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Asymptotic Properties of a Family of Solutions

of the Painlevé Equation PVI

Ovidiu Costin and Rodica D. Costin

1 Introduction and setting

In analyzing the question whether nonlinear equations can define new functions with

good global properties, Fuchs had the idea that a crucial feature now known as the

Painlevé property (PP) is the absence of movable (meaning their position is solution-

dependent) essential singularities, primarily branch-points, see [8]. First order equa-

tions were classified with respect to the PP by Fuchs, Briot and Bouquet, and Painlevé

by 1888, and it was concluded that they give rise to no new functions. Painlevé and

Gambier took this analysis to second order, looking for all equations of the form u ′′ =

F(u ′, u, z), with F rational in u ′, algebraic in u, and analytic in z, having the PP [18, 19].

They found some fifty types with this property and succeeded to solve all but six of

them in terms of previously known functions. The remaining six types are now known

as the Painlevé equations. Beginning in the 1980s, almost a century after their discov-

ery, these equations were related to linear problems (and thereby solved) by various

methods including the powerful techniques of isomonodromic deformation and reduc-

tion to Riemann-Hilbert problems [3, 4, 7, 11]. The solutions of the six Painlevé equa-

tions play a fundamental role in many areas of pure and applied mathematics due to

their integrability properties. In particular, there are numerous physical applications

of the Painlevé PVI equation (for some references see, e.g., [6]) among which we mention

the problem of construction of self-dual Bianchi-type IX Einstein metrics, [2, 5, 17, 21]
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the classification of the solutions of Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equa-

tion in 2D-topological field theories and probability theory, especially random matrix

theory (see, e.g., [22, 23]). The connection between determinants and Painlevé equations

was established in the early ’70s (see [16], [24] and the references therein). The two

point correlation functions for holonomic fields on the Poincaré disk are shown to be

expressible in terms of PVI [20].

A three parameter family of solutions of the Painlevé equation PVI arises in the

context of random matrix theory in a recent work of Borodin and Deift [1].

The asymptotic behavior of the solutions of the Painlevé equations is of utmost

importance. Themain purpose of this paper is to characterize a family of solutions of PVI

for large argument, relevant to the study [1]

In the σ-form these solutions satisfy (see [12, equation (C.61)], with ν1 = ν2)

u ′[u ′′t(t− 1)
]2
+
[
2u ′(tu ′ − u

)
− u ′2 − ν2

1ν3ν4

]2
=
(
u ′ + ν2

1

)2(
u ′ + ν2

3

)(
u ′ + ν2

4

)
,

(1.1)

where �ν1 > 0.

Equation (1.1) admits the exact solution

u(t) = −ν2
1t+

1

2

(
ν2

1 + ν3ν4

)
(1.2)

and a one-parameter family of solutions with the behavior for large t

u(t) = −ν2
1t+

1

2

(
ν2

1 + ν3ν4

)
+ Ct−2ν1 +O

(
t−2ν1−1

)
. (1.3)

Proposition 1.1. For any C ∈ C, equation (1.1) has a unique solution satisfying

u(t) = −ν2
1t+

1

2

(
ν2

1 + ν3ν4

)
+ Ct−2ν1 + o

(
t−2ν1

)
(1.4)

for t→ ∞ in any fixed sector S. �

2 Proof of Proposition 1.1

2.1 Notation

Denote by F the set of functions of the form a(t) = f(t−1, t−ν1)where f is analytic at (0, 0).

Note that the functions in F are bounded for t large enough.
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Let C ∈ C and denote

u(t) = −ν2
1t+

1

2

(
ν2

1 + ν3ν4

)
+ Ct−2ν1 + ∆(t). (2.1)

We only consider ∆ such that

∆(t) = o
(
t−2ν1

)
(2.2)

for large t in S. Then we also have, as is easy to see by the Cauchy formula,

∆ ′(t) = o
(
t−2ν1−1

)
, ∆ ′′(t) = o

(
t−2ν1−2

)
(2.3)

for large t in the sector.

