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Abstract. We study the barycentric straightening of simplices in higher rank irreducible symmet-
ric spaces of non-compact type. We show that, for an n-dimensional symmetric space of rank r ≥ 2
(excluding SL(3,R)/SO(3) and SL(4,R)/SO(4)), the p-Jacobian has uniformly bounded norm,
provided p ≥ n−r+2. As a consequence, for the corresponding non-compact, connected, semisim-
ple real Lie group G, in degrees p ≥ n − r + 2, every degree p cohomology class has a bounded
representative. This answers Dupont’s problem in small codimension. We also give examples of
symmetric spaces where the barycentrically straightened simplices of dimension n − r have un-
bounded volume, showing that the range in which we obtain boundedness of the p-Jacobian is very
close to optimal.
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1. Introduction

When studying the bounded cohomology of groups, an important theme is the comparison
map from bounded cohomology to ordinary cohomology. In the context of non-compact,
connected, semisimple Lie groups, Dupont raised the question of whether this comparison
map is always surjective [10] (see also Monod’s ICM address [17, Problem A′], and [4,
Conjecture 18.1]). Properties of these Lie groupsG are closely related to properties of the
corresponding non-positively curved symmetric spaceX = G/K . Geometric methods on
the space X can often be used to recover information about the Lie group G. This philos-
ophy was used by Lafont and Schmidt [16] to show that the comparison map is surjective
in degree dim(X). In the present paper, we extend this result to smaller degrees, and show:

Main Theorem. Let X = G/K be an n-dimensional irreducible symmetric space
of non-compact type of rank r = rank(X) ≥ 2, excluding SL(3,R)/SO(3) and
SL(4,R)/SO(4), and 0 a cocompact torsion-free lattice inG. Then the comparison maps
η : H ∗c,b(G,R)→ H ∗c (G,R) and η′ : H ∗b (0,R)→ H ∗(0,R) are both surjective in all
degrees ∗ ≥ n− r + 2.
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The idea of the proof is similar to that in [16]. One defines a barycentric straightening
of simplices in X, and uses it to construct bounded cocycles representing any given co-
homology class. These cocycles are obtained by integrating a suitable differential form
on various straightened simplices. Since the differential form has bounded norm, the key
step is to show that the Jacobian of the straightened simplex is uniformly controlled (in-
dependent of the simplex or the point in it). Showing this later property requires some
work, and is done in Sections 3 and 4 (following the general approach of Connell and
Farb [6], [7]). The proof of the Main Theorem is then given in Section 5.

Remark. For various families of higher rank symmetric spaces, the dimension grows
roughly quadratically in the rank. Our Main Theorem thus answers Dupont’s question for
continuous cohomology classes in degree close to the dimension of the symmetric space.
Prior results on this problem include some work on the degree two case (Domic and
Toledo [8], as well as Clerk and Ørsted [5]) as well as the top-degree case (Lafont and
Schmidt [16]). In his seminal paper on the subject, Gromov showed that characteristic
classes of flat bundles are bounded classes [13]. Using Gromov’s result, Hartnick and
Ott [14] were able to obtain complete answers for several specific classes of Lie groups
(e.g. of Hermitian type, as well as some other cases).

The preprint [15] of Inkang Kim and Sungwoon Kim uses similar methods to obtain
uniform control of the Jacobian in codimension one. Their paper also contains a wealth
of other applications, which we have not pursued in the present paper. On the other hand,
their results do not produce any new bounded cohomology classes (since in the higher
rank case, the codimension one continuous cohomology always vanishes).

2. Preliminaries

2.1. Symmetric spaces of non-compact type

In this section, we give a quick review of some results on symmetric spaces of non-
compact type; for more details, we refer the reader to Eberlein’s book [11]. LetX = G/K
be a symmetric space of non-compact type, where G is semisimple and K is a maximal
compact subgroup ofG. GeometricallyG can be identified with Isom0(X), the connected
component of the isometry group of X that contains the identity, and K = Stabp(G) for
some p ∈ X. Fixing a basepoint p ∈ X, we have a Cartan decomposition g = k+p of the
Lie algebra g of G, where k is the Lie algebra of K , and p can be isometrically identified
with TpX using the Killing form. Let a ⊆ p be a maximal abelian subalgebra of p. We
can identify a with the tangent space of a flat F at p—that is, an isometrically embedded
Euclidean space Rr ⊆ X, where r is the rank of X. Given any vector v ∈ TpX, there
exists a flat F that is tangent to v. We say v is regular if such a flat is unique, and singular
otherwise.

Now let v ∈ p be a regular vector. This direction defines a point v(∞) on the visual
boundary ∂X of X. The group G acts on ∂X. The orbit set Gv(∞) = ∂FX ⊆ ∂X is
called a Furstenberg boundary of X. Since both G and K act transitively on ∂FX, ∂FX
is compact. In fact, a point stabilizer for the G-action on ∂FX is a minimal parabolic
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subgroup P , so we can also identify ∂FX with the quotientG/P . In the rest of this paper,
we will use a specific realization of the Furstenberg boundary: the one given by choosing
the regular vector v to point towards the barycenter of a Weyl chamber in the flat.

For each element α in the dual space a∗ of a, we define gα = {Y ∈ g | [A, Y ] =
α(A)Y for all A ∈ a}. We call α a root if gα is non-trivial, and in such case we call gα
the root space of α. We denote by 3 the finite set of roots, and we have the root space
decomposition

g = g0 ⊕
⊕
α∈3

gα

where g0 = {Y ∈ g | [A, Y ] = 0 for all A ∈ a}, and the direct sum is orthogonal with
respect to the canonical inner product on g.

Let θ be the Cartan involution at the point p. Then θ is an involution on g which
acts by I on k and −I on p, hence it preserves the Lie bracket. We can define kα =
(I + θ)gα ⊆ k and pα = (I − θ)gα ⊆ p, with the following properties:

Proposition 2.1 ([11, Proposition 2.14.2]).

(1) I + θ : gα → kα and I − θ : gα → pα are linear isomorphisms. Hence dim(kα) =
dim(gα) = dim(pα).

(2) kα = k−α and pα = p−α for all α ∈ 3, and kα ⊕ pα = gα ⊕ g−α .
(3) k = k0 ⊕

⊕
α∈3+ kα and p = a⊕

⊕
α∈3+ pα , where k0 = g0 ∩ k, and 3+ is the set

of positive roots.

