue that the Painlev�e property is crucial in reducing P1, in a singular
regime, to an equation integrable by quadratures.
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1 Introduction

The problem of determining which classes of nonlinear di�erential equations
can de�ne new transcendents (special functions having good properties), re-
ceived a special attention in the last century, especially due to the emphasis
on �nding \explicit" solutions to di�erential equations. Fuchs had the in-
tuition that the appropriate condition these equations must satisfy is that
their solutions have no movable branch points. This feature of an equation
is now known as the Painlev�e property and proved to be a very relevant
characteristic, in a wide range of problems. Fuchs' study was pursued by
Briot and Bouquet, and then by Painlev�e [1] and Gambier who showed that
there are no new transcendents coming from �rst order equations, but there
are six second order equations which de�ne new special functions. These
equations (now denoted usually as P1 to P6) were discovered as a result of
a purely theoretical quest, but they later arose naturally in many distinct
physical applications (see, e.g., [2] and [3]). Linearization of second order
Painlev�e equations through the isomonodromic transformation method [2],
[5], [6], [7] is one of the most important recent developments. To this date,
higher order equations have not yet been classi�ed from the point of view of
Painlev�e integrability.

Perhaps surprisingly, proving the Painlev�e property of an equation turns
out to be quite di�cult (although if one assumes that singularities are de-
scribed locally by convergent power-logarithmic series, then it is usually easy
to check for the absence of movable branch points) and some of the classical
proofs for Painlev�e equations have been subsequently challenged. See also
[8] and [9].

The Painlev�e property, being shared by all solutions, must reveal a par-
ticular structure of the equation itself. We show in fact that P1 is equivalent
with an equation integrable by quadratures, in a region in the phase space
where the solutions y(x) are singular. The equivalence also has the implica-
tion that the solutions of P1 are meromorphic, and is a natural and rigorous
way to prove the Painlev�e property.

We expect our technique to work for other equations having the Painlev�e
property, as well.

The existence of a simple integrable singular normal form of P1 is tied
to the special integrability properties of this equation, and is not merely a
consequence of the fact that (2.1) \approximately equals" y00 = 6y2 when
y; y0; y00 are large. Approximations near singularities are usually very unsta-
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ble. For instance, the modi�cation Y 00 = 6Y 2 + x2 of P1 also seems to be
approximated by the equation y00 = 6y2 for large Y; Y 00, especially if x is
small, but these two equations are not equivalent in mentioned regime. The
obstruction in the equivalence is the presence of \bad" logarithmic terms in
the Frobenius series of Y (x) near its movable singularities, and the fact that
their absence in y(x) is stable under combinations of analytic and rational
transformations.

2 Main Results

We consider the Painlev�e P1 equation

d2y

dx2
= 6y2 + x (2.1)

and show that there exists a transformation of the independent variable only
(i.e., of the form x = F (t; u; u0), y = u) which is an equivalence of (2.1) to
the elliptic equation

d2u

dt2
= 6u2 (2.2)

in regions of the phase space where the dependent variables are large.
The regularity of the transformation giving the equivalence appears more

clearly after making a rational transformation of the dependent variables of
(2.1) and (2.2)

v1 = �y�2
dy

dx
; w1 = y3

�
dy

dx

��2

(2.3)

and, respectively

v = �u�2
du

dt
; w = u3

�
du

dt

��2

(2.4)

Then (2.1) and (2.2), written in the new variables,
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8<
:

dv1
dx

= 2
w1
� 6� xw2

1v
4
1

dw1
dx

= 12
v1

�
w1 �

1
4

�
+ 2xw3

1v
3
1

(2.5)

and, respectively

8<
:

dv
dt
= 2

w
� 6

dw
dt

= 12
v

�
w � 1

4

� (2.6)

are analytically equivalent on polydisks centered at (x0; 0; 1=4) (x0 2 C ar-
bitrary). We note that the centers of the polydisks correspond to the point
at in�nity for y and u. In remark 5 below we explain how this equivalence
translates into properties of the solutions of P1.

Proposition 1 There exists a map (t; v; w) 7! �(t; v; w) = (x; v1; w1), in the
extended phase space, of the form8<

:
x = (t; v; w)
v1 = �(t; v; w)
w1 = �(t; v; w) = v2w�(t; v; w)�2

(2.7)

which transforms (2.5) into (2.6) and has the following properties:
(i) � is holomorphic in a neighborhood of each point (x0; 0; 1=4); x0 2 C .

