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Abstract: Resonances which result from perturbation of embedded eigenvalues are
studied by time dependent methods.A general theory is developed, with new and weaker
conditions, allowing for perturbations of threshold eigenvalues and relaxed Fermi Golden
rule. The exponential decay rate of resonances is addressed; its uniqueness in the time
dependent picture is shown in certain cases. The relation to the existence of meromorphic
continuation of the properly weighted Green’s function to time dependent resonance is
further elucidated, by giving an equivalent time dependent asymptotic expansion of the
solutions of the Schrödinger equation.

1. Introduction and Results

1.1. General remarks.Resonances may be defined in different ways, but usually refer
to metastable behavior (in time) of the corresponding system. The standard physics
definition would be as “bumps” in the scattering cross section, or exponentially decaying
states in time, or poles of the analytically continuedS matrix (when such an extension
exists).

Mathematically, in the last 25 years one uses a definition close to the above, by
definingλ to be a resonance (energy) if it is the pole of the meromorphic continuation
of the weighted Green’s function

χ(H − z)−1χ

with suitable weightsχ (usually, in the Schrödinger Theory context,χ will be aC∞0
function). HereH is the Hamiltonian of the system. In many cases the equivalence of
some of the above definitions has been shown [1–3]. However, the exponential behavior
in time, and the correct estimates on the remainder are difficult to produce in general [21].
It is also not clear how to relate the time behavior to a resonance, uniquely, and whether
“analytic continuation” plays a fundamental role; see the review [5]. Important progress
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on such relations has recently been obtained; Orth [6] considered the time dependent
behavior of states which can be related to resonances without the assumption of analytic
continuation and established some preliminary estimates on the remainder terms. Then,
Hunziker [7] was able to develop a quite general relation between resonances defined via
poles of analytic continuations in the context of Balslev–Combes theory, to exponential
decay in time, governed by the standard Fermi Golden rule. Here the resonances were
small perturbations of embedded eigenvalues. In [1] a definition of resonance in a time
dependent way is given and it is shown to agree with the one resulting from analytic
continuation when it exists, in the Balslev–Combes theory. They also get exponential
decay and estimates on the remainder terms.

Exact solutions, including the case of large perturbations, for time dependent poten-
tials have recently been obtained in [8]. Further notable results on the time dependent
behavior of the wave equation were proved by Tang and Zworski [9]. The construction
of states which resemble resonances, and thus decay approximately exponentially was
accomplished e.g. in [10].

For resonance theory based on the Balslev–Combes method the reader is referred to
the book [21] and its comprehensive bibliography on the subject.

Then, in a time-dependent approach to perturbation of embedded eigenvalues devel-
oped in [11] exponential decay and dispersive estimates on the remainder terms were
proved in a general context, without the assumption of analytic continuation.

When an embedded eigenvalue is slightly perturbed, we generally get a “resonance”.
One then expects the solution at timet to be a sum of an exponentially decaying term
plus a small term (in the perturbation size) which, however, decays slowly. The lifetime
of the resonance is given by
−1, where
, the probability of decay per unit time, enters
in the exponential decay rate

p(t) ∼ e−
t/h̄.
If an analytic continuation ofχ(H0 − z)−1χ exists in a neighborhood of an embedded
eigenvalue, then
 = −2�z0, and a resonancez0 is defined as the pole of the analytic
continuation ofχ(H − z)−1χ . In this case,
 has the following expansion inε:


(λ0, ε) = ε2γ (λ0, ε)+ o(ε2).

The expression forγ (λ0, ε) is called the Fermi Golden Rule (FGR). A remarkable fact
is that this expansion is defined even when analytic continuation does not exist. Previous
works on the existence of resonances required thatγ (λ0, ε) > 0 asε → 0.This condition
is sometimes hard to verify, and in the present work we remove this assumption.

1.2. Outline of new results.In this work we improve the theory of perturbation of em-
bedded eigenvalues and resonances in three main directions:

First, the Fermi Golden Rule condition, which originally required as above (some-
times implicitly) that
 > Cε2 asε → 0 is removed. We show that under (relatively
weak) conditions of regularity of the resolvent of the unperturbed Hamiltonian all that
is needed is that
 > 0. The price one sometimes has to pay is that it may be needed to
evaluate
 at a nearby point of the eigenvalueλ0 of the unperturbed Hamiltonian (see
(3)). In cases of very low regularity of the unperturbed resolvent, we need in general

 > Cεm, withm > 2;m becomes larger if more regularity of the resolvent is provided;
cf. (1) and (2) below.

The second main improvement relative to known results in resonance theory is that we
only requireHη regularity (see Sect. 2.1), withη > 0, of the unperturbed resolvent near
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the relevant energy. Most works on resonance require analyticity; the recent works [6,11,
21] requireHη regularity withη > 1. This improvement is important to perturbations
of embedded eigenvalues at thresholds (e.g., our condition is satisfied byH0 = −� at
λ0 = 0 in three or more dimensions, while the previous results only apply to five or
more dimensions).

As a third contribution we indicate that under conditions of analytic continuation and
with suitable cutoff, the terme−
t can be separated from the solution and the remainder
term is given by an asymptotic series int−a , a > 0, times a stretched exponentiale−tb ,
with b < 1, see Sect. 5.

Our analyticity assumptions are weaker and thus apply in cases of threshold eigenval-
ues where standard complex deformation approaches could fail. Furthermore we replace
analytic perturbation methods by more general complex theory arguments.

As concrete examples of applications we outline the following two classes of prob-
lems;

(1) In many applicationsH0 = −�⊕ H1, whereH1 has a discrete spectrum (see e.g.
[21]), if H1ψ0 = 0 has a solution, thenH0 has an embedded eigenvalue at the
threshold, sinceσ(−�) = [0,∞). In this case the known analytic methods do not
apply; the methods of [6] apply whenη > 1 which is the case of the Laplacian on
L2(RN) if N ≥ 5. The results of this paper apply down toN = 3.

