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Abstract

We analyze partial differential equations of the form

∂th + (−∂y)nh = g2

(
y, t, {∂j

yh}n−1
j=0

)
∂n

y h + g1

(
y, t, {∂j

yh}n−1
j=0

)
+ r(y, t); h(y, 0) = hI(y)

in the complex plane, for sufficiently large y in a sector, under certain analyticity and decay
conditions on h, hI ,g1,g2 and r which make the nonlinearity formally small as y →∞. A
similar result is shown, undeer further assumptions, for small time and any y in C.

The results given also justify the formal asymptotic expansions of solutions and can be
conversely used to reconstruct actual solutions from formal series ones by Borel summation
which we prove in the process.

Due to the type of nonlinearity in the highest derivatives, the divergence of formal series
solutions owed to the singularity of the system at infinity and the complex plane nature
of the problem which precludes usual estimates, we use new techniques (based on Borel-
Laplace duality) to control the perturbative terms. Our methods of proof and norms used
are of a constructive nature.

1 Introduction

The theory of partial differential equations, when one or more of the independent variables are in
the complex plane is not very developed. The classic Cauchy-Kowalevski (C-K) theorem holds for
a system of first-order equations (or those equivalent to it) when the quasi-linear equations have
analytic coefficients and analytic initial data is specified on an analytic but non-characteristic
curve. Then, the C-K theorem guarantees the local existence and uniqueness of analytic solu-
tions. As is well known, its proof relies on the convergence of local power series expansions and,
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without the given hypotheses, the power series may have zero radius of convergence and the C-K
method does not yield solutions.

More recently, Sammartino and Caflisch ([22], [23]) proved the existence of nonlinear Prandtl
boundary layer equations for analytic initial data in a half-plane. This work involved inversion of
the heat operator ∂t−∂Y Y and using the abstract Cauchy-Kowalewski theorem for the resulting
integral equation.

While this method is likely to be generalizable to certain higher-order partial differential
equations, it appears unsuitable for problems where the highest derivative terms appear in a
non-linear manner. These terms cannot be controlled by inversion of a linear operator and
estimates of the kernel, as used by Sammartino and Caflisch.

Nonlinearity of special forms in the highest derivative was considered in a general setting,
encompassing nonlinear wave equations in the real domain, in a series of profound studies by
Klainerman [13], [14], Shatah [24], Klainerman and Ponce [15], Ponce [20], Ponce and Lim [21],
Kenig and Staffilani [12], Klainerman and Selberg [16], Shatah and Struwe [25] and others.

The complex plane setting, as well as the type of nonlinearity allowed in our paper, do
not appear to allow for an adaptation of those techniques. In fact simple examples show that
existence fails outside the domain of validity of the expansions we rely upon. We use a completely
different and constructive method based on recently developed generalized Borel summation
techniques [10], [5], [7]. Our results are presently restricted to one spatial dimension.

Apart from the mathematical interest of understanding the question of existence and unique-
ness of solutions to nonlinear PDEs in the complex plane near singular points (y = ∞ in our
context), sectorial existence of solutions to higher order nonlinear PDEs is important in many
applications.

For instance, there are nonlinear PDEs for which the initial value problem, in the absence
of a regularization is relatively simple; yet ill-posed in the sense of Hadamard for any Sobolev
norm on the real domain. However, the analytically continued equations into the complex spatial
domain are well-posed, even without a regularization term. There have been quite a few complex
domain studies involving idealized equations modeling physical phenomena (see for instance, [18],
[19], [1], [2], [3] and [4]) that follow Garabedian’s [11] realization that an ill-posed elliptic initial
value problem in the real spatial domain may become well-posed in the complex domain. In a
particular physical context, it was suggested [27] that complex domain studies would be useful
in understanding small regularization for some class of initial conditions. Formal and numerical
computations show the usefulness of this approach in predicting singular effects [26]. However,
many of the results for small but nonzero regularization were formal and relied fundamentally
on the existence and uniqueness of analytic solutions to certain higher order nonlinear partial
differential equations in a sector in the complex plane, with imposed far-field matching conditions.
In [7] we addressed rigorously the existence questions in some third-order nonlinear PDEs.

In a more general context, one can expect that whenever regularization appears in the form of
a small coefficient multiplying the highest spatial derivative, the resulting asymptotic equation
in the neighborhood of initial complex singularities will satisfy higher order (not necessarily
third order) nonlinear partial differential equation with sectorial far-field matching condition
in the complex plane of the type discussed here. An example of such an application is the
analysis of the local behavior of solutions to the well known Kuramato-Shivashinski equation:
ut + uux + uxx + νuxxxx = 0 for small nonzero ν, near a complex-singularity. The same type of
existence questions is relevant in the small time asymptotics of higher order nonlinear PDEs near
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initial singularities, as is illustrated further in §6. Such expansions determine relevant choice of
“inner-variables” that are crucial in the complex singularity analysis of PDE [9]. It is to be noted
that very little had been known about the singularity structure of PDEs in the complex plane.

We show existence and uniqueness of solutions h(y, t) to the initial value problem for a general
class of quasilinear system of partial differential equations of the form:

∂th + (−∂y)nh = g2

(
y, t, {∂j

yh}n−1
j=0

)
∂n

y h + g1

(
y, t, {∂j

yh}n−1
j=0

)
+ r1(y, t) with h(y, 0) = hI(y)

(1)
where ∂j

y denotes the j-th derivative with respect to y ∈ C. The function h takes values in Cm1 .
Suitable regularity and decay conditions are imposed for large y in a sector in the complex plane
(§2) and our results will hold in such a sector. These conditions make the terms in h on the
right side of (1) formally small for large y. As will be discussed, existence cannot be expected,
in general, to hold outside a specific sector.

By the transformation y = z−1 it is seen that the problem is that of existence and uniqueness
of solutions in a (sectorial) neighborhood of a point where the linear part of the principal symbol
of a partial differential operator has a high order pole. Formal solutions as power series in z are
expected to have zero radius of convergence, cf. also §7.2.

For problems of this type, the essence of the methodology we have introduced recently in [7] in
special cases of (1) has been to use Borel-Laplace duality to regularize the problem which is recast
as an integral equation in the Borel plane. This regularization, akin to Borel summation,1 is
instrumental in controlling the solution. The choice of appropriate Banach space after the Borel
transform proves to be crucial, and after this choice, the contraction mapping argument itself
follows from a sequence of relatively straightforward estimates in convolution Banach algebras.
Borel summation methods have been also used recently in the context of the heat equation by
Lutz, Miyake and Schäfke [17]. We illustrate in the Appendix, §7.2, the regularizing role of the
Borel transform and discuss why it is instrumental in showing existence and uniqueness. The
method we use is constructive, in the sense that it permits recovering of actual solutions from
formal ones presented as classically divergent power series in inverse powers of y, see also the
notes in §2. The study is done in a sector in the complex plane whose width is crucial to existence
and uniqueness of solutions with prescribed decay.

Our previous results [7] were limited to a class of partial differential equations that are first
order in time, t, and third order in space, y. Further, those results, motivated by a set of
applications, were restricted to scalar dependent variable with no nonlinearity in its derivatives.

Among the concrete equations amenable through rather straightforward transformations to
the setting [7] and thus to the present more general one are the KdV equation, the equations
Ht = H3Hxxx and Ht+Hx = H3Hxxx−H3/2, both arising in Hele-Shaw dynamics, the equation
Ht = H1/3Hxxx relevant to dendritic crystal growth, and many others. The last three of these
PDEs were treated in detail in [7].

In the present paper we are generalizing the results of [7] to arbitrary order in the spatial
variable. Further, the dependent function is allowed to be a vector f(y, t). The nonlinearity is
that of a general quasi-linear equation. Indeed, it will be obvious that the result given here also
generalizes easily to the case when the left side of (1) is replaced by ∂tf̂ − A∂n

y f̂ , where A is a

1More exactly, for the technical reason of simplifying the principal symbol of the transformed operator, we are
performing Borel oversummation, meaning that the power of the factorial divided out of the coefficients of the
divergent series is higher than the minimum necessary to ensure convergence.
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constant matrix with positive eigenvalues, though we leave out this extra generality for the sake
of relative simplicity in presentation.

2 Problem statement and main result

We study equation (1) where the inhomogeneous term r1(y, t) is analytic in y the domain

Dρ0 =
{

(y, t) ∈ C× R : arg y ∈
(
−π

2
− π

2n
,
π

2
+

π

2n

)
, |y| > ρ0 > 0, 0 ≤ t ≤ T

}
(2)

The restrictions on g1, g2, r1 and hI are better expressed once we transform the equation to a
more convenient form, as is done shortly.

