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Introduction

Let X be a convex polyhedral set in a space of constant curvature. Its “polar dual”
P(X) is the set of outward pointing unit normal vectors to the supporting hyperplanes
of X. In the spherical and Euclidean cases, P(X) is a subset of the unit sphere. In the
hyperbolic case, P(X) is a subset of the unit pseudo-sphere in Minkowski space (sometimes
called the “de Sitter sphere”). In all three cases P(X) naturally has the structure of a
piecewise spherical cell complex. The spherical cells of P(X) correspond bijectively to the
faces of X.

A piecewise spherical cell complex, with its intrinsic metric, is large if there is a
unique geodesic between any two points of distance less than m. Equivalently, it is large if
it satisfies Gromov’s “CAT(1)-inequality” (cf. [G]).

Piecewise spherical cell complexes play an important role in the study of certain
singular metric spaces: the link (or “space of directions”) of a point in such a singular
space often has a piecewise spherical structure. The largeness condition is closely related to
the notion of nonpositive curvature in the sense of Alexandrov and Gromov. For example,
a polyhedron of piecewise constant curvature has curvature bounded from above if and
only if the link of each point is large (cf. [G], [B]). A similar result holds for the induced
singular metric on the branched cover of a Riemannian manifold (cf. [CD1]).

In his 1986 Princeton Ph.D. thesis [R1], Igor Rivin proved that the polar dual of a
convex polytope in hyperbolic 3-space is large. (This was published as the paper [RH] of
Rivin and Hodgson.) The proof is a simple geometric argument. (The main result of [RH]
is in the converse direction.) The referee has pointed out that some related results, in the
smooth category, are proved in [S].

In his 1988 Ohio State Ph.D. thesis [M], Gabor Moussong considered a related sit-
uation: he gave a simple, necessary and sufficient condition for a piecewise spherical,
simplicial complex with all edge lengths > 5 to be large. The results of both Rivin and
Moussong are generalizations of Andreev’s Theorem, [A].

In this paper we use Moussong’s ideas to extend Rivin’s argument to any hyperbolic
convex polyhedral set (not necessarily compact) of any dimension. The main result is the
following.
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Theorem. The polar dual of a convex polyhedral set in hyperbolic space is large.

This theorem is stated, in a sharper form, and proved in Section 4 as Theorem 4.1.1.

A geodesic in P(X) is a special case of a “broken geodesic”, v = (v1,...,7k). This
means that each -, is the arc of a great circle in some cell of P(X) and that the terminal
point z; of ; coincides with the initial point of «;11. As in [RH], one associates to each
point z; a supporting hyperplane H; of X and to each +; the codimension two subspace
G; = H;NH;_;. (This is explained in subsection 3.1.) Thus, G; and G, are hyperplanes
in H;. The argument of [RH] then has two steps:

(1) When 7~ is a geodesic, one shows that G; and G, are either parallel or ultraparallel.
Hence, there is a region S; in H; bounded by G; and G;41.

(2) When v is a closed geodesic the regions S; fit together to give a piecewise isometrically
immersed “cylinder” in the ambient hyperbolic space. The exterior dihedral angle
along G; is the length of ;. From this one concludes that the length of v must be
> 2.

It follows from this last fact that P(X) is large. The proof of (2) generalizes easily to higher
dimensions; however, the proof of (1) does not. As we explain in Section 3 (Remark 3.2.3),
the argument for (1) in [RH] comes down to the Gauss-Bonnet Theorem in dimension 2
and there is no obvious generalization of this argument to higher dimensions.

Our proof of (1) in higher dimensions occupies all of Section 3. It is based on ideas
of [M]. The basic result, Theorem 3.2.2, relates the metric on P(X) to the inner product
on the ambient Minkowski space.

In Section 5 we relate the main result to a conjecture of [CD2]. Suppose K?™~1
is a piecewise spherical cell complex homeomorphic to the (2m — 1)-sphere. In [CD2]
we considered a number x(K?™~1), defined as a certain alternating sum of normalized
volumes of the dual cells to the cells in K2™~1. Hopf’s Conjecture on the sign of the
Euler characteristic of a nonpositively curved 2m-manifold leads to the conjecture that
(—1)™k(K?>™1) >0, whenever K?>™~! is large. In subsection 5.2 we recall the following
formula of Hopf for the normalized volume v of a 2m-dimensional hyperbolic polytope
X?2m; (=1)™2u(X?*™) = k(P(X)). (This is a special case of the Gauss-Bonnet Theorem
of [AW].) It follows that the sign of x(K?™~!) is correct when K2™~! is the polar dual of
a hyperbolic polytope.

In Section 6, we relate the main result to the study of the space of large piecewise
spherical structures on a given simplicial complex.

1. Piecewise spherical polyhedra.

In this section we collect some well-known facts about piecewise spherical polyhedra.

1.1 Convex polyhedral sets. Let V be a finite dimensional real vector space.
A subset X of V is a convex polyhedral set if it is defined by a finite number of affine
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inequalities. In other words, there are linear functions \; € V*, and constants ¢; € R i =
1,--- .k, such that
X={veV|\bw) <c,i=1,---,k}.

A face of X is a (nonempty) subset F' of X obtained by changing the inequalities A;(v) < ¢;
into equalities A\;(v) = ¢; for ¢ in some subset of {1,---,k}. (Equivalently , F'is a face of
X if for any two distinct points x,y in X such that (z,y) N F # 0, we have [z,y] C F,
where (z,y) and [z, y] denote, respectively, the open and closed line segment from z to y.)
Let F(X) denote the set of faces of X partially ordered by conclusion and let Fo(X) be
the set of proper faces of X.

A convex polyhedral set X is called a conver polytope (or a convex cell) if it is
compact. Equivalently, X is a convex polytope if it is the convex hull of a finite set.

A polyhedral cone C in V is a convex polyhedral subset defined by a finite number
of linear inequalities, i.e.,

C={veVnw<0,i=1,-, k.

The linear part of C, noted L(C), is the largest linear subspace contained in C. Thus,
L(C) is the minimum element in F(C). The cone C' is nondegenerate if L(C) = {0}.

For any subset S of V, let Span(S) denote the linear subspace spanned by S. A
polyhedral cone C is of full dimension if Span(C) =V

Suppose X is a convex polyhedral set in V and z € X. The tangent cone at ,
denoted T,(X), is the polyhedral cone in V(= T,V) consisting of all inward pointing
vectors at z, i.e.,

T.(X)={veV]z+tv € X for some ¢t > 0}.

If F' is a face of X, then this cone is independent of the choice of x in the relative inte-
rior of F' and is denoted by T'(F, X). Explicitly, T'(F, X) is the cone determined by the
codimension 1 faces of X containing F'. The linear part of T'(F, X) is given by

L(T(F, X)) = T(F, F) = Span(F — z)
(where F' — z is a translate of F' to the origin) and

Span (T'(F, X)) = Span(X — x).

1.2 Intrinsic metrics. Now identify V with some Euclidean space and let S(V)
denote the unit sphere in V. A spherical conver polyhedral set o is the intersection of a
polyhedral cone C' with S(V). If C is nondegenerate (or equivalently, if o contains no
pairs of antipodal points), then o is called a spherical convex polytope or a spherical cell.
A piecewise spherical cell complex K is a cell complex together with an identification of
each cell with a spherical convex polytope. All such cell complexes will be assumed to be
locally finite and to have a lower bound on the height of their cells. (The height of a cell
o is the minimum distance between disjoint faces of ¢.)
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A broken geodesic v in a K is a sequence (71, ...,7k) where each -; is an oriented
geodesic segment (= segment of a great circle) in some cell of K and where the terminal
point of «y; is the initial point of ;1. The length of 7, denoted by £(7y), is the sum of
the lengths of the ;. The intrinsic metric on K is defined as follows: the distance d(z, y)
between points x and y in K is the infimum of the lengths of all broken geodesics from z
to y. It follows from the assumptions above that, if z and y belong to the same component
of K, then they can be joined by a broken geodesic whose length realizes this infimum (see
[Br, Section 1] or [Pa]). Parameterizing by arc length gives a path v: [a,b] — X such that
d(v(s),v(t)) = |s—t|, for all s,t € [a,b]. This means that K is a geodesic space (also called
a length space). Such an isometric path is a geodesic.

The underlying metric space of a piecewise spherical cell complex with its intrinsic
metric is called a piecewise spherical polyhedron.

1.3 Orthogonal joins. Suppose that V and W are disjoint Euclidean spaces, that
o C S(V) and 7 C S(W) are spherical cells, and that C(o) and C(7) are the associated
polyhedral cones. Then C(o) x C(7) is a polyhedral cone in V & W. The orthogonal join
of o and 7, denoted o * 7, is the spherical cell defined by

oxT=C(o)xC(r)NS(Ve W)

It is obvious how to extend this to a definition of the orthogonal join of two piecewise
spherical complexes K; and Ks. The resulting intrinsic metric on K; * K9 depends only
on the intrinsic metrics on K; and K5 and not on the particular cell structure.

Suppose K is a piecewise spherical cell complex. The spherical cone on K (or simply
the “cone”) is the orthogonal join of K with a point. The k-fold suspension of K is the
orthogonal join S¥~1 x K. We note that there is no canonical cell structure on S¥~!x K|
rather it is partitioned into spherical convex sets of the form S¥~! o, where o is a cell of
K or o = (). (For more information about orthogonal joins, see [CD1, Appendix].)