(2) The Hamiltonians one gets by linearizing a nonlinear dispersive completely inte-
grable equation around an exact solution have an embedded eigenvalue correspond-
ing to the soliton/breather, etc. Small perturbations of such completely integrable
equations then produce a perturbation problem of embedded eigenvalues with self-
consistent potentialW . In these cases the size of
 is typically of higher order inε
and in certain cases it is evenO(e−1/ε2

). Hence the previous works are not applicable
since they require a lower boundO(ε2) on
.

Our approach follows the setup of the time dependent theory of [11], combined with
Laplace transform techniques. It is expected to generalize to theN -body case following
[12]. We will follow, in part, the notation of [11]. The analysis in this work utilizes in
some ways this framework, but generalizes the results considerably: the required time
decay isO(t−1−η)and we remove here the assumption of lower bound on
; it is replaced
by


 ≥ Cε 2
1−η (1)

whenη < 1, and


 > 0, arbitrary (2)

whenη > 1.
Whenever a meromorphic continuation of theS-matrix or Green’s function exists,

the poles give an unambiguous definition of “resonance”. A time dependent approach
or other definitions are less precise, not necessarily unique, as was observed in [6], but
usually apply in more general situations, where analytic continuation is either hard to
prove or not available.

We provide some information about defining resonance by time dependent methods
and its relation to the existence of “analytic continuation”.

In particular, we will show that in general one can find the exponential decay rate up
to higher order corrections depending onη and
.
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In case it is known that analytic continuation exists, our approach provides a definition
of a unique resonance corresponding to the perturbed eigenvalue. It is given by the
solution of some transcendental equation in the complex plane and it also corresponds
to a pole of the weighted Green’s function.

2. Main Results

We begin with some definitions. GivenH0, a self-adjoint operator onH = L2(Rn), we
assume thatH0 has a simple eigenvalueλ0 with normalized eigenvectorψ0:

H0ψ0 = λ0ψ0, ‖ψ0‖ = 1. (3)

Our interest is to describe the behavior of solutions of

i
∂φ

∂t
= Hφ, H := H0 + ε W(ε), (4)

whereε is a small parameter, taken to be the size of the perturbation in an appropriate
norm (cf. e.g. (8)),φ(0) = E�φ0, whereE� is the spectral projection ofH on the
interval� and� is a small interval aroundλ0. (Note thatW(ε) depends onε in general,
and may not even have a limit asε → 0.) Furthermore, we will describe, in some
cases, the analytic structure of(H − z)−1 in a neighborhood ofλ0. W is a symmetric
perturbation ofH0, such thatH is self-adjoint with the same domain asH0.

For an operatorA, ‖A‖ denotes its norm as an operator fromL2 to itself. We interpret
functions of a self-adjoint operator as being defined by the spectral theorem. In the special
case where the operator isH0, we omit the argument, i.e.,g(H0) = g.

For an open interval�, we denote an appropriate smoothed characteristic function
of � by g�(λ). In particular, we shall take typicallyg�(λ) to be a nonnegativeC∞
function, which is equal to one on� and zero outside a neighborhood of�. The support
of its derivative is furthermore chosen to be small compared to the size of�. We further
require that|g(n)(λ)| ≤ cn|�|−n, n ≥ 1.
P0 denotes the projection onψ0, i.e.,P0f = (ψ0, f )ψ0. P1b denotes the spectral

projection onHpp ∩ {ψ0}⊥, the pure point spectral part ofH0 orthogonal toψ0. That
is, P1b projects onto the subspace ofH spanned by all the eigenstates other thanψ0.
In our treatment, a central role is played by the subset of the spectrum of the operator
H0, T - on which a sufficiently rapid local decay estimate holds. For a decay estimate to
hold fore−iH0t , one must certainly project out the bound states ofH0, but there may be
other obstructions to rapid decay. In scattering theory these are called threshold energies.
Examples of thresholds are:

(i) points of stationary phase of a constant coefficient principal symbol for two body
Hamiltonians and

(ii) for N -body Hamiltonians, zero and eigenvalues of subsystems. We will not give a
precise definition of thresholds. For us it is sufficient to say that away from thresholds
the favorable local decay estimates forH0 hold.

Let�∗ be a union of intervals, disjoint from�, containing a neighborhood of infinity
and all thresholds ofH0 except possibly those in a small neighborhood ofλ0. We then
let

P1 = P1b + g�∗ ,
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whereg�∗ = g�∗(H0) is a smoothed characteristic function of the set�∗. We also
define forx ∈ R

n

〈x〉2 = 1+ |x|2, Q = I −Q, and P -c = I − P0 − P1. (5)

Thus,P -c is a smoothed out spectral projection of the setT - defined as

T - = σ(H0) \ {eigenvalues, real neighborhoods of thresholds and infinity}. (6)

We expecte−iH0t to satisfy good local decay estimates on the range ofP
-
c ; (see (H4)

below).

2.1. Hypotheses onH0. We assumeHη regularity for H0. By this we mean that
(ψ, (H0 − z)−1φ) is in the Hölder space of orderη, Hη, in the z variable forz near
the relevant energy. Hereψ, φ are in the dense set{φ ∈ L2 : 〈x〉σ φ ∈ L2}.
(H1) H0 is a self-adjoint operator with dense domainD, in L2(Rn).
(H2) λ0 is a simple embedded eigenvalue ofH0 with (normalized) eigenfunctionψ0.
(H3) There is an open interval� containingλ0 and no other eigenvalue ofH0.
(H4) Local decay estimate: Let r > 1. There existsσ > 0 such that if〈x〉σ f ∈ L2 then

‖〈x〉−σ e−iH0tP -c f ‖2 ≤ C〈t〉−r‖〈x〉σ f ‖2. (7)

(H5) By appropriate choice of a real numberc, theL2 operator norm of〈x〉σ (H0 +
c)−1〈x〉−σ can be made sufficiently small.