By taking derivatives of (1) with respect to y, i-times, i ranging from 1 to n−1, it is possible
to consider the extended m1 × n system of equations for h and its first n − 1-derivatives. This
system of vector equations is of the form (see Appendix for further details)

∂tf + (−∂y)nf =
∑
q�0

′
bq(y, t, f)

m∏
l=1

n∏
j=1

(
∂j

yfl

)ql,j + r(y, t); with f(y, 0) = fI(y) (3)

where
∑′ means the sum over the multiindices q with

m∑
l=1

n∑
j=1

jql,j ≤ n (4)

In (3), f is an m = m1 × n dimensional vector, q = {ql,j}n,m
j=1,l=1 is a vector of integers and

the notation q � 0 means ql,j ≥ 0 for all l, j. The inequality (4) implies in particular that none
of the ql,j can exceed n and that the summation on q involves only finitely many terms. The
fact that (4) can always be ensured leads to important simplifications in the proofs. We denote

〈q〉 =
∑

(l,j)�(m,n)

ql,j

We assume that in Dρ0 there exist constants αr ≥ 1 (see also §5.2) and Ar(T ), with αr

independent of T such that
|yαr r(y, t)| < Ar(T ) (5)

In this paper the absolute value | · | of a vector is the max vector norm. Additionally, we require
that bq is analytic in f and in its convergent representation

bq(y, t; f) =
∑
k�0

bq,k(y, t) fk where k = (k1, k2, ..., km), and fk =
m∏

i=1

fki
i (6)

the functions bq,k are analytic in y in Dρ0 . We also take, without any loss of generality, b0,0 = 0,
altering accordingly (if needed) r(y, t).
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We assume that in this domain, there exist positive constants β, αq, and Ab, independent of
q and k (with β and αq independent of T as well), such that

|yαq+〈k〉β bq,k| < Ab(T ) ,where 〈k〉 ≡ k1 + k2 + · · ·+ km (7)

The series (6) converges in the domain Dφ,ρ, defined as (cf. also (2) and (7))

Dφ,ρ =
{

(y, t) : arg y ∈
(
−π

2
− φ,

π

2
+ φ

)
, |y| > ρ > ρ0, where 0 < φ <

π

2n
, 0 ≤ t ≤ T

}
(8)

if
|f | < ρβ (9)

Condition 1 The solution f(·, t) sought for (3) is required to be analytic in Dφ,ρ;y, where Dφ,ρ;y

is the projection of Dφ,ρ on the first component, for some ρ > 0 (to be determined later). In the
same domain, the solution and the initial condition fI(y) must satisfy the conditions (cf. (5))

|y|αr |f(y, t)| < Af (T ); |y|αr |fI(y, t)| < Af (T ) (10)

for some Af (T ) > 0 and (y, t) ∈ Dφ,ρ.

It is clear that for large y such a solution f will indeed satisfy (9), the condition for the convergence
of the infinite series in (3).

*
The general theorem proved in this paper is the following.

Theorem 2 For any T > 0 and 0 < φ < π/(2n), there exists ρ̃ such that the partial differential
equation (3) has a unique solution f that is analytic in y and is O(y−1) as y → ∞ for (y, t) ∈
Dρ̃,φ. Furthermore, this solution satisfies f = O(y−αr ) as y →∞ in Dρ̃,φ;y.

Notes. 1. Existence necessitates the sector to be not too large; if the technique is used for
reconstruction of actual solutions from formal ones as explained in 3. below, the sector must be
large enough to ensure uniqueness; the width provided here ensures both.

2. The proof is made delicate by the presence of perturbation terms involving the highest
derivative and the fact that, in the relevant limit y →∞ the equation is singular; the nature of
this problem is sketched in §7.2.

3. As discussed earlier in [7] for special examples, this decaying behavior of the solution f is
valid inside the specified sector and outside it one can expect infinitely many singularities with
an accumulation point at infinity.

4. In §5 it is shown how our result and technique can be used to justify an asymptotic power
series behavior of the solution, or to recover actual solutions from formal series expansions.

5. There is a duality between large y and small t asymptotics. In §6, it is shown how the
theorem can be modified to get existence and uniqueness of solution for small t, provided a few
additional conditions hold. Concrete examples are are given to show the usefulness in justifying
a formal asymptotic expansion in powers of t.
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3 Inverse Laplace transform and equivalent integral equa-
tion

The inverse Laplace transform (ILT) G(p, t) of a function g(y, t) analytic in y in Dφ,ρ;y (see
Condition 1) and vanishing algebraically as |y| → ∞ is given by:

G(p, t) =
[
L−1{g}

]
(p, t) ≡ 1

2πi

∫
CD

epy g(y, t) dy (11)

where CD is a contour as in Fig. 1 (modulo homotopies), entirely within the domain Dφ,ρ;y and
p is restricted to the domain Sφ where convergence of the integral is ensured, where

Sφ ≡ {p : arg p ∈ (−φ, φ), 0 < |p| < ∞ } (12)

If g(y, t) = Cy−α for α > 0, then G(p, t) = Cpα−1/Γ(α). From the following Lemma, it
is clear that the same kind of behavior for the ILT G(p, t) holds for small p in Sφ, if g is O(y−α)
for large y.

Lemma 3 If g(y, t) is analytic in y in Dφ,ρ;y, and satisfies

|yα g(y, t)| < A(T ) (13)

for α ≥ α0 > 0, then for any δ ∈ (0, φ) the ILT G = L−1g exists in Sφ−δ and satisfies

|G(p, t)| < C
A(T )
Γ(α)

|p|α−1e2|p|ρ (14)

for some C = C(δ, α0).

Proof. The proof is similar to that of Lemma 3.1 in [7]. We first consider the case when
2 ≥ α ≥ α0. Let Cρ1 be the contour CD in Fig. 1 that passes through the point ρ1 + |p|−1, and
given by s = ρ1 + |p|−1 + ir exp(iφ signum(r)) with r ∈ (−∞,∞). Choosing 2ρ > ρ1 > (2/

√
3)ρ,

we have |s| > ρ along the contour and therefore, with arg(p) = θ ∈ (−φ + δ, φ− δ),

|g(s, t)| < A(T )|s|−α and |esp| ≤ eρ1|p|+1e−|r||p| sin |φ−θ|

Thus ∣∣∣∣∣
∫

Cρ1

espg(s, t)ds

∣∣∣∣∣ ≤ 2A(T )eρ1|p|+1

∫ ∞

0

∣∣ρ1 + |p|−1 + ireiφ
∣∣−α

e−|p|r sin δdr

≤ K̃A(T )eρ1|p| |ρ1 + |p|−1|−α

∫ ∞

0

e−|p|r sin δdr ≤ Kδ−1|p|α−1e2ρ|p| (15)

where K̃ and K are constants independent of any parameter. Thus, the Lemma follows for
2 ≥ α ≥ α0, if we note that Γ(α) is bounded in this range of α, with the bound only depending
on α0.

For α > 2, there exists an integer k > 0 so that α− k ∈ (1, 2]. Taking

6



(k − 1)!h(y, t) =
∫ y

∞
g(z, t)(y − z)k−1dz

(clearly h is analytic in y, in Dφ,ρ and h(k)(y, t) = g(y, t)), we get

h(y, t) =
(−y)k

(k − 1)!

∫ ∞

1

g(yp, t)(p − 1)k−1dp =
(−1)kyk−α

(k − 1)!

∫ ∞

1

A(yp, t)p−α(p − 1)k−1dp

with |A(yp, t)| < A(T ), whence

|h(y, t)| <
A(T )Γ(α− k)
|y|α−kΓ(α)

From what has been already proved, with α− k playing the role of α,

|L−1{h}(p, t)| < C(δ)
A(T )
Γ(α)

|p|α−k−1e2|p|ρ

Since G(p, t) = (−1)kpkL−1{h}(p, t), by multiplying the above equation by |p|k, the Lemma
follows for α > 2 as well.
Comment 1: The constant 2ρ in the exponential bound can be lowered to anything exceeding
ρ, but (14) suffices for our purposes.

Comment 2: Corollary 4 below implies that for any p ∈ Sφ, the ILT exists for the functions
r(y, t), bq,k(y, t), as well as for the solution f(y, t), whose existence is shown in the sequel.
Comment 3: Conversely, if G(p, t) is any integrable function satisfying the exponential bound
in (14), it is clear that the Laplace Transform along a ray

LθG ≡
∫ ∞eiθ

0

dp e−py G(p, t) (16)

exists and defines an analytic function of y in the half-plane < [eiθy] > 2ρ for θ ∈ (−φ, φ).
Comment 4: The next corollary shows that there exist bounds for Bq,k = L−1{bq,k} and
R = L−1{r} independent of arg p in Sφ, because of the assumed analyticity and decay properties
in the region Dρ0 , which contains Dφ,ρ.