1.4 Links. Suppose that ¢ is a spherical cell in S™ and that C(= C(o)) is the
associated polyhedral cone in R**!. Let x be a point in o and F the face of C which
contains z in its relative interior. The tangent cone of o at z is defined by

T.(0) =T(F,C) Nzt
The link of x in o is the set of unit vectors in this tangent cone,
Lk(z,0) = T(F,C)NS(zt).
If 7= FNS"™ then the link of 7 in o is defined by
Lk(t,0) = T(F,C)NS(F1)
and we have a natural identification

Lk(z,0) = Lk(r,0) *S(z* N F)
= Lk(r,0) x SF1
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where k£ = dim 7 and z is in the relative interior of 7.

If z is a point in a piecewise spherical complex K, then define

Lk(z, K) = | Lk(z,0)

TEo

where the union is taken over all cells o containing z. Similarly, for a cell 7 in K, define

Lk(r,K) = | J Lk(r,0)

TCO

where the union is taken over all cells o properly containing 7. Thus, Lk(7, K) is naturally
a piecewise spherical cell complex. If dim 7 = k£ and z is in the relative interior of 7, then

Lk(z,K) = Lk(r, K) x SF~!

so Lk(z, K) is also a piecewise spherical polyhedron.

1.5 Local geodesics. Suppose K is a piecewise spherical cell complex. A closed
geodesic in K is an isometric embedding of a circle.

A path v:[a,b] = K is a local geodesic if for each t € [a, b] there is a neighborhood J
of t such that | is geodesic. (A closed local geodesic is defined similarly.)

Suppose v = (y1,---,7k) is a broken geodesic in K, where each ~; is an oriented
arc of a great circle from z;_;1 to z;. If v is closed (i.e., if o = xy), then the indices 4
are interpreted as integers modulo k. At each break point z;, define points ; and ~;,,
in Lk(z;, K) as the unit tangent vectors of ; and ~;y; at z;, oriented outward from z;.
Define an “angle” 6; by

(1.5.1) 0 = d(v}, Yis1)

where d is the intrinsic metric in Lk(z;, K). Then « is a local geodesic if and only if it
satisfies the following “angle condition” (cf. [M, Section 4] or [Br, p. 385]):

(1.5.2) 0,>m, i=0,1,....k—1.

1.5 Large piecewise spherical polyhedra. Any two points in the same compo-
nent of a piecewise spherical polyhedron K are connected by a geodesic segment. We say
that K is large if for any z,y € K with d(z,y) < m, the geodesic segment from z to y is
unique. The condition that K is large is equivalent to the condition that it satisfies the
“CAT(1)-inequality” of [G, p. 106]. (See [CD1, Theorem 3.1].)

The systole of K, denoted sys(K), is the infimum of the lengths of all closed geodesics
in K.

The following lemma is a result of Gromov, [G, §4.2.A and 4.2.B].
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Lemma 1.6.1 (Gromov). A piecewise spherical polyhedron K is large if and only if the
following two conditions hold:

(i)  sys(K)>2m
(ii)  sys(Lk(o, K)) > 27 for all cells o in K.

It is fairly obvious that if K is large then (i) and (ii) hold; the proof of the converse
uses the angle condition (1.5.2). For the details of the proof, see [B, Theorem 15| and
[CD1, Theorem 3.1].

Lemma 1.6.2. Let K be a large piecewise spherical polyhedron. Then any local geodesic
of length < is actually a geodesic.

Proof: The proof uses Alexsandrov’s version of the largeness condition (see [Tr, Théoréme
4]). This asserts that, given any geodesic triangle in K of perimeter < 2, its “angles”
must be no greater than those of its comparison triangle in S2. Let v = (v1,...,7%) be a
local geodesic and let ;1 and x; be the endpoints of v;. We may assume (by subdividing
the ;) that each ~; is a geodesic. The argument proceeds by induction on k.

If £ =1, then v = (7;) is geodesic by definition. Let k£ > 1 and assume by induction
that & = (y1,...,7k—1) is an actual geodesic from xg to zx_1. Suppose v is not an actual
geodesic. Then the actual geodesic § from xy to xx has length < 7. Consider the geodesic
triangle (o, vk, 3). The “angle”, between « and v at zx_1 (in the sense of Alexsandrov),
coincides with min{r,;_1}, where 0;_; is defined by (1.5.1). By (1.5.2), Of_1>n. It
follows that the comparison triangle in S? (which exists since perimeter (o, vk, 3) < 27)
must degenerate to a segment. The CAT(1)-inequality then implies that the same holds
for (a, vk, B), that is, v = . O

Definition 1.6.3. Suppose K7 is a subpolyhedron of a piecewise spherical polyhedron
K. Then K is a locally conver subset of K (or a “totally geodesic subset”) if any local
geodesic in K; is actually a local geodesic in K.

The next lemma is an immediate consequence of Lemma, 1.6.2.

Lemma 1.6.4. Suppose that K is large and that K1 is a locally convex subpolyhedron. Let
dy and d denote the intrinsic metrics on K, and K, respectively. Then any local geodesic
in Ky of length <7 is actually a geodesic in K. Thus, if z,y € Ky and di(z,y) <m, then
d(:ﬂ, y) = dl(xa y)'

There is also the following simple formulation of local convexity in terms of links. It
is an immediate consequence of (1.5.2).

Lemma 1.6.5. Let K1 be a subpolyhedron of K. Then K is locally conver in K if and
only if the following condition holds at each point u of K;:
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() If z,x' € Lk(u,K1) and di(xz,z') >x, then d(x,z') >x, where di and d denote the
intrinsic metrics in Lk(u, K1) and Lk(u, K), respectively.

2. Polar duality.

In this section we investigate convex polyhedral sets in S™, E*, and H". To such a
set X, we will associate a piecewise spherical polyhedron P(X), called the “polar dual” of
X. In essence, P(X), consists of the outward pointing unit normal vectors to X. The cell
structure on P(X) is induced by the face structure on X: a cell of P(X) corresponds to
the outward pointing normals to a face of X.

2.1 Dual Cones. Let V be a finite dimensional real vector space as above. In this
subsection, V' is equipped with a nondegenerate, symmetric, bilinear form ( , ). If S is a
subset of V, then S+ denotes the linear subspace of V orthogonal to Span(S).

Let C be a polyhedral cone in V. Its dual cone C* is the polyhedral cone defined by

(2.1.1) C* ={w e V|{v,w) <0 for all v € C}.

Lemma 2.1.2 Suppose u,--- ,ux € V and
C={veV[{u,v)<0,i=1,-sk}.

Then
(i) C* = {nonnegative linear combinations of uy,--- ,ug}
(ii) C** =C
(iii)L(C*) = C+
(iv)Span(C*) = L(C)*

Proof: Let Cz denote the cone of positive linear combinations of wq,--- ,ug. It is easy
to see that Cy C C™* and hence C** C C; = C. On the other hand, it is clear from
the definition of C* that C C C**. This proves (i) and (ii). Part (iii) is clear since
w € L(C*) if and only if w,—w € C*. Part (iv) follows from (iii) since L(C) = (C*)*
implies L(C)1 = Span(C*). O

In particular, C' is of full dimension if and only if C'* is nondegenerate and vice versa.
If F is a face of C, then its dual face F is the face of C* defined by

F=T(F,C) =Ftnc

The correspondence F +— F' is an order-reversing bijection from F(C) to F(C*). It follows
from Lemma 2.1.2 that

Span(F) = F- N L(C)* and L(F) = C+.

7



2.2 Polar duals in E". Suppose ( , ) is positive definite and identity V with
Euclidean space E". Let X be a convex polyhedral set in V defined by

X=A{veV|{u,v)<c,i=1,---,k}

and assume without loss of generality that X contains the origin. (The definition of polar
dual is translation invariant.) Let W = Span(X). Let C*(X) denote the polyhedral
cone in V spanned by u;,---ur and W+ (i.e. C*(X) is the set of all nonnegative linear
combinations of the u; plus a vector in W+).

Define the full polar dual of X to be
P(X,V)=C*(X)NS(V)
and the polar dual of X to be
P(X)=P(X)NW = C*(X)NS(W)
Since S(W+1) c P(X,V), it follows that P(X, V) is the orthogonal join

P(X,V)=S(W%) x P(X).

Let C(X) denote the dual cone to C*(X). Then C(X) is the largest polyhedral cone
contained in X.

Lemma 2.2.1 Let Ly be the linear part of C(X) and let Ly be the orthogonal complement
of Lo in W. Then P(X) is a conver polyhedral set in S(L1). X is a Euclidean cell (i.e.
compact) if and only if Ly = W and P(X) =S(W).

Proof: By Lemma 2.1.1, C*(X) C L(C(X))*+ = Ly. The first statement of the theorem
follows. For the second statement, note that X is compact if and only if C(X) = {0}, or
equivalently, C*(X) = V. a

For each proper face F' of X, define

I

F=T(FX)*
op = FNP(X)

Note that F' C C*(X), but since F is not necessarily a face of C(X), F' need not be a face
of C*(X). (Figure 1)



Figure 1

Lemma 2.2.2 o is a spherical cell. These cells partition P(X) into a piecewise spherical
complex.

