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Abstract: Resonances which result from perturbation of embedded eigenvalues are
studied by time dependent methods. A general theory is developed, with new and weaker
conditions, allowing for perturbations of threshold eigenvalues and relaxed Fermi Golden
rule. The exponential decay rate of resonances is addressed; its uniqueness in the time
dependent picture is shown in certain cases. The relation to the existence of meromorphic
continuation of the properly weighted Green’s function to time dependent resonance is
further elucidated, by giving an equivalent time dependent asymptotic expansion of the
solutions of the Schrédinger equation.

1. Introduction and Results

1.1. General remarksResonances may be defined in different ways, but usually refer
to metastable behavior (in time) of the corresponding system. The standard physics
definition would be as “bumps” in the scattering cross section, or exponentially decaying
states in time, or poles of the analytically continugthatrix (when such an extension
exists).

Mathematically, in the last 25 years one uses a definition close to the above, by
defining to be a resonance (energy) if it is the pole of the meromorphic continuation
of the weighted Green'’s function

x(H —2)"y

with suitable weightsy (usually, in the Schrédinger Theory contextwill be a Cg°
function). HereH is the Hamiltonian of the system. In many cases the equivalence of
some of the above definitions has been shown [1-3]. However, the exponential behavior
intime, and the correct estimates on the remainder are difficult to produce in general [21].
Itis also not clear how to relate the time behavior to a resonance, uniquely, and whether
“analytic continuation” plays a fundamental role; see the review [5]. Important progress
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on such relations has recently been obtained; Orth [6] considered the time dependent
behavior of states which can be related to resonances without the assumption of analytic
continuation and established some preliminary estimates on the remainder terms. Then,
Hunziker [7] was able to develop a quite general relation between resonances defined via
poles of analytic continuations in the context of Balslev—Combes theory, to exponential
decay in time, governed by the standard Fermi Golden rule. Here the resonances were
small perturbations of embedded eigenvalues. In [1] a definition of resonance in a time
dependent way is given and it is shown to agree with the one resulting from analytic
continuation when it exists, in the Balslev—Combes theory. They also get exponential
decay and estimates on the remainder terms.

Exact solutions, including the case of large perturbations, for time dependent poten-
tials have recently been obtained in [8]. Further notable results on the time dependent
behavior of the wave equation were proved by Tang and Zworski [9]. The construction
of states which resemble resonances, and thus decay approximately exponentially was
accomplished e.g. in [10].

For resonance theory based on the Balslev—Combes method the reader is referred to
the book [21] and its comprehensive bibliography on the subject.

Then, in a time-dependent approach to perturbation of embedded eigenvalues devel-
oped in [11] exponential decay and dispersive estimates on the remainder terms were
proved in a general context, without the assumption of analytic continuation.

When an embedded eigenvalue is slightly perturbed, we generally get a “resonance”.
One then expects the solution at tim® be a sum of an exponentially decaying term
plus a small term (in the perturbation size) which, however, decays slowly. The lifetime
of the resonance is given By 1, wherel", the probability of decay per unit time, enters
in the exponential decay rate

P(f) ~ e—Ft/h‘
If an analytic continuation of (Ho — z) 1y exists in a neighborhood of an embedded
eigenvalue, ther = —23zp, and a resonancg is defined as the pole of the analytic

continuation ofy (H — z)~1x. In this casel" has the following expansion 1

I'(Ao, €) = ezy(ko, €)+ 0(62).

The expression foy (L, €) is called the Fermi Golden Rule (FGR). A remarkable fact

is that this expansion is defined even when analytic continuation does not exist. Previous
works on the existence of resonances requireditiag, ¢) > 0asc — 0. This condition

is sometimes hard to verify, and in the present work we remove this assumption.

1.2. Outline of new resultsln this work we improve the theory of perturbation of em-
bedded eigenvalues and resonances in three main directions:

First, the Fermi Golden Rule condition, which originally required as above (some-
times implicitly) thatl' > Ce? ase — 0 is removed. We show that under (relatively
weak) conditions of regularity of the resolvent of the unperturbed Hamiltonian all that
is needed is thdl > 0. The price one sometimes has to pay is that it may be needed to
evaluatel” at a nearby point of the eigenvalig of the unperturbed Hamiltonian (see
(3)). In cases of very low regularity of the unperturbed resolvent, we need in general
I' > Ce™, withm > 2;m becomes larger if more regularity of the resolvent is provided,;
cf. (1) and (2) below.

The second mainimprovement relative to known results in resonance theory is that we
only requireH" regularity (see Sect. 2.1), with> 0, of the unperturbed resolvent near
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the relevant energy. Most works on resonance require analyticity; the recentworks [6, 11,
21] requireH" regularity withn > 1. This improvement is important to perturbations
of embedded eigenvalues at thresholds (e.g., our condition is satisfidgl by— A at
Ao = 0 in three or more dimensions, while the previous results only apply to five or
more dimensions).