Namely, for every x0 2 C there exists a polydisk �(x0)

�(x0) =

�
(t; v; w) 2 C

3 : jt� x0j < 1 ; jvj < R�1 ; jw �
1

4
j < �

�
(2.8)

(R � 1 and � < 1=4) where � is holomorphic and where its power series in v
has the form

(t; v; w) = t+
X
k�5

k(t; w)v
k (2.9)

�(t; v; w) = v +
X
k�5

�k(t; w)v
k (2.10)

�(t; v; w) = w +
X
k�4

�k(t; w)v
k (2.11)
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(ii) � is a biholomorphism of �(x0) onto its image. Its inverse is holo-
morphic near (x0; 0; 1=4) and ��1 = Id+O(v41).

(iii) Let t ! (v(t); w(t)) be a solution of (2.6) such that (t; v(t); w(t)) 2
�(x0) for t in some disk jt� t1j < �0.

Then the function t !  (t; v(t); w(t)) is a biholomorphism of the disk
jt� t1j < �0 onto its image.

The proof of Proposition 1 is given in x 3.1.

The local equivalence of (2.5) and (2.6) stated in Proposition 1 is straight-
forwardly translated into a local equivalence of (2.1) and (2.2):

Corollary 2 There exists a map (t; u; u0) 7! ~�(t; u; u0) = (x; y; y0), in the
extended phase space, of the form

8>><
>>:

x = 
�
t;� u0

u2
; u3

u02

�
y = u

y0 = �u2�
�
t;� u0

u2
; u3

u02

�
= u0

h
1 +

�
u0

u2

�3
�1

�
t;� u0

u2
; u3

u02

�i (2.12)

where ; �; �1 are holomorphic on the polydisks �(x0) (x0 2 C ) which takes
equation (2.1) into (2.2).

The transformation ~� is one-to-one on each domain

~�(x0) =

�
(t; u; u0) 2 C

3 : jt� x0j < 1;

����u0u2
���� < R�1;

���� u3u02 � 1

4

���� < �

�
(2.13)

If u(t) is a solution of (2.2) such that the set Tu = f(t; v(t); w(t)) ; jt �
t1j < �0g is included in �(x0), then the equality y(x) = u(t) de�nes a solution
of (2.1) for x 2  (Tu).

Remark 3 If p 2 C is a pole of u(t) then v(t) and w(t) have removable
singularities at p, with v(p) = 0 and w(p) = 1=4.

As a consequence of the equivalence of Proposition 1, the Painlev�e prop-
erty of (2.1) follows naturally:
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Proposition 4 The only singularities of the solutions of (2.1) are second
order poles.

Remark 5 The following description follows from the proof of Proposition 4.
If y(x) is a solution of (2.1), then whenever x is su�ciently close to a sin-
gularity of y(x), (x; y(x); y0(x)) falls in the equivalence region of (2.1) with
(2.2). In fact, the complex plane is divided into a union A of nonintersecting
balls { each containing a pole of y(x), where (x; y(x); y0(x)) 2 Domain(�) {
and the complement of A, which is a connected set, where y(x) is analytic.

3 Proofs

3.1 Proof of Proposition 1

(i) The proof proceeds in several steps.
Step 1: Denote by L the linear di�erential operator

L =
@

@t
+

�
2

w
� 6

�
@

@v
+
12

v

�
w �

1

4

�
@

@w

Since (cf. (2.7) and (2.6)) dv1
dx

= L�
L

and dw1
dx

= L(v2w��2)
L

, a straightforward

calculation shows that the transformation � maps (2.5) into (2.6) i�  and
� satisfy the equations

v(L2) + 6(L) �
�
6 + w2v4

�
(L)3 = 0 (3.14)

and

� =
v

L
(3.15)

Step 2: There exists a formal series solution of equation (3.14) of the
form (2.9) where k have convergent power series at w = 1=4

k(t; w) =
X
n�0

k;n(t)

�
w �

1

4

�n

(3.16)

with k;n polynomials in t.