Proof: Tt is easy to see that C(X) C T(F, X) and hence F' C C*(X). The linear part of F’
is Span(T'(F, X))+ = Span(X)+ = W-. Thus, FNW is a nondegenerate polyhedral cone,
so FNP(X)=FNS(W) is a spherical cell.

To see that these cells partition P(X), it suffices to observe that the cones T'(F, X)*
partition C*(X), that is, every v € C*(X) lies in the relative interior of T'(F, X)* for a
unique face F' of X. Let v € C*(X) and consider the linear function # — (z,v) on X. The
set of maxima of this function is necessarily a face of X which we denote by F,. Then, for
an arbitrary face F' of X, we have

veT(F,X)" & (w,v) <0,for all w e T(F, X)
& (z+w,v) < (z,v),for all x € F,w € T(F, X)
sSreFyforallz € F
& FCF,

It follows that v lies in the relative interior of a unique T'(F, X)*, namely T(F,, X)*. O

2.3 Polar duals in S™. In this subsection, V = R**1 ( | ) is positive definite, and
S(V) is the unit sphere in V. Let X be a convex polyhedral set in S(V). Then there is a
unique polyhedral cone C = C(X) in V such that X = CNS(V).

Let C* be the dual cone.

Points in C* may be viewed as outward pointing normal vectors to faces of C. The
interior points of C* correspond to normal vectors at the cone point and hence should not
be viewed as normals to X. To define the polar dual of X, therefore, we consider 0C™.

Here, 0C* denotes the topological boundary of C* in V so that if C* is of dimension less
than n + 1, then 0C™* = C*. The full polar dual of X is then defined by

P(X,V) =08C*NS(V).
Letting W = Span(C), the polar dual of X is defined by

P(X)=P(X,V)NW =09C*NS(W).
As in the Euclidean case,

P(X,V)=S(W) * P(X).

Lemma 2.3.1 Let L be the linear part of C and let k = dim X = dimW — 1. Then
P(X) is the boundary of a spherical cell X* of dimension k — dim L. In particular, X is
a spherical cell (i.e. L ={0}) if and only if P(X) is homeomorphic to a (k — 1)-sphere.

Proof: Let X* = C*NS(W). The cone C* NW is nondegenerate, so X* is a spherical cell
with 0X* = P(X). O



The boundary of a spherical cell is naturally a piecewise spherical complex. The cells
of P(X) are the dual faces, o = F'N P(X) = F+ N P(X), where F is a proper, nonzero
face of C'(X).

It is easy to see that these partition P(X) into spherical cells.

2.4 Polar duals in H". In this subsection, V is (n + 1)-dimensional and the form
(, ) on V is indefinite of type (n,1). In other words, ( , ) has 1 negative eigenvalue and
the rest are positive. (Thus, V could be identified with Minkowski space R™1.) Let g be
the associated quadratic form

Q(U) = <Ua U) .

We consider the hyperquadrics g=*(—1), ¢71(0) and ¢~ (1) in V. The first, ¢=1(—1)
is a 2-sheeted hyperboloid; choose a component, denote it by H(V') and call it the hyperbolic
space of V. The hyperquadric ¢~1(0) is denoted by L and called the light-cone, while g=1(1)
is denoted S1(V') and called the unit pseudo-sphere in V. (S1(V) is sometimes called the
“de Sitter sphere.”)

The form ( , ) induces a Riemannian metric on H(V') of constant sectional curvature
—1 and a Lorentzian metric on S;(V') of constant sectional curvature +1. (See [O, pp.
108-114].)

A subspace W of V is spacelike if the restriction of ( , ) to W is positive definite,
lightlike if ( , ) restricted to W is positive semidefinite but not definite, and timelike if W
contains a vector w with ¢(w) < 0.

If C is a polyhedral cone in V', then
X=CnH(V)

is called a convex polyhedral subset of H(V'); X is called a hyperbolic cell (or a hyperbolic
convex polytope) if it is compact. This is the case if and only if C' is contained entirely
inside the light-cone, i.e., if g(v) < 0 for all nonzero v in C.

Unlike the spherical case, the set X does not uniquely determine the cone C'. How-
ever, the cone C = C(X) is unique if we require that all codimension 1 faces of C be
timelike, i.e.

C={veV|(u,v)<0,i=1,---,k}

with g(u;) > 0. (Lightlike and spacelike subspaces do not intersect H" and hence do not
affect X.) We will assume this is the case. Even under this hypothesis, however, C' may
have lower dimensional faces which are not timelike (since, for example, the intersection
of two timelike hyperplanes may be a lightlike or spacelike subspace). For the polar dual,
we are interested only in outward pointing normals to faces of X or, in other words, to
timelike faces of C.

Ijet C™* be the dual cone to C. The timelike faces F' of C' correspond to the spacelike
faces F' of C*. We therefore let

C%, = union of the spacelike faces of C*.
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Figure 2

and define the full polar dual of X to be
P(X,V) =C%yNS1(V)
Letting W = Span(C), the polar dual of X is defined as

P(X)=P(X,V)NW =C,NSy(W).

Unlike the spherical and Euclidean cases where P(X) is always homeomorphic to a
disk or a sphere, the polar dual of a convex hyperbolic set can have a much more arbitrary
topology. However, in the case that X is a hyperbolic cell (i.e. compact), the following
lemma, states that P(X) is indeed a sphere.

Lemma 2.4.1 Suppose k = dim X = dim C —1. If X is a hyperbolic cell, then C%, = 0C*
and P(X) is homeomorphic to a (k — 1)-sphere

Proof: Let w € H* and let Cp = {v € V | ¢(v) < 0, (v, w) <0 for all w € H*}. Then Cy
is the cone bounded by the (positive) light cone and C§ = Cy. (Cp is not polyhedral, but
the definition (2.1.1) of the dual cone still makes sense.) If X = C N H" is a hyperbolic
cell, then C' C int Cp; hence, Cy = C§ C int C*. It follows that the spacelike faces of C*
are precisely those on its boundary, i.e., %4 = 9C*.

For w € H", the restriction of { , ) to w is positive definite and S;(V) is homeo-
morphic to S(w!) x R (=2 S"~! x R) via the map

S(wh) x R — S1(V)
(v,r) — (147270 + rw

Thus, to prove the second statement of the lemma, it suffices to prove that for each
v € S(w?b), the curve ay(r) = (1 +r2)2v + rw on S1(V) intersects OC* precisely once.
Restricting to the 2-plane spanned by v and w reduces the problem to the 2-dimensional
case, which follows easily from the fact that Cy C int C*. (Figure 2) O
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For any proper face F' of C'(X), define
Pr=FNP(X)=F'nPX).

If F is a timelike face (so F'N X is a face of X), then Pp turns out to be a spherical cell
which we denote by op(= Pr).

Lemma 2.4.2 If F is timelike, then op is a spherical cell. The set {op}F timelike PaTti-
tions P(X) into a piecewise spherical cell complex.

Proof: If F is a timelike face of C then F'- is a spacelike subspace of V, so F+NS;(V) =
S(F*) is a sphere. Also, F' C C%, and the linear part of F' is W+. Thus, op = FNP(X) =
FNW NSy(V) is a spherical cell in S(F*). Since the faces of C% are precisely the duals
of the timelike faces of C, these spherical cells partition P(X) into a piecewise spherical
complex. O

Lemma 2.4.3 Suppose F is spacelike. Then F-N X is a conver polyhedral set in the
hyperbolic space F+ NH", and Pr = P(F+ N X). Thus, Pr is the polar dual of a convex
set of smaller dimension.

Proof: Since F is spacelike, F'* is timelike. F-NC is a polyhedral cone in F'+ whose span
is F- N W. It is easy to see that the full polar dual of F- N X in F* is

P(FLn X, FY) = C(X)5,NSi(FL)
and hence

P(FfnX)=CX)t,NS1(F-NW)
= F+nP(X). O

We shall analyze what happens when F' is lightlike in the next subsection.

2.5 Cusps. Let L, denote the positive light cone in R™!, ie., L, = {v € R®! |
g(v) = 0and (v,z) <0 for all z € H*}. The sphere at infinity of H", denoted by S,
is the projective image of Ly — {0}. Thus, a point in S is an open ray in L, — {0}.
Geometrically, a point in S, can be thought of as the limit point of a geodesic ray in H".

If y € Sy, then y* (a linear subspace of R™!) is the tangent space along y to L. .
Pick a point x in H", and consider the affine subspace

Ay=z+ yt.
If v € y, then A, is the locus of those w € R™! such that (v, w) = constant, where the
constant is, of course, (v,x). The horosphere at y (passing through z) is the subset E, of
H"™ defined by

E,=A,NH".
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With the induced metric, E, is isometric to Euclidean (n — 1)-space.

We return to the situation where X is a convex polyhedral set in H*. Let S (X)
denote the image of (C(X)NLy) — {0} in Se. The points in S (X) are the points at
infinity of X.

For any y € S (X), let F,, be the unique face of C(X) which contains y in its relative
interior. Thus, Fy is either timelike or lightlike. The point y is called a cusp point of X if
F, is lightlike. If F' is any lightlike face of C'(X), then there is a unique cusp point y with
F, = F; in fact, y=FnNF.