As a third contribution we indicate that under conditions of analytic continuation and
with suitable cutoff, the terra~"" can be separated from the solution and the remainder

term is given by an asymptotic seriegirf, a > 0, times a stretched exponenufﬁl’b,
with b < 1, see Sect. 5.

Our analyticity assumptions are weaker and thus apply in cases of threshold eigenval-
ues where standard complex deformation approaches could fail. Furthermore we replace
analytic perturbation methods by more general complex theory arguments.

As concrete examples of applications we outline the following two classes of prob-
lems;

(1) In many applicationgly = —A & Hi, whereH; has a discrete spectrum (see e.g.
[21]), if Hiyo = O has a solution, theily has an embedded eigenvalue at the
threshold, since (—A) = [0, oo). In this case the known analytic methods do not
apply; the methods of [6] apply when> 1 which is the case of the Laplacian on
L?(@RN) if N > 5. The results of this paper apply downXo= 3.

(2) The Hamiltonians one gets by linearizing a nonlinear dispersive completely inte-
grable equation around an exact solution have an embedded eigenvalue correspond-
ing to the soliton/breather, etc. Small perturbations of such completely integrable
equations then produce a perturbation problem of embedded eigenvalues with self-
consistent potentidlV. In these cases the sizebfis typically of higher order irx

andincertain casesitis evér(e‘l/gz). Hence the previous works are not applicable
since they require a lower bour@(¢2) onT".

Our approach follows the setup of the time dependent theory of [11], combined with
Laplace transform techniques. It is expected to generalize ¥ thedy case following
[12]. We will follow, in part, the notation of [11]. The analysis in this work utilizes in
some ways this framework, but generalizes the results considerably: the required time
decay is0 (r—1~") and we remove here the assumption of lower bourid;dtis replaced

by
2
> Celn (1)
whenn < 1, and
I > 0, arbitrary (2)

whenn > 1.

Whenever a meromorphic continuation of thiematrix or Green’s function exists,
the poles give an unambiguous definition of “resonance”. A time dependent approach
or other definitions are less precise, not necessarily unique, as was observed in [6], but
usually apply in more general situations, where analytic continuation is either hard to
prove or not available.

We provide some information about defining resonance by time dependent methods
and its relation to the existence of “analytic continuation”.

In particular, we will show that in general one can find the exponential decay rate up
to higher order corrections dependingpandr.
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In case itis known that analytic continuation exists, our approach provides a definition
of a unique resonance corresponding to the perturbed eigenvalue. It is given by the
solution of some transcendental equation in the complex plane and it also corresponds
to a pole of the weighted Green'’s function.

2. Main Results

We begin with some definitions. Givefg, a self-adjoint operator oi,. = L2(R"), we
assume thatly has a simple eigenvalug with normalized eigenvectafy:

Hoyro = dovo, Yol = 1. 3
Our interest is to describe the behavior of solutions of
0
ia—(fzmp, H:=Hy+e W, (4)

wheree is a small parameter, taken to be the size of the perturbation in an appropriate
norm (cf. e.g. (8))p(0) = Ea¢o, WhereE is the spectral projection off on the
interval A andA is a small interval arountly. (Note thatw ) depends o in general,

and may not even have a limit as— 0.) Furthermore, we will describe, in some
cases, the analytic structure @ — z)~* in a neighborhood ofo. W is a symmetric
perturbation offlp, such thatH is self-adjoint with the same domain &5.

For an operatoA, || A || denotes its norm as an operator frafto itself. We interpret
functions of a self-adjoint operator as being defined by the spectral theorem. In the special
case where the operatorfi, we omit the argument, i.eg(Ho) = g.

For an open interval\, we denote an appropriate smoothed characteristic function
of A by ga()). In particular, we shall take typicallyga (1) to be a nonnegativ€ >
function, which is equal to one oh and zero outside a neighborhoodffThe support
of its derivative is furthermore chosen to be small compared to the sixe\WWe further
require thatg™ (A)| < c,|A|™", n > 1.

Pp denotes the projection o, i.e., Pof = (Yo, f)¥o. P, denotes the spectral
projection on# ,, N {¥o}*, the pure point spectral part éfy orthogonal toy. That
is, P1, projects onto the subspace &f spanned by all the eigenstates other thign
In our treatment, a central role is played by the subset of the spectrum of the operator
Ho, T* on which a sufficiently rapid local decay estimate holds. For a decay estimate to
hold fore~H0"  one must certainly project out the bound state&gfbut there may be
other obstructions to rapid decay. In scattering theory these are called threshold energies.
Examples of thresholds are:

(i) points of stationary phase of a constant coefficient principal symbol for two body
Hamiltonians and

(ii) for N-body Hamiltonians, zero and eigenvalues of subsystems. We will not give a
precise definition of thresholds. For usiitis sufficient to say that away from thresholds
the favorable local decay estimates i hold.

