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Abstract. We present new results for the transition to the con-
tinuum of an initially bound quantum particle subject to a har-
monic forcing. Using rigorous exponential asymptotics methods we
obtain explicit expressions, as generalized Borel summable transseries,
for the probability of localization in a specified spatial region at
time t. The transition to the continuum occurs for general com-
pactly supported potentials in one dimension and our results ex-
tend easily to higher dimensional systems with spherical symmetry.
This of course implies the absence of discrete spectrum of the cor-
responding Floquet operator.

1. Introduction

We investigate the delocalization (ionization) of an initially localized
(bound) particle as a result of the action of a time periodic external
potential. The time evolution of the particle wave function ψ(x, t), x ∈
Rd is described by the non-relativistic Schrödinger equation

(1.1) i
∂ψ

∂t
= [H0 +H1(t)] ψ

Here H0 is the time-independent reference (or intrinsic) Hamiltonian,

(1.2) H0 = −∆ + V (x)

and H1 is the external, not necessarily small, potential having the form

(1.3) H1 = Ω(x) η(t)
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with η(t) = η(t + 2π/ω), ω > 0. The potentials V (x) and Ω(x) have
compact support and V (x) is such that H0 has both bound and contin-
uum (quasi-free) states. We are interested in the behavior of solutions
ψ for large t, when ψ(x, 0) ∈ L2(Rd),

∫
Rd |ψ|2 = 1.

If the survival probability for the particle in the ball of radius B in
Rd,

∫
|x|<B

|ψ|2dx := PB(t) → 0 as t → ∞ for all B, we say that the

particle escapes to infinity and complete ionization occurs.
The setting (1.1), (1.2), (1.3) with appropriate choices of V , Ω and η

(not necessarily satisfying our conditions) is common for studying the
ionization of atoms and the dissociation of molecules by electromag-
netic fields [1, 2, 3, 4].

We apply techniques stemming from rigorous exponential asymp-
totics to obtain:

(1) Exact representation of the probability PB(t) as generalized
Borel summable transseries [5, 6, 7].

(2) Effective conditions for complete ionization. These imply ipso
facto absence of discrete Floquet spectrum, see [8, 9].

Recently, Galtbayar, Jensen and K Yajima [17] obtained general re-
sults about the asymptotic behavior of the wave function in terms of
the discrete spectrum of the Floquet operator. In our setting, the dis-
crete spectrum of the Floquet operator is empty and furthermore the
asymptotic expansion of the wave function is Borel summable providing
a complete representation for t > 0.

2. Summary of previous results

In the first model that we studied the system was one-dimensional and
both Ω and V where δ-functions centered at the origin. Equation (1.1)
then takes the form

(2.1) i
∂ψ

∂t
=

(
− ∂2

∂x2
− 2δ(x)

)
ψ − δ(x)η(t)ψ, x ∈ R

For η we took a sine-function:

(2.2) η(t) = 2 r sinωt

In this case the spectrum of the unperturbed system (equation (2.1)
with r = 0) consists in one bound state ub(x) = e−|x| with energy
Eb = −ω0 = −1, and a continuous spectrum for energies E = k2 > 0
with generalized eigenfunctions

u(k, x) =
1√
2π

(
eikx − 1

1 + i|k|
ei|kx|

)
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The solution ψ of (2.1), (2.2) with initial condition ψ(x, 0) = ub(x)
can be written as ψ(x; t) = θ(t)ub(x) + ψ⊥ (with ψ⊥ orthogonal to the
bound state); thus |θ(t)|2 is the survival probability in the bound state.

Theorem 1. For the system (2.1), (2.2) we have

lim
t→∞

|θ(t)|2 = 0

for all ω and r 6= 0.

As noted in §3 Remark 1 of [11] the result can be extended to show
PB(t) → 0 as t→∞.

The proof in [10] of Theorem 1 relies on showing that θ has a (unique)
rapidly convergent representation of the form

(2.3) θ(t) = e−γ(r;ω)t+itFω(t) +
∞∑

m=−∞

e(miω−i)thm(t)

where γ(r;ω) > 0, Fω is periodic of period 2πω−1, and

(2.4) hm(t) ∼
∞∑

j=0

hm,jt
−3/2−j as t→∞, arg(t) ∈

(
− π

2
,
π

2

)
One ingredient in the analysis which is worth stating in its own right

is the absence of discrete spectrum of the Floquet operator associated
to the problem.

Lemma 2. The discrete spectrum of the Floquet operator for the model
(2.1), (2.2) is empty.