2.2 Equation for the remainder ∆

Substituting (2.1) in (1.1) we get the equation

T2
(
∆ ′′)2 + T1∆ ′′ + T0 = 0, (2.4)

where Tj depend on t, ∆, and ∆ ′ and have the form

T2 = a2(t) − ∆
′,

T1 = t
−2−2ν1b1(t) + t

−2−2ν1a1(t)∆
′,

T0 = t
−5−4ν1c2(t) + t

−4−2ν1c0(t)∆+ t
−3−2ν1c1(t)∆

′ + t−2P,

(2.5)

where aj, bj, cj ∈ F, and

P = d1(t)t
−2∆ ′∆2 + t−1d2(t)∆

′∆+ t−2d3(t)∆
2

+
(
∆ ′)2[q1(t) + t

−1q2(t)∆+ t
−2q3(t)∆

2 + q4(t)∆
′

+ t−1q5(t)∆∆
′ + q6(t)

(
∆ ′)2]

(2.6)

with dj, qj ∈ F (the appendix contains exact formulae). We also have

a2(t) = ν
2
1 +O

(
t−1
)
,

c1(t) = 8ν
4
1C
(
2ν1 + 1

)
+O

(
t−1
)
,

c0(t) = −8ν
4
1C
(
2ν1 + 1

)
+O

(
t−1
)
.

(2.7)

We write (2.4) in normal form, solved for ∆ ′′, and we separate the dominant terms.
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Lemma 2.1. The function ∆ satisfies the equation

∆ ′′ + 2ν1t
−1∆ ′ − 2ν1t

−2∆ = R, (2.8)

where R depends on t, ∆, and ∆ ′, and gathers smaller terms

R = t−3−2ν1 c̃4 + F1s + R̃2 − τ, (2.9)

where the terms are given by (A.10), (A.14), (A.15), (A.16), and (2.14). �

Proof of Lemma 2.1. From (2.4) we have

∆ ′′ =
−T1 ±

√
T2

1 − 4T0T2

2T2
. (2.10)

The minus choice in (2.10) is not consistent with (2.3). Indeed, since T0T2/T2
2 =

o(1) we have

−T1 −
√
T2

1 − 4T0T2

2T2
= −

1

2

T1

T2

(
2+ o(1)

)
(2.11)

which is of order t−2ν1−2, hence is not o(t−2ν1−2).

Thus

∆ ′′ =
−T1 +

√
T2

1 − 4T0T2

2T2
= −

2T0

T1

1

1+

√
1−

4T0T2

T2
1

≡ F(t, ∆,∆ ′). (2.12)

To separate the dominant linear part of (2.12) we rewrite F as

F
(
t, ∆,∆ ′) = −T0

T1
− τ, (2.13)

where

τ = 4

(
T0

T1

)2
T2

T1

1(
1+

√
1−

4T0T2

T2
1

)2
. (2.14)

A direct calculation of T0/T1 yields (2.8) (see Section A.5 for details). �
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2.3 Integral equations for ∆ and ∆ ′

The left-hand side of (2.8) has the solutions t and t−2ν1 , hence (2.8) can be written in

integral form as

∆(t) =
1

2ν1 + 1

[
t

∫t

∞ R(s)ds− t
−2ν1

∫t

∞ s
1+2ν1R(s)ds

]
. (2.15)

Denote

∆1 = ∆, ∆2 = ∆
′. (2.16)

Equation (2.15) becomes the system of first-order integral equations for (∆1, ∆2)

∆1(t) =
1

2ν1 + 1

[
t

∫t

∞ R(s)ds− t
−2ν1

∫t

∞ s
1+2ν1R(s)ds

]
≡ J1

(
∆1, ∆2

)
,

∆2(t) =
1

2ν1 + 1

[ ∫t

∞ R(s)ds+ 2ν1t
−1−2ν1

∫t

∞ s
1+2ν1R(s)ds

]
≡ J2

(
∆1, ∆2

)
.

(2.17)

2.4 Existence and uniqueness of ∆ = O(t−1−2ν1)

Consider the domain

D =
{
t ∈ C; |t| > ρ, arg t ∈ (A,B)}, (2.18)

where ρ will be chosen large enough and A < B < A + 2π. (Sectors of larger angles can

be considered on the Riemann surface above C \ 0.)