Let A, be a union of intervals, disjoint fromy, containing a neighborhood of infinity
and all thresholds ofip except possibly those in a small neighborhood @fWe then
let

Py = Py, + g,
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wherega, = ga,(Hp) is a smoothed characteristic function of the agt We also
define forx € R”

x)2=1+x2 Q=I1-0Q, and P'=1-Py— Py. 5)
Thus,Pcti is a smoothed out spectral projection of theBetefined as

T* = o (Ho) \ {eigenvalues, real neighborhoods of thresholds and infinity (6)

We expecie o to satisfy good local decay estimates on the rangefof(see d4)
below).

2.1. Hypotheses oitlyp. We assumeH" regularity for Hy. By this we mean that
(¥, (Ho — 2)~1¢) is in the Holder space of order, H", in the z variable forz near
the relevant energy. Herg, ¢ are in the dense sép € L2 : (x)°¢ € L?}.

(H1) Hy is a self-adjoint operator with dense doma@nin L2(R").

(H2) A is a simple embedded eigenvaluery with (normalized) eigenfunctiofig.
(H3) There is an open interval containingig and no other eigenvalue éf.

(H4) Local decay estimatéetr > 1. There exists > 0 such thatifix)? f € L? then

[{x) e oI PE £llo < C(e) " 1(x)° fl2- @)

(H5) By appropriate choice of a real numherthe L2 operator norm ofx)? (Hg +
¢)~1{x)~° can be made sufficiently small.

Remarks.(i) We have assumed thag is a simple eigenvalue to simplify the presen-
tation. Our methods can be easily adapted to the case of multiple eigenvalues.

(i) Note that A does not have to be small and thaf can be chosen as necessary,
depending orHp.

(i) In certain cases, the above local decay conditions can be proved everwlsea
threshold; see [13].

(iv) Regarding the verification of the local decay hypothesis, one approach is to use
techniques based on the Mourre estimate [14—18] dbntains no threshold values,
then quite generally, the bound (7) holds witarbitrary and positive.

We now specify the conditions we require of the perturbatign,

Conditions onW'.
(W1) W is symmetric andd = Hp + W is self-adjoint oD and there exists € R
(which can be used irH5)), such that lies in the resolvent sets éfp and H.
(W2) For the same as in H4) and H5) we have :
NWIIL == [1(x)* Wea(Ho)
+ 1(x) Wga (Ho) (x)° || + [1(x)* W (Ho + ¢)"Hx) ™7 || < 00
and

14x)° W (Ho + ) "1(x)7 || < o0. (8)
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(W3) Resonance condition—nonvanishing of the Fermi golden Rdea suitable choice
of A (which will be made precise later)
T(h,€) :=T@) := 7w (W90, 8(Ho — (I — POW Vy0) £0.  (9)

In most case§ = I'(Lp). But in the casd” is very small it turns out that the “correct”
I will be
I'(Ao +9)

with § given in the proof of Proposition 12. See also Sect. S4.
The main results of this paper are summarized in the following theorem.

Theorem 1.Let Hy satisfy the conditiongH1)...(H5) and the perturbation satisfy the
conditions(W1). .. (W3). Assume moreover thatis sufficiently small and either:

(i) Ho has regularity as in Sect. 2.1 with> 1 or
(i) We have lower regularit® < n < 1 supplemented by the conditions

I'>Ce", n>2
andy > "2,
Then
a) H = Hp + €W has no eigenvalues in.
b) The spectrum off is purely absolutely continuous i, and

I{x) el g A (H)Doll2 < Ce(t) 171 (x)° Dol (10)

c) Forr > O we have
e*ingA(H)CDO — (I + AW)<e*iw*la(O)wo + e*l.HOt¢d(O)) —+ R(l), (11)

whereAy := K(I — K)~1 — I andK is an integral operator defined in (35) and

1.if n < Lande — Owith (T fixed we haveR(r) = O (¢2I'"~1) while asiI" — oo
we haveR(r) = O(I' 111,

2.for n > 1we haveR(r) = O(e?—1t1),

3.

[Awll < Cel[IW]lI, (12)

a(0) and ¢, (0) are determined by the initial data. The complex frequebgys
given by

—iwy = —isg— T,
wheresg solves the equation
50+ @ + €23 {F(e, is0)} = 0 (13)
(see (47) and (49) below) and
4,
I = 20 (F(e, iso)} . (14)

Remark. w, can be found by solving the transcendental equation (13) by either expansion
or iteration if sufficient regularity is present (see also Proposition 12 and note following
itand Lemma 18).
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2.2. Sketch of the proof of the TheoremThe proof of Theorem 1 is given in Sects. 3
and 4. Section 3 prepares the ground for the proof, Subsect. 4.1 provides key definitions
while Subsects. 4.2 and 4.3 contain the proof of Theorem 1 (ii) and (i) respectively. As
an intuitive guideline, the solution(r) of the time dependent problem is decomposed
into the projectioru () on the eigenfunction offyg and a remainder (see (18)). The
remainder is estimated from the detailed knowledge(of (see (34) and (39).