Proof. Let Lψ(x; p) =
∫∞

0
ψ(x; t)e−ptdt be the Laplace transform of

ψ with respect to t. Set yn(x) = Lψ(x, iσ + inω) where n ∈ Z and
<(σ) ∈ [0, ω) (for more details see §4.1 below). Then the yn satisfy an
infinite system of differential equations (closely related to eq. (14) of
[11]) whose homogeneous part is:

(2.5) −y′′n(x) + (−2δ(x) + σ + nω)yn(x) = irδ(x)(yn+1(x)− yn−1(x))

An immediate calculation shows that the system (2.5) admits a non-
trivial L2 solution iff the Floquet operator has nontrivial discrete spec-
trum. On the other hand, it can be seen that any nonzero L2 solution
of (2.5) must be have yn = 0 for n < 0. Then the two-step recurrence
(2.5) implies that yn = 0 for all n.

A detailed description of the behavior of θ(t) is found in [10], [12].
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2.1. General periodic η. The next step was to consider (2.1) for η a
general periodic function

(2.6) η(t) =
∞∑

j=0

(
Cj e

iωjt + Cj e
−iωjt

)
under the assumptions that

(2.7) η 6≡ 0, η ∈ L∞, and C0 = 0

It turns out that the ionizing properties of the system (2.1), (2.6)
depend nontrivially on special properties of the Fourier coefficients:
ionization occurs for generic η, but there are exceptions.

Genericity condition (g). Consider the right shift operator T on
l2(N) given by

T (C1, C2, ..., Cn, ...) = (C2, C3, ..., Cn+1, ...)

We say that C ∈ l2(N) satisfies condition (g), if the Hilbert space
generated by all the translates of C contains the kernel of T , i.e.,

(2.8) e1 ∈
∞∨

n=0

T nC

The right side of (2.8) denotes the closure of the space generated by the
T nC with n ≥ 0. This condition, weaker than cyclicity, is generically
satisfied. In particular it clearly holds for trigonometric polynomials.

Theorem 3 ([11]). When condition (g) is satisfied then the system
(2.1), (2.6) satisfies Theorem 1.

A simple example for which (g) does not hold is Cλ = r(λ, λ2, ..., λn, ...)
(with |λ| < 1) since Cλ is an eigenvector of T . It corresponds to

(2.9) η(t) = 2rλ
λ− cos(ωt)

1 + λ2 − 2λ cos(ωt)

Theorem 4 ([11]). Consider the system (2.1) with η(t) of the form
(2.9). Then for any ω, r there exists λ for which

lim
t→∞

|θ(t)|2 6= 0

In this case θ(t) approaches a quasiperiodic function as t → +∞.
The two periods correspond to ω and to the discrete eigenvalue of the
Floquet operator. The proof of Theorem 4 gives a constructive way to
find λ such that the Floquet operator has a discrete eigenvalue.

Theorem 4 is particularly striking in that an increase in the strength
r of the forcing can lead to a suppression of ionization. We also found
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Figure 1. Plot of log10 |θ(t)|2 for a ≈ 0.59, r = 1.

other examples where one can adjust the parameters of the periodic
forcing to prevent ionization. In particular, [13] studies the case where
(1.1) takes the form

(2.10) i
∂

∂t
ψ(x, t) =

[
− ∂2

∂x2
− 2δ(x) + Ω1,2(x)r sinωt

]
ψ(x, t)

for Ω1(x) = 2δ(x− a) or Ω2(x) = 2[δ(x+ a)− δ(x− a)].
We showed in [13] that for this system there exists a two-dimensional

manifold in the a, r, ω parameter space for which θ(t) is asymptotically
a quasi-periodic function of t; this latter behavior occurs iff a ≥ 1/2.
Some representative curves are shown in Fig.1.

For Ω2 we can have localization even when the term −2δ(x) is absent
in (2.10) or V (x) = 0, i.e. the reference Hamiltonian H0 is just that of
a free particle.
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We finally note that all cases where θ(t) 6→ 0 are nonperturbative:
η(t) cannot be made arbitrarily small. This is consistent with pertur-
bation theory, including the Fermi Golden Rule, proven under certain
assumptions in [4, 14]. Note also that in Fig. 1 only the cases ω = 0.8
and ω = 1.25 correspond (aside from wiggles) to an exponential decay
of |θ(t)|2, a form generally assumed on the basis of perturbation theory.

3. New results for general interactions

Consider now the general one-dimensional equation (1.1) with V and
Ω compactly supported and continuous, and η(t) = sinωt.

Theorem 5. Assume Ω > 0 throughout the support of V . Then

(3.1) lim
t→∞

PB(t) = 0

Our techniques allow us in fact to find the full asymptotic expan-
sion of ψ(x, t), including the exponentially small corrections. More
generally, if ψ(0, x) is continuous and compactly supported then

Theorem 6. For t > 0 there exist N ∈ N and {Γk}k≤N , {Fω;k(t, x)}k≤N ,
2π/ω-periodic functions of t, such that

(3.2) ψ(t, x) = Hω(t, x) +
N∑

k=1

e−ΓktFω;k(t, x)

with <Γk > 0 for all k ≤ N , and

(3.3) Hω(t, x) =
∑
j∈Z

eijωthj(t, x)

and hj(t, x) have Borel summable power series in t,

(3.4) hj(t, x) = LB
∑
k≥3

hkj(x)t
−k/2

In particular, Hω(t, x) = O(t−3/2), t→∞. The operator LB (Laplace-
Borel) stands for generalized Borel summation [7]. The representation
(3.2) generalizes (2.3).