Let B be the Banach space of pairs ∆ = (∆1, ∆2) of analytic function on D, con-

tinuous on D with

‖∆‖ ≡ max

{
sup
t∈D

t1+2ν1 |∆1(t)|, sup
t∈D

t2+2ν1 |∆2(t)|

}
<∞. (2.19)

We will show that the integral operator J = (J1, J2) defined by (2.17) applies

a ball of B into itself and is a contraction there. This implies that (2.17) has a unique

solution in B.

2.4.1 J applies a ball of B into itself. Let BM be the ball of elements of ∆ ∈ B of norm

at mostM, we have |∆1| ≤Mt−1−2ν1 and |∆2| ≤Mt−2−2ν1 .
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From (A.14)

|F1s| ≤ const |t|−4
(
|t|−2ν1 |∆|+ |t|−2ν1−1|∆ ′|

)
, (2.20)

hence for (∆,∆ ′) ∈ BM,

|F1s| ≤ const |t|−4−2ν1M. (2.21)

To estimate R̃2 from (A.15) we note that for (∆,∆ ′) ∈ BM we have |S1,2| ≤ |t|−1

(see (A.8) for notations) and we have

∣∣R̃2

∣∣ ≤ const |t|−4−2ν1M2
[
1+M|t|−2−2ν1 +

(
M|t|−2−2ν1

)2]
× (1−M|t|−2−2ν1

)−1
.

(2.22)

From (2.9), (2.21), (2.22), (A.22), (A.25), and (A.27) we get

|R| ≤ K|t|−3−2ν1
(
1+ t−1Φ(M, t)

)
, (2.23)

where

Φ(M, t) =M+M2
[
1+M|t|−2−2ν1 +

(
M|t|−2−2ν1

)2](
1−M|t|−2−2ν1

)−1

+
[
1+M+M2t−1 +

(
M3 +M4

)
t−3−2ν1

]2
× (1+Mt−2−2ν1

)(
1−Mt−2−2ν1

)−3

(2.24)

and K is independent ofM.

For |t| > ρ, (2.23) implies

|R| ≤ K|t|−3−2ν1
(
1+ ρ−1Φ(M,ρ)

)
(2.25)

therefore, from (2.17) we get

∣∣J1(∆1, ∆2

)∣∣ ≤ K ′t−1−2ν1
(
1+ ρ−1Φ(M,ρ)

)
,∣∣J2(∆1, ∆2

)∣∣ ≤ K ′t−2−2ν1
(
1+ ρ−1Φ(M,ρ)

)
.

(2.26)

Choosing M > K ′ and then ρ0 large enough, it follows that for any ρ > ρ0 the

operator J applies the ball BM into itself.
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2.4.2 J is a contraction on BM. The parameterM is now fixed by Section 2.4.1 (hence

the constants in the estimates of the present section may depend onM); ρwill be chosen

large enough.

Let ∆[1] , ∆[2] be two elements in BM.

From (A.14) we see that

∣∣∣F1s

(
∆[1]

)
− F1s

(
∆[2]

)∣∣∣ ≤ const t−4−2ν1

∥∥∥∆[1] −∆[2]
∥∥∥ (2.27)

and, from (A.15) we get

∣∣∣R̃2

(
∆[1]

)
− R̃2

(
∆[2]

)∣∣∣ ≤ const t−4−2ν1

∥∥∥∆[1] −∆[2]
∥∥∥ (2.28)

(see Section A.6 for details).

We also have

∣∣∣τ(∆[1])− τ(∆[2])∣∣∣ ≤ const t−4−2ν1

∥∥∥∆[1] −∆[2]
∥∥∥. (2.29)

The details are in Section A.7.

Then from (2.17)

∥∥∥J(∆[1])− J
(
∆[2]

)∥∥∥ ≤ Kt−1
∥∥∥∆[1] −∆[2]

∥∥∥ (2.30)

which shows that J is a contraction on BM if ρ is large enough.

Then (2.17) has a unique solution in BM.

2.5 Uniqueness of ∆ = o(t−2ν1)

Let ∆ be a solution of (2.8) satisfying ∆ = o(t−2ν1) for large t in a sector. We now show

that, in fact, ∆ = O(t−1−2ν1) which completes the proof of Proposition 1.1.