Thus it is essential to contral(z); once that is done, parts (a) and (b) follow from
Proposition 4; thisi(¢) satisfies an integral equation, cf. (43). We chiefly use the Taube-
rian type duality between the largéehavior ofa(r) and the regularity properties of its
Laplace transform, cf. Proposition 9 and also Eqg. (55). Then, an essential ingredient in
the proof of the estimate (11) is Proposition 15. When enough regularity is present, no
lower bound o™ > 0 isimposed; Proposition 16 and Proposition 17 are key ingredients
here.

2.3. Further results.

Lemma 2. Assuming the conditions of Theorem 1 witk 1 then

wx = Ao + €Yo, Wi0) + (A +iT) + 0(€?), (15)

where
A = €2(Wipo, P.V.(Ho — X0) " *W), (16)
I = €2 (Wo, 8(Ho — 20)(I — Po)Wio). 17)

This follows from the proof of Proposition 12 and the Remarks below it.

3. Decomposition and Isolation of Resonant Terms

We begin with the following decomposition of the solution of (4):
e Migo = ¢(1) = a)yo + (1), (18)
(wo, qE(t)) =0, —o00<t<o0. (19)
Substitution into (4) yields
i, = Hop + eWep — (id,a — hoa)yo + ae Wpp. (20)

Recall now that = Py + P1 + Pf. Taking the inner product of (20) witlg gives the
amplitude equation:

ida = (ho+ (Yo, eW0))a + (Yo, €W P1p) + (Yo, e Wehy), (21)

where
¢a = PZo. (22)
The following equation fog, is obtained by applying’gj to Eqg. (20):

i0i¢a = Hopa + PPeW (P16 + ¢a) + aPPeWipo. (23)
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To gerive a closed system foy (r) anda(t) we now propose to obtain an expression
for P1¢, to be used in Egs. (21) and (23). Singe(H)¢ (-, t) = ¢ (-, t) we find
(I = ga(H)$ = (I — ga(H)(avo+ P + PIB) = 0 (24)
or

(I = ga(H)g1(Ho) P = ~a (H) (a0 + 64, (25)

whereg; (1) is a smooth function which is identically equal to one on the support of
P1(2), and which has support disjoint from. Therefore

P1¢ = —BZa(H)(avo + ¢a), (26)
where
B = (I — ga(H)gi(Ho) ™" (27)
This computation is justified in Appendix B of [11]. The following was also shown there:
Proposition 3 (11]). For smalle, the operatorB in (27) is a bounded operator cH.
From (26) we get
$(1) = a(t)yo + da + Prd = ga(H)(a(t) Yo + ¢a (1)), (28)
with
ga(H) =1 — Bgx(H) = Bga(H)(I — g1(Ho)), (29)

see (5). Althougty A (H) is not really defined as a function &f, we indulge in this mild
abuse of notation to emphasize its dependencH olm fact, in some senséa (H) ~
gA(H) to higher order ire [11].

Substitution of (26) into (23) gives:

id¢a = Hopa + aPPeWga(H) Yo + PFeWga(H)pa (30)
and
it = (%0 + (Yo, eWEA(H)Y0) )a + (Yo, W a(H)ba)
= wa + (01 — w)a + (Yo, eWga(H)py), (31)
where

w = Ao+ (Yo, eWio), (32)
w1 = Ao+ (Yo, eWga(H) Vo). (33)

We write (30) as an equivalent integral equation. We will later need the integral repre-
sentation of the solution of (30)

t
Ga(t) = 014 (0) — i / ¢~ TH00=9 4 (5) PEeW g (H)ods
0

t .
—i fo e =) pLew g\ (H)pads. (34)

This was also used to prove the following statement.
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Proposition 4 [11]). Supposeéa(r)| < as(t)~1~% and assume that > 0 anda > 7.
Then for som& > 0 we have

1) ™7 @a(®)ll 2 < €)™ (14x)7 @a (Ol 2 + acol[IWIII) -

Note The proposition, as we mentioned, implies parts (a) and (b) of the main theorem,
given the properties af(¢) which will be shown in the sequel. The absolute continuity
stated in the theorem follows from (10) with> O.

We definek as an operator acting ai(R*, H), the space of continuous functions
onR* with values inH by

t
(K f)(t,x) = / e HHOU=) pLew g A (H) f (s, x)ds. (35)
0
We introduce orC (R, #) the norm
Ifllp = suémﬁuf(-, Dllu (36)
=
and define the operator norm
[Allgie = sup [[{x)"7A(x)? fllg. (37)
Ifllp=1

The above definitions directly imply the following.

Proposition 5.1f ¢ is small,0 < 8 < r,r > 1 and for somes; > 0 we have
|| (x) =7 e~iHot pE(x)=o|| < C+~1-P1, then for0 < B < B1 we have

”K”ﬂ;a <€ C,B;cr;r' (38)
The proof uses the smallness efwhich in turn entails the boundedness of
(x)~9ga(H){x)°. Using the definition of given above we see th&t(1 — K)~1 =
Y > 1 K" is also bounded. We can now rewrite the equationgfoas
¢a(t) = e $4(0) + K (a(t)¥0) + K a

= -K)? {K(a(t)lﬁo) + e*iH°’¢d(0)} (39)

(recall that we definedy = —I + (I — K)~1K) and therefore

idya = 010 + (o, eWga(H)(I — K) K (atpo) )
+ (Vo. Wga(H) (I = K) 20 94(0)) . (40)

To complete the proof of Theorem 1 we need to estimate the large time behauior of
solving Eq. (40). Since the inhomogeneous term satisfies the required @e¢cay )
by our assumptions oHjy it is sufficient to study the associated homogeneous equation.
Equivalently, we may choose the embedded eigenfunction as initial condition (that is
$a(0) = 0).