7



Indeed, substitution of (2.9) in (3.14) leads to the recurrence

Pk(w)k+1 = hk(5; :::; k; t; w) (k � 4) (3.17)

where Pk is the linear operator

Pk(w) = 144

�
w �

1

4

�2
@2

@w2
+

�
w �

1

4

�
fk(w)

@

@w
+ gk(w) (3.18)

with

fk(w) = 12(2k + 1)

�
2

w
� 6

�
(3.19)

gk(w) = (k + 1)

�
2(2k + 3)

w2
�

24(k + 2)

w
+ 36(k + 2)

�
(3.20)

Furthermore, hk(5; :::; k; t; w) is a polynomial in 5; :::; k

hk(5; :::; k; t; w) = h0k(5; :::; k; t; w)� h1k(k�7; :::; k; w) (3.21)

where (with �A(x) the characteristic function of the set A) we have

h0k(5; :::; k; t; w) = w2t�f4g(k) + 12@tk

+ w2k�4 + 18
X
i+j=k

LiLj + 6
X

i+j+l=k

LiLjLl

+ tw2

(
3Lk�4 + 3

X
i+j=k�4

LiLj +
X

i+j+l=k�4

LiLjLl

)

+ w2

(
3
X

i+p=k�4

pLi + 3
X

i+j+p=k�4

pLiLj

+
X

i+j+l+p=k�4

pLiLjLl

)
(3.22)

with the convention that the summation indices satisfy i; j; l � 4 and p � 5,
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where

L := 1 +
X
k�4

Lkv
k (3.23)

Lk = @tk�[5;1)(k) + 12

�
w �

1

4

�
@wk+1 + (k + 1)

�
2

w
� 6

�
k+1 (3.24)

(3.25)

and

h1k(k�7; :::; k; w) = �
12

w

�
w �

1

4

�
k@tk + 24

�
w �

1

4

�
@twk + @ttk�1

(3.26)

We note that (3.17) gives k+1 in terms of 5; :::; k as a solution of a second
order linear inhomogeneous ODE. We are looking for functions k+1 holo-
morphic at (t; w) = (x0; 1=4). The point w = 1=4 is a regular singular point
of (3.17) and we need to show there exist analytic solutions there.

Substituting the formal series (3.16) and the expansions of fk; gk and hk

fk(w) =
X
n�0

fk;n

�
w �

1

4

�n

; gk(w) =
X
n�0

gk;n

�
w �

1

4

�n

hk(5(t; w); :::; k(t; w); t; w) =
X
n�0

hk;n(t)

�
w �

1

4

�n

in (3.17), we get, for n � 0,

[144n(n � 1) + nfk;0 + gk;0] k+1;n = hk;n �
X

p+j=n;p<n

(pfk;j + gk;j) k+1;p

(3.27)

If for some k it is true that

144n(n � 1) + nfk;0 + gk;0 6= 0 (3.28)

for all n � 0, then the system (3.27) can be solved for k+1;n recursively,
for any values of the right side of each equation. This is the case if k 6= 6.
Indeed,
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fk;0 = fk(1=4) = 24(2k + 1) ; gk;0 = gk(1=4) = 4(k + 1)(k � 6) (3.29)

and the solvability conditions (3.28) reads

144n(n � 1) + 24n(2k + 1) + 4(k + 1)(k � 6) 6= 0

which holds if k 6= 6.
We must look at the case k = 6 separately. The equations for 5; 6; 7

are

P4(w)5 � tw2 = 0 (3.30)

P5(w)6 + 24

�
w �

1

4

�
@2

@t@w
5 +

�
20

w
� 72

�
@

@t
5 = 0 (3.31)

P6(w)7 + 24

�
w �

1

4

�
@2

@t@w
6 +

�
24

w
� 84

�
@

@t
6 +

@2

@t2
5 = 0

(3.32)

Direct substitution shows that the power series of 5;6 have the form

5 = �
t

640
�

7t

352

�
w �

1

4

�
+O

 �
w �

1

4

�2
!

(3.33)

6 = �
1

1920
+O

�
w �

1

4

�
(3.34)

Using (3.33) and (3.34) it follows that (3.32) also has power series solutions
7 indexed by the arbitrary coe�cient 7;0 (there are in�nitely many such
solutions because of the potential obstruction at k = 6, see also the note
below).

By Frobenius' theory of regular singularities, the series (3.16) converge.
Induction shows that the coe�cients depend polynomially on the parameter
t. In steps 3 to 8 we show that the series k (cf. (3.16)) converge in fact on
a common polydisk.
Note. The special form of P1 is essential in overcoming the obstruction
at k = 6. Generic perturbations of P1 lead to a k = 6 equation without
solutions, implying that no (integer) power series for  exists.