Remarks.(i) We have assumed thatλ0 is a simple eigenvalue to simplify the presen-
tation. Our methods can be easily adapted to the case of multiple eigenvalues.

(ii) Note that� does not have to be small and that�∗ can be chosen as necessary,
depending onH0.

(iii) In certain cases, the above local decay conditions can be proved even whenλ0 is a
threshold; see [13].

(iv) Regarding the verification of the local decay hypothesis, one approach is to use
techniques based on the Mourre estimate [14–16]. If� contains no threshold values,
then quite generally, the bound (7) holds withr arbitrary and positive.

We now specify the conditions we require of the perturbation,W .

Conditions onW .
(W1) W is symmetric andH = H0 +W is self-adjoint onD and there existsc ∈ R

(which can be used in (H5)), such thatc lies in the resolvent sets ofH0 andH .
(W2) For the sameσ as in (H4) and (H5) we have :

|||W ||| := ‖〈x〉2σWg�(H0)‖
+ ‖〈x〉σWg�(H0)〈x〉σ‖ + ‖〈x〉σW(H0 + c)−1〈x〉−σ‖ <∞

and

‖〈x〉σW(H0 + c)−1〈x〉σ‖ <∞. (8)
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(W3) Resonance condition–nonvanishing of the Fermi golden rule: For a suitable choice
of λ (which will be made precise later)


(λ, ε) := 
(λ) := π ε2(W(ε)ψ0, δ(H0 − λ)(I − P0)W
(ε)ψ0) �= 0. (9)

In most cases
 = 
(λ0). But in the case
 is very small it turns out that the “correct”

 will be


(λ0 + δ)
with δ given in the proof of Proposition 12. See also Sect. S4.

The main results of this paper are summarized in the following theorem.

Theorem 1.LetH0 satisfy the conditions(H1)...(H5) and the perturbation satisfy the
conditions(W1). . . (W3). Assume moreover thatε is sufficiently small and either:

(i) H0 has regularity as in Sect. 2.1 withη > 1 or
(ii) We have lower regularity0< η < 1 supplemented by the conditions


 > Cεn, n ≥ 2

andη > n−2
n

.

Then

a) H = H0 + εW has no eigenvalues in�.
b) The spectrum ofH is purely absolutely continuous in�, and

‖〈x〉−σ e−iH tg�(H)40‖2 ≤ Cε〈t〉−1−η‖〈x〉σ40‖2. (10)

c) For t ≥ 0 we have

e−iH tg�(H)40 = (I + AW)
(
e−iω∗t a(0)ψ0 + e−iH0t φd(0)

)
+ R(t), (11)

whereAW := K(I −K)−1− I andK is an integral operator defined in (35) and
1. if η < 1 andε → 0 with t
 fixed we haveR(t) = O(ε2
η−1) while ast
→∞

we haveR(t) = O(
−1t−η−1),
2. for η > 1 we haveR(t) = O(ε2t−η+1),
3.

‖AW‖ ≤ Cε|||W |||, (12)

a(0) andφd(0) are determined by the initial data. The complex frequencyω∗ is
given by

−iω∗ = −is0 − 
,
wheres0 solves the equation

s0 + ω + ε2� {F(ε, is0)} = 0 (13)

(see (47) and (49) below) and
4.


 = ε2� {F(ε, is0)} . (14)

Remark.ω∗ can be found by solving the transcendental equation (13) by either expansion
or iteration if sufficient regularity is present (see also Proposition 12 and note following
it and Lemma 18).



Resonance Theory 139

2.2. Sketch of the proof of the Theorem 1.The proof of Theorem 1 is given in Sects. 3
and 4. Section 3 prepares the ground for the proof, Subsect. 4.1 provides key definitions
while Subsects. 4.2 and 4.3 contain the proof of Theorem 1 (ii) and (i) respectively. As
an intuitive guideline, the solutionφ(t) of the time dependent problem is decomposed
into the projectiona(t)ψ0 on the eigenfunction ofH0 and a remainder (see (18)). The
remainder is estimated from the detailed knowledge ofa(t) (see (34) and (39).

Thus it is essential to controla(t); once that is done, parts (a) and (b) follow from
Proposition 4; thisa(t) satisfies an integral equation, cf. (43). We chiefly use the Taube-
rian type duality between the larget behavior ofa(t) and the regularity properties of its
Laplace transform, cf. Proposition 9 and also Eq. (55). Then, an essential ingredient in
the proof of the estimate (11) is Proposition 15. When enough regularity is present, no
lower bound on
 > 0 is imposed; Proposition 16 and Proposition 17 are key ingredients
here.

2.3. Further results.

Lemma 2. Assuming the conditions of Theorem 1 withη > 1 then

ω∗ = λ0 + ε(ψ0,Wψ0)+ (;+ i
)+ o(ε2), (15)

where

; = ε2(Wψ0, P .V .(H0 − λ0)
−1Wψ0), (16)


 = πε2(Wψ0, δ(H0 − λ0)(I − P0)Wψ0). (17)

This follows from the proof of Proposition 12 and the Remarks below it.