We now define two operators dit® by

j@ = (v, (07 K@yo)). wherev = (x)7eWas(H)yo  (41)
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and

j@ = (v, (x)77 U = K) ™K @) ). (42)

Proposition 6. The operators and j are bounded froni.* into itself.
The proposition follows from Proposition 5 wigh= 0.

Remark.The equation forn can now be written in the equivalent integral form
t
a(t) = a(0)e ' 4 ¢! / e’ j(a)(s)ds = a(0)e " + J(a). (43)
0

Definition 1. Consider the spaces}”  and L;° to be the spaces of functions h T']
andR™ respectively, in the norm

lall, = suple™"a(s)] (44)

Remark 7We note that fo’ € R*, the norm onL%”  is equivalent to the usual norm
onL>®[0, T].
Proposition 8. For some constants, C and ¢ independent off we have| jal, <

evre2||ally, [Jall, < Cv=2€?|all, and | jall, < éve?||ally, and thusj, J, and j

are defined orL3?, and L;° and their norms, in these spaces, are estimated by

Iilly < v X2 |17l < év 22 (1T, < Cv2e2 (45)

Similar arguments as above lead to

Proposition 9. Equation (40) has a unique solution lqloc(R’L), and this solution be-
longs toL$° if v > vg with vg sufficiently large. Thus, in the half-plafi¥(p) > vg the
Laplace transform od

a:= /OO e Plat)dt (46)
0

exists and is analytic ip. Furthermore, fori(p) > vp, the Laplace transform of
satisfies
ipd = wa + ia(0) — i€?F (e, p)a(p), (47)

whereF (¢, p) is defined by

F(e, p) =
il R
(Vfo, Wga(H) [<I+ Py HOwagMH)) FY HOPfeWéA(H)] wo)
+i(w1 — w)e 2 (48)
SO
(ip — w +i€?F (e, p))a(p) = ia(0). (49)

Eq. (47) follows by taking the Laplace transform of (31).
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Proof. By Proposition 8, and sindee ' ||, = 1, for largev Eq. (43) is contractive in
L7, and has a unique solution there. It thus has a unique solutibﬂgé'nby Remark 7.

Since by the same argument Eq. (43) is contractivedh, and sinceL}® C Lt , the

loc’
uniqueLllOC solution of (43) is inLS° as well. The rest is straightforward o

Remark 10Note that by construction (47) and (48) defifiexs a Laplace transform of
a function.

Our assumptions easily imply thatdfis small enough, then:

(&) F(e, p)is analytic except for a cut alorigh. F (e, p) is Holder continuous of order
n > 0 at the cut, i.e.
lim F(e,it+y) € H",
r10
the space of Hdlder continuous functions of orger
(b) |F(e, p)| < C|p|~1 for someC > 0 as|p| — oo.
To see it we write
I b

p—i—iHoPC ()77 Ba2:=ex)Wga(H)(x)?. (50)

B = B1Ba(x)"?; B1:=

Noting thatPCIi projects on the intervah it is clear by the spectral theorem tHa} —° B
is analyticinp onD := C\ (i A). By the assumption on the decay rate and the Laplace
transform of Eq. (7) we have that

Ba(p) = (1) " ——Pbix)e (51)
3(p) = {x) b+ iHo e (X)

is uniformly Holder continuous, of order, asp — iA. For pg € i A, the two sided
limitslim, 0 Ba(po£a) = ngf will of course differ, in general. A natural closed domain

of definition of Bz is D together with the two sides of the c@®,:= D U dD+ U dD~.
We then write

| B3l < C1(p), (52)
where we note thaf; can be chosen so that:

Remark 11C1(p) > 0 is uniformly bounded fop € D andCi(p) = O(p~?) for
largep.

Hence for som&, we have uniformly inp (choosinge small enough),
[[(x)"° (B1B2)"|| < C3€", (53)

and therefore the operator

-1
eWZA(H) [(1 - Pgeng(H)) Pfeng(H)] (54)

p+iHp p+iHp

is analytic inD and is inH" (D).
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4. General Case
4.1. Definition of". We have from Proposition 9, Eq. (47) that

ia(0)

. 55
ip—w+ie2F(e, p) (55)

a(p) =

We are most interested in the behaviofidbr p = is, s € R. T will be defined in terms
of the approximate zeros of the denominator in (55). Eet: Fy + i F».