Step 3: A space of analytic functions. Consider the class Hp(D) of holomor-
phic functions in the polydisk
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D = f(t; w) 2 C
2 : jt� x0j < 1 ; jw � 1=4j < �g (for � 2 (0; 1=4))

which depend polynomially on t and are continuous in the closure D of D.
If

 (t; w) =
nX

j=0

 j(w) (t� x0)
j 2 Hp(D)

then we de�ne

jjj jjj :=
nX

j=0

jj j(w)jj ; where jj jjj = sup
jw�1=4j<�

j j(w)j (3.35)

We note the following estimate of t{derivatives

jjj@t jjj =
nX

j=0

jjj j(w)jj � njjj jjj (3.36)

and that multiplication is continuous:

jjj 1 2jjj � jjj 1jjj jjj 2jjj

The usual sup norm on D is estimated in terms of the norm (3.35) by:

sup
(t;w)2D

j (t; w)j � jjj jjj (3.37)

Thus the completion Hp(D) of the spaceHp(D) in the norm jjj�jjj is contained
in the space of the holomorphic functions on D, continuous on D.

In the following Const: denotes constants which are independent of k;C; �;R
and x0 (C is de�ned in Step 8 below).

Step 4: For k � 7, (3.17) can be written in the form

k+1 = Nkk+1 + bk (3.38)

where bk depends on 5; : : : ; k; t and w and with Nk a linear operator satis-
fying

NkHp(D) � Hp(D) and
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jjjNk jjj � Const:�a2� jjj jjj (3.39)

for all  2 Hp(D), where a� = (1=4 � �)�1.
It is convenient to rewrite (3.18), (cf. (3.19), (3.20), (3.29)) as

Pk = �k + Sk

where

�k = 144

�
w �

1

4

�2
@2

@w2
+ 24(2k + 1)

�
w �

1

4

�
@

@w
+ 4(k + 1)(k � 6)

and

Sk =

�
w �

1

4

�
[fk(w)� fk(1=4)]

@

@w
+ [gk(w)� gk(1=4)]

Equation (3.17) becomes

�kk+1 = hk � Skk+1 (3.40)

The equation �k = 0 has two independent solutions (w � 1=4)�1;2 with

�1 = 1 � k=6 and �2 = �1=6 � k=6

In order to write (3.40) in integral form, we interpret it as a linear inho-
mogeneous equation, with the inhomogeneous part hk � Skk+1. Then the
solutions k+1 satisfy

k+1 = Bk(hk � Skk+1) (3.41)

where Bk is the operator

Bk( )(t; w) =
1

168

Z 1

0

�
s�1��1 � s�1��2

�
 (t; ws) ds (3.42)

where

ws = s

�
w �

1

4

�
+
1

4
(3.43)
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The solutions of (3.40) satisfy the equation (3.38) where

Nk = �Bk (Sk ) (3.44)

and bk, as a function of (t; w), is given by

bk = Bk (hk) (3.45)

Let  2 Hp(D). Integrating in (3.44) by parts the term containing @wk+1

we get

(Nk )(t; w) = �
1

168

Z 1

0

�k(s;w) (t; ws) ds (3.46)

where

�k(s;w) =
�
�1s

�1��1 � �2s
�1��2

� �
fk(ws)� fk(1=4)

�
+
�
s�1��1 � s�1��2

�
[�(w � 1=4)sf 0k(ws) + gk(ws)� gk(1=4)]

Direct estimates on (3.19), (3.20) give for jw � 1=4j � � < 1=4

jfk(w)� fk(1=4)j � Const:k�a� (3.47)

jf 0k(w)j � Const:ka2� (3.48)

jgk(w) � gk(1=4)j � Const:k2�a2� (3.49)

Also, Z 1

0

j�1s
�1��1 � �2s

�1��2j ds < Const:k�1 (3.50)

Therefore, from (3.47) to (3.50) we getZ 1

0

j�k(s;w)j ds �Const:�a
2
� (3.51)

which proves (3.39).
Step 5: For k � 7 the functions @wk+1 satisfy an equation of the form