Remark. In (3.2), Borel summability can be briefly stated as follows.
We have

hj(t, x) =

∫ ∞

0

Fj(
√
p, x) e−pt dp ∼

∑
k≥3

hkj(x) t
−k/2, t→ +∞
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The functions Fj(s, x) are analytic in s in a neighborhood of R+ and
for any B ∈ R there exist constants K1, K2 such that for all j and
p ∈ R+,

sup
p≥0;|x|<B

|Fj(
√
p, x)e−K2|p|| ≤ (K1)/(j!)

2

so the function series (3.3) is rapidly convergent.
Notes.

(1) It follows easily from (3.2)–(3.4) that PB(t) also has a Borel
summed transseries representation.

(2) Our present method does not provide a simple link between N
and the parameters of the problem.

(3) Theorems 5 and 6 can be extended to η(t) a trigonometric poly-
nomial and to any compactly supported continuous Ω 6≡ 0.

(4) It is important for Theorem 5 that Ω(x) be a function (not a
distribution) as counter-examples show (see (2.10)); see however
§4.1.3 below.

(5) The form of V (x) does not play an important role in the anal-
ysis.

3.1. Higher dimensions. Consider now equation (1.1) in 3 dimen-
sions, with additional assumptions:

• V (x) = V (|x|).
• Ω(x) = Ω(|x|).
• Ω and V are compactly supported, and Ω > 0 throughout the

support of V .
• η(t) = sinωt.

Theorem 7. Under the above assumptions, (3.1) holds.

4. Nature of proofs in the general case

The proof of Theorem 5 is constructive and can be used in more
general settings to determine ionization conditions (for which all <Γk

are positive) [15].
The asymptotic expansion of PB(t) is studied using Tauberian-type

methods. The appropriate Tauberian duality for this problem is, as
already indicated in §2, the Laplace-Inverse Laplace one (essential to
modern exponential asymptotics and analyzability theory [6]).

Solutions of (1.1) are Laplace transformable, since the evolution is
unitary, and Lψ(x, ·) is analytic in the open right half plane. Regularity
of Lψ is then studied using generalizations of the Fredholm alternative
to functions with singularities.
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Figure 2

In Fig. 2 we illustrate the actual structure of singularities of Lψ for
the model (2.1), (2.2). There are infinitely many square-root branch
points on the imaginary line and infinitely many poles, equally spaced.
These determine the transseries (2.3).

4.1. Analytic properties of Lψ. Using the notation

yn(x) ≡ yn(x;σ) = Lψ (x, p) , for p = i (nω+σ) , n ∈ Z, <σ ∈ [0, ω)

we get a coupled system of differential equations

−y′′n + (V + nω + σ)yn = −iΩ
[
yn+1 − yn−1

]
+ ψ(x, 0) , n ∈ Z

which can be written as a system of integral equations

(4.1) yn = Kn(σ) [yn+1 − yn−1] + f0;n , n ∈ Z
where Kn(σ) is the the resolvent:

Kn(σ)g =
φ+

n (x)

Wn

∫ x

−∞
φ−n Ω g ds +

φ−n (x)

Wn

∫ ∞

x

φ−n Ω g ds

The φ±n are the solutions of −ψ′′ + (V + nω+ σ)ψ = 0, which decay at
±∞ respectively and Wn is their Wronskian.

We write the system (4.1) as

(4.2) Y = K(σ)Y + F
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and treat (4.2) as a fixed point problem in the Hilbert space

H = L2(supp Ω)⊗ l2(Z, 〈n〉3/2)

(supp Ω is compact) where l2(Z, 〈n〉3/2) denotes the Hilbert space of
sequences Y = {yn}n∈Z with the norm

‖Y ‖2 =
∑

n

(1 + |n|)3/2 |yn|2

(the weight |n|)3/2 is natural for this problem, and at the same time
ensures suitable decay). It is relatively easy to see that the operator
K(σ) is compact (wherever well defined) and depends analytically on
σ if =(σ) < 0.

We need to understand the singularities of Lψ (x, p) for <p ≤ 0,
hence of yn(x;σ) for =(σ) ≥ 0. Possible sources of singularities are:

(1) Discrete spectrum of the time-independent HamiltonianH0 (the
values of σ for which Wn = 0). These give rise to poles of K(σ)
and can only occur if σ is real. It turns out that at such points
Y is analytic (unless Ω ≡ 0).