Proposition 12.For € small enough, the equationt w + €2 F (e, is) = 0 has at least
one rootso, andsg = —w + O(€2). If n > 1, then for small enough the solution is
unique. Ifnp < 1then two solutions; ands; differ by at mosv(eﬁ).

Proof. We writes = —w + 8 and get fors an equation of the formd = €2G(8) where
G(x) = —Fz(¢,ix —iw), andG(x) € H". The existence of a solution for smalls an
immediate consequence of continuity and the fact dhate2G (8) changes sign in an
interval of sizee2|| G || . If 7 > 1 we note that the equatién= €2G (8) is contractive for
smalle and thus has a unique root. If insteaeQ; < 1 we have, if§1, 57 are two roots,
then for some& > 0 independent of, |81 — 82| = €2|G(81) — G(82)| < €2K |81 — 82"
whence the conclusion.o

Remark. Note thatsg are not, in general, poles of (55) since we only solve for the real
part equal to zero.

2
Assumption 13If 5 < 1 then we assume thef F1(e, —iw) >> ¢ 7 for smalle. When
n > 1 this restriction will not be needed, cf. Sect. 4.3.

Definition. We choose one soluties = —w + § and letI” be defined by (14).

Note Inthe case) < 1 the choice ofg yields, by the previous assumption a (possible)
2
arbitrariness in the definition af of orderO(e1-7) = o(TI").

Remarks on the verifiability of conditidh> 0. As itis generally difficult to check the
positivity of I itself but relatively easier to finffg, we will look at various scenarios,
which are motivated by concrete examples, in which the condition of positivity reduces
to a condition onF (¢, —iw).
Let
o = €’Fi(e, —iw); o =€ Fale, —iw),

where we see thdly andyg are O (¢2). The equation fos reads
§ = —€?[Fa(e, —iw +i8) — Fa(e, —iw)] — yo = € H(8) — yo,
whereH (0) = 0. We writes = —yp + ¢ and get
{ =€H(—y0+9)
and the definition of" becomes

I =eFie, —iw—iyo+il).
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Proposition 14. (i) If Hp satisfies the conditions of Theorem 1 with>- 1 andyy =
0(e2Tp), then asxx — 0,

I' =T+ o(o) (56)
and in particularI" is positive forTg > 0.

2
(i) Assume thay < 1, yp = 0(6*21“3/") andI'g > ¢T-7 ase — 0. Then again (56)
holds.

Proof. (i) Since = O(e2y0) + 0(€2¢) we get; = O(e2yp), implying that
I =e?File, —iw —ipp(L+ 0o(1)] = To + O(e*y0) = To + o(To).
(i) We have
¢ = 0(c%yg) + O(e%¢M). (57)

If ¢ < constyg ase — 0, then the proof is as in part (i). If on the contrary, for
some large constaiit we have; > Cyg then by (57) we have < conste?z" so that
¢ = 0(€?A=my ande?c" = 0(e?1-M) = o(T'p). But then

I = €2Fi(e, —iw) + O(e )/67)4-0(6 ™M =T+ o(p). O

4.2. Exponential decayWe now letp = isg + v. The intermediate time and long time
behavior ofa(¢) are given by the following proposition

Proposition 15.For " = O (1) (note thatl" in general depends o¢), ase — 0 we
have

0]
a(t) = e 50~ L 021y, (58)

(i) Ast — oo we have
a(t) = (1171, (59)

Proof. (i) Note first that, takingi(v) > 0 and writingF as a Laplace transform, cf.
Remark 10,

o0
F(e, —isg+v) = / eIV £(1)dt,
0

we have by our assumptions that

00 t
F(e, —isg+v) = / e V! (/ _”Ouf(u)du>
= f / _”Ouf(u)du
L)
0 0 t
— / eiisouf(u)du _ U/ efvt/ eiisouf(u)du
0 0 t

= F(e, —iso) — vL[g](v),

/
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where we denoted(v) = fl°° e~ £ (u)du and L[g] is its Laplace transform. Now
define

h(v) = vL[g](v). (61)

We have, by the formula for the inverse Laplace transform

. iset ioco evt
2ria(t) = e "0 ———dv
_ico U+ T+ €2h(v)

where by construction we havee H", h is analytic inC \ i A andi(0) = 0. We write

: (62)

100 evt 100 el)t
——dv = dv
/;ioo v+ T + €2h(v) /400 (w+T)(1+€2h@w+T)"1)

ico vt g ico 1 h r -1
=/ ¢ av —62/ (:+ ) levtdv. (63)
—iccV+ T —iccV+ T 1+ €ech(v+T)~

We first need to estimate—1 [h(v + I‘)—l] (the transformation is well defined, since
the function is justv + I')~Y(F (e, —iso + v) — F (e, —isp)). We need to write

r
vL[g](v) =: (v+T)L[g1l(v) or L[gi]= (1 - —) Lig] (64)
v+ T

which defines the functiopy:

t
g1=g8— Fefr’/ e g(s)ds. (65)
0
Since|g(t)| < Const:—7 we have
't _
lg1(1)] < Constr™ + e_F’/ o (3) " du < Constt™. (66)
0 r
A similar inequality holds for
h
= |
v+I
Indeed, we have
h h
=L — 21— ) 68
0 [v+l":|+6 |:U+F]*Q (68)