@wk+1 = N1
k (@wk+1) +N2

k (k+1) + b1k (3.52)

where N j
k are linear operators such that
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N j
k Hp(D) � Hp(D) (j = 1; 2) (3.53)

jjjN1
k jjj � Const:�a2� jjj jjj (3.54)

jjjN2
k jjj � Const:a3� jjj jjj (3.55)

for all  2 Hp(D).
Indeed, di�erentiation with respect to w in (3.41) yields

@wk+1(t; w) =
1

168

Z 1

0

�
s��1 � s��2

�
@w (hk � Skk+1) (t; ws) ds (3.56)

and (3.52) follows with

(N1
k )(t; w) =

1

168

Z 1

0

�1k(s;w) (t; ws)ds (3.57)

where

�1k(s;w) =
�
�2s

��2 � �1s
��1
� �
fk(ws)� fk(1=4)

�
�
�
s��1 � s��2

� �
gk(ws)� gk(1=4)

�
and

(N2
k )(t; w) = �

1

168

Z 1

0

�
s��1 � s��2

�
g0k(ws) (t; ws)ds

From (3.56) we get

b1k = B1
k (hk) (3.58)

where B1
k is the linear operator

B1
k( )(t; w) =

1

168

�
w �

1

4

��1 Z 1

0

�
�1s

�1��1 � �2s
�1��2

�
 (t; ws) ds(3.59)

The estimates (3.54) and (3.55) are straightforward.
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Step 6: k(t; w) is a polynomial in t, of degree at most (k � 1)=4. The
proof is by induction on k. Note �rst that the degree in t of any holomorphic
solution of (3.17) cannot exceed the degree of the inhomogeneous term hk.
Hence (cf. (3.30)) the degree in t of 5 is at most 1.

Assume by induction that degtj � (j � 1)=4 if 5 � j � k. Then, (cf.
(3.23)) degtLj � degtj+1 � j=4 for j � k � 1 and we have (cf. (3.21))
degthk � k=4.
Step 7: Estimates of sums. Given � < 1 there exist constants C1; C2 > 0
such that for all integers n � 1

n�� < C2(1� �)(2� �):::(n� �)=n! < C1n
�� (3.60)

and (� = 3=2)

n�3=2 < �C2(1� 3=2)(2 � 3=2):::(n� 3=2)=n! < C1n
�3=2 (3.61)

These elementary Gamma function inequalities imply that given � < 1, there
is a constant C0 > 0 such that for all kX

i+j=k;i;j�4

i��j�� � C0k
1�2� (3.62)

X
i+j+l=k;i;j;l�4

i��j��l�� � C0k
2�3� (3.63)

X
q+j=k;j�4;q�5

q�3=2j�1=2 � C0k
�1=2 (3.64)

X
q+i+j=k;i;j�4;q�5

q�3=2i�1=2j�1=2 � C0 (3.65)

X
q+i+j+l=k;i;j;l�4;q�5

q�3=2i�1=2j�1=2l�1=2 � C0k
1=2 (3.66)

Step 8: There exist constants � 2 (0; 1=4); C;R > 1 such that k 2 Hp(D)
and

jjjjjjj < Cj�3=2Rj�5 (3.67)

jjj@wjjjj < Cj�1=2Rj�5 (3.68)

for all j � 5.
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The proof is by induction. Suppose that 5; :::; k 2 Hp(D) and that
(3.67) and (3.68) hold for j = 5; :::; k; we prove these properties for j = k+1.
The plan of the proof is as follows:

We estimate the functions: (1) hk (de�ned in (3.21), (3.22) and (3.26));
(2) bk (de�ned by (3.45)); and (3) b1k (de�ned by (3.58)). (4) We obtain
inequalities for k+1 and @wk+1; and �nally (5) we choose the constants C;R
and �.
(1) Estimating the terms of h0k and h

1
k:

(a) From the induction hypothesis, (3.36), (3.23) and the fact that jw �
1=4j < �, we see that

jjjLijjj � degti jjjijjj+ 12�jjj@wi+1jjj+ (i+ 1)(2a� + 6)jjji+1jjj

� Const:K� Ci
�1=2Ri�4 (3.69)

for i � k � 1, where

K� = 1 + a� (3.70)