Note that we have ∆ ′ = o(t−1−2ν1).

For any ε > 0 there exists ρ > 0 such that

|∆| ≤ ε|t|−2ν1 , |∆ ′| ≤ ε|t|−1−2ν1 , (2.31)

for |t| > ρ in the sector.

From (A.13) we get

|F1s| ≤ const ε|t|−3−2ν1 . (2.32)
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From (A.15) and the estimates of Section A.8.1 we get

∣∣R̃2

∣∣ ≤ const ε
(∣∣t−2∆

∣∣+ ∣∣t−1∆ ′∣∣)+ const ε2
∣∣t−3T−4

∣∣. (2.33)

Using (A.22), (A.31), and the estimates detailed in Section A.8.2 we get that also τ

has an upper bound of the form of the right-hand side of (2.33).

Then from (2.9), (2.32), and (2.33) it follows that

|R| ≤ const
(∣∣t−3−2ν1

∣∣+ ε∣∣t−2∆
∣∣+ ε∣∣t−1∆ ′∣∣+ ε2

∣∣t−3T−4
∣∣). (2.34)

This shows that (in the notations (2.16)) the integrals in (2.17) are convergent,

so the solution ∆ of (1.1) satisfies (2.17).

Denote

∥∥(∆1, ∆2

)∥∥ = sup
t

{
|∆1|, |t∆2|

}
. (2.35)

Using (2.34) in (2.17) we get

|∆1| ≤ const
(∣∣t−1−2ν1

∣∣+ ε∥∥(∆1, ∆2

)∥∥),
|∆2| ≤ const

(∣∣t−2−2ν1
∣∣+ ε|t|−1

∥∥(∆1, ∆2

)∥∥), (2.36)

hence

∥∥(∆1, ∆2

)∥∥ ≤ const sup
∣∣t−1−2ν1

∣∣ for |t| > ρ, (2.37)

so that ∆ = O(t−1−2ν1) and the proof of Proposition 1.1 is complete.

Appendix

A.1 Notation

T = tν1 . (A.1)

A.2 The expression of T2

T2 = −∆
′(t) −

ν1

(
2ν1t− t

2ν1 − ν1 − 2t
−1−2ν1C+ 4Ct−2ν1 − 2t1−2ν1C

)
(t− 1)2

. (A.2)
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A.3 The expression of T1

(t− 1)2T1 = 4Cν1

(
2ν1 + 1

)(
− t−2ν1 − t−2−2ν1 + 2t−1−2ν1

)
∆ ′(t) + 4Cν1

2
(
2ν1 + 1

)
×
[
t−2−2ν1ν1 + t

−2ν1ν1 − 2t
−1−2ν1ν1 + 2t

−1−4ν1C

− 4t−2−4ν1C+ 2t−3−4ν1C
]
.

(A.3)

A.4 The expression of T0

T0 = L00 + L01∆+ L02∆
′ + Rem, (A.4)

where

L00 = −4ν
3
1C

2
[(
4ν3

1 + 6ν
2
1 + 4ν1ν3ν4 + 2ν3ν4 + 2ν1

)
t

− 4ν2
1 − ν1 + ν1ν

2
4 − 4ν

3
1 − 2ν1ν3ν4 + ν1ν

2
3

] 1

t4(t− 1)2T4

− 8C3ν2
1

((
4ν2

1 + 4ν
3
1 + ν1

)
t2 +

(
2ν1 + 4ν

2
1 + 4ν1ν3ν4 + 2ν3ν4

)
t

− 4ν2
1 − ν1 + ν1ν

2
4 − 4ν

3
1 − 2ν1ν3ν4 + ν1ν

2
3

) 1

t5(t− 1)2T6

− 16
(1+ 2ν1)C

4ν2
1

(
(1+ 2ν1)t− 2ν1

)
t5(t− 1)2T8

,

L01 = −8
Cν3

1

((
ν1 + 2ν

2
1

)
t+ ν3ν4 − ν

2
1

)
t3(t− 1)2T2

− 16
ν2

1C
2
((
2ν1 + 4ν

2
1

)
t− 2ν2

1 + ν3ν4

)
t4(t− 1)2T4

− 32
C3ν2

1

(
(1+ 2ν1)t− ν1

)
t5(t− 1)2T6

.