It is easy to check that far< rI"~1 and small enough this equation is contractive in

the norm|| Q|| = sup ., {s)"1Q(s)|.
But now, for constants independentegf

L1 |:

t
:| * Q0 < Conste_“/ eSsds
v+ T 0
't
= 62C0nste‘rsr‘1/
0
2

€
< Const———.
17
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(i) We now use (60) and (61) to write

h _ F(e,—iso+v) F(e, —iso)
v+ v+ T v+ T

and get
h
v+ T

'
Hy:=L"1 |: :| = efrt/‘ e f(s)ds + conse™'",
0

and thus, proceeding as in the proof of (i) we get for same 0 |Hy| < CT~1(r)=1—1,
To evaluatez(r) for larger we resort again t@ as defined in (67) which satisfies (68).
This time we note that the equation is contractive in the norm.sugs) " - | whene

is small enough. o -

Using (59), Proposition 4 and (28) imply local decay and therefooannot be an
eigenfunction which implies (i). Since the local decay rate is integrable (ii) follows [24].
Part c) follows from (58), (39) and (28) while (12) follows from (39) and the smallness
of K.

4.3. Proof of Theorem 1 in case (i) of regularify> 1. In this case we obtain better
estimates. We write

G(v) = L [g](v) (70)
and (62) becomes
isor ico eVt
at)=-e /_ioo AT+ EZUG(v)dU' (71)

Now

Lt [(v IT+ esz(v))*l]
G
= L_l[ ! } —~ ezL_l|: ! } B iz O (72)
v+ T v+T 1+62U_+FG(U)

Proposition 16. Let

1+ €2 G )

o) = L—l[ Hr o) }

We have

o0
|H>| < Const{t)~"; /o Hy(t)dt = 0. (73)
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Proof. Consider first the function
hs:=v(w+T)"1Gw) = Gw) — T+ TI)"1GWw);

we see that (cf. (70) and (60))
o0 . t o0 .
Hz:= L thy = / e " f(uydu — T e_F'/ eFS/ e " f(u)duds, (74)
t 0 s
and thus, for some positive constagts
I't
|Hs| < Const: ™ + Conste‘r’/ T~ (v) "dv, (75)
0

and thus, sincé3(0) = 0 we have
o0
|H3| < Const{r)™"; / H3(t)dt = 0.
0

Note now that the function

-1
v 2 v
—0G 1 G
VAT (v)( te AT (v)>
vanishes fow = 0. Note furthermore that

Hy = H3 — €2H3 * Ho.

It is easy to check that this integral equation is contractive in the npf =
SUR, |{s)"H (s)| for small enougl; the proof of the proposition is completen

Proposition 17.
Lt [(v TT+ eZG(v))*l] —e T L AQ),
where for some constat independent of, 7, ' we have
|A] < ()7,

Proof. We have, by (72)

t o0 /!
A(r) = €% / e ( / Hz(u)du) ds
0 K

o0 t o0
= 62/ Hy(s)ds — Fe_F’/ eFS/ Ho(u)du.
t 0 K

The estimate of the last term is done as in (75).

(76)

Theorem 1 part (c) in case (i) follows.
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5. Analytic Case

Suppose that the functiofi(p, €) has analytic continuation in a neighborhood of the
relevant energy-iw # 0; in this case we can prove stronger results. In many cases
one can show the analyticity df if the resolvent, properly weighted, has analytic
continuation.

Lemma 18.Assume that for some and some neighborhoo® of w, E(e, p) is a
function with the following properties:

() E e H"(D) andE is analytic inD (this allows for branch-points on the boundary
of the domain, a more general setting than meromorphicity).

(i) |E(e, p)| < Ce? for someC.

(iii) lim g o RE (e, —iw —a) = —To < 0.

If (@) n > 1, E(e, —iw) = o(I'o/€?) or (b) n < Land E(e, —iw) = O(Tg) ande is

small enough, then the function

Gi(e,p)=p+io+ E(€, p)
has a unique zerp = p. in D and furthermorei(p.) < 0. In fact,
R(pz) + o= o(lo). (77)

Remark. If the condition that fom > 1, E(e, —iw) = o(e ~2Tg) is not satisfied, then
we can replace-iw by —iw — isg and the uniqueness of the complex zero will still be
true.

Proof. We have
Gi(e, p)) =0=p, +io+ E(e, —iw) + [E(e, p;) — E(e, —iw)]
or, lettingp = —iw + ¢, &; := p; + iw, €2p(, ) := E(e, p) — E(e, —iw),

& = —E(e, —iw) — €2p (€, ).