3. Decomposition and Isolation of Resonant Terms

We begin with the following decomposition of the solution of (4):

e−iH tφ0 = φ(t) = a(t)ψ0 + φ̃(t), (18)(
ψ0, φ̃(t)

)
= 0, −∞ < t <∞. (19)

Substitution into (4) yields

i∂t φ̃ = H0φ + εWφ̃ − (i∂ta − λ0a)ψ0 + aεWψ0. (20)

Recall now thatI = P0 + P1+ P -c . Taking the inner product of (20) withψ0 gives the
amplitude equation:

i∂ta = (λ0 + (ψ0, εWψ0) )a + (ψ0, εWP1φ̃)+ (ψ0, εWφd), (21)

where

φd := P -c φ̃. (22)

The following equation forφd is obtained by applyingP -c to Eq. (20):

i∂tφd = H0φd + P -c εW(P1φ̃ + φd)+ aP -c εWψ0. (23)
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To derive a closed system forφd(t) anda(t)we now propose to obtain an expression
for P1φ̃, to be used in Eqs. (21) and (23). Sinceg�(H)φ(·, t) = φ(·, t) we find

(I − g�(H))φ = (I − g�(H))
(
aψ0 + P1φ̃ + P -c φ̃

)
= 0 (24)

or

(I − g�(H)gI (H0))P1φ̃ = −g�(H)
(
aψ0 + φd

)
, (25)

wheregI (λ) is a smooth function which is identically equal to one on the support of
P1(λ), and which has support disjoint from�. Therefore

P1φ̃ = −Bg�(H)(aψ0 + φd), (26)

where

B = (I − g�(H)gI (H0))
−1. (27)

This computation is justified inAppendix B of [11]. The following was also shown there:

Proposition 3 ([11]). For smallε, the operatorB in (27) is a bounded operator onH.

From (26) we get

φ(t) = a(t)ψ0 + φd + P1φ̃ = g̃�(H)(a(t)ψ0 + φd(t)), (28)

with

g̃�(H) := I − Bg�(H) = Bg�(H)(I − gI (H0)), (29)

see (5). Although̃g�(H) is not really defined as a function ofH , we indulge in this mild
abuse of notation to emphasize its dependence onH . In fact, in some sense,g̃�(H) ∼
g�(H) to higher order inε [11].

Substitution of (26) into (23) gives:

i∂tφd = H0φd + aP -c εWg̃�(H)ψ0 + P -c εWg̃�(H)φd (30)

and

i∂ta =
(
λ0 + (ψ0, εWg̃�(H)ψ0)

)
a + (ψ0, εWg̃�(H)φd)

= ωa + (ω1− ω)a + (ψ0, εWg̃�(H)φd), (31)

where

ω = λ0 + (ψ0, εWψ0), (32)

ω1 = λ0 + (ψ0, εWg̃�(H)ψ0). (33)

We write (30) as an equivalent integral equation. We will later need the integral repre-
sentation of the solution of (30)

φd(t) = e−iH0t φd(0)− i
∫ t

0
e−iH0(t−s)a(s)P -c εWg̃�(H)ψ0ds

− i
∫ t

0
e−iH0(t−s)P -c εWg̃�(H)φdds. (34)

This was also used to prove the following statement.
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Proposition 4 ([11]). Suppose|a(t)| ≤ a∞〈t〉−1−α and assume thatη > 0 andα ≥ η.
Then for someC > 0 we have

‖〈x〉−σ φd(t)‖L2 ≤ C〈t〉−1−η (‖〈x〉σ φd(0)‖L2 + a∞|||W |||
)
.

Note. The proposition, as we mentioned, implies parts (a) and (b) of the main theorem,
given the properties ofa(t) which will be shown in the sequel. The absolute continuity
stated in the theorem follows from (10) withη > 0.

We defineK as an operator acting onC(R+,H), the space of continuous functions
onR

+ with values inH by(
K f

)
(t, x) =

∫ t

0
e−iH0(t−s)P -c εWg̃�(H)f (s, x)ds. (35)

We introduce onC(R+,H) the norm

‖f ‖β = sup
t≥0
〈t〉β‖f (·, t)‖H (36)

and define the operator norm

‖A‖β;σ = sup
‖f ‖β≤1

‖〈x〉−σA〈x〉σ f ‖β. (37)

The above definitions directly imply the following.

Proposition 5. If ε is small, 0 ≤ β ≤ r, r > 1 and for someβ1 > 0 we have
‖〈x〉−σ e−iH0tP

-
c 〈x〉−σ‖ ≤ Ct−1−β1, then for0 ≤ β ≤ β1 we have

‖K‖β;σ ≤ ε Cβ;σ ;r . (38)

The proof uses the smallness ofε which in turn entails the boundedness of
〈x〉−σ g̃�(H)〈x〉σ . Using the definition ofK given above we see thatK(1− K)−1 =∑∞
n=1K

n is also bounded. We can now rewrite the equations forφd as

φd(t) = e−iH0t φd(0)+K
(
a(t)ψ0

)+Kφd
= (I −K)−1

{
K
(
a(t)ψ0

)+ e−iH0t φd(0)
}

(39)

(recall that we definedAW = −I + (I −K)−1K) and therefore

i∂ta = ω1a +
(
ψ0, εWg̃�(H)(I −K)−1K

(
aψ0

))
+
(
ψ0, εWg̃�(H)(I −K)−1e−iH0t φd(0)

)
. (40)

To complete the proof ofTheorem 1 we need to estimate the large time behavior ofa(t)

solving Eq. (40). Since the inhomogeneous term satisfies the required decayO(t−1−η)
by our assumptions onH0 it is sufficient to study the associated homogeneous equation.
Equivalently, we may choose the embedded eigenfunction as initial condition (that is
φd(0) = 0).