(A.5)

Also

L02 =
4

t3(t− 1)2T2
ν2

1C
[(
2ν2

1 + 4ν
3
1

)
t2 +

(
− ν2

1 + 4ν1ν3ν4 + ν3ν4 − 4ν
3
1

)
t

+ ν1ν
2
3 − 2ν1ν3ν4 + ν1ν

2
4

]
+

4

t4(t− 1)2T4
ν1C

2
((
12ν2

1 + ν1 + 20ν
3
1

)
t2

+
(
12ν1ν3ν4 − 16ν

3
1 + 4ν3ν4 + 2ν1

)
t

+ 3ν1ν
2
3 − 4ν

3
1 − 4ν

2
1 + 3ν1ν

2
4 − ν1 − 6ν1ν3ν4

)
+

16

t4(t− 1)2T6
ν1C

3
((
6ν1 + 1+ 8ν

2
1

)
t− 8ν2

1 − 3ν1

)
.

(A.6)
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Finally

Rem = −4
∆ ′4

(t− 1)t
+
(8t− 4)∆ ′3∆
t2(t− 1)2

+

(
8t2ν2

1 + 4ν3ν4t− 2ν3ν4 + ν
2
4 − 8ν

2
1t+ ν

2
3

t2(t− 1)2

+ 4
C(−8ν1 + 2t+ 8ν1t− 1)

t2(t− 1)2T2

)
∆ ′3 − 4

∆ ′2∆2

t2(t− 1)2

+

(
− 2
C(24ν1t− 12ν1 + 4t)

t3(t− 1)2T2
−
16ν2

1t+ 4ν3ν4 − 8ν
2
1

t2(t− 1)2

)
∆ ′2∆

+

(
− 2

1

t3(t− 1)2T2
C
(
2ν3ν4t+ 8t

2ν2
1 − 6ν1ν3ν4 + 12ν1ν3ν4t

− 24ν3
1t+ 3ν1ν

2
3 + 24ν

3
1t

2 + 3ν1ν
2
4 − 4ν

2
1t
)

− 4
C2
(
t+ 12ν1t− 24ν

2
1 − 6ν1 + 24ν

2
1t
)

t3(t− 1)2T4

−
−4ν4

1t− 2ν
2
1ν3ν4 + 4ν

2
1ν3ν4t+ ν

2
1ν

2
4 + ν

2
3ν

2
1 + 4ν

4
1t

2

t2(t− 1)2

)
∆ ′2

+

(
8

ν2
1

t2(t− 1)2
+ 16

Cν1

t3(t− 1)2T2

)
∆ ′∆2

+

(
16
C2ν1(2t− 3ν1 + 6ν1t)

(t− 1)2t4T4
+ 4
ν2

1

(
− ν2

1 + 2ν
2
1t+ ν3ν4

)
t2(t− 1)2

+ 16
Cν1

(
4ν2

1t+ ν3ν4 − 2ν
2
1 + ν1t

)
t3(t− 1)2T2

)
∆ ′∆

− 4
ν4

1∆
2

t2(t− 1)2
− 16

∆2ν3
1C

t3(t− 1)2T2
− 16

(
∆ν1C

(t− 1)t2T2

)2

.

(A.7)

A.5 Splitting of terms of T0/T1

We introduce the notations

S1 = t
2ν1∆, S2 = t

1+2ν1∆ ′. (A.8)

Note that in the assumptions of Proposition 1.1 we have S1, S2 = o(1), and for (∆,∆ ′) ∈ B

we have S1, S2 = O(t
−1).
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Separating the terms of T0/T1 by degree and dominance we have

T0

T1
= F0 + F1d + F1s + R̃2, (A.9)

where

F0 =
c2

b1t3T2
≡ c̃4t−3−2ν1 . (A.10)

The linear terms are

F1d + F1s =
c0∆

b1t2
+

(
c1

b1
+
c2a1

t2T2b2
1

)
∆ ′t−1 (A.11)

and noting that

c0

a1
= 2ν1 + t

−1c̃5,
c1

a1
= −2ν1 + t

−1c̃6, c̃5,6 ∈ F, (A.12)

we separate the dominant linear terms and write

F1d = 2ν1t
−2∆− 2ν1t

−1∆ ′, (A.13)