Remark. Since pα = (gα+ g−α)∩ p, the direct sum of p in (3) of Proposition 2.1 is also
orthogonal with respect to the canonical inner product on p.

We now analyze the adjoint action of k on a. Let u ∈ kα and v ∈ a, we can write u as
(I + θ)w where w ∈ gα , hence

[u, v] = [(I + θ)w, v] = [w, v] + [θw, v] = −α(v)w + θ [w,−v]

= −α(v)w + θ(α(v)w) = −α(v)(I − θ)(w) = −α(v)(I − θ)(I + θ)−1u.

This gives the following proposition.

Proposition 2.2. Let α be a root. The adjoint action of kα on a is given by

[u, v] = −α(v)(I − θ)(I + θ)−1u

for any u ∈ kα and v ∈ a. In particular, kα maps v into pα .

Assume v ∈ a ⊆ TxX is inside a fixed flat through x, and let Kv be the stabilizer of v
inK . Then the spaceKva is the tangent space of the union of all flats that goes through v.
Equivalently, it is the union of all vectors that are parallel to v, hence it can be identified
with a⊕

⊕
α∈3+, α(v)=0 pα . In particular, if v is regular, then the space is just a. Moreover,

if we denote by kv the Lie algebra of Kv , then kv = {u ∈ k | [u, v] = 0} = k0 ⊕⊕
α∈3+, α(v)=0 kα .
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2.2. Patterson–Sullivan measures

Let X = G/K be a symmetric space of non-compact type, and 0 be a cocompact lat-
tice in G. Albuquerque [1] generalized the construction of Patterson–Sullivan to higher
rank symmetric spaces. He showed that to each x ∈ X, we can assign a probability mea-
sure µ(x) that is G-equivariant and is fully supported on the Furstenberg boundary ∂FX.
Moreover, for x, y ∈ X and θ ∈ ∂FX, the Radon–Nikodym derivative is given by

dµ(x)

dµ(y)
(θ) = ehB(x,y,θ)

where h is the volume entropy of X/0, and B(x, y, θ) is the Busemann function on X.
Recall that, in a non-positively curved space X, the Busemann function B is defined by

B(x, y, θ) = lim
t→∞

(dX(y, γθ (t))− t)

where γθ is the unique geodesic ray from x to θ . Fixing a basepoint O in X, we shorten
B(O, y, θ) to just B(y, θ). Notice that for fixed θ ∈ ∂FX the Busemann function is
convex on X, and by integrating on ∂FX, we obtain, for any probability measure ν that is
fully supported on the Furstenberg boundary ∂FX, a strictly convex function

x 7→

∫
∂FX

B(x, θ) dν(θ)

(see [6, Proposition 3.1] for a proof of this last statement).
Hence we can define the barycenter bar(ν) of ν to be the unique point in X where the

function attains its minimum. It is clear that this definition is independent of the choice of
basepoint O.

2.3. Barycenter method

In this section, we discuss the barycentric straightening introduced by Lafont and Schmidt
[16] (based on the barycenter method originally developed by Besson, Courtois, and Gal-
lot [3]). LetX = G/K be a symmetric space of non-compact type, and 0 be a cocompact
lattice in G. We denote by 1ks the standard spherical k-simplex in the Euclidean space,
that is,

1ks =
{
(a1, . . . , ak+1)

∣∣∣ ai ≥ 0,
k+1∑
i=1

a2
i = 1

}
⊆ Rk+1,

with the induced Riemannian metric from Rk+1, and with ordered vertices (e1, . . . , ek+1).
Given any singular k-simplex f : 1ks → X, with ordered vertices V = (x1, . . . , xk+1) =

(f (e1), . . . , f (ek+1)), we define the k-straightened simplex

stk(f ) : 1ks → X, stk(f )(a1, . . . , ak+1) := bar
(k+1∑
i=1

a2
i µ(xi)

)
,

where µ(xi) is the Patterson–Sullivan measure at xi . We notice that stk(f ) is determined
by the (ordered) vertex set V , and we denote stk(f )(δ) by stV (δ), for δ ∈ 1ks .
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Observe that the map stk(f ) is C1, since one can view it as the restriction of the
C1-map stn(f ) to a k-dimensional subspace (see e.g. [16, Property (3)]). For any δ =∑k+1
i=1 aiei ∈ 1

k
s , stk(f )(δ) is defined to be the unique point where the function

x 7→

∫
∂FX

B(x, θ) d
(k+1∑
i=1

a2
i µ(xi)

)
(θ)

is minimized. Hence, by differentiating at that point, we get the 1-form equation∫
∂FX

dB(stV (δ),θ)(·) d
(k+1∑
i=1

a2
i µ(xi)

)
(θ) ≡ 0,

which holds identically on the tangent space TstV (δ)X. Differentiating in a direction u ∈
Tδ1

k
s in the source, one obtains the 2-form equation

k+1∑
i=1

2ai〈u, ei〉δ

∫
∂FX

dB(stV (δ),θ)(v) d(µ(xi))(θ)

+

∫
∂FX

DdB(stV (δ),θ)(Dδ(stV )(u), v) d
(k+1∑
i=1

a2
i µ(xi)

)
(θ) ≡ 0, (2.1)

which holds for every u ∈ Tδ1ks and v ∈ TstV (δ)X. Now we define two positive semi-
definite quadratic forms Q1 and Q2 on TstV (δ)X:

Q1(v, v) =

∫
∂FX

dB2
(stV (δ),θ)(v) d

(k+1∑
i=1

a2
i µ(xi)

)
(θ),

Q2(v, v) =

∫
∂FX

DdB(stV (δ),θ)(v, v) d
(k+1∑
i=1

a2
i µ(xi)

)
(θ).

In fact, Q2 is positive definite since
∑k+1
i=1 a

2
i µ(xi) is fully supported on ∂FX (see [6,

Section 4]). From (2.1) we obtain, for u ∈ Tδ1ks a unit vector and v ∈ TstV (δ)X arbitrary,

|Q2(Dδ(stV )(u), v)| =
∣∣∣∣− k+1∑

i=1

2ai〈u, ei〉δ

∫
∂FX

dB(stV (δ),θ)(v) d(µ(xi))(θ)

∣∣∣∣
≤

(k+1∑
i=1

〈u, ei〉
2
δ

)1/2
(k+1∑
i=1

4a2
i

(∫
∂FX

dB(stV (δ),θ)(v) d(µ(xi))(θ)

)2)1/2

≤ 2
(k+1∑
i=1

a2
i

∫
∂FX

dB2
(stV (δ),θ)(v) d(µ(xi))(θ)

∫
∂FX

1 d(µ(xi))
)1/2

= 2Q1(v, v)
1/2 (2.2)

via two applications of the Cauchy–Schwarz inequality.