Suppose y € Soo(X) and that E, is any sufficiently small horosphere at y. (“Suf-
ficiently small” means that F, intersects only those faces of C(X) which contain F).)
Put

Z,=E,NX.

Then Z, is an (n — 1)-dimensional Euclidean convex polyhedral set, well-defined up to
similarity.

Lemma 2.5.1. Let y € So(X). Fy is timelike if and only if Z, is a polyhedral cone.
Thus, y is a cusp point if and only if Z, is not a polyhedral cone.

Proof: Let €, be the poset of timelike faces of C'(X) which contain y. Then &, indexes the
poset of faces of Z,. Thus, Z, is a polyhedral cone if and only if €, contains a minimum
(= lower bound). But &, contains such a minimum if and only if F} is timelike (in which
case Fy is the minimum). O

If y is a cusp point of X, then put
P, = Pp, = F;- N P(X).

Lemma 2.5.2. If y is a cusp point, then P, can be canonically identified with P(Z,).
Thus, the subcomplex P, corresponding to a cusp is isometric to the polar dual of a convex
set in E*~1.

Proof: There is a canonical identification of the horosphere E, with the Euclidean space
yt/ (y) = Er~1, well-defined up to translation. (Here, (y) denotes the line determined by
y.) On tangent spaces, this identification corresponds to the isomorphism

T,E, =zt Nnyt—yt/ ()

induced by the projection y~ — y1/ (y). If F is a timelike face of C'(X) containing y, and
z € FNE,, then Frc Ftnztcytnet = T, Ey. 1t follows that unit normals to F
in R™! can be identified with unit normals to T, (F N E,) in T, E,, and hence with unit
normals to F N E, in E,, viewed as E*~ 1. O

2.6 Links in P(X). Let us summarize the results of sections 2.3-2.5. Let X be a
convex polyhedral set in E* S™ or H" and let C = C(X) be the cone determined by X
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(as in 2.3-2.5). If Y is a face of X, then Fy = C(Y) is a face of C. (In the spherical
and hyperbolic cases, Fy is the unique face such that Y = X N Fy.) Associated to Y is a
spherical cell oy = Y N P(X). (In the spherical and hyperbolic cases, Y = Fy, oy = op,;
in the Euclidean case, Y C Fy, but they need not be equal.) Let Fy(X) denote the set
of proper faces of X ordered by inclusion. Let Fy(X ) denote this set with the opposite
ordering.

Proposition 2.6.1 Let X be a convex polyhedral set in E™,S™, or H". Then the polar
dual of X, P(X) is a piecewise spherical cell complex whose poset of cells {oy} is naturally
identified with Fo(X)°P. If X is a cell of dimension k in E" S™, or H*, then P(X) is
homeomorphic to a (k — 1)-sphere.

Lemma 2.6.2 Let X be a convez polyhedral set in E™,S™, orH™ and let W = Span(C(X)).
Let Y € Fo(X) and let y be a point in the relative interior of oy. Then

(1) Lk(y, P(X)) = P(Y,y* N W)
(2) Lk(oy, P(X)) = P(Y)

Proof: The correspondence F' — F gives a bijection between faces of C' and faces of C*
such that . 3
F=F=T(F,C")".

Thus, F* = T(F,C*) (where F™* is the dual cone in V to F, viewed as a polyhedral cone).
Let F = Fy = C(Y). Then y lies in the relative interior of F, so

F* = T,(C*).

The faces of F™* are of the form T(VF, G) where G is a face of F. In the hyperbolic case,
T(F, Q) is spacelike if and only if G is spacelike (since Span(T'(F,G)) = Span(G)), so

F;O = Ty( ;0)-

Thus, in the spherical and Euclidean cases,

The same holds in the hyperbolic case if we replace C* by C%, and F* by FZ,. Intersecting
both sides of the equation with W gives part (1) of the lemma; intersecting with Span(Y’)
(= (Y)?) gives part (2). O

3. The intrinsic metric on P(X).

3.1 A geometric interpretation of local geodesics in P(X). There is an inter-
esting interpretation of a local geodesic in P(X) in terms of the hyperbolic geometry of
X. This relationship is explained in [RH]|. We shall now recall it.
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Each point v in ST corresponds to an oriented hyperbolic hyperplane
H, =vtNnH".

If v € P(X), H, is called a supporting hyperplane of X. This terminology is appropriate
since v lies in P(X) if and only if X lies in the half-space

D, ={ueH" | {u,v) <0}

and X N H, is nonempty. (If v belongs to the relative interior of the spherical cell oy, then
H,NnX=Y)

Suppose that oy is a cell of P(X), that vg and v; are points in distinct faces of doy
and that v is the geodesic segment in oy from vy to v;. Put

G=~"nH'=H, NH,.

Then G is a totally geodesic codimension two subspace of H™. The length £4(vy) of ~ is
cos™ ! (vg,v1). Hence, £() measures the exterior dihedral angle between H,, and H,,.
Corresponding to the points of v, there is a 1-parameter family of supporting hyperplanes
obtained by rotating H,, to H,, about G through an angle of £(v).

Next suppose that v = (71,...,7k), is a broken geodesic in P(X), where ~y; is a
geodesic segment in some cell from v;_; to v;, as in the previous paragraph. Put H; = H,,
and G; = (1)t NH® = H;_y N H;. Thus, v gives us a l-parameter family of sup-
porting hyperplanes “rolling” along the boundary of the convex body X and containing
Hy,Hy, ..., H;_1 in succession.

Consider the (n—1)-dimensional hyperbolic space H;. Then G; and G, are oriented
hyperplanes in H; with corresponding unit normal vectors v; and v, , in Lk(v;, P(X)).
Suppose that the broken geodesic v is actually a local geodesic, i.e., d(v;, Vi) >, (cf.
(1.5.2)). We shall prove in Proposition 3.3.3 below that this implies that the hyperplanes G;
and G;41 do not intersect in H;. Hence, G; and G, bound an infinite (n—1)-dimensional
“StI‘ip” S,L in HZ

Finally, we suppose that v = (v1,...,7%) is a closed local geodesic. Then we
get a sequence of strips (Sp,...,Sg—1) such that S; € H; and S;_1 NS; = G;. Let
Sy = Spu---USk—1 be the union of these strips in H". We note that, even when the
indices 7 and j are not consecutive (modulo k), the strips S; and S; might have nonempty
intersection. To eliminate these extraneous intersections, one introduces an abstract (n—1)-
dimensional hyperbolic manifold §7 formed by taking the quotient of the disjoint union
[] Si by the equivalence relation which identifies the boundary components of S;_; and
S; which correspond to G;. The natural map §7 — Sy C H" is then a piecewise totally
geodesic immersion.

The (n — 1)-manifold :5”\7 is a “hyperbolic cylinder.” That is to say, it is isometric to
H"~1/(p,), where p, is either a parabolic or hyperbolic isometry of H*~! and where (p.,)
denotes the infinite cyclic group generated by p.. Thus, to each closed local geodesic v in
P(X) we have associated an immersed hyperbolic cylinder S, in H" such that the length
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of v is the sum of the exterior dihedral angles in S,. This cylinder will be used in Section
4 to prove the main theorem (Theorem 4.1.1).

3.2 A version of a result of Moussong.

Our goal in this subsection is to prove Theorem 3.2.2, below, which relates the
intrinsic metric on P(X) to the Lorentzian inner product on R™!. We begin with a
preliminary lemma which clarifies the statement of Theorem 3.2.2.

Lemma 3.2.1. Ifv,w € P(X), then (v,w) <1, with equality if and only if v = w.

Proof: Suppose that v, w are distinct vectors in P(X) with (v, w) > 1. Then the supporting
hyperplanes H, and H,, do not intersect in H". Thus, for any z in H,, the quantity (w, x)
is never zero. If it is negative, then the half-space D, is contained in D,,; if positive,
then D,, C D,. In either case, H, and H, cannot both be supporting hyperplanes, a
contradiction. O

Theorem 3.2.2. Suppose v, w are points in P(X) with (v,w) > —1. Then
d(v,w) < cos™ ! (v, w),

where d is the intrinsic metric on P(X). In fact, suppose neither of the following conditions
hold:

(i) v and w belong to some cell of P(X),
(ii) v and w belong to Py for some cusp pointy of X.
Then d(v,w) < cos™! (v, w).

The above theorem is a modification of Lemma 9.7 in the thesis of G. Moussong [M].
Although Moussong was working in a slightly different context, both the statement and
proof of Theorem 3.2.2 are essentially the same as in [M] (our case is somewhat easier).

Remark 3.2.3. When X is a 2-dimensional convex polyhedral set in H? there is an easy
geometric proof of Theorem 3.2.2, along the lines of the proof of Lemma 3.4 in [RH],
which we now recall. Suppose v,w € P(X) and (v,w) > — 1. Then the supporting lines
H, and H, intersect at a point gy which either lies in H? or on the circle at infinity
(when (v,w) = —1). Let @ be the polygon, exterior to X, which is bounded by H,, H,
and some of the edges of X as indicated in Figure 3, below. Let q1,..., g be the other
vertices of @Q and let «,0y,...,0; be the indicated angles. Then o = cos™! (v, w) and
d(v,w) =01+ - - + Ok.
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Figure 3

For any finite area polygon @ in H? (convex or not), the Gauss-Bonnet Theorem
states that the sum of the exterior angles of @ is equal to 27 + Area(Q). In our case, the
exterior angle at qo is «, at ¢ it is m — 61 and at g it is m — 0, while, for 2<i<k — 1 the
exterior angle at ¢; is —6; (a negative number). So,

a+(mr—01)— 02+ -+ 0k_1) + (m — ) = 2w + Area(Q)
Hence, a = ) 0; + Area(Q), that is,
cos™! (v, w) = d(v, w) + Area(Q).