F1s = t
−3c̃5∆+ t

−2c̃6∆
′. (A.14)

Finally, the terms which are at least quadratic are

R̃2 =
N

a1∆ ′ + b1
, (A.15)

where

N =
q3S

2
1S

2
2

T6t4
+
q2S

2
2S1

T4t3
+
q5S1S

3
2

T6t4
+
d1S2S

2
1

T4t3
+

(
−
c0a1

b1t3T4
+
d2

T2t2

)
S2S1

+
q6S

4
2

T6t4
+
q4S

3
2

T4t3
+
d3S

2
1

T2t2
+

(
−
c1a1

b1t3T4
+
c2a

2
1

t5T6b2
1

+
q1

T2t2

)
S2

2.

(A.16)

A.6 Estimate of R̃2(∆
[1] ) − R̃2(∆

[2] )

The estimate is straightforward; below we provide details. Denote, for simplicity,

N
(
∆[j]

)
= N[j] , Sk

(
∆[j]

)
= S

[j]
k , S[j] = max

{
|S1|[j] , |S2|[j]

}
,

S = max
{
S[1] , S[2]

}
, |∆| = max

{
|∆1|, |∆2|

}
.

(A.17)
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We write

∣∣∣R̃2

(
∆[1]

)
− R̃2

(
∆[2]

)∣∣∣ ≤
∣∣N[1] −N[2] ∣∣∣∣∣a1∆

[1]
2 + b1

∣∣∣ +
∣∣N[2] ∣∣|a1|

∣∣∣∆[1]2 − ∆
[2]
2

∣∣∣∣∣∣a1∆
[1]
2 + b1

∣∣∣∣∣∣a1∆
[2]
2 + b1

∣∣∣ . (A.18)

We have

∣∣∣N[1] −N[2] ∣∣∣ ≤ const
∣∣∣S[1] − S[2] ∣∣∣(t−2T−2S+ t−3T−4S2 + t−4T−6S3

)
(A.19)

(where the constant depends on ρ0) and since ‖∆‖ = supt |tS| we get

∣∣∣N[1] −N[2] ∣∣∣ ≤ const t−4T−2
∥∥∥∆[1] −∆[2]

∥∥∥. (A.20)

Also

∣∣∣N[2] ∣∣∣ ≤ const t−2T−2S2 + t−3T−4S3 + t−4T−6S4. (A.21)

The estimate (2.28) follows from (A.18), (A.20), and (A.21).

A.7 Estimate of τ

A direct calculation shows that (see (2.9) for the definition of τ)

τ = Q2F, (A.22)

where

F =
a2 − ∆

′

(a1 + b1∆ ′)3
1(

1+

√
1−

4T0T2

T2
1

)2
, (A.23)

Q =
q4S

3
2

T3t2
+
q3S

2
1S

2
2

T5t3
+
q6S

4
2

T5t3
+
d3S

2
1

Tt
+
c1S2

Tt
+
c2

Tt2
+
c0S1

Tt

+ 2
d1S2S

2
1

T3t2
+
q2S

2
2S1

T3t2
+
d2S2S1

Tt
+
q1S

2
2

Tt
.

(A.24)

Note that on BM we have

|Q| ≤ KT−1t−2A(M, t), (A.25)
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where

A(M, t) = 1+M+M2t−1 +
(
M3 +M4

)
T−2t−3, (A.26)

and

|F| ≤ KB(M, t), (A.27)

where

B(M, t) =
(
1+MT−2t−2

)(
1−MT−2t−2

)−3
, (A.28)

and K is a constant independent ofM.

We use the notations of Section A.6.

To estimate the difference τ[1] −τ[2] of values of τ on two elements∆[1] ,∆[2] ofBM

we write∣∣∣∣(Q[1])2

F[1] −
(
Q[2]

)2

F[2]
∣∣∣∣

=

∣∣∣∣(Q[1] −Q[2])(Q[1] +Q[2])F[1] + (Q[2])2(
F[1] − F[2]

)∣∣∣∣
≤ 2QF

∣∣∣Q[1] −Q[2] ∣∣∣+Q2
∣∣∣F[1] − F[2] ∣∣∣.