386 Jean-François Lafont, Shi Wang

We restrict these two quadratic forms to the subspace S = Im(Dδ(stV )) ⊆ TstV (δ)X,
and denote the corresponding k-dimensional endomorphisms by Hδ and Kδ , that is,

Q1(v, v) = 〈Hδ(v), v〉stV (δ), Q2(v, v) = 〈Kδ(v), v〉stV (δ),

for all v ∈ S.
For points δ ∈ 1ks where stV is non-degenerate, we now pick orthonormal bases

{u1, . . . , uk} in Tδ1ks and {v1, . . . , vk} in S ⊆ TstV (δ)X. We choose these so that {vi}ki=1
are eigenvectors ofHδ , and {u1, . . . , uk} is the resulting basis obtained by applying the or-
thonormalization process to the collection {(Kδ ◦Dδ(stV ))−1(vi)}

k
i=1 of pullback vectors.

So we obtain

det(Q2|S) · |Jacδ(stV )| = |det(Kδ) · Jacδ(stV )| = |det(〈Kδ ◦Dδ(stV )(ui), vj 〉)|.

By the choice of bases, the matrix (〈Kδ ◦Dδ(stV )(ui), vj 〉) is upper triangular, so we have

|det(〈Kδ ◦Dδ(stV )(ui), vj 〉)| =
∣∣∣ k∏
i=1

〈Kδ ◦Dδ(stV )(ui), vi〉
∣∣∣

≤

k∏
i=1

2〈Hδ(vi), vi〉1/2 = 2k det(Hδ)1/2 = 2k det(Q1|S)
1/2

where the middle inequality is obtained via (2.2). Hence

|Jacδ(stV )| ≤ 2k ·
det(Q1|S)

1/2

det(Q2|S)
.

We summarize the above discussion in the following proposition.

Proposition 2.3. Let Q1, Q2 be the positive semi-definite quadratic forms defined as
above (note Q2 is actually positive definite). Assume there exists a constant C, only de-
pending on X, such that

det(Q1|S)
1/2

det(Q2|S)
≤ C

for any k-dimensional subspace S ⊆ TstV (δ)X. Then the quantity |Jac(stV )(δ)| is univer-
sally bounded, independently of the choice of the (k + 1)-tuple of points V ⊂ X, and of
the point δ ∈ 1ks .

3. Jacobian estimate

Let X = G/K be an irreducible symmetric space of non-compact type. We fix an arbi-
trary point x ∈ X and identify TxX with p. Let µ be a probability measure that is fully
supported on the Furstenberg boundary ∂FX. Using the same notation as in Section 2.3,
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we define a positive semi-definite quadratic form Q1 and a positive definite quadratic
form Q2 on TxX by

Q1(v, v) =

∫
∂FX

dB2
(x,θ)(v) dµ(θ), Q2(v, v) =

∫
∂FX

DdB(x,θ)(v, v) dµ(θ),

for v ∈ TxX. We will follow the techniques of Connell and Farb [6], [7], and show the
following theorem.

Theorem 3.1. Let X be an irreducible symmetric space of non-compact type excluding
SL(3,R)/SO(3) and SL(4,R)/SO(4), and let r = rank(X) ≥ 2. If n = dim(X), then
there exists a constant C, only depending on X, such that

det(Q1|S)
1/2

det(Q2|S)
≤ C

for any subspace S ⊆ TxX with n− r + 2 ≤ dim(S) ≤ n.

In view of Proposition 2.3, this implies that the barycentrically straightened simplices of
dimension ≥ n − r + 2 have uniformly controlled Jacobians. The reader whose primary
interest is bounded cohomology, and who is willing to take Theorem 3.1 on faith, can skip
ahead to Section 5 for the proof of the Main Theorem.

The rest of this section will be devoted to the proof of Theorem 3.1. In Section 3.1,
we explain some simplifications of the quadratic forms, allowing us to give geometric
interpretations for the quantities involved in Theorem 3.1. In Section 3.2, we formulate
the “weak eigenvalue matching” Theorem 3.3 (which will be established in Section 4).
Finally, in Section 3.3, we will deduce Theorem 3.1 from Theorem 3.3.

3.1. Simplifying quadratic forms

Following [6, Section 4.3], we fix a flat F going through x, and denote the tangent space
by a, so dim(a) = r is the rank of X. By abuse of notation, we identify a with F . Choose
an orthonormal basis {ei} in TxX such that {e1, . . . , er} spans F , and assume e1 is regular
so that e1(∞) ∈ ∂FX. Then Q1, Q2 can be expressed in the following matrix forms:

Q1 =

∫
∂FX

Oθ

(
1 0
0 0(n−1)

)
O∗θ dµ(θ), Q2 =

∫
∂FX

Oθ

(
0(r) 0
0 D

(n−r)
λ

)
O∗θ dµ(θ),

where Dλ = diag(λ1, . . . , λ(n−r)), and Oθ is the orthogonal matrix corresponding to
the unique element in K that sends e1 to v(x,θ), the direction at x pointing towards θ .
Moreover, there exists a constant c > 0 that only depends on X, so that λi ≥ c for
1 ≤ i ≤ n− r . For more details, we refer the reader to the original [6].

Denote by Q̄2 the quadratic form given by

Q̄2 =

∫
∂FX

Oθ

(
0(r) 0
0 I (n−r)

)
O∗θ dµ(θ).
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Then the difference Q2 − cQ̄2 is positive semi-definite, hence det(Q2|S) ≥ det(cQ̄2|S).
So in order to show Theorem 3.1, it suffices to assume Q2 has the matrix form∫

∂FX

Oθ

(
0(r) 0
0 I (n−r)

)
O∗θ dµ(θ).