Thus, d(v, w) < cos™! {(v,w) and the inequality is strict unless Area(Q) = 0. If Area(Q) =
0, then H, and H,, are actually supported by edges of X, and qq is a vertex of X (possibly
at co) and so we are in situation (i) or (ii) of the theorem.

Before giving the details of the proof of Theorem 3.2.2, let us sketch the rough idea.
Suppose v and w are distinct points in P(X). By Lemma 3.2.1 we always have (v, w) < 1.
Hence, the condition that (v,w) > —1 means that [{(v,w)| < 1, i.e., that v and w span a
spacelike subspace of R™!. The cone generated by v and w then intersects ST in a circular
arc § of length cos™ (v,w). In general, § will not lie in P(X). Let u denote the unit
tangent vector to 4 at v. In a sequence of lemmas, stated below (in particular, in Lemma
3.2.8), we show that one can always find a vector z € Lk(v, P(X)) so that as z moves along
the geodesic v in direction z, the quantity cos™! (z,w) decreases at least as fast as it does
when z moves along §. (The condition that z have this property is just that (u,z) >1.)
Using a compactness argument, we show that we can extend v to a path from v to w of
length at most that of 4.

Suppose G is a subspace of H® and y € So.. We say that G meets y if there is a
geodesic ray in G which limits at y.

Lemma 3.2.4. Suppose that v,w € P(X) are such that H,NH,NX = 0. Ify is a point
in Seo(X) which meets H, and H,,, then y is a cusp point of X.

Proof: Let E, be a small horosphere at y and Z, = E, N X. Then Z, is a Euclidean
convex polyhedral set and v+ N E, and w' N E, are supporting hyperplanes of Z, which
do not intersect. It follows that Z, is not a polyhedral cone (if it were, the intersection of
any two supporting hyperplanes would contain the minimum face). By Lemma 2.5.1, y is
a cusp point.

Lemma 3.2.5. Suppose that u is a unit vector in C*(X). Let d(H,,, X ) denote the distance
(in H™ ) from H,, to X .

(i) Ifd(H,,X) > 0, then there is a unique point xo in X such that d(H,, X) = d(H,, o).
(ii) Ifd(Hy,,X) =0, then either
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(a) H, is a supporting hyperplane for X (i.e., u € P(X)) or
(b) H, meets Soo(X) in a single point.

(iii) There is a vector z in P(X) such that (u,z) >1. Moreover, if d(H,, X) > 0, then z
can be chosen so that (u,z) > 1.

Proof: (i) If a(t) is any infinite geodesic ray in X, then

lim d(Hy, a(t)) =

t—00

{ 0; if a(t) and H, meet at infinity

oo; otherwise

Since X is geodesically convex and since the restriction of the function x — d(H,,z) to
any geodesic segment is strictly convex, it follows that if d(H,,z) is bounded away from
0, then there is a unique point 2y in X where the minimum value is obtained.

(ii) Suppose a(t) and aq(t) are two geodesic rays in X which both meet H, at
infinity. Let y; and yy be the corresponding limit points in Soo(X). If y1 # yo then, by
convexity, the infinite geodesic from y; to yo is contained in H, N X and hence, H, is
a supporting hyperplane for X. Therefore, if H, is not a supporting hyperplane, then
Y1 = ya2, which proves (ii).

(iii) First, suppose that d(H,, X) > 0. Then we choose z to be the parallel trans-
port of u to the closest point xg. It is then geometrically clear that H, is a supporting
hyperplane. This can also be checked by the following algebraic calculation. The vector z
is the orthogonal projection of u onto (z¢)*, normalized to have unit length, i.e.,

u ~+ {(u, Zo) o

(1 + (u, x0>2>%

Since d(Hy,z) = —sinh (u, z) (see [T, Section 2]), the function z — (u,z) takes its maxi-
mum value on X at zo, i.e.,

(u, o) > (u,x), for all x € X.
Since the inner product of any two points in H” is < — 1,
(xg,z) < — 1
Hence, for any =z € X,
(u+ {u, zo) o, ) = (u, x) + (u, To) (X9, x) < (U, ) — {u, ) = 0.

So, u + (u,zg) ¢ belongs to C*(X) and therefore, so does its positive multiple z. Since
(z,20) =0 and (z,z) = 1, we see that z € P(X). Moreover,

(u,z) = (1 + (u,x0)2>% > 1,
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as claimed.

Finally, suppose that d(H,, X) = 0. By (ii) there are two cases to consider. If H, is
a supporting hyperplane, then put z = u. Otherwise, let y be the unique point in Sy, (X)
which meets H,. Let E, be a sufficiently small horosphere at y and Z, = E, N X. Then
Z, is a Euclidean convex polyhedral set and utn E, is an affine hyperplane which bounds
a halfspace containing Z,. let H' be the oriented affine hyperplane in F, obtained by
translating u™ N E, to a closest point in Z,. Then there is a unique z € ST such H, and
H, are parallel and meet at infinity at y and such that H, N E, = H'. Clearly, z € P(X)
and (u, z) =1, as desired.

In the next two lemmas and in subsection 3.3 we must deal with the case where the
convex polyhedral set might be of smaller dimension than the ambient hyperbolic space.
In other words, the full polar dual might not coincide with the polar dual. We set up some
notation to deal with this situation below.

Notation 3.2.6. Suppose Y is a convex polyhedral set in H*~! (possibly of dimension
<n—1). Let u € R*=b1 If u is spacelike, then 4 = q(u)_%u denotes its normalization
to a unit vector. Denote by u; and uy the orthogonal projections of u onto Y+ and
Span(Y), respectively. Identify Y+ with R¢ and Span(Y) with R*~¢=1L1 If uy is any
spacelike vector in R*~¢~11 then G,, denotes the hyperbolic hyperplane (ug)-NH?~¢~1,

As in 2.5, P(Y) = S"1% P(Y) (where the ambient space V = R"~ 1! is omitted from the
notation).

Lemma 3.2.7. Let u be a unit vector in R*~11 such that uy € C*(Y). Then there is a

vector z € JB(Y) such that (u,z) >1. Moreover, z can be chosen so that the inequality is
strict except possibly in the following three cases:

(a) w2 =0,

(b)  wug is spacelike and d(G,,,Y) =0,

()  wug is lightlike and us € Soo(Y).

Proof: There are four cases to consider as the vector uy is zero, timelike, spacelike or

lightlike.

Case 1: uy = 0. Put z = u. Then z lies in the suspension sphere and hence, in ]B(Y)
Furthermore, (u, z) = 1.

Case 2: wugy is timelike. Then q(u1) = 1 — g(ug) > 1. In particular, u; # 0. Put z = 4.
Again, z lies in the suspension sphere and (u, z) = q(ul)% > 1.

Case 3: wug is spacelike. Apply Lemma 3.2.5 to uy and Y to find 2, € P(Y) so that
(tig, 22) >1. Put z = uy + q(uz)222. Then ¢(2) = q(u1) + q(uz) = 1, so z € S« P(Y).
Furthermore, (u, z) = q(u1) + q(u2) (U2, 22) >q(u1)+q(u2) = 1, and the inequality is strict
if and only if (i3, 29) > 1. By Lemma 3.2.5 (iii), we can choose z2 so that (g, z9) > 1
unless d(Gy,,Y) = 0.
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Case 4: wuy s lightlike. In this case one might try the approach in Case 2 or the one in
Case 3. Both methods work; however, only the second method yields a strict inequality.
Since q(u2) = 0, g(u1) = 1 — g(uz) = 1. The first method is to choose z = u;. Then z
is in the suspension sphere and (u,z) = 1. Let y be the point in S, determined by wus.
The second method can be applied whenever y ¢ Soo(Y). As in Lemma 3.2.5, we find
a point zg in Y which is closest to y. Explicitly, consider the smallest horosphere at y
which intersects Y. The intersection must be a single point xy. Let G be the hyperbolic
hyperplane in H*#~! which is tangent to the horosphere at zy and let z, be the unit
normal to G which points into the horoball. Clearly, zo € P(Y'). We will choose z to be of
the form

z = (cosB)uy + (sinf)zs

for an appropriate choice of 6 € (0, %} Any such z will lie in S 1% P(Y). Let ¢ = (ua, 29).
Then € > 0 and (u, z) = (u1, (cos @)u1) + (us, (sind)z2) = cos§+esinb. So, pick § € (0, %]
so that sinf < e. Then cosf + esinf > cosf + sin? @ > cos?6 + sin? @ = 1 and hence,
(u,z) > 1. O

Lemma 3.2.8. Suppose v, w are points in P(X) with (v,w) > —1. Let u denote the
orthogonal projection of w onto v, normalized to have unit length:

u 2 — (v,w)v .
(1= (v, w)?)?