Corollary 4 The ILT of the coefficient functions bq,k (cf. (6)) and the inhomogeneous term
r(y, t) satisfy the following upper bounds for any p ∈ Sφ

|Bq,k(p, t)| <
C1(φ, αq)

Γ(αq + β|k|)
Ab(T ) |p|β|k|+αq−1 e2ρ0|p| (17)

|R(p, t)| <
C2(φ)
Γ(αr)

Ar(T ) |p|αr−1 e2ρ0|p| (18)
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Proof. The proof is similar to that of Corollary 3.2 in[7]. From the conditions assumed we see
that bq,k is analytic in y ∈ Dφ1,ρ0;y for any φ1 satisfying (2n)−1π > φ1 > φ > 0. So Lemma 30
can be applied for g(y, t) = bq,k, with φ1 = φ+((2n)−1π−φ)/2 replacing φ, and with δ replaced
by φ1 − φ = ((2n)−1π − φ)/2, and the same applies to R(p, t), leading to (17) and (18). In the
latter case, since αr ≥ 1, α0 in Lemma 30 can be chosen to be 1. Thus, one can choose C2 to
be independent of αr, as indicated in (18).

The formal inverse Laplace transform (Borel transform) of (3) with respect to y is (see also (6))

∂tF + pn F =
∑
q�0

′∑
k�0

Bq,k ∗ F∗k ∗
m

∗∏
l=1

n
∗∏
j=1

(
(−p)jFl

)∗ql,j + R(p, t) (19)

where the symbol ∗ stands for convolution

(f ∗ g)(p) :=
∫ p

0

f(s)g(p− s)ds (20)

∗∏
is a convolution product (see also [5]) and F = L−1f . After inverting the differential

operator on the left side of (19) with respect to t, we obtain the integral equation

F(p, t) = N (F) ≡∫ t

0

e−pn(t−τ)
∑
q�0

′∑
k�0

Bq,k(p, τ) ∗ F∗k(p, τ) ∗
m

∗∏
l=1

n
∗∏
j=1

(
(−p)jFl

(
p, τ))∗ql,j dτ + F0(p, t) (21)

where

F0(p, t) = e−pnt FI(p) +
∫ t

0

e−pn(t−τ) R(p, τ) dτ and FI = L−1{fI} (22)

Our strategy is to reduce the problem of existence and uniqueness of a solution of (3) to the
problem of existence and uniqueness of a solution of (21), under appropriate conditions.

4 Solution to the integral equation (21)

To establish the existence and uniqueness of solutions to the integral equation, we need to
introduce an appropriate function class for both the solution and the coefficient functions.

Definition 5 Denoting by Sφ the closure of Sφ defined in (12), ∂Sφ = Sφ \ Sφ and K = Sφ ×
[0, T ], we define for ν > 0 (later to be taken appropriately large) the norm ‖ · ‖ν as

‖G‖ν = M0 sup
(p,t)∈K

(1 + |p|2) e−ν |p| |G(p, t)| (23)

where M0 is a constant (approximately 3.76) defined as

M0 = sup
s≥0

{
2(1 + s2)

(
ln(1 + s2) + s arctan s

)
s(s2 + 4)

}
(24)

Note: For fixed F, ‖F‖ν is nonincreasing in ν.
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Definition 6 We now define the following class of functions:

Aφ =
{
F : F(·, t) analytic in Sφ and continuous in Sφ for t ∈ [0, T ] s.t. ‖F‖ν < ∞

}
It is clear that Aφ forms a Banach space.

Comment 5: Note that given G ∈ Aφ, g(y, t) = Lθ{G} exists for appropriately chosen θ when
ρ is large enough so that ρ cos(θ + arg y) > ν, and that g(y, t) is analytic in y and |y g(y, t)|
bounded for y on any fixed ray in Dφ,ρ;y.

Lemma 7 For ν > 4ρ0 + αr, FI in (22) satisfies

‖FI‖ν < C(φ)AfI
(ν/2)−αr+1

while R satisfies the inequality

‖R‖ν < C(φ)Ar(T )(ν/2)−αr+1

and therefore
‖F0‖ν < C(φ)(T Ar + AfI

)(ν/2)−αr+1 (25)

Proof. This proof is similar to that of Lemma 4.4 in [7]. First note the bounds on R in
Corollary 4. We also note that αr ≥ 1 and that for ν > 4ρ0 + αr we have

sup
p

|p|αr±1

Γ(αr)
e−(ν−2ρ0)|p| ≤ (αr ± 1)αr±1

Γ(αr)
e−αr∓1 (ν − 2ρ0)

−αr∓1 ≤ Kα1/2±1
r (ν/2)−αr∓1

where K is independent of any parameter. The latter inequality follows from Stirling’s formula
for Γ(αr) for large αr.

Using the definition of the ν−norm and the two equations above, the inequality for ‖R‖ν

follows. Since fI(y) is required to satisfy the same bounds as r(y, t), a similar inequality holds
for ‖FI‖ν . Now, from the relation (22),

|F0(p, t)| < |FI(p)|+ T sup
0≤t≤T

|R(p, t)|

Therefore, (25) follows.
Comment 6: Not all Laplace-transformable analytic functions in Dφ,ρ;y belong to Aφ. In our
assumptions, the coefficients need not be bounded near p = 0 and hence do not belong in Aφ.
It is then useful to introduce the following function class:

Definition 8

H ≡
{
H : H(p, t) analytic in Sφ, |H(p, t)| < C|p|α−1eρ|p|

}
for some positive constants C and α and ρ which may depend on H.
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Lemma 9 If H ∈ H and F ∈ Aφ, then for ν > ρ + 1, for any j, H ∗ Fj belongs to Aφ, and
satisfies the following inequality2:

‖H ∗ Fj‖ ≤
∥∥|H| ∗ |Fj |

∥∥
ν
≤ C Γ(α)(ν − ρ)−α ‖F‖ν (26)

The proof is a vector adaptation of that of Lemma 4.6 in [7].
Proof. ¿From the elementary properties of convolution, it is clear that H ∗Fj is analytic in Sφ

and is continuous on Sφ. Let θ = arg p. We have

|H ∗ Fj(p)| ≤ ||H| ∗ |Fj |(p)| ≤
∫ |p|

0

|H(seiθ)||Fj(p− seiθ)|ds

But
|H(seiθ)| ≤ Csα−1e|s|ρ

and ∫ |p|

0

sα−1e|s|ρ|Fj(p− seiθ)|ds ≤ ‖Fj‖νeν|p||p|α
∫ 1

0

sα−1e−(ν−ρ)|p|s

M0(1 + |p|2(1− s)2)
ds (27)

If |p| is large, noting that ν − ρ ≥ 1, we obtain from Watson’s lemma,∫ |p|

0

sα−1e|s|ρ|Fj(p− seiθ)|ds ≤ KΓ(α)‖Fj‖ν
eν|p|

M0(1 + |p|2)
|ν − ρ|−α (28)

Now, for any other |p|, we obtain from (27),∫ |p|

0

sα−1e|s|ρ|Fj(p− seiθ)|ds ≤ K|ν − ρ|−α‖Fj‖ν
eν|p|Γ(α)

M0

Thus (28) must hold in general as it subsumes the above relation when |p| is not large. From
this relation, (26) follows by applying the definition of ‖ · ‖ν .

Corollary 10 For F ∈ Aφ, and ν > 4ρ0 + 1, we have Bq,k ∗ Fl ∈ Aφ and

‖Bq,k ∗ Fl‖ν ≤
∥∥|Bq,k| ∗ |F|

∥∥
ν
≤ K C1(φ, αq) (ν/2)−〈k〉β−αqAb(T ) ‖F‖ν

Proof. The proof follows simply by using Lemma 9, with H replaced by Bq,k and using the
relations in Corollary 4.

Lemma 11 For F ∈ Aφ, with ν > 4ρ0 + 1, for any j, l,

|Bq,k ∗ (pjFl)| ≤
KC1|p|jeν|p|Ab(T )

M0(1 + |p|2)
‖F‖ν

(ν

2

)−β〈k〉−αq

2In the following equation, ‖ · ‖ν is extended naturally to functions which are only continuous in K.
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Proof.
From the definition (20), it readily follows that

|Bq,k ∗ (pjFl)| ≤ |p|j |Bq,k| ∗ |Fl|

The rest follows from Corollary (10), and definition of ‖ · ‖ν .

Lemma 12 For F, G ∈ Aφ and j ≥ 0

|(pjFl1) ∗Gl2 | ≤ |p|j
∣∣ |F| ∗ |G| ∣∣ (29)

Proof. Let p = |p| eiθ. Then,

|(pjFl1) ∗ Gl2 | =
∣∣∣∣∫ p

0

s̃j Fl1(s̃)Gl2(p− s̃) ds̃

∣∣∣∣ ≤ |p|j
∫ |p|

0

ds|F(s eiθ)| |G(p − seiθ)| (30)

from which the lemma follows.

Corollary 13 If F ∈ Aφ, then∣∣∣∣∣∣
m

∗∏
l=1

n
∗∏
j=1

(
pjFl

)∗ql,j

∣∣∣∣∣∣ ≤ |p|
∑

jql,j

∣∣∣∣∣∣
m

∗∏
l=1

n
∗∏
j=1

|F|∗ql,j

∣∣∣∣∣∣ (31)

where
∑

jql,j extends over all (l, j) � (m,n).

Proof. This follows simply from repeated application of Lemma 12.