Given any v ∈ TxX, we have the following geometric estimates on the value of the
quadratic form:

Q1(v, v) =

∫
∂FX

vtOθ

(
1 0
0 0(n−1)

)
O∗θ v dµ(θ) =

∫
∂FX

〈O∗θ v, e1〉
2 dµ(θ)

≤

∫
∂FX

r∑
i=1

〈O∗θ v, ei〉
2 dµ(θ) =

∫
∂FX

sin2(∠(O∗θ v,F
⊥)) dµ(θ). (3.1)

Roughly speaking, Q1(v, v) is bounded above by the weighted average of the time the
K-orbit spends away from F⊥. Similarly we can estimate

Q2(v, v) =

∫
∂FX

vtOθ

(
0(r) 0
0 I (n−r)

)
O∗θ v dµ(θ) =

∫
∂FX

n∑
i=r+1

〈O∗θ v, ei〉
2 dµ(θ)

=

∫
∂FX

sin2(∠(O∗θ v,F)) dµ(θ). (3.2)

So again,Q2(v, v) roughly measures the weighted average of the time theK-orbit spends
away from F .

3.2. Eigenvalue matching

In their original paper, Connell and Farb showed an eigenvalue matching theorem [6,
Theorem 4.4], in order to get the Jacobian estimate in top dimension. For the small eigen-
values ofQ2 (there are at most r of them), they want to find twice as many comparatively
small eigenvalues of Q1. Then by taking the product of those eigenvalues, they obtain
a uniform upper bound on the ratio det(Q1)

1/2/det(Q2), which yields an upper bound
on the Jacobian. However, as was pointed out by Inkang Kim and Sungwoon Kim, there
was a mistake in the proof. Connell and Farb fixed the gap by showing a weak eigen-
value matching theorem [7, Theorem 0.1], which was sufficient to imply the Jacobian
inequality.

We generalize this method and show that in fact we can find r − 2 additional small
eigenvalues of Q1 that are bounded by a universal constant times the smallest eigenvalue
of Q2. This allows for the Jacobian inequality to be maintained when we pass down to a
subspace of codimension at most r − 2. We now state our version of the weak eigenvalue
matching theorem.

Definition 3.2. We call a set {w1, . . . , wk} of unit vectors a δ-orthonormal k-frame if
〈wi, wj 〉 < δ for all 1 ≤ i < j ≤ k.
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Theorem 3.3 (Weak eigenvalue matching). Let X be an irreducible symmetric space
of non-compact type such that r = rank(X) ≥ 2, excluding SL(3,R)/SO(3) and
SL(4,R)/SO(4). There exist constants C′, C, δ, only depending on X, such that the fol-
lowing holds. Given any ε < δ, and any orthonormal k-frame {v1, . . . , vk} in TxX with
k ≤ r , whose span V satisfies ∠(V ,F) ≤ ε, there is a C′ε-orthonormal (2k + r − 2)-
frame given by vectors {v′1, v

′′

1 , . . . , v
(r)
1 , v′2, v

′′

2 , . . . , v
′

k, v
′′

k } such that for i = 1, . . . , k
and j = 1, . . . , r , we have

∠(hv′i,F
⊥) ≤ C∠(hvi,F), ∠(hv′′i ,F

⊥) ≤ C∠(hvi,F),

∠(hv(j)1 ,F⊥) ≤ C∠(hv1,F),

for all h ∈ K , where hv is the linear action of h ∈ K on v ∈ TxX ' p.

The proof of Theorem 3.3 is postponed to Section 4.

3.3. Proof of Theorem 3.1

In this section, we will prove Theorem 3.1 using Theorem 3.3. For the proof, we will need
the following three elementary results from linear algebra.

Lemma 3.4. Let Q be a positive definite quadratic form on some Euclidean space V
of dimension n, with eigenvalues λ1 ≤ · · · ≤ λn. Let W ⊆ V be a subspace of codi-
mension l, and let µ1 ≤ · · · ≤ µn−l be the eigenvalues of Q restricted to W . Then
λi ≤ µi ≤ λi+l for i = 1, . . . , n− l.

Proof. Assume that, on the contrary, µi > λi+l for some i. Take the subspace W0 ⊆ W

spanned by the eigenvectors corresponding to µi, µi+1, . . . , µn−l ; clearly dim(W0) =

n− l− i+1. So for any non-zero vector v ∈ W0, we haveQ(v, v) ≥ µi‖v‖2 > λi+l‖v‖
2.

However, if we denote by V0 ⊆ V the (i + l)-dimensional subspace spanned by the
eigenvectors corresponding to λ1, . . . , λi+l , we haveQ(v, v) ≤ λi+l‖v‖2 for any v ∈ V0.
Now dim(W0∩V0) ≥ dim(W0)+dim(V0)−dim(V ) = 1 impliesW0∩V0 is non-trivial, so
we obtain a contradiction. This establishes µi ≤ λi+l . A similar argument shows λi ≤ µi .

ut

Lemma 3.5. Let Q be a positive definite quadratic form on some Euclidean space V
of dimension n, with eigenvalues λ1 ≤ · · · ≤ λn. If {v1, . . . , vn} is any orthonormal
frame in V , ordered so that Q(v1, v1) ≤ · · · ≤ Q(vn, vn), then Q(vi, vi) ≥ λi/n for
i = 1, . . . , n.

Proof. We use induction on the dimension of V . The statement is clear when n = 1,
so assume it holds for dim(V ) = n − 1. Now if dim(V ) = n, we restrict the quadratic
form Q to the (n− 1)-dimensional subspace W spanned by v1, . . . , vn−1, and denote the
eigenvalues of Q|W by µ1 ≤ · · · ≤ µn−1. By the induction hypothesis and Lemma 3.4,
we obtain

Q(vi, vi) ≥
µi

n− 1
≥

λi

n− 1
≥
λi

n
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for 1 ≤ i ≤ n− 1. Finally, for the last vector, we have

Q(vn, vn) ≥
Q(v1, v1)+ · · · +Q(vn, vn)

n
=
tr(Q)

n
=
λ1 + · · · + λn

n
≥
λn

n
. ut

Lemma 3.6. Let Q be a positive definite quadratic form on some Euclidean space V
of dimension n. If {v1, . . . , vk} is any τ -orthonormal k-frame for τ sufficiently small
(only depending on n), ordered so that Q(v1, v1) ≤ · · · ≤ Q(vk, vk), then there is an
orthonormal k-frame {u1, . . . , uk} such that Q(ui, ui) ≤ 2Q(vi, vi).

Proof. The Gram–Schmidt process applied to {v1, . . . , vk} yields an orthonormal k-frame
{u1, . . . , uk}. Notice {v1, . . . , vk} is τ -orthonormal, so ui = vi+O(τ)v1+· · ·+O(τ)vi ,
where O(τ) denotes a number that has universally bounded ratio to τ (with the bound
only depending on n). This implies

Q(ui, ui) = Q(vi, vi)+O(τ)
∑

1≤s≤t≤i

Q(vs, vt ).