(So, u is the unit tangent vector to the circular arc in ST from v to w.) Let Y be the
face of X such that v belongs to the relative interior of oy. Then there is a vector z in
Lk(v, P(X)) (= P(Y,v1)) so that (u,z) >1. Moreover, if neither condition (i) nor (ii) of
Theorem 3.2.2 holds, then z can be chosen so that (u,z) > 1.

Proof: Denote the orthogonal projections of v and w onto Span(Y’) by ve and ws, respec-
tively. Since vy = 0, ug = (1—(v,w)*)"Zw,. Foranyz € Y, 0> (w, z) = (w1, z)+(ws, z) =
(we,x). Hence, ws and its positive multiple uy lie in C*(Y'). Thus, we can apply Lemma
3.2.7 to find z € P(Y) with (u,z) > 1.

As for the question of strict inequality, it remains to show that cases (a), (b) and (c)
of Lemma 3.2.7 correspond to situations (i) and (ii) of Theorem 3.2.2.

Case (a): uz = 0. Then wy = 0 and hence, w € Y. Thus, both v and w belong to oy
and we are in situation (i).

Case (b): wus is spacelike and d(G,,,Y) = 0. By Lemma 3.2.5 (ii), either G, is a
supporting hyperplane of Y, or G, meets So. (Y) in a single point y. If G, is a supporting
hyperplane, then it intersects Y in a face Y'. For any z € Y/, (w, z) = (w2, x) = (uq,z) =
0, so Y ¢ H,N Hy, ie., v, w both belong to oy:. This is situation (i). Otherwise,
H,NnH,NX =0 and H, N H, meets So(X) at y. By Lemma 3.2.4, y is a cusp point of
X. Hence, v,w € P, and we are in situation (ii).
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Case (c): wuy is lightlike and represents a point y in S, (Y). We then argue exactly as in
the end of the previous paragraph, to conclude that we are again in situation (ii). Il

Proof of Theorem 3.2.2: Consider the function
f(v) = cos™" (v, w)

defined on the set
U={vePX)]| (v,w)>-1}.

By Lemma 3.2.1, for any ¢ > —1,
Uc={vePX)|(v,w) >c}
is a compact subset of U.

Claim: For any v € U there is a point r(v) € U such that
d(v,7(v)) + f(r(v)) < f(v)
and r(v) #v if v # w.
To prove the claim, suppose v € U, v # w. Let u and 2z be as in Lemma 3.2.8, i.e.,

U= ’LU—<'U,'LU>2'U1’ and
—<’U,U)> )5

(
(u, z) >1, z € Lk(v, P(X)).

For sufficiently small € > 0, put
r(v) = (cose)v + (sine)z.
Let 0 = cos™! (v, w) so that w = (cosf)v + (sin )u. Then

(r(v),w) = cosecosf + (u, z) sinesin
> cosecos b + sine sin @

= cos(f —¢).
Hence,

d(v,r(v)) + f(r(v)) <&+ cos™! (r(v), w)
<e4+0—c¢
= f(v).

If neither condition (i) nor (ii) of the theorem holds, then we can choose z so that
(u,z) > 1 (Lemma 3.2.8). Then (r(v),w) > cos(f — ¢), which gives a strict inequality,

d(v,7(v)) + f(r(v)) < f(v).
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Now fix v € U and let V be the set
V={zeU]|dv,2)+ f(z)<d(v,r(v)) + f(r(v))}.

Note that for any 2 € V', r(z) also lies in V since

d(v,r(z)) + f(r(z)) ) +d(z,7(x)) + f(r(z))
o) + [ ().

Note also that V' is contained in Uy, since for x € V

f(@) <d(v,z) + f(z) <d(v,r(v)) + f(r(v)) < f(v).

Thus, V' is nonempty (since r(v) € V) and compact, so f attains its minimum on V, say
at p € V. We claim that p = w. For if not, then r(p) lies in V' and since r(p) # p,

0 < d(p,7(p) < f(p) — f(r(p)),
which contradicts the minimality of f at p. Hence, p = w. In particular, w € V. Thus,
d(v,w) + f(w) <d(v,r(v)) + f(r(v)) < f(v)

with the last inequality strict except under conditions (i) or (ii). Since (w,w) =1, f(w) =
0, so this proves the theorem.

d(

<d(v
<d(v

3.3 Some consequences of Theorem 3.2.2. The goal of this subsection is to prove
Proposition 3.3.3, below, which is the key technical lemma, in the proof of the main result.
We begin by recalling a general result concerning the orthogonal join of two piecewise
spherical polyhedra.

Suppose that K; and K5 are piecewise spherical polyhedra and that K x K5 denotes
their orthogonal join (cf. 1.3). If 1 € K;, x2 € Ko, then there is a geodesic segment (=
arc of a great circle) of length 7 in K; * K from z; to xp. For ¢t € [O, %], let [z1,z2,1]
denote the point on this segment of distance ¢ from ;.

The following is proved in [CD1] as Lemma A2 and A6 of the Appendix.

Lemma 3.3.1. Suppose that K., Ko are nonempty piecewise spherical polyhedra and that
dy, dy and d denote the intrinsic metrics on K1, Ko and K, x Ko, respectively. Let
x = [x1,Z2,8] and y = [y1,y2,t] be points in K; x Ky. Then d(z,y) <m. Moreover,
d(z,y) = 7 if and only if s =t and one of the following conditions holds:

(a) s=0 and di(z1,y1) >,
(b) s=7% and dz(x2,y2) >,
() s#0,s# %, di(z1,y1)>7 and da(x2,y2) > 7.

In the next lemma and its proof we return to the notation of 3.2.6.
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Lemma 3.3.2. LetY be a convex polyhedral set in H* ' and let v, w € ]B(Y) be such that
d(v,w) >7, where d is the intrinsic metric on P(Y)). Then

(v,w) < — 1.

In other words, the hyperbolic hyperplanes G, = v NH" ! and G, = wt NH*! are
either parallel or ultraparallel.

Proof: If Y is of dimension n — 1 (the maximum possible), then P(Y) = P(Y) and the
lemma follows immediately from Theorem 3.2.2. So, suppose dim Y < n — 1. For any
vector v € P(Y) let v; and v denote its orthogonal projections onto Y+ (= Rf) and
Span(Y'), respectively. If q(v;) # 0, for i = 1,2, let v; = q(vi)_%vi be the corresponding
unit vector. Thus, v; € S*! and v, € P(Y). We want to apply the previous lemma to
P(Y) =S"1% P(Y). In the notatlon of that lemma, v = [01, V2, s] and w = [Wy, W2, t],
where s = q(v1)? and ¢ = g(w1)2. Hence, Lemma 3.3.1 gives that d(v, w) = , that s = t,
and that one of the following conditions holds:

(a) v and w are antipodal points on the suspension sphere S*~1,
(b) wvand wlie in P(Y) and d(v,w) >m, or

(¢) q(vy) #0, q(ve) # 0, v1 = —wy, and d(vs, W) > .

In case (a), (v,w) = —1. In case (b), (v,w) < — 1, by Theorem 3.2.2. So, suppose
(c) holds. Then (v1,w1) = —1 and (by Theorem 3.2.2) (v2,ws2) < — 1. Since s = t,
) =

q(v1) = q(wy) and q( q(wq). Hence, (v, w1) = —q(v1) and (va, ws) < — q(v2). Thus,
(v,w) = (v1,w1) + wy) < — (q(v1) + q(v2)) = —1, so the lemma also holds in this
case. O

In the next proposition we return to the situation considered in 3.1.

Proposition 3.3.3. Let v = (v1,...,7) be a closed local geodesic in P(X) with break
points vo, . ..,Vk—1, Uk = vg. (Interpret the indices as integers modulo k.) Let H; = H,,
and G; = H;_1 N H; be the subspaces of H" considered in 3.1.

(i) The subspaces G; and G;11 are either parallel or ultraparallel hyperplanes in H;.

(i) For i =0,...,k — 1, suppose that G; and G;11 are parallel. Let y; € Soo(H;) be
the point at infinity where G; and G;411 meet. Further, suppose that yo =y1 =+ = Yg—1-
Then £(y) = 27 and, if y denotes the common value of the y;, then y is a cusp point of X.

Proof: (i) As in 1.5, from the broken geodesic v we get unit tangent vectors, v; and ;.
in Lk(v;, P(X)), where, in fact, ; and +;,, are the unit outward normals to G; and G411
in H;. Since 7 is a local geodesic, condition (1.5.2) gives

dz(’)’; ’Yz,'—i—l) >m
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where d; is the intrinsic metric on Lk(v;, P(X)). Let Y; be the face of X such that v; belongs
to the relative interior of oy,, i.e., ¥; = H; N X. By Lemma 2.6.2 (1), Lk(v;, P(X)) =
ﬁ(Yi, (v;)1). Applying the previous lemma with Y = Y;, v = 4/ and w = v/ 41, we conclude
that (i) holds.

(ii) Suppose the hypotheses of (ii) hold. Let Z, denote the intersection of the half-
spaces bounded by the H; with a horosphere E, at y. Then Z, is an (n — 1)-dimensional
Euclidean prism (i.e., it is isometric to the Cartesian product of a polygon and an (n — 3)-
dimensional Euclidean space), and £(vy) is the sum of the exterior angles. Thus, £(y) = 2.
Moreover, if v, w are any two points on =y, then the length of the segment of v between them
is cos™! (v, w). Choose such v, w which are arbitrarily close and which do not lie in the
same cell of P(X). If y is not a cusp point, then by Theorem 3.2.2, d(v,w) < cos™! (v, w),
which contradicts the hypothesis that v is a local geodesic. Hence, y is a cusp point and
the lemma is proved.