We now define two operators onL∞ by

j̃ (a) =
(
v, 〈x〉−σK(aψ0)

)
, wherev = 〈x〉σ εWg̃�(H)ψ0 (41)
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and

j (a) =
(
v, 〈x〉−σ (I −K)−1K(aψ0)

)
. (42)

Proposition 6. The operators̃j andj are bounded fromL∞ into itself.

The proposition follows from Proposition 5 withβ = 0.

Remark.The equation fora can now be written in the equivalent integral form

a(t) = a(0)e−iωt + e−iωt
∫ t

0
eiωsj (a)(s)ds := a(0)e−iωt + J (a). (43)

Definition 1. Consider the spacesL∞
T ;ν andL∞ν to be the spaces of functions on[0, T ]

andR
+ respectively, in the norm

‖a‖ν = sup
s
|e−νsa(s)| (44)

Remark 7.We note that forT ∈ R
+, the norm onL∞

T ;ν is equivalent to the usual norm
onL∞[0, T ].
Proposition 8. For some constantsc, C and c̃ independent ofT we have‖ja‖ν ≤
cν−1ε2‖a‖ν , ‖Ja‖ν ≤ Cν−2ε2‖a‖ν and‖j̃ a‖ν ≤ c̃ν−1ε2‖a‖ν , and thusj , J , and j̃
are defined onL∞

T ;ν andL∞ν and their norms, in these spaces, are estimated by

‖j‖ν ≤ cν−1ε2; ‖j̃‖ν ≤ c̃ν−1ε2; ‖J‖ν ≤ Cν−2ε2. (45)

Similar arguments as above lead to

Proposition 9. Equation (40) has a unique solution inL1
loc(R

+), and this solution be-
longs toL∞ν if ν > ν0 with ν0 sufficiently large. Thus, in the half-plane�(p) > ν0 the
Laplace transform ofa

â :=
∫ ∞

0
e−pta(t)dt (46)

exists and is analytic inp. Furthermore, for�(p) > ν0, the Laplace transform ofa
satisfies

ipâ = ωâ + ia(0)− iε2F(ε, p)â(p), (47)

whereF(ε, p) is defined by

F(ε, p) :=(
ψ0,Wg̃�(H)

[(
I + iI

p + iH0
P -c Wg̃�(H)

)−1 −iI
p + iH0

P -c εWg̃�(H)

]
ψ0

)
+ i(ω1− ω)ε−2 (48)

so

(ip − ω + iε2F(ε, p))â(p) = ia(0). (49)

Eq. (47) follows by taking the Laplace transform of (31).



Resonance Theory 143

Proof. By Proposition 8, and since‖e−iωt‖ν = 1, for largeν Eq. (43) is contractive in
L∞
T ;ν and has a unique solution there. It thus has a unique solution inL1

loc, by Remark 7.

Since by the same argument Eq. (43) is contractive inL∞
T ;ν and sinceL∞ν ⊂ L1

loc, the

uniqueL1
loc solution of (43) is inL∞ν as well. The rest is straightforward.!"

Remark 10.Note that by construction (47) and (48) defineF as a Laplace transform of
a function.

Our assumptions easily imply that ifε is small enough, then:

(a) F(ε, p) is analytic except for a cut alongi�. F(ε, p) is Hölder continuous of order
η > 0 at the cut, i.e.

lim
γ↓0
F(ε, iτ ± γ ) ∈ Hη,

the space of Hölder continuous functions of orderη.
(b) |F(ε, p)| ≤ C|p|−1 for someC > 0 as|p| → ∞.

To see it we write

B = B1B2〈x〉−σ ; B1 := I

p + iH0
P -c 〈x〉−σ ; B2 := ε〈x〉σWg̃�(H)〈x〉σ . (50)

Noting thatP -c projects on the interval� it is clear by the spectral theorem that〈x〉−σB
is analytic inp onD := C \ (i�). By the assumption on the decay rate and the Laplace
transform of Eq. (7) we have that

B3(p) := 〈x〉−σ I

p + iH0
P -c 〈x〉−σ (51)

is uniformly Hölder continuous, of orderη, asp → i�. Forp0 ∈ i�, the two sided
limits lima↓0B3(p0±a) = B±3 will of course differ, in general.A natural closed domain
of definition ofB3 is D together with the two sides of the cut,D := D ∪ ∂D+ ∪ ∂D−.
We then write

‖B3‖ ≤ C1(p), (52)

where we note thatC1 can be chosen so that:

Remark 11.C1(p) > 0 is uniformly bounded forp ∈ D andC1(p) = O(p−1) for
largep.

Hence for someC2 we have uniformly inp (choosingε small enough),

‖〈x〉−σ (B1B2)
n‖ ≤ Cn2εn, (53)

and therefore the operator

εWg̃�(H)

[(
I − I

p + iH0
P -c εWg̃�(H)

)−1
I

p + iH0
P -c εWg̃�(H)

]
(54)

is analytic inD and is inHη(D).
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4. General Case

4.1. Definition of
. We have from Proposition 9, Eq. (47) that

â(p) = ia(0)

ip − ω + iε2F(ε, p)
. (55)

We are most interested in the behavior ofâ for p = is, s ∈ R.
 will be defined in terms
of the approximate zeros of the denominator in (55). LetF =: F1+ iF2.

Proposition 12.For ε small enough, the equations +ω+ ε2F2(ε, is) = 0 has at least
one roots0, ands0 = −ω + O(ε2). If η ≥ 1, then for small enoughε the solution is

unique. Ifη < 1 then two solutionss1 ands2 differ by at mostO(ε
2

1−η ).