Lemma 14 For F, G ∈ Aφ,∣∣∣|F| ∗ |G|∣∣∣ ≤ eν|p|

M0(1 + |p|2)
‖F‖ν‖G‖ν

Proof. ∣∣∣|F| ∗ |G|∣∣∣ =
∣∣∣∣∫ p

0

|F(s̃)| |G(p− s̃)| ds̃

∣∣∣∣ ≤ ∫ |p|

0

ds|F(s eiθ)| |G(p− s eiθ)| (32)

Using the definition of ‖ · ‖ν , the above expression is bounded by

eν|p|

M2
0

‖F‖ν ‖G‖ν

∫ |p|

0

ds

(1 + s2)[1 + (|p| − s)2]
≤ |p|j eν|p|

M0(1 + |p|2)
‖F‖ν ‖G‖ν

The last inequality follows from the definition (24) of M0 since∫ |p|

0

1
(1 + s2)[1 + (|p| − s)2]

= 2
ln (|p|2 + 1) + |p| tan−1 |p|

|p| (|p|2 + 4)

11



Corollary 15 For F, G ∈ Aφ, then∥∥|F| ∗ |G|∥∥
ν
≤ ‖F‖ν‖G‖ν

Proof. The proof follows readily from Lemma 14 and definition of ‖ · ‖ν .

Lemma 16 For ν > 4ρ0 + 1,∣∣∣∣∣∣Bq,k ∗ F∗k ∗
m

∗∏
l=1

n
∗∏
j=1

(
pjFl

)∗ql,j

∣∣∣∣∣∣ ≤ eν|p||p|
∑

jql,j

M0(1 + |p|2)
‖F‖〈q〉+〈k〉−1

ν

∥∥|Bq,k| ∗ |F|
∥∥

ν
(33)

if (q,k) 6= (0,0) and is zero if (q,k) = (0,0).

Proof. For (k,q) = (0,0) we have Bq,k = 0 (see comments after eq. (6)). If k 6= 0, we can
use Corollary 13 to argue that the left hand side of (33) is bounded by

|p|
∑

jql,j

∣∣∣∣∣∣|Bq,k| ∗ |F| ∗ |F|∗(〈k〉−1) ∗
m

∗∏
l=1

n
∗∏
j=1

|F|∗ql,j

∣∣∣∣∣∣
Using Corollaries 10 and 15, the proof if k 6= 0 follows. Similar steps work for the case k = 0 and
q 6= 0, except that Bq,k is convolved with pj1Fl1 for some (j1, l1), for which the corresponding
ql1,j1 6= 0, and we now use Lemma 12 and the definition of ‖ · ‖ν .

Corollary 17 For ν > 4ρ0 + 1,∣∣∣∣∣∣Bq,k ∗ F∗k ∗
m

∗∏
l=1

n
∗∏
j=1

(
pjFl

)∗ql,j

∣∣∣∣∣∣ ≤ KC1Ab(T )eν|p||p|
∑

jql,j

M0(1 + |p|2)

(ν

2

)−〈k〉β−αq

‖F‖〈q〉+〈k〉ν (34)

Proof. The proof follows immediately from Corollary 10 and Lemma 16.

Lemma 18 For ν > 4ρ0 + 1 we have

∣∣∣∣∣∣
∫ t

0

e−pn(t−τ)Bq,k ∗ F∗k ∗
m

∗∏
l=1

n
∗∏
j=1

(
pjFl

)∗ql,j
dτ

∣∣∣∣∣∣
≤ CAb(T )eν|p|

M0(1 + |p|2)

(ν

2

)−〈k〉β−αq

‖F‖〈q〉+〈k〉ν

(ν

2

)−β〈k〉−αq

T (n−
∑

jql,j)/n (35)

where the constant C is independent of T , but depends on φ.
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Proof. The proof follows from Lemmas 11 and 16 and the fact that for 0 ≤ l ≤ n,

|p|l
∫ t

0

e−|p|
n cos(nθ)(t−τ)dτ ≤ T (n−l)/n

cosl/n(nφ)
sup

γ

1− e−γn

γn−l
(36)

Definition 19 For F and h in Aφ, and Bq,k ∈ H, as above, define h0 = 0 and for k ≥ 1,

hk ≡ Bq,k ∗ [(F + h)∗k − F∗k]. (37)

Lemma 20 For ν > 4ρ0 + 1, and for k 6= 0,

‖hk‖ν ≤ 〈k〉
(
‖F‖ν + ‖h‖ν

)〈k〉−1 ∥∥|Bq,k| ∗ |h|
∥∥

ν
(38)

and is zero for k = 0.

Proof. The case of k = 0 follows from definition of h0. The general expression above for k 6= 0
is proved by induction. The case of 〈k〉 = 1 is obvious from (37). Assume formula (38) holds
for all 〈k〉 ≤ l. Then all multiindices of length l + 1 can be expressed as k + ei, where ei is an
the m dimensional unit vector in the i-th direction for some i, and k has length l.

‖hk+ei‖ν = ‖Bq,k ∗ (Fi +hi)∗ (F+h)∗k−Bq,k ∗Fi ∗F∗k‖ν = ‖Bq,k ∗hi ∗ (F+h)∗k +Fi ∗hk‖ν

Using (38) for 〈k〉 = l, we get

≤ ‖|Bq,k| ∗ |h|‖ν (‖F‖ν + ‖h‖ν)l + l‖F‖ν

(
‖F‖ν + ‖h‖ν

)l−1∥∥|Bq,k| ∗ |h|
∥∥

ν

≤ (l + 1)
(
‖F‖ν + ‖h‖ν

)l ∥∥|Bq,k| ∗ |h|
∥∥

ν

Thus (38) holds for 〈k〉 = l + 1.

Definition 21 For F ∈ Aφ and h ∈ Aφ, and Bq,k as above define g0 = 0, and for 〈q〉 ≥ 1,

gq ≡ Bq,k ∗
m

∗∏
l=1

n
∗∏
j=1

(
pj [Fl + hl]

)∗ql,j − Bq,k ∗
m

∗∏
l=1

n
∗∏
j=1

(
pjFl

)∗ql,j (39)

Lemma 22 For ν > 4ρ0 + 1, g0 = 0 and for 〈q〉 ≥ 1

|gq| ≤ eν|p||p|
∑

jql,j 〈q〉
M0(1 + |p|2)

(
‖F‖ν + ‖h‖ν

)〈q〉−1 ∥∥|Bq,k| ∗ |h|
∥∥

ν
(40)

and is zero for q = 0.
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Proof. The case for q = 0 follows by definition of g0. We prove the other cases by induction.
The case 〈q〉 = 1 is clear from (39), since only linear terms in F are involved. Assume the
inequality (40) holds for a particular q. We now show that it holds when q is replaced by q+ e,
where e is a m× n dimensional unit vector, say in the (l1, j1) direction. So,

|gq+e|

=

∣∣∣∣∣∣Bq,k ∗
[
pj1(Fl1 + hl1)

]
∗

m
∗∏
l=1

n
∗∏
j=1

[
pj(F + h)

]∗ql,j −Bq,k ∗
[
pj1Fl1

]
∗

m
∗∏
l=1

n
∗∏
j=1

[
pjF

]∗ql,j

∣∣∣∣∣∣
≤
∣∣Bq,k ∗

(
pj1hl1

)∣∣ ∗
∣∣∣∣∣∣

m
∗∏
l=1

n
∗∏
j=1

[
pj(F + h)

]∗ql,j

∣∣∣∣∣∣ + |(pj1Fl1) ∗ gq| (41)

Using Lemma 16 and equation (40), we get the following upper bound

|gq+e| ≤
|p|j1+

∑
jql,j eν|p|

M0(1 + |p|2)
(‖F‖ν + ‖h‖ν)

∑
ql,j
∥∥|Bq,k| ∗ |h|

∥∥
ν

+
|p|j1+

∑
jql,j 〈q〉eν|p|

M0(1 + |p|2)
(‖F‖ν + ‖h‖ν)〈q〉−1 ‖F‖ν

∥∥|Bq,k| ∗ |h|
∥∥

ν

≤ |p|
∑

j(ql,j+el,j)(〈q + e〉)eν|p|

M0(1 + |p|2)
(‖F‖ν + ‖h‖ν)〈q〉

∥∥|Bq,k| ∗ |h|
∥∥

ν

Therefore (40) holds when q is replaced by q + e and the induction step is proved.

Lemma 23 For F and h in Aφ, ν > 4ρ0 + 1,

∣∣∣∣∣∣Bq,k ∗
(
F + h

)∗k
∗

m
∗∏
l=1

n
∗∏
j=1

(
pj(Fl + hl)

)∗ql,j −Bq,k ∗ F∗k ∗
m

∗∏
l=1

n
∗∏
j=1

(
pjFl

)∗ql,j

∣∣∣∣∣∣
≤ |p|

∑
jql,j (〈q〉+ 〈k〉)eν|p|

M0(1 + |p|2)
(‖F‖ν + ‖h‖ν)〈k〉+〈q〉−1 ‖|Bq,k| ∗ |h|‖ν (42)

if (q,k) 6= (0,0) and is zero otherwise.