(2) The bottom of the continuous spectrum at σ = 0 generates
branch-points of Y .

(3) The noninvertibility of I −K(σ) gives rise to poles in Y .

The points of noninvertibility of I−K(σ) are crucial for the regularity
of Y = Y (x;σ) required for ionization.

For =(σ) < 0 it is not difficult to show, using the self-adjointness of
the Hamiltonian, that I − K(σ) is invertible with an analytic inverse.
The same clearly holds for small Ω, since then the norm of the operator
K(σ) is also small. This in turns shows that ionization occurs whenever
the forcing is small enough.

Our methods and results are however aimed at the case where the
periodic forcingH1 is not small. In this case it can happen that I−K(σ)
does not have an analytic inverse at certain points with =(σ) = 0. This
is exactly what happens in the examples in §2 when θ(t) 6→ 0.

After some algebraic manipulations it can be shown that noninvert-
ibility of I − K(σ) implies the existence of a nontrivial L2 solution of
the system

−y′′n + (V + nω + σ)yn = −iΩ(yn+1 − yn−1) (n ∈ Z−)

|yn|+ |y′n| = 0 outside supp(Ω)(4.3)

(such a y would imply the existence of a Floquet eigenvalue). Intu-
itively it is clear that (4.3) should entail yn = 0 as the system (4.3) is
overdetermined.
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We prove that indeed y = 0 under our assumptions. We assume, for
definiteness and without loss of generality, that supp(Ω) = [0, 1]. We
show that solutions of (4.3) which are zero for x ≤ 0 cannot be zero at
x = 1.

The key result is the following Lemma.

Lemma 8. Assume there exists a nonzero solution of (4.3) in the space
L2([0, 1])⊗ l2(Z, 〈n〉3/2) with |yn(0)|+ |y′n(0)| = 0 for n < 0. Then there
exist n0 and C such that

(4.4) yn+n0 =

(∫ x

0

√
Ω(s)ds

)2|n|

(2|n|)!
Ω−

1
4 (1 + o(1)) (n→ −∞)

uniformly on [0, 1].

The proof of Lemma 8 is done by rigorous WKB (see also [16]).

Relation (4.4) precludes yn(1) = 0 for large enough −n. This in turn
shows that the operator I−K(σ) is invertible and the solution of (4.2)
is analytic away from the discrete spectrum of H0.

*
Completion of the argument: Analysis of other singularities.

4.1.1. Discrete spectrum of V . Extended versions of Fredholm’s alter-
native that we construct show that nonexistence of solutions of (4.6)
implies regularity at the discrete spectrum of V , i.e. for values of σ at
which Wn = 0.

4.1.2. The bottom of the continuous spectrum of V . For σ = 0 similar
arguments and an appropriate version of the Fredholm alternative show
that

yn(x; is) = An(x; s)
√
s− nω +Bn(x; s)

with An , Bn analytic in s on ((n − 1)ω, (n + 1)ω). Deformation of
contour provides now the proof of Borel summability of the transseries.

4.1.3. Distributional Ω. We proved that Theorem 5 also holds if Ω is
a sum of delta functions:

(4.5) Ω(x) =
J∑

j=1

Ωj δ(x− xj), 0 < x1 < x2 < ... < xJ < 1

provided maxj<J{xj+1 − xj} is small enough (note that this is not the
case in the example (2.10)).
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4.1.4. More general approach to the problem of invertibility of I−K(σ).
This problem can be reformulated in terms of analytic properties an
associated (generating function) Y (x, z) satisfying the equation

(4.6)
−∂

2Y

∂x2
+ z

∂Y

∂z
+ zΩ(x)Y = 1 + γ(x, z;Y )

with Y (0, z) = Yx(0, z) = Y (1, z) = Yx(1, z) = 0

where γ(x, z;Y ) is small in a precise sense.
In this setting, existence of some j with Γj = 0 (thus absence of ion-

ization) implies that the problem (4.6), which is again overdetermined,
has a solution Y which is entire in z. The solution Y can however be
controlled by an extension of WKB methods in a more convenient way
than the infinite system of ODEs (4.3).

4.2. Higher-dimensional cases. The proof follows the same lines as
in the one-dimensional problem after using spherical symmetry to de-
couple the radial part of the Schrödinger equation. The differences with
respect to one-dimension are the following. The form of the asymptotic
expansion (4.4) is more complicated, since the radial equation is sin-
gular at r = 0 and in the WKB-like expansion Bessel functions are
used to uniformize the asymptotics. Secondly, at r = 0 there is only
one condition, boundedness of y; however the system remains overde-
termined since, in addition, y has to vanish together with its radial
derivative at the boundary of the support of Ω. The rest of the proof
goes through without important changes.
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