(b) By (a) and (3.62)

jjj
X
i+j=k

LiLjjjj � Const:K2
�

X
i+j=k

C2i�1=2j�1=2Rk�8 � Const:K2
�C

2Rk�8

(c) By (a) and (3.63)

jjj
X

i+j+l=k

LiLjLljjj � Const:K3
�

X
i+j+l=k;i;j;l�4

C3i�1=2j�1=2l�1=2Rk�12 �

Const:K3
�C

3k1=2Rk�12

We �nally have

(d) jjjw2
P

i+p=k�4 pLijjj � Const:K� C
2k�1=2Rk�13

(e) jjjw2
P

i+j+p=k�4 pLiLj jjj � Const:K2
�C

3Rk�17

and

(f) jjjw2
P

i+j+l+p=k�4 pLiLjLljjj � Const:K3
�C

4k1=2Rk�21
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Combining (a)...(f) we get

jjjhkjjj � Const:�C(k + 1)1=2Rk�4 (3.71)

where, using that R;K�; C and k are at least one and � < 1=4 we get

� =
�
1 + jx0jR

�3
� �
K�R

�1 +K2
�CR

�4 +K3
�C

2R�8 +K3
�C

3R�12
�

(2) In view of (3.71)

jjjbkjjj = jjjBk(hk)jjj �
1

168
jjjhkjjj

Z 1

0

�
s�1��1 � s�1��2

�
ds

� Const:�C(k + 1)�3=2Rk�4 (3.72)

(3) The function B1
k(hk)(t; w) is regular at w = 1=4 sinceZ 1

0

�
�1s

�1��1 � �2s
�1��2

�
ds = 0

Its maximum over the disk jw � 1=4j � � is then attained for jw � 1=4j = �
and

jjjb1kjjj = jjjB1
k(hk)jjj � Const: jjjhkjjj �

�1

Z 1

0

j�1s
�1��1 � �2s

�1��2 j ds

� Const:���1C(k + 1)�1=2Rk�4

(4) In this part of the proof we restrict the values of the parameters �;R and
C (conditions 1 to 4); the consistency of the conditions is shown in part (5).
If �� := Const:�a2� < 1 (Condition 1) then, using (3.39), it follows that the
operator Nk extends continuously on Hp(D) and is a contraction there. Thus
I�Nk is invertible. The function k+1 = (I�Nk)�1bk (cf. (3.38)) is analytic
in D, continuous on �D. Since (by step 6) k+1 is a polynomial in t, it follows
that k+1 2 Hp(D).

In view of (3.39) and (3.72) it follows that

jjjk+1jjj = jjj(I �Nk)
�1bkjjj < (1 � ��)

�1jjjbkjjj �

Const:�(1 � ��)
�1C(k + 1)�3=2Rk�4 (3.73)
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The induction step for k+1 follows provided that Const:�(1 � ��)�1 � 1
(Condition 2). The estimate of @wk+1 is similar: step 5 and (3.73) imply
(cf. (3.57))

jjjN2
kk+1jjj � Const:a3�C(k + 1)�3=2Rk�4

If �1� � Const:�a2� < 1 (Condition 3 ) then (cf. step 5)

jjj@wk+1jjj � Const:(1� �1� )
�1�1 C(k + 1)�1=2Rk�4

where

�1 = a3�k
�1 + ��1�

The induction step follows if Const:(1 � �1� )
�1�1 � 1 (Condition 4).

(5) Proving that conditions 1 through 4 can be satis�ed. Let � be small
enough so that conditions 1 and 3 hold. It is convenient to impose CR�4 � 1
(Condition 5).

Then conditions 2 and 4 are implied by an inequality of the form

C1(�)
�
k�1 +

�
R�1 + CR�4

�
(1 + jx0jR

�3)
�
� 1 (3.74)

with C1(�) depending on � only. If k is larger than some k1(�), thenC1(�)k�1 <
1=2. C can now be chosen so that the induction hypothesis ((3.67) and (3.68))
holds for j = 5; :::; k1(�). Finally, for large enough R, condition 5 and (3.74)
are satis�ed.

Step 9: The series (2.9) converges for (t; v; w) 2 �(x0) (cf. (2.8)). This is
an immediate consequence of (3.67) and (3.37).

Part (ii) follows from the fact that � is a small perturbation of the identity:
� = Id+v4�1 with �1 holomorphic on �(x0), thus of the form Id+h(t; v; w)
where h is analytic, h(0) = 0 and kD(h)k < � < 1 (for large enough R).
Thus ��1 exists and is analytic [4]. Part (iii) follows similarly.