Consider a square centereddt, —iw) with side 2R (E (¢, —iw))| = 2I'o. For both
cases (a) and (b) farconsidered in part (iii) of the lemma, note that in our assumptions
and by the choice of the square we have

€2p(L.€)
.+ E(e, —iw)

(on all sides of the square). In case (a) on the boundary of the rectangle we have by
construction of the rectanglg;, + E (¢, —iw)| > T'p. Also by construction, on the sides

of the rectangle we have| < I'g. Still by assumptiong (e, ¢) < C¢ = o(e ~2Tg) and

the ratio in (78) i(1). In case (b), we have

(e, 0) = 0(%¢") = 0(e’TY) = o(Io).

Thus, on the boundary of the square, the variation of the argument of the functions
¢ + E(e, —iw) + €2¢(¢) and that oft + E (e, —iw) differ by at mosto(1) and thus
have to agree exactly (being integer multiples 8f 2 thus¢ + E (e, —iw) + €2¢(¢)
has exactly one root in the square. The same argument shows-that + E (¢, p) has
no root in any other region in its analyticity domain except in the square constructed in
the beginning of the proof. O

— 0 (ase — 0) (78)
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Theorem 19.Assume the conditions (H) and (W) as before, and furthermore that the
function F (¢, p) has analytic continuation in a neighborhood-efw; with an appro-
priate choice of the cutoff functiofi (Ho), we have thay (H — z) 1x has a unique
pole away from the real axis, neafiw, corresponding to a resonance with imaginary
part nearI”, with appropriate choice of weights.

Proof. First we note that by taking the Laplace transform of (28) and (34) and solving
for the resolvent off we get that

X(H —2) 7 x = A()a@) o + B(2)

with A(z) and B(z) analytic inD by our assumptions (H) and (W), and the assumed
analyticity of F (e, p), ip := z. Hence the existence and uniqueness of the pole of
x (H — z)~1x follows from Lemma 18, witke?F (¢, p) = E(e, p). O

As a consequence we obtain the following result.

Proposition 20.With an appropriate exponential cutoff function, the remainder term
decays as a stretched exponential times an asymptotic series.

Sketch of proofWe need the large behavior ofa(¢) which is the Inverse Laplace
transform ofG (p) := (p + iw + i€?F (¢, p))~1 and to this end we write

G(p) = (p+iw) L —ie?(p+iw) L F(e, p)G(p), (79)

whereF, (e, p) := F(e€, p) — (wy — w)/€? andw, is the unique pole o (p) found in

the previous theorem. Taking the inverse Laplace transform of (79) we get an integral
equation forG(r), and direct calculations show th&t~ e~V 3" g, 1~*/4 implies

G(t) ~ eI 4 O(e?)eVI+i01 Y p1=k/4 To find the asymptotic behavior d@t(r)

we derive an integral equation by taking the inverse Laplace transform of (48) and the
same integral equation arguments as above reduce the asymptotic study thfat of

the following expression for any € L

(u, Be™' 1" PXByjrg) = / Bure ™ g Biod g e (h) i= / E)e M ga(h)da,

whereB = Wga (H) and¢ is the spectral representationgphissociated télo. By as-
sumptionB(Ho—z) 1B isanalyticinz € D, hencef(Bu*)(A)(/\ 7))~ 1(Bv)(A)f(A)dA
is analytic foranyw e L2, wheref (L) = duq../dx; therefore so is its Hilbert transform
Bu*Bv f and thug is also analytic. Choosinga (1) = exp(— (A — a) 1+()\ b)Y the

asymptotic expansion af follows from that of the mtegrafa e A—a+?"“§(x)dk.
O

5.1. Example.Suppose

_(—A O ._ 2
Ho_( J _A+x2) = —A®(—A+ 2D

on L2(R) ® L2(R). Assume

=

Il
/N
gl o

o =
~



Resonance Theory 151

with W = W (x) sufficiently regular and exponentially localized. Then, the spectrum of
Hp has embedded eigenvalues corresponding to the spectrum ¢fx?, with Gaussian

localized and smooth eigenfunctions. Since the projedtionPy in the definition ofP¢
eliminates the- A + x2 part in any intervalA containing an eigenvalue efA + x2, it
is left to verify the conditions of the theorem faéfy replaced by-A. Since

e—a(x)(_A _ Z)—16—01()c) (80)

has analytic continuation through the €0t oco) and is an analytic function away from
z = 0, we can now choose an intenal= [a, b] around each eigenvalug, of — A +x2,
avoiding zero, and let

EA(}) = e Ot 0mb)

be a function analytic if© exceptz = a andb.

5.2. Remarks on applicationg.he examples covered by the above approach include
those discussed in [11] as well as the many cases where analytic continuation has been
established, see e.g. [21]. Furthermore, following results of [21] it follows that under
favorable assumptions dn(x), —A + V(x) has no zero energy bound states in three

or more dimensions extending the results of [11], where it was proved for 5 or more
dimensions.

It is worth mentioning that the possible presence of thresholds insideakes it
necessary to allow fo < oo, and that in the case where there are finitely many
thresholds inside\ of known structure, sharper results may be obtained.

Other applications of our methods involve numerical reconstruction of resonances
from time dependent solutions data, in cases where Borel summability is ensured. This
and other implications will be discussed elsewhere.
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