Proof. It is clear from (37) that the left side of (42) is simply∣∣∣∣∣∣hk ∗
m

∗∏
l=1

n
∗∏
j=1

(
pj(Fl + hl)

)∗ql,j + F∗k ∗ gq

∣∣∣∣∣∣
However, from Corollary 13, Lemmas 14 and 20,∣∣∣∣∣∣hk ∗

m
∗∏
l=1

n
∗∏
j=1

(
pj(Fl + hl)

)∗ql,j

∣∣∣∣∣∣ ≤ |p|
∑

jql,j 〈k〉eν|p|

M0(1 + |p|2)
(‖F‖ν + ‖h‖ν)〈k〉+〈q〉−1 ∥∥|Bq,k| ∗ |h|

∥∥
ν

14



and from Corollary 13, Lemmas 14 and 22,

∣∣F∗k ∗ gq

∣∣ ≤ |p|
∑

jql,j 〈q〉eν|p|

M0(1 + |p|2)
(‖F‖ν + ‖h‖ν)〈k〉+〈q〉−1 ∥∥|Bq,k| ∗ |h|

∥∥
ν

Combining these two inequalities, the proof of the lemma follows.

Lemma 24 For ν > 4ρ0 + 1 we have∥∥∥∥∥∥
∫ t

0

e−pn(t−τ)

Bq,k ∗
(
F + h

)∗k
∗

m
∗∏
l=1

n
∗∏
j=1

(
pj(Fl + hl)

)∗ql,j

−Bq,k ∗ F∗k ∗
m

∗∏
l=1

n
∗∏
j=1

(
pjFl

)∗ql,j

 dτ

∥∥∥∥∥∥
ν

≤ Ab(T )C(φ)(〈q〉+ 〈k〉) (‖F‖ν + ‖h‖ν)〈k〉+〈q〉−1
T (n−

∑
jql,j)/n

(ν

2

)−β〈k〉−αq

‖h‖ν (43)

Proof. The proof follows from Corollary 10 and Lemma 23 and the definition of ‖ · ‖ν along
with the bound (36).

Lemma 25 For F ∈ Aφ, and ν > 4ρ0 + αr large enough so that
(

ν
2

)−β (‖F‖ν + ‖h‖ν) < 1
(see Note after Definition (5)), N (F) defined in (21) satisfies the following bounds

‖N (F)‖ν ≤ ‖F0‖ν + C(φ)Ab(T )
∑
q�0

′∑
k�0

T (n−
∑

jql,j)/n

(
2β‖F‖ν

νβ

)〈k〉 (ν

2

)−αq

‖F‖〈q〉ν (44)

‖N (F + h)−N (F)‖ν

≤ C(φ)Ab(T )‖h‖ν

∑
q�0

′∑
k�0

T (n−
∑

jql,j)/n
(ν

2

)−β〈k〉−αq

(〈q〉+ 〈k〉) (‖F‖ν + ‖h‖ν)〈q〉+〈k〉−1

(45)

Proof. The proofs are immediate from the expression (21) of N (F) and Lemmas 18, 20 and
24. The condition

(
ν
2

)−β (‖F‖ν + ‖h‖ν) < 1 guarantees the convergence of the infinite series
involving summation in k. Note that with respect to the multi-index q we only have a finite
sum, due to (4). Note also that the summation over k can also be bounded by a more explicit
function, if so desired.

Comment 7: Lemma 25 is the key to showing the existence and uniqueness of a solution in Aφ

to (21), since it provides the conditions for the nonlinear operator N to map a ball into itself as
well the necessary contractivity condition.
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Lemma 26 If there exists some b > 1 so that

(ν/2)−βb‖F0‖ν < 1 (46)

and

C(φ)Ab(T )
∑
q�0

′∑
k�0

T (n−
∑

jql,j)/n
(ν

2

)−〈k〉β−αq

‖bF0‖〈k〉+〈q〉ν < 1− 1
b

(47)

then the nonlinear mapping N , as defined in (21), maps a ball of radius b‖F0‖ν into itself.
Further, if

C(φ)Ab(T )
∑
q�0

′∑
k�0

T (n−
∑

jql,j)/n(〈q〉+ 〈k〉)
(ν

2

)−〈k〉β−αq

(3b)〈k〉+〈q〉−1‖F0‖〈k〉+〈q〉−1
ν < 1

(48)
then N is a contraction there.

Proof. This is a simple application of Lemma 25, if we note that ‖F‖k
ν < bk‖F0‖k

ν and the
fact that for both F and F + h in the ball of radius b‖F‖0, ‖F‖ν + ‖h‖ν ≤ 3b‖F0‖ν .

Lemma 27 For any given T > 0 and φ in the interval (0, (2n)−1π), for all sufficiently large
ν, there exists a unique F ∈ Aφ that satisfies the integral equation (21).

Proof. We choose b = 2 for definiteness. It is clear from the bounds on ‖F0‖ν in Lemma 7 that
for given T , since αr ≥ 1, we have b(ν/2)−β‖F0‖ν < 1 for all sufficiently large ν. Further, it is
clear by inspection that all conditions (46), (47) and (48) are satisfied for all sufficiently large ν.
The lemma now follows from the contractive mapping theorem.

4.1 Behavior of sF near p = 0

Proposition 28 For some K1 > 0 and small p we have |sF| < K1|p|αr−1 and thus |sf | <
K2|y|−αr for some K2 > 0 in Dφ,ρ as |y| → ∞.

Proof. The idea of the proof here is to think of the solution sF to (21) as a solution to a linear
equation of the form

sF = G (sF) + F0 or sF = (1− G)−1F0 (49)

Here, the suitably chosen operator G, while depending on sF, is thought of a known quantity (in
effect, sF is now known). The expression of a suitable G is, however, somewhat involved, and
this is given in the following.

Convergence in ‖ · ‖ν implies uniform convergence on compact subsets of K and we can
interchange summation and integration in (21). With sF the unique solution of (21) we define

Gi =
∑†

Bq,k ∗ sF∗kic ∗
m

∗∏
l=1

n
∗∏
j=1

[
(−p)j (sFl)

]∗ql,j
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where
∑† stands for the sum over k 6= 0, ki 6= 0 and ki′ = 0 for i′ < i, the notation sF∗kic stands

for (sF1)∗k1 ∗ (sF2)∗k2 ∗ · · · ∗ (sFm)∗km , except that the term sF ∗ki
i is replaced by sF

∗(ki−1)
i in this

convolution.

Ĝj′,l′ =
∑‡

Bq,0 ∗
m

∗∏
l=1

‡
n

∗∏
j=1

‡ [
(−p)j(sFl)

]∗ql,j

where
∑‡ stands for the sum over q � 0, ql′,j′ 6= 0, and ql,j = 0 for l + j < l′ + j′ and for

l + j = l′ + j′, when l < l′. Also,
∏‡ indicates that the exponent of the term l = l′, j = j′ is

changed from ql′,j′ to ql′,j′ − 1. Now we define a linear operator G by

GQ =
∫ t

0

e−pn(t−τ)

 m∑
i=1

Gi ∗Qi +
n∑

j′=1

m∑
l′=1

Ĝj′,l′ ∗
(
(−p)jQl′

)
Then, by carefully comparing with (21), one finds that sF satisfies (49).

For a > 0 small enough define Sa = S ∩ {p : |p| ≤ a}. Since sF is continuous in S we have
lima↓0 ‖G‖ = 0, where the norm is taken over C(Sa).

By (5), (10), (22) and Lemma 30, we see that ‖F0‖∞ ≤ K3|a|αr−1 in Sa for some K3 > 0
independent of a. Then, as a ↓ 0, we have

max
Sa

|sF(p, t)| = ‖sF‖ ≤ (1− ‖G‖)−1 max
Sa

‖F0‖ ≤ 2K3|a|αr−1

and thus for small p we have |F(p, t)| ≤ 2K3|p|αr−1 and the proposition follows.

4.2 Completion of proof of Theorem 2.

Lemma 30 shows that if f is any solution of (3) satisfying Condition 1, then L−1{f} ∈ Aφ−δ

for 0 < δ < φ for ν sufficiently large. For large y, the series (6) converges uniformly and
thus F = L−1{f} satisfies (21), which by Lemma 27 has a unique solution in Aφ for any φ ∈
(0, (2n)−1π). Conversely, if sF ∈ Aφ̃ is the solution of (21) for ν > ν1, then from Comment
5, sf = L sF is analytic in y in Dφ,ρ for 0 < φ < φ̃ < (2n)−1π, for sufficiently large ρ, where
in addition from Proposition 33, sf = O(y−αr ). This implies that the series in (3) converges
uniformly and by the properties of Laplace transforms, sf solves (1) and satisfies condition (1).