Since |Q(vs, vt )| ≤
√
Q(vs, vs)Q(vt , vt ) ≤ Q(vi, vi), we obtain

Q(ui, ui) ≤ Q(vi, vi)+O(τ)Q(vi, vi) ≤ 2Q(vi, vi)

for τ sufficiently small. ut

Proof of Theorem 3.1. As was shown in [6, Section 4.4], for any fixed ε0 ≤ 1/(r+1) there
are at most r eigenvalues ofQ2 that are smaller than ε0 (we will choose ε0 in the course of
the proof). By Lemma 3.4 the same is true for Q2|S . We arrange these small eigenvalues
in the order L1 ≤ · · · ≤ Lk , where k ≤ r . Observe that if no such eigenvalue exists, then
by Lemma 3.4, det(Q2|S) is uniformly bounded below, and the conclusion holds (since
the eigenvalues of Q1|S are all ≤ 1). So we will henceforth assume k ≥ 1. We denote the
corresponding unit eigenvectors by v1, . . . , vk (so that vi has eigenvalue Li). Although
V = span{v1, . . . , vk} might not have small angle with F , it is shown in [7, Section 3]
that there is a k0 ∈ K such that ∠(k0vi,F) ≤ 2ε1/4

0 for each i.
Let ε be a constant so small that ε < δ, where δ is from Theorem 3.3, and also

τ := C′ε satisfies the condition of Lemma 3.6 (where C′ is obtained from Theorem 3.3).
Hence the choice of ε only depends on X. We now make a choice of ε0 such that
2ε1/4

0 < ε, and hence ∠(k0V,F) < ε. (Note again the choice of ε0 only depends on X.)
Apply Theorem 3.3 to the frame {k0v1, . . . , k0vk}, and translate the resulting

C′ε-orthonormal frame by k−1
0 . This gives us a C′ε-orthonormal (2k + r − 2)-frame

{v′1, v
′′

1 , . . . , v
(r)
1 , v′2, v

′′

2 , . . . , v
′

k, v
′′

k }, such that for i = 1, . . . , k and j = 1, . . . , r , we
have

∠(hv′i,F
⊥) ≤ C∠(hvi,F), ∠(hv′′i ,F

⊥) ≤ C∠(hvi,F),

∠(hv(j)1 ,F⊥) ≤ C∠(hv1,F),

for all h ∈ K (note that we have absorbed the k0-translation into h).
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Note that ∠(hv′i,F
⊥)≤C∠(hvi,F) implies sin2(∠(hv′i,F

⊥))≤C0 sin2(∠(hvi,F))
for some C0 depending on C. For convenience, we still use C for this new constant.
Hence,

Q1(v
′

i, v
′

i) ≤

∫
∂FX

sin2(∠(O∗θ v
′

i,F
⊥)) dµ(θ)

≤ C

∫
∂FX

sin2(∠(O∗θ vi,F)) dµ(θ) = CQ2(vi, vi) = CLi .

An identical estimate gives us Q1(v
′′

i , v
′′

i ) ≤ CLi , and Q1(v
(j)

1 , v
(j)

1 ) ≤ CL1.

We rearrange theC′ε-orthonormal (2k+r−2)-frame as {u′1, u
′′

1, . . . , u
(r)
1 , u′2, u

′′

2, . . . ,

u′k, u
′′

k} so that it has increasing order when Q1 is applied. Then the inequalities still hold
for this new frame:

Q1(u
′

i, u
′

i) ≤ CLi, Q1(u
′′

i , u
′′

i ) ≤ CLi, Q1(u
(j)

1 , u
(j)

1 ) ≤ CL1.

Since the choice of ε makes C′ε satisfy the condition of Lemma 3.6, we apply the
lemma to this C′ε-orthonormal frame. This gives us an orthonormal (2k + r − 2)-frame

{u′1, u
′′

1, . . . , u
(r)
1 , u′2, u

′′

2, . . . , u
′

k, u
′′

k}, such that

Q1(u
′

i, u
′

i) ≤ 2Q1(u
′

i, u
′

i) ≤ 2CLi,

Q1(u
′′

i , u
′′

i ) ≤ 2Q1(u
′′

i , u
′′

i ) ≤ 2CLi,

Q1(u
(j)

1 , u
(j)

1 ) ≤ 2Q1(u
(j)

1 , u
(j)

1 ) ≤ 2CL1.

Again, we can rearrange the orthonormal basis to have increasing order when applying
Q1, and it is easy to check that, for the resulting rearranged orthonormal basis, the same
inequalities still hold.

We denote the first 2k + r − 2 eigenvalues of Q1 by λ′1 ≤ λ
′′

1 ≤ · · · ≤ λ
(r)
1 ≤ λ

′

2 ≤

λ′′2 ≤ · · · ≤ λ
′

k ≤ λ
′′

k , and the first 2k eigenvalues of Q1|S by µ′1 ≤ µ
′′

1 ≤ · · · ≤ µ
′

k ≤ µ
′′

k .
Applying Lemma 3.5, we have

λ′i ≤ nQ1(u
′

i, u
′

i) ≤ 2nCLi,

λ′′i ≤ nQ1(u
′′

i , u
′′

i ) ≤ 2nCLi,

λ
(j)

1 ≤ nQ1(u
(j)

1 , u
(j)

1 ) ≤ 2nCL1,

for 1 ≤ i ≤ k and 1 ≤ j ≤ l.
Notice dim(S) ≥ n− r + 2. We apply Lemma 3.4 to obtain

µ′1 ≤ λ
(r−1)
1 ≤ 2nCL1, µ′′1 ≤ λ

(r)
1 ≤ 2nCL1,

µ′i ≤ λ
′

i ≤ 2nCLi, µ′′i ≤ λ
′′

i ≤ 2nCLi,

for 2 ≤ i ≤ k. The eigenvalues of Q1|S are bounded above by 1, and L1, . . . , Lk are the
only eigenvalues of Q2|S that are below ε0 (and recall that the choice of ε0 only depends
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on X). Therefore,

det(Q1|S) ≤

k∏
i=1

µ′iµ
′′

i ≤

k∏
i=1

(2nCLi)2 ≤ (2nC)2k
[

det(Q2|S)

ε
dim(S)−k
0

]2

≤ C det(Q2|S)
2

where C only depends on X. This completes the proof of Theorem 3.1. ut

4. Reduction to a combinatorial problem

In this section, we will prove the “weak eigenvalue matching” Theorem 3.3, which was
introduced in Section 3.2. The approach is to follow [7], and reduce the theorem to a
combinatorial problem. Then we apply Hall’s Marriage Theorem to solve it.