Proof. We writes = −ω + δ and get forδ an equation of the formδ = ε2G(δ) where
G(x) = −F2(ε, ix − iω), andG(x) ∈ Hη. The existence of a solution for smallε is an
immediate consequence of continuity and the fact thatδ − ε2G(δ) changes sign in an
interval of sizeε2‖G‖∞. If η ≥ 1 we note that the equationδ = ε2G(δ) is contractive for
smallε and thus has a unique root. If instead 0< η < 1 we have, ifδ1, δ2 are two roots,
then for someK > 0 independent ofε, |δ1− δ2| = ε2|G(δ1)−G(δ2)| ≤ ε2K|δ1− δ2|η
whence the conclusion.!"
Remark.Note thats0 are not, in general, poles of (55) since we only solve for the real
part equal to zero.

Assumption 13.If η < 1 then we assume thatε2F1(ε,−iω)& ε
2

1−η for smallε. When
η > 1 this restriction will not be needed, cf. Sect. 4.3.

Definition. We choose one solutions0 = −ω + δ and let
 be defined by (14).

Note. In the caseη < 1 the choice ofs0 yields, by the previous assumption a (possible)

arbitrariness in the definition of
 of orderO(ε
2

1−η ) = o(
).

Remarks on the verifiability of condition
 > 0. As it is generally difficult to check the
positivity of 
 itself but relatively easier to find
0, we will look at various scenarios,
which are motivated by concrete examples, in which the condition of positivity reduces
to a condition onF(ε,−iω).

Let

0 = ε2F1(ε,−iω); γ0 = ε2F2(ε,−iω),

where we see that
0 andγ0 areO(ε2). The equation forδ reads

δ = −ε2[F2(ε,−iω + iδ)− F2(ε,−iω)] − γ0 = ε2H(δ)− γ0,

whereH(0) = 0. We writeδ = −γ0 + ζ and get

ζ = ε2H(−γ0 + ζ )
and the definition of
 becomes


 = ε2F1(ε,−iω − iγ0 + iζ ).
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Proposition 14. (i) If H0 satisfies the conditions of Theorem 1 withη > 1 andγ0 =
o(ε−2
0), then asε → 0,


 = 
0 + o(
0) (56)

and in particular
 is positive for
0 > 0.

(ii) Assume thatη < 1, γ0 = o(ε−2

1/η
0 ) and
0 & ε

2
1−η asε → 0. Then again (56)

holds.

Proof. (i) Sinceζ = O(ε2γ0)+O(ε2ζ ) we getζ = O(ε2γ0), implying that


 = ε2F1
[
ε,−iω − iγ0(1+ o(1))

] = 
0 +O(ε2γ0) = 
0 + o(
0).

(ii) We have

ζ = O(ε2γ
η
0 )+O(ε2ζ η). (57)

If ζ ≤ const.γ0 asε → 0, then the proof is as in part (i). If on the contrary, for
some large constantC we haveζ > Cγ0 then by (57) we haveζ < const.ε2ζ η so that
ζ = O(ε2/(1−η)) andε2ζ η = O(ε2/(1−η)) = o(
0). But then


 = ε2F1(ε,−iω)+O(ε2γ
η
0 )+O(ε2ζ η) = 
0 + o(
0). !"

4.2. Exponential decay.We now letp = is0+ v. The intermediate time and long time
behavior ofa(t) are given by the following proposition

Proposition 15.For t
 = O(1) (note that
 in general depends onε), asε → 0 we
have

(i)

a(t) = e−is0t e−
t +O(ε2
η−1). (58)

(ii) Ast →∞ we have

a(t) = O(
−1t−η−1). (59)

Proof. (i) Note first that, taking�(v) > 0 and writingF as a Laplace transform, cf.
Remark 10,

F(ε,−is0 + v) =
∫ ∞

0
e−is0t−vtf (t)dt,

we have by our assumptions that

F(ε,−is0 + v) =
∫ ∞

0
e−vt

(∫ t

0
e−is0uf (u)du

)′
= v

∫ ∞

0
e−vt

∫ t

0
e−is0uf (u)du

= v
∫ ∞

0
e−vt

(∫ ∞

0
−
∫ ∞

t

)
e−is0uf (u)du

=
∫ ∞

0
e−is0uf (u)du− v

∫ ∞

0
e−vt

∫ ∞

t

e−is0uf (u)du

= F(ε,−is0)− vL[g](v),

(60)
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where we denotedg(v) = ∫∞
t
e−is0uf (u)du andL[g] is its Laplace transform. Now

define

h(v) = vL[g](v). (61)

We have, by the formula for the inverse Laplace transform

2πia(t) = e−is0t
∫ i∞

−i∞
evt

v + 
 + ε2h(v)
dv, (62)

where by construction we haveh ∈ Hη, h is analytic inC \ i� andh(0) = 0. We write∫ i∞

−i∞
evt

v + 
 + ε2h(v)
dv =

∫ i∞

−i∞
evt

(v + 
) (1+ ε2h(v + 
)−1
)dv

=
∫ i∞

−i∞
evtdv

v + 
 − ε
2
∫ i∞

−i∞
1

v + 

h(v + 
)−1

1+ ε2h(v + 
)−1e
vtdv. (63)

We first need to estimateL−1
[
h(v + 
)−1

]
( the transformation is well defined, since

the function is just(v + 
)−1(F (ε,−is0 + v)− F(ε,−is0)). We need to write

vL[g](v) =: (v + 
)L[g1](v) or L[g1] =
(

1− 


v + 

)
L[g] (64)

which defines the functiong1:

g1 = g − 
e−
t
∫ t

0
e
sg(s)ds. (65)

Since|g(t)| < Const.t−η we have

|g1(t)| ≤ Const.t−η + e−
t
∫ 
t

0
eu
( u



)−η
du ≤ Const.t−η. (66)

A similar inequality holds for

Q := L−1

[
h
v+


1+ ε2h
v+


]
. (67)

Indeed, we have

Q = −L−1
[

h

v + 

]
+ ε2L−1

[
h

v + 

]
∗Q. (68)

It is easy to check that fort ≤ r
−1 and small enoughε this equation is contractive in
the norm‖Q‖ = sups≤t 〈s〉η|Q(s)|.