5 Formal expansions and their rigorous justification

5.1 In a heuristic calculation of a formal solution to (3) relying on the smallness of f and our
assumptions on the nonlinearity, the most important terms for large y (giving the “dominant
balance”) are ft on the left side of (3) and r(y, t) on the right side. This suggests that, to leading
order, f(y, t) ∼ fI(y) +

∫ t

0
r(y, t)dt (since the functions fI(y) and r(y, t) decay at a rate y−αr ,

which for αr > 1 is much less than y−1, other terms in the differential equation (3) should not
contribute). We then decompose f(y, t) = A1(t)y−αr + f̃ and substitute into (3); the equation
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for f̃ will generally satisfy an equation of the same form as f in (3), but with αr replaced by a
larger number; this procedure generates in principle a formal asymptotic series for the solution,
as is the case in the examples in [7].

5.2 When the formal procedure in the preceding section gives the leading order behavior f(y, t) ∼
A1(t)y−αr , the validity of this asymptotic relation is rigorously shown in Dφ,ρ̃ as follows. We
write as before f(y, t) = A1(t)y−αr + f̃ in (3). With αr in the equation for f̃ larger than the αr

of f , our theorem guarantees that f̃ is indeed o(y−αr ). We can recursively use this procedure on
f̃ , and so on, to justify the asymptotic expansion of f for large y in Dφ,ρ;y.

These arguments also show that the assumption αr ≥ 1 is not crucial, since the terms in the
asymptotic series for f for which the exponent does not satisfy this condition can be subtracted
out explicitly, as there are generally finitely many of them.

5.3 Conversely, if the inverse Laplace transform sF of the solution sf has a convergent Puiseux
series about p = 0, which is for instance the case in the examples treated in [7], then by Watson’s
Lemma sf will have for large y an asymptotic series in inverse powers of y, and the representation
sf = L{sF} makes sf (by definition) the Borel sum of its asymptotic series. (The large width of
the sector is then needed to guarantee the uniqueness).

6 Solution and asymptotics for small t

We consider solution small time and its asymptotics when variable yt−1/n is large. In this case,
it is convenient to use a scaled variable

ζ = yt−1/n, f̂(ζ, t) = f(t1/nζ, t) (50)

We seek to determine asymptotics of f̂ for |ζ| large. Accordingly, it convenient to introduce
change of variable in the Borel-plane as well:

s = pt1/n, F̂(s, τ ; t) = F(t−1/ns, tτ) (51)

It is to be noted that
f̂(ζ, t) = t−1/n

∫ ∞

0

e−sζF̂(s, 1; t)ds (52)

The integral equation (21) becomes

F̂(s, 1; t) = F̂0(s, 1; t) +∫ 1

0

e−sn(1−τ)
∑
q�0

′∑
k�0

t1−
∑n

j=1
∑m

l=1
j
n ql,j

B̂q,k ∗ F∗k ∗
m

∗∏
l=1

n
∗∏
j=1

(
(−s)jF̂l

)∗ql,j

 (s, τ ; t)dτ

(53)
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From the definition of F̂(s, τ ; t) in terms of F, it follows that F̂(s, τ ; t) = F̂(sτ1/n, 1; tτ). Hence
(53) implies that

F̂(s, τ ; t) = N̂ (F̂)(s, τ ; t) ≡ F̂0(s, τ ; t) +∫ 1

0

e−snτ(1−τ ′)
∑
q�0

′∑
k�0

τt1−
∑n

j=1
∑m

l=1
j
n ql,j

B̂q,k ∗ F∗k ∗
m

∗∏
l=1

n
∗∏
j=1

(
(−s)jF̂l

)∗ql,j

 (s, ττ ′, t)dτ ′

(54)

It is convenient to introduce the domain

Ŝφ ≡
{

s : arg s ∈ (−φ, φ) , 0 < |s| < ∞ , 0 < φ <
π

2n

}
(55)

The corresponding domain in the ζ-plane will be denoted by D̂φ,ρ, i.e.

D̂φ,ρ ≡
{

ζ : arg ζ ∈
(
−π

2
− π

2n
,
π

2
+

π

2n

)
, |ζ| > ρ

}
We introduce the following norm in Ŝφ:

‖F̂(·, ·; t)‖ν = sup
0≤τ≤1,s∈Ŝφ

(1 + |s|2)e−ν|s||F̂(q, τ ; t)| (56)

With this norm, it is clear that the class Âφ of analytic functions in Ŝφ, which is continuous up
to the boundary and have finite ‖.‖ν , forms a Banach space. For the purposes of this section, it
is also convenient to define cq,k(ν, t) to be upper bounds of ‖B̂q,k ∗ F̂‖ν/‖F̂‖ν . We also define
C(φ) as:

C(φ) ≡ sup
0≤l≤n

1
cosl/n(nφ)

sup
γ

1− e−γn

γn−l

Lemma 29 If the following conditions hold for some b > 1 and ν > 1,

C(φ)
∑
q�0

′∑
k�0

t1−
∑n

j=1
∑m

l=1
j
n ql,j cq,k(ν, t)‖bF̂0‖〈k〉+〈q〉 ≤ (b− 1)‖F̂‖ν

and
C(φ)

∑
q�0

′∑
k�0

t1−
∑n

j=1
∑m

l=1
j
n ql,j cq,k(ν, t)(〈q〉+ 〈k〉)‖3bF̂0‖〈k〉+〈q〉−1 ≤ 1

then the mapping N̂ defined in (54) is a contraction mapping and therefore there will be a unique
solution F̂ to the integral equation (54).

Proof. First, note that using Lemma 16 (with ρ0 = 0), with variable s replacing p, and using
definition of cq,k, it follows that∣∣∣∣∣∣

B̂q,k ∗ F̂∗k ∗
m

∗∏
l=1

n
∗∏
j=1

(
sjF̂l

)∗ql,j

 (s, ττ ′; t)

∣∣∣∣∣∣ ≤ eν|s||s|
∑

jql,j

M0(1 + |s|2)
cq,k(ν, t)‖F̂‖〈q〉+〈k〉ν
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Hence using integration similar to the proof of Lemma 18, we obtain∥∥∥∥∥
∫ 1

0

τe−s3τ(1−τ ′)B̂q,k ∗ F̂∗k ∗
m

∗∏
l=1

n
∗∏
j=1

(
sjF̂l

)∗ql,j

(s, ττ ′; t)dτ ′‖ν

≤ C(φ)cq,k(ν, t)‖F̂
∥∥∥〈q〉+〈k〉

ν

From the expression for N̂ , it follows from the above that it maps a ball of radius b‖F̂0‖0 back
to itself when when the first condition of the Lemma is satisfied. Again, using Lemma 23 (with
variable s replacing p) and using integration as in Lemma 24, it follows that∥∥∥∥∥

∫ 1

0

τB̂q,k∗

(F̂ + ĥ)∗k ∗
m

∗∏
l=1

n
∗∏
j=1

(
sj [F̂l + ĥl]

)∗ql,j

− F̂∗k ∗
m

∗∏
l=1

n
∗∏
j=1

(
sjF̂l

)∗ql,j

 (s, ττ ′; t)

e−s3τ(1−τ ′)dτ ′

∥∥∥∥∥
ν

≤ C(φ)(〈q〉+ 〈k〉)cq,k(ν, t)
(
‖ĥ‖ν + ‖F̂‖ν

)〈q〉+〈k〉−1

‖ĥ‖ν

For F̂ and ĥ+ F̂ both inside the ball of radius b‖F̂0‖ν , it follows that from expression for N̂ and
the the second condition of the Lemma that N̂ is contractive.

6.1 Example 1: Modified Harry-Dym equation

Consider the initial value problem for the scalar function H(x, t) given by

Ht + Hx = −H3

2
+ H3Hxxx , H(x, 0) = x−1/2 (57)

In a formal procedure involving involving substitution of a power-series in t into (57), one can
determine all terms of the asymptotic expansion in the form

H(x, t) =
∞∑

n=0

tnHn(x− t) (58)

where H0(x) = x−1/2. The recurrence relation for n ≥ 0 is given by

(n + 1)Hn = −1
2

∑
nj≥0,

∑3
j=1 nj=n

Hn1Hn2Hn3 +
∑

nj≥0,
∑4

j=1 nj=n

Hn1Hn2Hn3H
′′′
n4

(59)

¿From the recurrence relation above, it can be proved by induction that Hn(x) = x−1/2Pn(x−1, x−9/2),
where where Pn is a homogeneous polynomial of degree n, i.e., each term of Pn(a, b) is of the
form ajbn−j for 0 ≤ j ≤ n. Thus, the formal asymptotic expansion is of the form

H(x, t) ∼ (x− t)−1/2
∞∑

n=0

Pn

(
t

x− t
,

t

(x− t)9/2

)
(60)
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We will justify asymptotic expansion (60) for x− t >> t2/9, arg x ∈
(
− 4

9π, 4
9π
)
. It is convenient

to introduce scaled variables

y =
2
3
(x− t)3/2 ; G(y, t) = H(x(y, t), t) (61)

The equation for G is given by

N[G](y, t) := Gt +
1
2
G3 − 3y

2
G3Gyyy −

3
2
G3Gyy +

1
6y

G3Gy = 0 (62)