3.2 Proof of Proposition 4

Let y(x) be a solution of (2.1), analytic at some point a 2 C . The approach to
the proof is the following. IfB(r) is any open disk where y(x) is meromorphic,
we show that y(x) is meromorphic in a neighborhood of the closure of Br
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as well (implying meromorphicity in C ). This is shown by �nding a subset
Be(r) of B(r) and a �(r) > 0 such that:

(i) each x 2 Be(r) is the center of a disk of radius at least �(r) where
(2.1) and (2.2) are equivalent (where thus 1=y is analytic)

(ii) y and y0 are uniformly bounded (and analytic) in a neighborhood of
the closure of B(r)nBe(r).

Consider thus an open disk B = B(r) � C centered at a, of radius r,
such that y(x) is meromorphic in B.
Let

�1(x0) =

�
(x; v1; w1) 2 C

3 : jx� x0j < � ; jv1j < S�1 ;

����w1 �
1

4

���� < �

�

where �; S and � are small enough so that the closure of �1(x0) is contained
in � (�(x0)). Let ~�1(x0) be its representation in (x; y; y0).

Let x� 2 @B. Let x0 2 B such that jx� � x0j < � and y(x) is analytic at
x0.

We show that either (x; y(x); y0(x)) 2 ~�1(x0), for all x in a neighborhood
of x�, thus y(x) is meromorphic at x� (cf. corollary 2) or else there is a path
in B, ending at x�, on which y(x) is uniformly bounded. In the latter case,
y(x) is analytic at x� as follows from lemma 6.

Lemma 6 Let y(x) be a solution of (2.1). Let l : [0; 1] ! C be a path,
continuous on [0; 1], smooth on [0; 1), of �nite length, and such that y(x) is
analytic at each point on l[0; 1) and uniformly bounded on l[0; 1). Then y(x)
is analytic at l(1).

The proof is given in x3.3.

Consider the ray R� starting at x0 through x�. If x; x0 2 R� we write
x � x0 when jx� x0j < jx0 � x0j.

Integrating (2.1) we get

(y0)2 = 4y3 + 2xy � 2

Z x

x0

y(s)ds+ C (3.75)

Let �1 2 (0; 1) be small.
In the following, Const: denotes positive constants, which may depend

only on x0; y(x0); y0(x0); r; �; S and � but not on �1.
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If jy(x)j � ��11 in R�\B we de�ne l to be the segment [x0; x�]. Otherwise,
let x1 be the least x in R� \B with respect to � such that jy(x1)j = ��11 . We
have

(y0)2 = 4y3 + 2xy � 2

Z x

x1

y(s)ds+ C1 (3.76)

where

jC1j � jCj+ 2jx0 � x1j sup
x2[x0;x1]

jyj � jCj+ 2���11 � Const:��11

for small �1. Let y1 = y(x1) and y01 = y0(x1). Then

���� y0124y31
� 1

���� =
����2x1y1 + C1

4y31

���� � Const:�21 (3.77)

so that ���� y31y012 �
1

4

���� < Const:�1

Also, from (3.76), ����y01y21
���� < Const:�1=21

Thus (x1; y1; y01) 2 ~�1(x0) if �1 is small enough.

Remark 7 y(x) is meromorphic in a neighborhood of the closure of the disk

Dx1 = fx; jx� x1j < 4�1=21 g.

Consider the solution of (2.2), which corresponds to y(x) through �:
u(t) = y(x) (cf. corollary 2), de�ned in a neighborhood of t1, where
(t1; u1; u01) = ~��1(x1; y1; y01).

The change of variables u = 1=Q2 in (2.2) gives, after one integration,

(Q0)2 = 1 +K1Q
6 (3.78)

To estimate the constant K1 we use the fact that the map ~��1 is close to the
identity:
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u0 = y0

"
1 +

�
y0

y2

�4

�1

�
x;�

y0

y2
;
y3

y02

�#

with �1 holomorphic for (x; y; y0) 2 ~�
�
~�(x0)

�
(thus bounded on ~�1(x0)).