But now, for constants independent ofε,

ε2L−1
[

1

v + 

]
∗Q ≤ Const.e−
s

∫ t

0
e
ss−ηds

= ε2Const.e−
s
−1
∫ 
t

0
eu
( u



)−η
du

≤ Const.
ε2


1−η .

(69)
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(ii) We now use (60) and (61) to write

h

v + 
 =
F(ε,−is0 + v)

v + 
 − F(ε,−is0)
v + 


and get

H1 := L−1
[

h

v + 

]
= e−
t

∫ t

0
e
sf (s)ds + conste−
t ,

and thus, proceeding as in the proof of (i) we get for someC > 0 |H1| ≤ C
−1〈t〉−η−1.
To evaluatea(t) for larget we resort again toQ as defined in (67) which satisfies (68).
This time we note that the equation is contractive in the norm sups≥0 |〈s〉1+η · | whenε
is small enough. !"

Using (59), Proposition 4 and (28) imply local decay and thereforeχ cannot be an
eigenfunction which implies (i). Since the local decay rate is integrable (ii) follows [24].
Part c) follows from (58), (39) and (28) while (12) follows from (39) and the smallness
of K.

4.3. Proof of Theorem 1 in case (i) of regularityη > 1. In this case we obtain better
estimates. We write

G(v) = L−1[g](v) (70)

and (62) becomes

a(t) = e−is0t
∫ i∞

−i∞
evt

v + 
 + ε2vG(v)
dv. (71)

Now

L−1
[
(v + 
 + ε2vG(v))−1

]
= L−1

[
1

v + 

]
− ε2L−1

[
1

v + 

]
∗ L−1

[
v
v+
G(v)

1+ ε2 v
v+
G(v)

]
. (72)

Proposition 16.Let

H2(t) := L−1

[
v
v+
G(v)

1+ ε2 v
v+
G(v)

]
.

We have

|H2| ≤ Const.〈t〉−η;
∫ ∞

0
H2(t)dt = 0. (73)
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Proof. Consider first the function

h3 := v(v + 
)−1G(v) = G(v)− 
(v + 
)−1G(v);
we see that (cf. (70) and (60))

H3 := L−1h3 =
∫ ∞

t

e−is0uf (u)du− 
 e−
t
∫ t

0
e
s

∫ ∞

s

e−is0uf (u)duds, (74)

and thus, for some positive constantsCi ,

|H3| ≤ Const.t−η + Const.e−
t
∫ 
t

0
ev
−η〈v〉−ηdv, (75)

and thus, sinceh3(0) = 0 we have

|H3| ≤ Const.〈t〉−η;
∫ ∞

0
H3(t)dt = 0.

Note now that the function

v

v + 
G(v)
(

1+ ε2 v

v + 
G(v)
)−1

vanishes forv = 0. Note furthermore that

H2 = H3− ε2H3 ∗H2.

It is easy to check that this integral equation is contractive in the norm‖H‖ =
sups≤t |〈s〉ηH(s)| for small enoughε; the proof of the proposition is complete.!"
Proposition 17.

L−1
[
(v + 
 + ε2G(v))−1

]
= e−
t +�(t),

where for some constantC independent ofε, t, 
 we have

|�| ≤ Cε2〈t〉−η+1.

Proof. We have, by (72)

�(t) = ε2e−
t
∫ t

0
e
s

(∫ ∞

s

H2(u)du

)′
ds

= ε2
∫ ∞

t

H2(s)ds − 
e−
t
∫ t

0
e
s

∫ ∞

s

H2(u)du.

(76)

The estimate of the last term is done as in (75).!"
Theorem 1 part (c) in case (i) follows.



Resonance Theory 149

5. Analytic Case

Suppose that the functionF(p, ε) has analytic continuation in a neighborhood of the
relevant energy−iω �= 0; in this case we can prove stronger results. In many cases
one can show the analyticity ofF if the resolvent, properly weighted, has analytic
continuation.

Lemma 18.Assume that for someω and some neighborhoodD of ω, E(ε, p) is a
function with the following properties:

(i) E ∈ Hη(D) andE is analytic inD (this allows for branch-points on the boundary
of the domain, a more general setting than meromorphicity).

(ii) |E(ε, p)| ≤ Cε2 for someC.
(iii) lim a↓0�E(ε,−iω − a) = −
0 < 0.

If (a) η > 1, E(ε,−iω) = o(
0/ε
2) or (b) η < 1 andE(ε,−iω) = O(
0) and ε is

small enough, then the function

G1(ε, p) = p + iω + E(ε, p)
has a unique zerop = pz in D and furthermore�(pz) < 0. In fact,

�(pz)+ 
0 = o(
0). (77)

Remark.If the condition that forη > 1,E(ε,−iω) = o(ε−2
0) is not satisfied, then
we can replace−iω by−iω − is0 and the uniqueness of the complex zero will still be
true.

Proof. We have

G1(ε, pz) = 0= pz + iω + E(ε,−iω)+ [E(ε, pz)− E(ε,−iω)]
or, lettingp = −iω + ζ , ζz := pz + iω, ε2φ(ε, ζ ) := E(ε, p)− E(ε,−iω),

ζz = −E(ε,−iω)− ε2φ(ε, ζz).