To determine the residual when operator N acts on the first N terms of the asymptotic expansion
(60), it is convenient to introduce another change of variable:

ζ1 = ty−2/3 ; ζ2 = ty−3 ; G(y, t) = y−1/3M(ζ1, ζ2)

Then we find

N[y−
1
3 M ] =

ζ
2
7
2

ζ
9
7
1

{
ζ1Mζ1 + ζ2Mζ2 +

1
2

ζ1M
3 +

5
6
ζ2M

4 + 5 ζ1ζ2M
3Mζ1 +

185
2

ζ2
2M3Mζ2

+
10
3

ζ1
2ζ2M

3Mζ1ζ1 + 51 ζ1ζ2
2M3Mζ1ζ2 + 162 ζ2

3M3Mζ2ζ2 +
4
9

ζ1
3ζ2M

3Mζ1ζ1ζ1

+ ζ1ζ
2
2

(
6ζ1 + 27ζ2

2

)
M3Mζ1ζ1ζ2 +

81
2

ζ2
4M3Mζ2ζ2ζ2

}
(63)

From this representation, it is clear that if QN (ζ1, ζ2) is some N -th order polynomial, then

N
[
y−

1
3 QN (ty−2/3, ty−3)

]
(y, t) = t−1y−

1
3 Q4N+1(ty−2/3, ty−3) (64)

where Q4N+1 is some polynomial of degree 4N + 1. Again to avoid proliferation of symbols, we
denote a generic polynomial of order n by Qn. Note that the symbol Qn will generally denote
different polynomials at different stages; but since we are only worried about the general form
of expansion, this should not cause confusion. When we choose

g(y, t) = y−
1
3 QN (ty−2/3, ty−3) = y−

1
3

N∑
j=0

Pj(ty−2/3, ty−3) = y−
1
3

N∑
j=0

tnPj(y−2/3, y−3) (65)

with coefficients of Pj chosen in accordance to the terms of the asymptotic expansion (60), then
the coefficients in the resulting Q4N+1(ty−2/3, ty−3) in (64) upto order N are zero. Then is clear
that

Q4N+1(a, b) = PN+1(a, b) [1 + O(a, b)]

for some homogeneous N + 1-st degree polynomial. We introduce the following transformation
into (57):

H(x(y, t), t) = g(y, t) + y−2f(y, t) (66)

where g(y, t) is the truncated asymptotic terms in (65) upto terms of O(tN ). In the proof below,
we will choose, without any loss of generality N ≥ 3. In order to justify the asymptotic expansion
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(60), we will prove that in the sector arg y ∈
(
− 2

3π + φ, 2
3π − φ

)
, with 0 < φ < π

6 , for y >> t
1
3 ,

|f(y, t)| << |y5/3PN

(
ty−2/3, ty−3

)
| for any N ≥ 3.

With change of variable, the equation for f(y, t) is in the form

ft − fyyy =
3∑

j=0

3∑
k=0

bj,k(y, t)fkf (j) + r(y, t) (67)

where
r(y, t) = t−1y5/3Q4N+1(ty−2/3, ty−3) (68)

where Q4N+1(ty−2/3, ty−3) is a polynomial of degree 4N + 1 in the form

Q4N+1(ty−2/3, ty−3) = (N + 1)PN+1

(
ty−2/3, ty−3

) [
1 + O(ty−2/3, ty−3)

]
Equation (67) is clearly a special case (n = 3 and m = 1) more general vector equation being
discussed in this paper. The precise form of bj,k is unimportant, except to note that they are of
the form:

b0,0 = y−2/3Q2N (ty−2/3, ty−3) + y−3Q3N (ty−2/3, ty−3)

b0,1 =
QN

y7/3
+

Q2N

y14/3
, b0,2 =

Q0

y4
+

QN

y19/3
, b0,3 =

Q0

y8

b1,0 =
QN

y2
, b1,1 =

Q2N

y11/3
, b1,2 =

QN

y16/3
, b1,3 =

Q0

y7

b2,0 =
Q3N

y
, b2,1 =

Q2N

y8/3
, b2,2 =

QN

y13/3
, b2,3 =

Q0

y6

b3,0 = Q3N with constant term 0 , b3,1 =
Q2N

y5/3
, b3,2 =

QN

y10/3
, b3,3 =

Q0

y5

Note that

F0(p, t) =
∫ t

0

e−p3(t−τ) R(p, τ) dτ (69)

where

R(p, t) = t−1p−8/3Q4N+1(tp2/3, tp3) , where Q̃4N+1(a, b) = P̃N+1(a, b)[1 + O(a, b)]

where P̃N+1 is some polynomial of degree N + 1 containing only terms of the form ajbN+1−j ,
0 ≤ j ≤ (N + 1). Bj,k appearing in (70) have the forms:

B0,0 = p−1/3Q2N (tp2/3, tp3) + p2Q3N (tp2/3, tp3)

B0,1 = p4/3QN + p11/3Q2N , B0,2 = p3Q0 + p16/3QN , B0,3 = p7Q0

B1,0 = pQN , B1,1 = p8/3Q2N , B1,2 = p13/3QN , B1,3 = p6Q0

B2,0 = Q3N , B2,1 = p5/3Q2N , B2,2 = p10/3QN , B2,3 = p5Q0

B3,0 = p−1Q3N with constant term 0 , B3,1 = p2/3Q2N , B3,2 = p7/3QN , B3,3 = p4Q0

where symbol Qm appearing in each Bj,k is a generic symbol for a polynomial of degree m in
the variables tp2/3 and tp3. ¿From expression for R(p, t), it follows that

R̂(s, τ ; t) = t−1/9s−8/3Q4N+1

(
t7/9τs2/3, τs3

)
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Lemma 30 For 0 < t ≤ 1 and ν > 1 sufficiently large,

‖F̂0(., .; t)‖ν ≤ t8/9ν8/3P̃N+1(t7/9ν−2/3, ν−3) ≡ t8/9δ

for some homogenous polynomial P̃N+1(a, b) of degree N + 1 with positive coefficients, where
each term is of the form ajbN+1−j.

Proof. We note that for s ∈ Sφ,

|F̂0(s, τ ; t)| = (tτ)8/9|
∫ 1

0

dτ ′

τ ′
e−s3τ(1−τ)Q̃4N+1

(
t7/9ττ ′s2/3, ττ ′s3

)
| < t8/9|s|−8/3Q̂4N+1

(
t7/9|s|2/3, |s|3

)
for some 4N +1 degree polynomial Q̂4N+1(a, b), whose lowest order term is of the form ajbN+1−j .
The Lemma follows from definition of the norm ‖.‖ν and using the fact that both t7/9ν−2/3 and
ν−3 are sufficiently small to ignore terms to be able to bound polynomial terms higher than
N + 1.

Lemma 31 For any F̂ ∈ Aφ, for ν large enough and t ∈ [0, 1],

‖|Bj,k| ∗ |F̂ |‖ν ≤ cj,k(ν, t)‖F̂‖ν

where

c0,0 = C

(
1

t2/3ν3
+

t1/9

ν2/3

)
; c0,1 = C

(
1

t4/9ν7/3
+

1
ν14/3t11/9

)
c0,2(ν, t) = C

(
1

tν4
+

1
t16/9ν19/3

)
‖F̂‖ν ; c0,3 =

C

t7/3ν8
‖F̂‖ν

c1,0(ν, t) =
C

t1/3ν2
; c1,1 =

C

t8/9ν11/3
; c1,2 =

C

t13/9ν16/3
; c1,3 =

C

t2ν7

c2,0 =
C

ν
; c2,1 =

C

ν8/3t5/9
; c2,2 =

C

ν13/3t10/9
; c2,3 =

C

ν6t5/3

c3,0 = C

(
t10/9

ν2/3
+

t1/3

ν3

)
; c3,1 =

C

ν5/3t2/9
; c3,2 =

C

ν10/3t7/9
; c3,3 =

C

ν5t4/3
‖F̂‖ν

where constant C is independent of ν and t.

Proof. ¿From Lemma 9, with ρ = 0 and s replacing p, we note that α > 0 and ν > 1,

‖|s|α−1 ∗ |F̂ |‖ν ≤
C

να
‖F̂‖ν

The Lemma follows from bounds on |B̂j,k(s, τ ; t)| that follow from bounds on Bj,k and noticing
that any polynomial of the form Qm(t7/9ν−2/3, ν−3 has bounds independent of ν and t.

Lemma 32 For any t ∈ (0, 1), and ν > 1 large enough, the integral equation obtained by Borel-
transforming (67) and introducing s = pt1/3 variable:

F̂ (s, τ ; t) =
∫ 1

0

τ
3∑

j=0

t1−j/3
3∑

k=0

(−1)je−s3τ(1−τ ′)
[
(sjF̂ ) ∗ B̂j,k ∗ F̂ ∗k

]
(s, ττ ′; t)dτ ′ + F̂0(s, τ ; t)

(70)
has a unique solution in Âφ.
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Proof. Examining the bounds on cj,k from Lemma 31, it follows from Lemma 29 that N is
indeed a contraction map for any t ∈ (0, 1] and ν sufficiently large but, importantly, independent
of t.