4. The main result.
4.1 P(X) is large.
Theorem 4.1.1. Suppose X is a hyperbolic convexr polyhedral set of dimension n. Then

1) Its polar dual P(X) is large,

2)  If v is any closed local geodesic of length 27, then v must lie in the subcomplex P,
for some cusp point y of X.

The proof uses Proposition 3.3.3, together with an argument of Rivin and Hodgson
[RH].

Proof: According to Lemma 1.6.1, P(X) is large if and only if

(1)  sys(P(X)) 22,
(ii) sys(Lk(o, P(X)))>2m for all cells o in P(X).

Each cell o of P(X) is of the form ¢ = oy for some proper face Y of X. By Lemma
2.6.2 (2), Lk(oy,P(X)) = P(Y). We can assume, by induction on the dimension, that
the theorem holds for Y in particular, sys(P(Y)) > 27, so condition (ii) holds. Thus, it
suffices to check (i).

Let v be a closed local geodesic in P(X). As in subsection 3.1, we construct an
(n — 1)-dimensional hyperbolic cylinder §7 and its image S, in H"® so that £(vy) is the sum
of the exterior dihedral angles in S,,. thus, §7 is isometric to H" / (p) where the isometry
p~ is either hyperbolic or parabolic. So, there are two cases to consider.

Case 1: p, is hyperbolic. In this case the argument of [RH] shows that £(y) > 2.
(Actually, [RH] is concerned only with dimension 3, but this part of the argument works
in any dimension.) The argument goes as follows. Since p, is hyperbolic, there is a unique
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closed geodesic @ on §7 of shortest length (@ is the image of the axis of p,). Let a denote
its image in S,. Then « is a piecewise geodesic in H". The break points of a lie on
the boundaries of the “strips” S;, i.e., such a break point lies on the intersection of two
hyperplanes H; and H;;;. By Lemma 3.2 in [RH], the “turning angle” of a at a break
point is < the corresponding exterior dihedral angle between H; and H;;;. Thus, the sum
of the turning angles of o is <#(vy). By Theorem 3.1 in [RH], this sum of turning angles
is > 2m. hence, £(vy) > 2.

Case 2: p, is parabolic. In this case we are in the situation of part (ii) of Proposition
3.3.3. The proposition implies that «y lies in some P, for y a cusp point of X and its proof
shows that £(y) = 2.

Thus, £(7) > 27 in both cases, which verifies condition (i) and hence, statement (1)
of the theorem. The analysis in Case 2 also shows that if £(y) = 2, then 7 lies in some
P,, which is statement (2) of the theorem.

4.2 The induced metric at a cusp. We have the following converse to the last
part of Theorem 3.2.2.

Proposition 4.2.1. Suppose X is a hyperbolic convex polyhedral set of dimension n and
that d is the intrinsic metric on P(X). Suppose further that v, w are points in P(X) and
that either (i) v and w belong to the same cell of P(X) or (ii) v and w belong to P, for
some cusp point y. Then

d(v,w) = cos™! (v, w).

Proof: We shall only verify this in case (ii), the proof in case (i) being similar and easier.
Let di denote the intrinsic metric on P,. We first note that, since P, is the polar dual
of a Euclidean convex set, if v,w € Py, then (v,w) > — 1 and d;(v,w) = cos™* (v, w) (by
Lemma 2.2.1 (2)). The proof is by induction on n. So, suppose the proposition holds in
dimensions < n. We first claim that P, is locally convex in P(X). To see this, we must
check condition (*) of Lemma 1.6.5. Let u € P, and Y the face of X such that u belongs
to the relative interior of oy. Then

Lk(u, P(X)) = P(Y,u") = S 1« P(Y)
Lk(u, P)) = S* 1« P,(Y)

where P,(Y) = P,NY and S*~! is the unit sphere in Y- Nul. Let d’ and d; denote the
intrinsic metrics on P(Y') and P,(Y), respectively. Suppose we are given z,z’ € P,(Y)
such that d(z,z’) > 7. Then d}(z,2’) = 7 and (z,2’) = —1. By the inductive hypothesis,
d'(z,z') = w. By Lemma 3.3.1, the same result holds after taking ¢/-fold suspensions. This
verifies condition (*) of Lemma 1.6.5 and hence, shows that P, is locally convex in P(X).
By Lemma 1.6.4, any geodesic in P, is actually geodesic in P(X). Hence,

cos™ (v, w) = dy(v,w) = d(v, w).
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Definition 4.2.2. Let Cone(P,) denote the orthogonal join of P, with a point. The

completed polar dual of X, denoted 13(X ), is the piecewise spherical complex formed by
gluing Cone(P,) to P(X) along P, for each cusp point y.

For example, if S is n-dimensional and of finite volume, then each P, is isometric to
the round sphere S"~2 (by Lemma 2.2.1 (3)), so Cone(P,) is a hemisphere. Thus, P(X) is

obtained from P(X) by “capping oft” the P, with hemispheres. It is then clear that 13(X )
is homeomorphic to the (n — 1)-sphere.

In general, if K1, K5 are large piecewise spherical subcomplexes, and K is a common
subcomplex which is locally convex in both, then the result of gluing K; to K- along K is
large. (After taking Euclidean cones on K7, Ko and Ky, this is a special case of Gromov’s
Gluing Lemma; see [Pa, Lemma 4.3].) As a corollary of Proposition 4.2.1 and Theorem
4.1.1, we therefore have the following.

Corollary 4.2.3. f’(X) is large.

4.3 Convex polytopes. In this subsection we state two special cases of the above
results.

Corollary 4.3.1. Let X be an n-dimensional hyperbolic convexr polytope. Then P(X) is a
large piecewise spherical structure on S"~1. Moreover, the systole of P(X) is greater than
2, as is the systole of the link of any cell in P(X).

Corollary 4.3.2. Let X be an n-dimensional convex polyhedral set of finite volume in H" .
Then P(X) is a large, piecewise spherical structure on S™~1.

5. The Gauss-Bonnet Formula for hyperbolic polytopes.

5.1 The quantity x(K). For o a p-dimensional spherical cell, let a(o) denote its
p-dimensional volume, normalized so that the volume of S? is 1, i.e.,

vol(o)

o) = Joiise)

Also, let a*(0) = a(o*), where o* = C*(0) N SP is the dual cell to o (cf. 2.3.1).

Given a finite, piecewise spherical cell complex K, consider the following quantity:

(5.1.1) K(K) =1+ (-1)%motla*(q),

where the summation is over all cells o of K. In [CMS] it is shown that the value of x on
the link of a vertex in a piecewise Euclidean complex plays the role of the Gauss-Bonnet
integrand. For this reason, in analogy with a well-known conjecture of Hopf, we made the
following conjecture in [CD2].
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Conjecture 5.1.2. Suppose that K is a large, piecewise spherical structure on the (2m —
1)-sphere. Then (—1)™k(K) >0.

5.2 Hopf’s formula. Suppose X" is an n-dimensional hyperbolic convex polytope.
Its normalized volume v(X™) is defined by

ny _ VOI(X™)
v = SoiEm

Thus, v(X™) is a positive constant times the usual volume of X".

The Gauss-Bonnet Formula for hyperbolic convex polytopes is due to H. Hopf [H].
(Of course, Hopf’s result predates the general Gauss-Bonnet Formula due to Allendoerfer
and Weil [AW].) Hopf’s formula is the following.

Theorem 5.2.1 (Hopf). Suppose X2™ is a hyperbolic convex polytope of dimension 2m.
Then
(=1)™20(X) = £(P(X)).

Remarks 5.2.3. (1) The analogous formula for X?™ spherical or Euclidean was proved
by Poincaré in 1905, [P]. It states that if X is Euclidean then (P (X)) = 0 (this also holds
in odd dimensions), while if X2™ is a spherical cell, then 2a(X) = k(P(X)).

(2) In writing the quantity (P (X)), we have dualized twice: once in forming P(X)
and a second time in taking the normalized “exterior angles” a*(o). Thus, k(P (X)) could
have been written as an alternating sum of interior angles of X (and this is the actual form
of the formulas of Poincaré and Hopf).

(3) If we subdivide X?™ into 2m-dimensional cells, X, ..., Xi, then a formal calcu-
lation shows that k(P(X)) = > k(P(X;)). (Compare Theorem IIT in [AW].) The left-hand
side of Hopf’s formula is also clearly additive with respect to subdivisions. Thus, it suffices
to prove the formula in the case of a simplex.

(4) The formula also holds when X is a convex polyhedral set of finite volume (use
a limit argument). In this case it does not matter whether we write the right-hand side as
k(P(X)) or as k(P(X)). The reason is that for any cusp point , k(Py) = 0 (by Poincaré’s
result) and hence, x(Cone(P,)) = 0 (since x is multiplicative for orthogonal joins, by
[CMS], formula (3.2.9). Thus, x(P(X)) = s(P(X)).

Since v(X?™) > 0, we have the following corollary.