Consider a square centered atE(ε,−iω)with side 2|�(E(ε,−iω))| = 2
0. For both
cases (a) and (b) forη considered in part (iii) of the lemma, note that in our assumptions
and by the choice of the square we have∣∣∣∣ ε2φ(ζ, ε)

ζ + E(ε,−iω)
∣∣∣∣→ 0 (asε → 0) (78)

(on all sides of the square). In case (a) on the boundary of the rectangle we have by
construction of the rectangle,|ζ +E(ε,−iω)| ≥ 
0. Also by construction, on the sides
of the rectangle we have|ζ | ≤ 
0. Still by assumption,φ(ε, ζ ) ≤ Cζ = o(ε−2
0) and
the ratio in (78) iso(1). In case (b), we have

ε2φ(ε, ζ ) = O(ε2ζ η) = O(ε2

η
0) = o(
0).

Thus, on the boundary of the square, the variation of the argument of the functions
ζ + E(ε,−iω) + ε2φ(ζ ) and that ofζ + E(ε,−iω) differ by at mosto(1) and thus
have to agree exactly (being integer multiples of 2πi); thusζ + E(ε,−iω) + ε2φ(ζ )

has exactly one root in the square. The same argument shows thatp+ iω+E(ε, p) has
no root in any other region in its analyticity domain except in the square constructed in
the beginning of the proof.!"
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Theorem 19.Assume the conditions (H) and (W) as before, and furthermore that the
functionF(ε, p) has analytic continuation in a neighborhood of−iω; with an appro-
priate choice of the cutoff functionE�(H0), we have thatχ(H − z)−1χ has a unique
pole away from the real axis, near−iω, corresponding to a resonance with imaginary
part near
, with appropriate choice of weightsχ .

Proof. First we note that by taking the Laplace transform of (28) and (34) and solving
for the resolvent ofH we get that

χ(H − z)−1χ = A(z)â(z)ψ0 + B(z)
with A(z) andB(z) analytic inD by our assumptions (H) and (W), and the assumed
analyticity of F(ε, p), ip := z. Hence the existence and uniqueness of the pole of
χ(H − z)−1χ follows from Lemma 18, withε2F(ε, p) = E(ε, p). !"

As a consequence we obtain the following result.

Proposition 20.With an appropriate exponential cutoff function, the remainder term
decays as a stretched exponential times an asymptotic series.

Sketch of proof.We need the larget behavior ofa(t) which is the Inverse Laplace
transform ofG(p) := (p + iω + iε2F(ε, p))−1 and to this end we write

G(p) = (p + iω∗)−1− iε2(p + iω∗)−1F∗(ε, p)G(p), (79)

whereF∗(ε, p) := F(ε, p)− (ω∗ − ω)/ε2 andω∗ is the unique pole ofG(p) found in
the previous theorem. Taking the inverse Laplace transform of (79) we get an integral
equation forG(t), and direct calculations show thatF̃ ∼ e−

√
t+iθ t∑ akt

−k/4 implies
G(t) ∼ e−iω∗t + O(ε2)e−

√
t+iθ t∑ bkt

−k/4. To find the asymptotic behavior of̃F(t)
we derive an integral equation by taking the inverse Laplace transform of (48) and the
same integral equation arguments as above reduce the asymptotic study ofF̃ to that of
the following expression for anyu ∈ L2:

(u, Be−iH0tP -c Bψ0) =
∫
B̃u∗e−iλt g�B̃ψ0dµa.c.(λ) :=

∫
ξ(λ)e−iλt g�(λ)dλ,

whereB = Wg̃�(H) andφ̃ is the spectral representation ofφ associated toH0. By as-
sumptionB(H0−z)−1B is analytic inz ∈ D, hence

∫
(B̃u∗)(λ)(λ−z)−1(B̃v)(λ)f (λ)dλ

is analytic for anyv ∈ L2, wheref (λ) = dµa.c./dλ; therefore so is its Hilbert transform
B̃u∗B̃vf and thusξ is also analytic. Choosingg�(λ) = exp(−(λ−a)−1+(λ−b)−1) the

asymptotic expansion of̃F follows from that of the integral
∫ b
a
e−

1
λ−a+ 1

λ−b−itλξ(λ)dλ.
!"

5.1. Example.Suppose

H0 =
(−� 0

0 −�+ x2

)
:= −�⊕ (−�+ x2)

onL2(R)⊕ L2(R). Assume

W =
(

0 W̃
W̃ 0

)
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with W̃ = W̃ (x) sufficiently regular and exponentially localized. Then, the spectrum of
H0 has embedded eigenvalues corresponding to the spectrum of−�+x2, with Gaussian
localized and smooth eigenfunctions. Since the projectionI −P0 in the definition ofP -c
eliminates the−�+ x2 part in any interval� containing an eigenvalue of−�+ x2, it
is left to verify the conditions of the theorem forH0 replaced by−�. Since

e−α〈x〉(−�− z)−1e−α〈x〉 (80)

has analytic continuation through the cut(0,∞) and is an analytic function away from
z = 0, we can now choose an interval� = [a, b] around each eigenvalueEn of−�+x2,
avoiding zero, and let

E�(λ) = e−(λ−a)−1
e(λ−b)−1

be a function analytic inC exceptz = a andb.

5.2. Remarks on applications.The examples covered by the above approach include
those discussed in [11] as well as the many cases where analytic continuation has been
established, see e.g. [21]. Furthermore, following results of [21] it follows that under
favorable assumptions onV (x), −� + V (x) has no zero energy bound states in three
or more dimensions extending the results of [11], where it was proved for 5 or more
dimensions.

It is worth mentioning that the possible presence of thresholds inside� makes it
necessary to allow forη < ∞, and that in the case where there are finitely many
thresholds inside� of known structure, sharper results may be obtained.

Other applications of our methods involve numerical reconstruction of resonances
from time dependent solutions data, in cases where Borel summability is ensured. This
and other implications will be discussed elsewhere.
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