6.1.1 Behavior of solution F̂s near p = 0

Proposition 33 For some K1 > 0 and small s we have |F̂s| < K1t
8/9|s|−8/3PN+1(t7/9|s|2/3, |s|3),

thus
|fs(ζ, t)| < K2t

5/9|ζ|5/3|PN+1(t7/9|ζ|−2/3, |ζ|−3)

for some K2 > 0 as |ζ| → ∞ in D̂ρ,φ.

Proof. Convergence in ‖ · ‖ν implies uniform convergence on compact subsets of K and we can
interchange summation and integration in (70). With F̂s the unique solution of (70) we let

Ĝj =
3∑

k=0

(−1)jB̂j,k ∗ F̂ ∗k
s

and define the linear operator G by

GQ̂ =
∫ 1

0

τe−s3τ(1−τ ′)
3∑

j=0

t1−j/3(sjQ̂) ∗Gj dτ

Clearly F̂s also satisfies the linear equation

F̂s = GF̂s + F̂0 or F̂s = (1− G)−1F̂0

For a > 0 small enough define Sa = S ∩ {s : |s| ≤ a}. Since F̂s is continuous in S we have
lima↓0 ‖G‖ = 0, where the norm is taken over C(Sa).

We know see that
‖F̂0‖∞ < t8/9|a|−8/3PN+1(t7/9|a|2/3, |a|3)

in Sa for N + 1st degree polynomial with positive constants independent of t and a. Then, as
a ↓ 0, we have

max
Sa

|F̂ (s, t)| = ‖F‖∞ ≤ (1− ‖G‖)−1 max
Sa

‖F0‖ ≤ 2t8/9|a|−8/3PN+1(t7/9|a|2/3, |a|3)

and thus for small s we have

|F̂s(s, t)| ≤ 2t8/9|s|−8/3PN+1(t7/9|s|2/3, |s|3)

the proposition for follows from applying Watson’s Lemma in (52).

Theorem 34 For t << 1 and x − t >> t2/9, with arg (x − t) ∈
(
− 4

9π, 4
9π
)
, the asymptotic

expansion of H(x, t), the solution to the nonlinear PDE, is of the form (60).
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Proof. We note that x− t >> t2/9 corresponds to y >> t1/3 and therefore ζ >> 1. Further
arg (x − t) ∈

(
− 4

9π, 4
9π
)

corresponds to arg ζ ∈
(
− 2

3π, 2
3π
)
. Lemma 32 and Proposition 33

implies that for any φ ∈ (0, π
6 ) for large y ∈ Dφ with ζ = y/t1/3 >> 1,

|f(y, t)| = O
(
|y|5/3PN+1(t|y|−2/3, t|y|−3

)
= O

(
|y|5/3tN+1PN+1(|y|−2/3, |y|−3

)
With the change of variable, this implies that

(y(x, t))−2f(y(x, t), t) = O
(
tN+1|x− t|−1/2PN+1(|x− t|−1, |x− t|−9/2

)
= o(g(y(x, t), t)

This completes the proof.

7 Appendix

7.1 Derivation of equation (3) from (1)

We start from (1), where h is an m1 dimensional vector field depending on y and t. We define
the m = m1 × n-dimensional vector field as f =

(
h, ∂yh, ∂y

2h, ..., ∂y
(n−1)h

)
. Then it is clear

from (71) that g1 and g2 only depend on f . So, for showing that (1) implies (3) it is enough to
show that for 1 ≤ n′ ≤ n,

∂n′−1 [g1(y, t, f) + g2(y, t, f)∂yf ]

is of the form on the right hand side of (3). We do so in two steps.

Lemma 35 For any n′ ≥ 1,

∂n′−1
y g1(y, t, f(y, t)) =

∑
q�0

‡
bq(y, t, f)

m∏
l=1

n′−1∏
j=1

(
∂j

yfl

)ql,j (71)

for some bq,k, depending on n′, g1, and its first n′− 1 derivatives with respect to its arguments,
and where

∑‡ means the sum with the further restriction∑
l,j

jql,j ≤ n′ − 1

Proof. The proof is by induction. We have, with obvious notation,

∂yg1(y, t, f(y, t)) = g1,y + g1,f · ∂yf

which is of the form (71). Assume (71) holds for n′ = k ≥ 1, i.e.

∂k−1
y g1(y, t, f) =

∑
q�0

‡
bq(y, t, f)

m∏
l=1

k−1∏
j=1

(
∂j

yfl

)ql,j
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Taking a y derivative, we get

∂k
yg1(y, t, f) =

∑
q�0

(
m∑

i=1

∂

∂fi
bq(y, t, f)∂yfi + ∂1bq(y, t, f)

)
m∏

l=1

k−1∏
j=1

(
∂j

yfl

)ql,j

+
∑
q�0

bq(y, t, f)
m∑

l′=1

k−1∑
j′=1

ql′,j′

(
∂j′

y fl′

)ql′,j′−1

(∂j′+1
y fl′)

m\l′∏
l=1

k−1\j′∏
j=1

(
∂j

yfl

)ql,j

where the notation ∂1bq denotes partial with respect to the first argument of b and
∏m\l′

l=1 stands
for the product with l = l′ term excluded. It is easily seen from the above expressions that the
product of the number of derivatives times the power, when added up at most equals

j′ + 1 + j′(ql′,j′ − 1) +
∑
j 6=j′

∑
l 6=l′

jql,j =
∑
l,j

jql,j + 1 ≤ k − 1 + 1 = k

Thus, (71) holds for n′ = k + 1, with a different b. The induction step is proved.

Lemma 36 For any n′ between 1 and n,

∂n′−1 [g2(y, t, f)∂yf ] =
∑
q�0

‡
bq(y, t, f)

m∏
l=1

n′∏
j=1

(
∂j

yfl

)ql,j (72)

for some bq,k, depending on n′, g2 and its first n′− 1 derivatives with respect to each argument,
and with further restriction ∑

l,j

jql,j ≤ n′

Proof. It is clear that the n′ − 1 derivative of g2∂yf is a linear combination of

∂n′′

y [g2] ∂n′−n′′

y f

for n′′ ranging from 0 to n′ − 1. Since the derivatives of g2 are of the form (71), just like g1,
it follows that in the above expression the sum of the product of the number of derivatives and
the power to which they are raised will be

n′′∑
j=1

m∑
l=1

jql,j + n′ − n′′ ≤ n′′ + n′ − n′′ = n′

Hence the lemma follows.

7.2 Simple illustrations of regularization by Borel summation

(i) A vast literature has emerged recently in the field of Borel summation starting with the
fundamental contributions of Écalle, see e.g. [10] and it is impossible to give a quick account of
the breadth of this field. See for example [6] for more references. Yet, in the context of relatively
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general PDEs, very little is known. In this section we discuss informally and using admittedly
rather trivial examples, the regularizing power of Borel summation techniques.

(ii) Singular perturbations give rise to nonanalytic behavior and divergent series in both ODEs
and PDEs. We start by looking at a simple ODE. Infinity is an irregular singular point of the
equation f ′ − f = 1/x as can be easily seen after the transformation x = 1/z in which variable
the coefficients of the first order equation have, after normalization, a double pole at x = 0. This
is manifested in the factorial divergence of the formal power series solution f̃ =

∑∞
k=0

(−1)kk!
xk+1

The Borel transform is by definition the formal (term-by-term) inverse Laplace transform
and gives B(f̃)(p) =

∑∞
k=0(−1)kpk which is a convergent series. In effect, after formal inverse

Laplace transform, the equation becomes (p + 1)F (p) + 1 = 0 (F (p) := L−1f) which is regular
at p = 0 . It is easily seen that F is Laplace transformable and LF = f is a solution of the
original equation.

(iii) In the context of PDEs, consider the heat equation

ht − hyy = 0 (73)

first for small t. Power series solutions h̃ =
∑∞

k=0 Hk(y)tk, even with H0 real-analytic, generally
have zero radius of convergence. Indeed, the recurrence relation for the Hk is kHk = H ′′

k−1

meaning that for H0 analytic but not entire, Hk will roughly behave like k! constk for large k.
The factorial divergence suggests Borel summation, conventionally performed with respect to a
large variable; substituting T = 1/t in (73) yields

∂2h

∂y2
+ T 2 ∂h

∂T
+

1
2
h = 0 (74)

Inverse Laplace transform of (74) with respect to T yields

ĥyy − pĥpp −
3
2
ĥp = 0 (75)

followed by ĥ(p, y) = p−1/2u(2
√

p, y), z = 2
√

p transforms (75) into the wave equation

uyy − uzz = 0

which is now regular (in fact the explicit solution of the new problem with the induced initial
conditions immediately yields, by Laplace transform, the heat kernel solution of (73) [8]).
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Figure 1: Contour CD in the p−plane.
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