4.1. Hall’s Marriage Theorem

We recall Hall’s classical Marriage Theorem; later on we will apply a slightly stronger
version (Corollary 4.3 below) in the proof of Lemma 4.5.

Theorem 4.1 (Hall’s Marriage Theorem). Suppose we have a set of m different species
A = {a1, . . . , am}, and a set of n different planets B = {b1, . . . , bn}. Let φ : A→ P(B)
be a map which sends a species to the set of all planets suitable for its survival. Then
we can assign to each species a different planet to survive if and only if for any subset
A0 ⊆ A, we have the cardinality inequality |φ(A0)| ≥ |A0|.

Corollary 4.2. Under the assumption of Theorem 4.1, we can assign to each species two
different planets if and only if for any subset A0 ⊆ A, we have |φ(A0)| ≥ 2|A0|.

Proof. If there exists such an assignment, the cardinality condition holds obviously. On
the other hand, assume the cardinality condition; we want to show there is an assignment.
We make an identical copy of each species and form the set A′ = {a′1, . . . , a

′
m}. We apply

Hall’s Marriage Theorem to the set A ∪A′ relative to B. Then for every i, ai and a′i each
have its own planet, and that means there are two planets for the original species ai .

To see why the cardinality condition holds, we choose an arbitrary subset H ∪K ′ ⊆
A ∪ A′ where H ⊆ A and K ′ ⊆ A′. Let K be the corresponding identical copy of K ′ in
A. We have φ(H ∪K ′) = φ(H ∪K) ≥ 2|H ∪K| ≥ |H | + |K| = |H ∪K ′|. ut

Corollary 4.3. Suppose we have a set V = {v1, . . . , vr} of vectors, and for each vi , the
selectable set is denoted by Bi ⊆ B. If for any subset V0 = {vi1 , . . . , vik } ⊆ V , we have
|Bi1∪· · ·∪Bik | ≥ 2k+r−2, then we can pick 3r−2 distinct elements {b′1, . . . , b

(r)
1 , b′i, b

′′

i

(2 ≤ i ≤ r)} in B such that b′1, . . . , b
(r)
1 ∈ B1 and b′i, b

′′

i ∈ Bi .

Proof. First we choose V0 to be the singleton set {v1}. By hypothesis, |B1| ≥ r > r − 2,
hence we are able to choose r − 2 elements b(3)1 , . . . , b

(r)
1 for v1. Next we can easily

check the cardinality condition and apply Corollary 4.2 to the set V with respect to
B \ {b

(3)
1 , . . . , b

(r)
1 } to obtain the pairs {b′i, b

′′

i } (for each 1 ≤ i ≤ r). ut
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4.2. Angle inequality

Throughout this section, we will work exclusively with unit vectors in TxX ' p. We
embed the point stabilizer Kx into Isom(TxX) ' O(n), and endow it with the induced
metric. This gives rise to a norm on K , defined by ‖k‖ = maxv∈TxX ∠(v, kv) for k ∈ K .
We denote the Lie algebra of Kx ' K by k, which has root space decomposition k =
k0 ⊕

⊕
α∈3+ kα . For each small element k ∈ K , the action on a vector v can be ap-

proximated by the Lie algebra action, that is, if k = exp(u) is small, then ‖[u, v]‖ ≈
‖kv − v‖ ∼ ∠(v, kv), where we write A ∼ B if A/B and B/A are both universally
bounded. By abuse of notation, we do not distinguish between ‖k‖ and ‖u‖ inside a very
small neighborhood U of 0 inside k. Although ‖ · ‖ is not linear on U , it is linear up to a
universal constant, that is, ‖tu‖ ∼ t‖u‖ for all u ∈ U and t such that tu ∈ U . We now
show the following lemmas.

Lemma 4.4 (compare [7, Lemma 1.1]). Let X = G/K be a rank r ≥ 2 irreducible
symmetric space of non-compact type, and fix a flat F ⊆ TxX at x. Then for any small
ρ > 0, there is a constant C(ρ) with the following property. If v ∈ F is arbitrary, and
v∗ ∈ F is a maximally singular vector in the ρ-neighborhood of v (in the sense that the
dimension of Kv∗ is as large as possible), then

∠(hu,F⊥) ≤ C∠(hv,F)

for any h ∈ K and u ∈ (Kv∗F)⊥ '
⊕

α∈3+, α(v∗)6=0 pα , where 3+ is the set of all
positive roots. Moreover,

∠(hu,F⊥) ≤ C∠(hk0v,Kv∗F)

for any h ∈ K , u ∈ (Kv∗F)⊥, and k0 ∈ Kv∗ .

Proof. We only need to verify the inequality when ∠(hv,F) is small. Notice that for any
v ∈ F , and any small elementw ∈ kα = (I+θ)gα = (I+θ)(I−θ)

−1pα , the Lie algebra
action (see Proposition 2.2) has norm

‖[w, v]‖ = ‖−α(v) · (I − θ)(I + θ)−1w‖ ∼ |α(v)| · ‖w‖. (4.1)

This is due to the fact that (I + θ)(I − θ)−1 is a linear isomorphism between kα and pα
(see Proposition 2.1), and when restricted to kα∩U , it preserves the norms up to a uniform
multiplicative constant.

Infinitesimally speaking, for h = exp(w), we have hv − v = [w, v], so the estimate
on the Lie algebra action tells us about the infinitesimal growth of ‖hv − v‖. We also
see that since [w, v] ∈ pα , h moves the vector v in the direction pα (which we recall is
orthogonal to the flat F , see Proposition 2.1). Now v∗ is a maximally singular vector in
the ρ-neighborhood of the unit vector v, so once ρ is small enough, if α is any root with
α(v∗) 6= 0, then α(v) will be uniformly bounded away from zero (depending only on the
choice of ρ). This shows that if a root α satisfies α(v∗) 6= 0, then ∠(hv,F) ∼ ‖h‖ for all
h ∈ exp(kα ∩ U).