Then

jK1j =
1

4

���u012 � 4u31

��� < Const:��11

With the substitution Q(t) = Q(t1) + (t� t1) + U(t), (3.78) can be written
in integral form as

U(t) =

Z t

t1

K1Q(s)6

1 +
p
1 +K1Q(s)6

ds := J
�
U
�
(t) (3.79)

A straightforward calculation shows that the operator J in (3.79) is a con-

traction in the sup norm over the closed disk D0
t1 = ft : jt� t1j � 8�

1=2
1 g, in

the ball kUk1 � �21 (if �1 is small).
Furthermore, (t; u(t); u0(t)) 2 ~�(x0) for t 2 D0

t1 (and small �1). Hence,
from Proposition 1 (iii), y(x) := u(t) is a solution of (2.1) if t 2 D0

t1 (the
same solution as in the beginning of x 3.2).

To estimate the domain in the x-plane where y(x) is de�ned by the equiv-
alence, we rely on the fact that � is close to the identity:

jx� x1j =

����
�
t;�

u0(t)

u(t)2
;
u(t)3

u0(t)2

�
� 

�
t1;�

u01
u21
;
u31
u01

2

����� �
jt� t1j �M2max

����u0(t)u(t)2

����
5

� jt� t1j �Const:�
5=2
1

Thus, taking �1 small enough, remark 7 follows.

Remark 8 y(x) satis�es the estimate

jy(x)j < ��11 for jx� x1j = 4�1=21

Proof. Indeed, since y(x) = u(t) = [Q(t1) + (t� t1) + U(t)]�2 (note that
Q(t1)

�2 = u1), we have y(x) = [Q(t1) + (x� x1) + Y (x)]�2 where
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jY (x)j =

�����U(t)�
�
u0(t)

u2(t)

�5
1(t; v(t); w(t)) +

�
u01
u21

�5
1(t1; v(t1); w(t1))

�����
� �21 + Const:�

5=2
1

since 1 is analytic on �(x0), therefore bounded on ��1 (�1(x0)).

Thus, for x such that jx� x1j = 4�
1=2
1 , and small �1,

jy(x)j � jQ1 + (x� x1)j
�2

�
1�

���� Y (x)

Q1 + (x� x1)

����
��2

< ��11

which proves remark 8.
If x� 2 Dx1 then, by remark 7, proposition 4 is proved. Otherwise, let

x01; x2, with x01 � x2, be the two points of intersections of the circle @Dx1

with R�. Thus x01 � x1 � x2 � x� and jy(x2)j < ��11 . The construction in
step 1 is now repeated with x2 instead of x0 and the same �1: if jy(x)j � ��11

on [x2; x�) then l is de�ned as the segment [x2; x�]. Otherwise, let x3 be the
least point w.r.t. � on (x2; x�) such that jy(x3)j = ��11 . As before, y(x) is
meromorphic in a neighborhood of Dx3 and satis�es jy(x)j < ��11 on @Dx3.

Then, either x� 2 Dx3, in which case the Proposition is proved, or else, if
x03 � x4 are the two points of intersection of @Dx3 with R� then x01 � x1 �
x2 � x3 � x4 � x�. We take the path l going along R�, from x0 towards x�,
avoiding the disks Dx2j+1 by going on the upper semicircle of @Dx2j+1.

After a �nite number of steps the construction stops since jx2j+1�x2j�1j >

jx2j � x2j�1j = 4�1=21 .

Lemma 9 Let y(x) be a solution of (2.1), which is analytic at x0. Then the
radius of analyticity is at least

min
�
jy(x0)j

�1=2; jy0(x0)=2j
�1=3; jy(x0)

2 + x0=6j
�1=4

	
Proof. Straightforward estimates of Taylor series coe�cients; for details see
[10].
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3.3 Proof of Lemma 6

Suppose jy(x)j < M for x 2 l[0; 1). Let x = l(s); s 2 [0; 1). Equation (2.1)
can be integrated once and it yields, for the solution y(x)

y0(x)2 = 4y(x)3 + 2xy(x)� 2

Z
l[0;s]

y(x0) dx0 + C0 (3.80)

Thus supfjy0(x)j : x 2 l[0; 1)g = 2M1 <1. By Lemma 9, for any x 2 l[0; 1),
y(x) is holomorphic in a disk centered at x of radius at least

�(x) = min

(
M�1=2;M

�1=3
1 ;

�
M2 + max

x2l[0;1]
jxj=6

��1=4
)

Therefore y(x) is analytic at l(1).
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