(A.29)

Since

|Q| ≤ const
(
t−2T−1 + t−1T−1

(
S+ S2

)
+ t−2T−3S3 ++t−3T−5S4

)
, (A.30)

then on BM we have |Q| ≤ const t−2T−1. Also

|F| ≤ const . (A.31)

Similarly,

∣∣∣Q[1] −Q[2] ∣∣∣ ≤ const t−2T−1
∥∥∥∆[1] −∆[2]

∥∥∥,∣∣∣F[1] − F[2] ∣∣∣ ≤ const
(∣∣∣∆[1]2 − ∆

[2]
2

∣∣∣+ t−1
∣∣∣∆[1]1 − ∆

[2]
1

∣∣∣) ≤ t−3T−2
∥∥∥∆[1] −∆[2]

∥∥∥. (A.32)

The estimate (2.29) follows.

A.8 Estimates under the assumptions of Section 2.5

Note that in the assumptions of Section 2.5 we have |S1,2| ≤ ε.
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A.8.1 Estimate of N. We split (A.16) in the form

N = Ndom + δN, (A.33)

where

Ndom =
d2S2S1 + d3S

2
1 + q1S

2
2

t2T2
=
(d2S2 + d3S1)T

2∆+ q1S2tT
2∆ ′

t2T2
,

δN =
c2a

2
1S

2
2

t5T6b2
1

+
S2

(
− c0S1a1 + q4S

2
2b1 + q2S2S1b1 + d1S

2
1b1 − c1a1S2

)
t3b1T4

+
S2

2

(
q5S2S1 + q6S

2
2 + q3S

2
1

)
T6t4

.

(A.34)

Note that

∣∣Ndom

∣∣ ≤ const ε
(∣∣t−2∆

∣∣+ ∣∣t−1∆ ′∣∣),
|δN| ≤ const ε2

∣∣t−3T−4
∣∣. (A.35)

A.8.2 Estimate of Q. We split (A.24) in the form

Q =
d3S

2
1 + c1S2 + c0S1 + d2S2S1 + q1S

2
2

tT
+
c2

t2T
+ δ, (A.36)

where

δ =
S2

(
q4S

2
2 + q2S2S1 + d1S

2
1

)
T3t2

+
S2

2

(
q6S

2
2 + q5S2S1 + q3S

2
1

)
T5t3

. (A.37)

Hence from (A.36) we get

Q2 = Qdom + δQ, (A.38)

where

Qdom =
1

t2T2

[
d2

3S
4
1 + 2d3

(
d2S2 + c0

)
S3

1

+
(
d2

2S
2
2 + 2c0d2S2 + c

2
0 + 2d3q1S

2
2 + 2d3c1S2

)
S2

1

+ 2S2

(
d2S2 + c0

)(
q1S2 + c1

)
S1 + q

2
1S

4
2 + c

2
1S

2
2 + 2c1S

3
2q1

]
,

δQ =
c22
t4T2

+
δ2

t4T6
+ 2
δ
(
q1S

2
2 + c0S1 + d2S2S1 + d3S

2
1 + c1S2

)
t3T4

+ 2
c2
(
q1S

2
2 + c0S1 + d2S2S1 + d3S

2
1 + c1S2

)
T2t3

+ 2
c2δ

t4T4
.

(A.39)
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Since we can rewrite

Qdom =
1

t2T2

{[
d2

3S
3
1 + 2d3

(
d2S2 + c0

)
S2

1

+
(
d2

2S
2
2 + 2c0d2S2 + c

2
0 + 2d3q1S

2
2 + 2d3c1S2

)
S1

+ 2S2

(
d2S2 + c0

)(
q1S2 + c1

)]
T2∆

+
(
q1

2S3
2 + c

2
1S2 + 2c1S

2
2q1

)
tT2∆ ′

}
,

(A.40)

we see that

|Qdom| ≤ const ε
(∣∣t−2∆

∣∣+ ∣∣t−1∆ ′∣∣). (A.41)

Also, clearly

|δQ| ≤ const ε2
∣∣t−2T−3

∣∣. (A.42)
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