Now we move to analyzing the general case h = exp(w), where w ∈ k is arbitrary.
If ∠(hv,F) is small, then the components of hv on each pα must be small. From the
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discussion above, this implies that the component of w in each kα|α(v∗)6=0 is small, i.e. w
almost lies in kv∗ = k0 ⊕

⊕
α(v∗)=0 kα . Since h almost lies in Kv∗ , there exists h0 ∈ Kv∗

such that h−1
0 h is close to the identity. We write h = h0h1, where h1 = exp(w1) ∈

exp(k⊥v∗) = exp(
⊕

α(v∗) 6=0 kα), and observe that the analysis in the previous paragraph
applies to h1. Now observe that, infinitesimally, h1v − v = [u1, v] ∈

⊕
α(v∗) 6=0 pα , so

h1 moves v in a direction lying in
⊕

α(v∗) 6=0 pα . On the other hand, infinitesimally, Kv∗
moves the entire flat F in the directions

⊕
α(v∗)=0 pα (corresponding to the action of its

Lie algebra kv∗ ). But these two directions are orthogonal, which means that h1v leaves
orthogonally not just F , but actually the entire orbit Kv∗F . This allows us to estimate

∠(hv,F) = ∠(h1v, h
−1
0 F) ≥ ∠(h1v,Kv∗F) ∼ ‖h1‖, (4.2)

where at the last step, we use the fact that h1 moves v orthogonally off the Kv∗ -orbit
of F . On the other hand, we are assuming that the vector u lies in (Kv∗F)⊥, hence also
in h−1

0 F⊥. Therefore

∠(hu,F⊥) = ∠(h1u, h
−1
0 F⊥) ≤ ∠(h1u, u) ≤ ‖h1‖. (4.3)

Combining (4.2) and (4.3) gives us the first inequality of the conclusion.
Similarly, ∠(hk0v,Kv∗F) being small also implies that the component of h on each

kα|α(v∗)6=0 is small. So by writing h = h0h1 in the same manner, we get ∠(hk0v,Kv∗F) =
∠(h1k0v,Kv∗F) = ∠(k−1

0 h1k0v,Kv∗F). Notice that Kv∗ conjugates k⊥v∗ to itself, so
k−1

0 h1k0 is in exp(k⊥v∗). In view of (4.1) and the fact that k−1
0 h1k0v leaves Kv∗F orthog-

onally, we obtain ∠(k−1
0 h1k0v,Kv∗F) ∼ ‖k−1

0 h1k0‖ = ‖h1‖. Combining this estimate
with (4.3) gives the second inequality. ut

Lemma 4.5. LetX = G/K be a rank r ≥ 2 irreducible symmetric space of non-compact
type excluding SL(3,R)/SO(3) and SL(4,R)/SO(4), and fix a flat F ⊆ TxX. Then there
exists a constant C > 0, only depending onX, such that for any 1/2-orthonormal r-frame
{v1, . . . , vr} in F , there is an orthonormal (3r − 2)-frame {v′1, v

′′

1 , . . . , v
(r)
1 , v′i, v

′′

i (2 ≤
i ≤ r)} in F⊥ such that

∠(hv′i,F
⊥) ≤ C∠(hvi,F), ∠(hv′′i ,F

⊥) ≤ C∠(hvi,F),

∠(hv(j)1 ,F⊥) ≤ C∠(hv1,F),

for all h ∈ K , i = 2, . . . , r and j = 1, . . . , r .

Proof. Once we have chosen a parameter ρ, we will denote by v∗i a maximally singular
vector in F that is ρ-close to vi , and we will let Qi = (Kv∗i

F)⊥ '
⊕

α∈3+, α(v∗i )6=0 pα .
We now fix a ρ small enough that, for every 1/2-orthonormal r-frame {v1, . . . , vr}⊂F ,
the corresponding {v∗i }

r
i=1 are distinct. For each vi , the vectors in Qi are the possible

choice of vectors that satisfy the angle inequality provided by Lemma 4.4. So it suffices
to find r vectors in Q1, and two vectors in each Qi (i 6= 1), such that the chosen 3r − 2
vectors form an orthonormal frame.
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Now for each root α, we pick an orthonormal frame {bαi } on pα , and we collect
them into the set B := {bi}n−ri=1 , which forms an orthonormal frame on F⊥. We will pick
the (3r − 2)-frame from the vectors in B. For instance, the vector v1 has selectable set
B1 := Q1 ∩ B, from which we want to choose r elements, while for i = 2, . . . , r , the
vector vi has selectable set Bi := Qi ∩ B, from which we want to choose two elements.
Most importantly, the 3r − 2 chosen vectors have to be distinct from each other. This is
a purely combinatorial problem, and can be solved by using Hall’s Marriage Theorem.
In view of Corollary 4.3, we only need to check the cardinality condition. We notice the
selectable set of vi is Bi , which spans Qi , so |Bi | = dim(Qi). The next lemma will
estimate the dimension of the Qi , and thus will complete the proof of Lemma 4.5. ut

Lemma 4.6. Let X = G/K be a rank r ≥ 2 irreducible symmetric space of non-
compact type, excluding SL(3,R)/SO(3) and SL(4,R)/SO(4), and fix a flat F . Assume
{v∗1 , . . . , v

∗
r } spans F , and let Qi = Kv∗i

F . Then for any subcollection {v∗i1 , . . . , v
∗

ik
}, we

have

dim(Qi1 + · · · +Qik ) ≥ 2k + r − 2.

Proof. Since Qi = (Kv∗i
F)⊥ '

⊕
α∈3+, α(v∗i )6=0 pα , we obtain Qi1 + · · · + Qik =⊕

α∈3+, α(V )6=0 pα , where V = span{v∗i1 , . . . , v
∗

ik
}. We can estimate

dim(Qi1 + · · · +Qik ) =
∑

α∈3+, α(V )6=0

dim(pα)

≥ |{α ∈ 3+ | α(V ) 6= 0}| = 1
2 (|3| − |{α ∈ 3 | Hα ∈ V

⊥
}|),

where V ⊥ is the orthogonal complement of V in F , and Hα is the vector in F that
represents α.

Now we denote ti = 1
2 maxU⊆F , dim(U)=i |{α ∈ 3 | Hα ∈ U}|, the number of positive

roots in the maximally rooted i-dimensional subspace. We use the following result that
appears in [6, proof of Lemma 5.2]. For completeness, we also repeat their proof here.

Claim 4.7 ([6, Lemma 5.2]). ti − ti−1 ≥ i for 1 ≤ i ≤ r − 1.