Corollary 5.2.3. Let X?™ be a convex polyhedral set of finite volume in H*™ (e.g., a
convez polytope). Then Conjecture 5.1.2 holds for P(X). In fact, we have a strict inequality
(—=1)™k(P(X)) > 0.

6. Spaces of geometric structures.
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6.1 The space of piecewise spherical structures. Let K be a finite simplicial
complex. Denote by K the set of i-simplices in K. A piecewise spherical structure
on K is determined by a function £ : K() — (0,7), written as e — £, giving the edge
lengths. Conversely, such a function comes from a piecewise spherical structure on K if
for each simplex ¢ in K of dimension > 1 there is a spherical simplex with edge lengths
as prescribed by Z£.

This last condition is equivalent to a simple condition using linear algebra, which we
shall now describe. Given £ : K() — (0,7) define a new function z : K(*¥ — (—1,1) by
#e = cos(£,). Clearly, £ and = determine one another. Suppose that o € K™, m > 1, and
that {v1,---,Um41} is the vertex set of o. Given an arbitrary function z : K — (=1, 1),
define a (m + 1) x (m + 1) symmetric matrix c,(x) by

1 L=
Tomy; , LF ]

Co(@)ij = {

where v;v; denotes the edge from v; to v;. Then there exists a spherical m-simplex with
edge lengths as prescribed by z if and only if ¢, (z) is positive definite. (If o can actually
be realized as a m-simplex in S™, then vy, ..., v,, 1 are unit vectors in R™*! and ¢, (z) is
the matrix of inner products (v;,v;).)

The space PSk of piecewise spherical structures on K is defined to be the subset of

the Euclidean space RK'" consisting of all functions z : K1) — (—1,1) such that ¢, (z) is
positive definite for all simplices o in K (of dimension > 1).

Lemma 6.1.1 PSg is a conver open subset of RE

Proof: That the ¢, (z) be positive definite is clearly an open condition. A convex linear

combination of positive definite matrices is positive definite; hence, PSk is a convex subset
1)

of RE™. O

Given x € PSk, let K, denote the space K with the piecewise spherical structure
determined by z. Similarly, if ¢ is a simplex in K, then o, denotes the corresponding
spherical simplex determined by x.

A point x € PSk is extra large if the following two conditions hold:
a) sys (Kz) > 2w
b) sys (Lk(o4, Kz)) > 27 for all simplices o in K.

(See §1.6 for the definition of “sys”.) Let E Lk denote the set of those z in PSg which
are extra large.

Moussong showed in [M, Lemma 5.11] that the function sys : PSkg — R defined by
x +— sys (K) is lower semicontinuous. This gives the following result.

Lemma 6.1.2 (Moussong) ELk is an open subset of PSk.

If X is a convex polyhedral set in hyperbolic space, without cusp points, then our
main result (Theorem 4.1.1) asserts that P(X) is extra large. Hence, whenever K is
combinatorially equivalent to the polar dual of such an X, the space F Lk is nonempty.
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6.2 Spaces of polytopes. Suppose that () is some n-dimensional convex simplicial
polytope. (Simplicial means that each proper face of @) is a simplex). Since @ is simplicial,
its dual polytope Q* is called simple. We are only interested in ) and Q* up to combi-
natorial equivalence. The boundary complex of () is a simplicial complex which we shall
denote by K. (Thus, K is PL-homeomorphic to S?~1.)

Let Hg (respectively, Sk or Ex) denote the space of isometry classes of hyperbolic
(respectively, spherical or Euclidean) polytopes which are combinatorially equivalent to
Q*. The topology on these spaces will be described in the course of the proof of the next
lemma.

Lemma 6.2.1 The spaces Hi, Sk, and Ex are naturally smooth manifolds of dimension

nfo — (";1 ) , where fy denotes the number of vertices in K.

Proof: Suppose that X is a convex n-cell in H* combinatorially isomorphic to Q*. For each
vertex v; of K we have a codimension one face of X and a outward pointing unit normal u;
in the unit pseudo-sphere S;(R™!). Thus, X determines an fo-tuple u : K — S;(R™1)
of vectors in S;(R™1).

A small neighborhood of u in [Sy(R™!)]/ will determine a polytope of the same
combinatorial type (since X is simple). Since dimS;(R™!) = n, this shows that the space
of such X is a manifold of dimension nfy. The isometry group O(n, 1) of H" acts properly

and freely on this manifold and Hg is the quotient manifold. Since dim O(n,1) = (";1 ),

2
Remark Actually Hg should be called the space of “marked” hyperbolic polytopes of
the same combinatorial type as Q* (since we have prescribed an identification of the
codimension one faces of X with the vertices of K). The finite group G of combinatorial
symmetries of Q* acts on Hg and Hg /G is the “unmarked” space. Similar remarks apply
to S K and F K-

If X represents an element of Hy (respectively, Sk or Ek), then P(X) represents
an element of PSk. This defines a map P : Hx — PSk (respectively, P : Sx — PSk
or P: Ex — PSk). The following result for n = 3 is proved as Corollary 4.6 of [RH].
Another 3-dimensional result, Theorem 4.1 of [RH], immediately implies that both results
hold in all dimensions > 3.

we conclude that dim Hx = nfo— ( ntl ) . The analysis for Sk and Ek is entirely similar. []

Proposition 6.2.2 ([RH|) For n > 3, the maps P : Hx — PSk and P : Sx — PSk are
embeddings.

The map P : Ex — PSk is not an embedding. To see this, first note that the
elements of P(E) are all isometric to the round sphere S?~1. Thus, the points in P(Ex)
may be regarded as geodesic triangulations of S*~! of the combinatorial type of K. Con-
versely, any such geodesic triangulation is clearly in P(Eg). (If {vi,...,vx} C S*1is
the vertex set of such a triangulation, then the Euclidean n-cell X defined as {z € R" |
(z,v;) < 1,1 <1i < k} gives back the geodesic triangulation as its polar dual.) Arguing as
in Lemma 6.2.1, we see that P(Eg) is a submanifold of dimension (n— 1) fo — (%). Hence,
the fiber of P : Ex — PSk has dimension fy — n.
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Lemma 6.2.3 P(EK) C P(HK) N P(SK)

Proof: Realize a point in P(Eg) as a geodesic triangulation of S*~!. Identify S*~! with a
codimension one sphere in the unit pseudo-sphere ST(R™!), e.g., let z € H" and identify
S"~1 with the intersection of zt and ST(R™!). Push the vertices of the triangulation
slightly into the “half-pseudo-sphere” defined by v-z < 0. If uq, ..., ux are the resulting unit
vectors in ST(R™1!), then the hyperbolic polytope X defined by X = {w € H* | u; -w < 0}
has P(X) combinatorially equivalent to K and close to the original triangulation of S™~1.
Thus, P(Ex) C P(Hg). The proof that P(Ex) C P(Sk) is similar, with the pseudo-
sphere ST(R™!) replaced by the unit sphere S™ in R**1. O

Thus, when K is the boundary complex of a simplicial polytope, the following picture
has emerged. The space PSg of piecewise spherical structures on K is diffeomorphic to
Euclidean space of dimension f7, where f; denotes the number of edges in K. PS i contains

submanifolds P(Hk) and P(Sk) each of dimension nfo — ("‘2"1 ) The fact that P(Hg)
is nonempty means that the open subset ELg of extra large structures is nonempty. The

fact that P(Ex) C P(Hg) means that any geodesic triangulation of the round sphere can
be deformed to an extra large piecewise spherical structure.

An interesting problem is to understand the topology of FLg. For example, when
is FL g connected?

6.3 The Lower Bound Theorem. Since P(Hg) is a submanifold of PSk, we
have
dim P(Hg) < dimPSk.

In the combinatorial theory of convex polytopes, this fact is known as “the Lower Bound
Theorem” which we state below.

Theorem 6.3.1 (Barnette [Ba]) Let QQ be an n-dimensional simplicial polytope, n > 3,
with fo vertices and f, edges. Then

fi 2 nfo— (n;rl)-

For n > 3, the above inequality is strict unless @) is a so called “stacked polytope”.
This means that K (= Q) is obtained from the boundary of an n-simplex via subdivisions
which involve adjoining barycenters of (n-1)-simplicies. Thus, if n > 3 and @ is not stacked,
then P(Hg) is a proper subset of FLk.

Some explicit examples of elements in FLg — P(Hg) are given in [M]. One such
class of examples occurs when Q* is the product of two 2-simplicies (so that K is the join
of two triangles). Realize Q* as the Cartesian product of two 2-simplicies in H? with acute
angles. Its polar dual is a piecewise spherical structure  on K which is the orthogonal join
of two large triangles. It follows that z is large. Consider the 6 x 6 matrix c¢(x) obtained
by taking inner products of the 6 unit vectors in R%! x R?! which are normal to the
codimension-one faces of @*. Thus, c(z) has signature (4,2). (Alternately described, c¢(z)
is the matrix of cosines of edge lengths in the piecewise spherical structure x.) There are
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9 edges of K of length /2. If we deform z to ' by slightly increasing these edge lengths,
then it follows from Moussongs Theorem that z’ is extra large. On the other hand, for
small deformations, the matrix c¢(z’) will still have signature (4,2). Hence, z’ cannot arise
as a polar dual of a hyperbolic polyhedra (since this would require ¢(z') to be of signature

(5,1)).

[CD1]
[CD2]

[CMS]
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