Proof. This is proved by induction on i. For i = 1, the inequality holds since t0 = 0 and
t1 = 1. Assuming ti−1 − ti−2 ≥ i − 1 holds, we let Vi−1 be an (i − 1)-dimensional max-
imally rooted subspace. By definition, the number of roots that lie in Vi−1 is 2ti−1. There
exists a root α such that Hα does not lie in Vi−1, and does not lie in its orthogonal com-
plement (by irreducibility of the root system). So H⊥α ∩ Vi−1 := Z is a codimension one
subspace in Vi−1. By the induction hypothesis, there are at least i−1 pairs of root vectors
that lie in Vi−1 − Z; call them ±Hα1 , . . . ,±Hαi−1 . Hence by properties of root systems
[11, Proposition 2.9.3], either ±(Hα +Hαl ) or ±(Hα −Hαl ) is a pair of root vectors, for
each 1 ≤ l ≤ i − 1. Along with ±Hα , these pairs of vectors lie in (Vi−1 ⊕ 〈Hα〉)− Vi−1.
We have now found 2i root vectors in the i-dimensional subspace Vi−1⊕〈Hα〉, which do
not lie in the maximally rooted subspace Vi−1. This shows ti − ti−1 ≥ i. ut
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Finally, we can estimate dim(Qi1 + · · · + Qik ) ≥
1
2 (|3| − |{α ∈ 3 | Hα ∈ V

⊥
}|) ≥

tr − tr−k . By the Claim, a telescoping sum gives us tr − tr−k ≥ r + (r − 1) + · · · +
(r − k+ 1) = k(2r − k+ 1)/2, whence dim(Qi1 + · · · +Qik ) ≥ k(2r − k+ 1)/2. When
r ≥ 4 or k < r = 3 or k < r = 2, it is easy to check that k(2r − k + 1)/2 ≥ 2k + r − 2.
This leaves the case when r = k = 3 or r = k = 2. When r = k = 3, we can instead
estimate dim(Q1 +Q2 +Q3) = dim(F⊥) = n− 3 ≥ 7 = 2k + r − 2 provided n ≥ 10,
which only excludes the rank three symmetric space SL(4,R)/SO(4). A similar analysis
when r = k = 2 only excludes the rank two symmetric space SL(3,R)/SO(3). This
completes the proof of Lemma 4.6, and hence of Lemma 4.5. ut

Remark. In the rank two case, both Theorems 3.3 and 3.1 only give statements about
degree n. Our Main Theorem then only gives surjectivity of comparison maps in top
degree, which agrees with the result of [16], and the corresponding Jacobian estimate is
consistent with [6], [7].

4.3. Proof of Theorem 3.3

We assume k = r without loss of generality since otherwise we can always extend the
k-frame to an r-frame that has small angle to F . Our first step is to move the frame so
that it lies in F , while controlling the angles between the resulting vectors (so that we can
apply Lemma 4.5). This is done by first moving the vectors to the respective Kv∗i F , and
then moving to F .

As in the proof of Lemma 4.4, ∠(vi,F) being small implies that the components
of vi on each pα is small. The K-orbit of vi intersects F finitely many times (exactly
once in each Weyl chamber), and if each of these intersections is ρ-close to a maximally
singular vector, choose v∗i to be one closest to vi . The element in K moving vi to F will
almost lie inKv∗i (by an argument similar to the one in Lemma 4.4). By decomposing this
element as a product k̂iki , we obtain a small ki which sends vi to Kv∗i F (and k̂i ∈ Kv∗i ).
If k−1

i = exp(ui), we have ui ∈
⊕

α∈3+, α(v∗) 6=0 kα .
We now estimate the norm ‖ki‖. From the identification of norms in a small neigh-

borhood of the identity, we have ‖ki‖ = ‖ui‖. Since k̂i is an element in Kv∗i that sends
kivi to F , an argument similar to the proof of the second inequality in Lemma 4.4 gives

∠(vi,Kv∗i F) = ∠((k̂ik
−1
i k̂−1

i )(k̂ikivi),Kv∗i
F) ∼ρ ‖k̂ik−1

i k̂−1
i ‖ = ‖ki‖

(where the constant will depend on the choice of ρ). On the other hand, since F ⊂ Kv∗i F ,
we obtain ∠(vi,Kv∗i F) ≤ ∠(vi,F). But by hypothesis, ∠(vi,F) < ε. Putting all this
together, we see that, for each fixed ρ, there exists a constant C′, only depending on X,
such that each ‖ki‖ is bounded above by 1

2C
′ε. In particular, any {ki}ri=1 perturbation of

an orthonormal frame gives rise to a C′ε-orthonormal frame, and hence the collection
{k1v1, . . . , krvr} forms a C′ε-orthonormal frame.

Next, since k̂i is in Kv∗i , it leaves v∗i fixed. From the triangle inequality we obtain

∠(k̂ikivi, kivi) ≤ 2∠(kivi, v∗i ) < 2ρ.
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It follows that the collection {k̂1k1v1, . . . , k̂rkrvr} ⊂ F is obtained from the C′ε-ortho-
normal frame {k1v1, . . . , krvr} by rotating each vector by an angle of at most 2ρ, hence
forms a (C′ε + 4ρ)-orthonormal basis in F . In particular, once ρ and δ are chosen small
enough, it gives us a 1/2-orthonormal basis inside F .

Applying Lemma 4.5 to the 1/2-orthonormal frame {k̂1k1v1, . . . , k̂rkrvr} ⊂ F gives
us an orthonormal (3r − 2)-frame {v′1, . . . , v

(r)
1 , v′i, v

′′

i (2 ≤ i ≤ r)} such that the angle
inequalities hold. Now by the second inequality of Lemma 4.4, we have

∠(hv′i,F
⊥) ≤ C∠(hkivi,Kv∗i F) ≤ C∠(hkivi,F),

∠(hv′′i ,F
⊥) ≤ C∠(hkivi,Kv∗i F) ≤ C∠(hkivi,F),

∠(hv(j)1 ,F⊥) ≤ C∠(hk1v1,Kv∗1
F) ≤ C∠(hk1v1,F),

for 2 ≤ i ≤ r , 1 ≤ j ≤ r and any h ∈ K . Finally, we translate each of the vectors v′i , v
′′

i

by k−1
i , and each v(j)1 by k−1

1 , producing a C′ε-orthonormal (3r − 2)-frame that satisfies
the inequalities in Theorem 3.3, hence completing the proof.

5. Surjectivity of the comparison map in bounded cohomology

In this section, we provide some background on cohomology (see Section 5.1), establish
the Main Theorem (Section 5.2), establish some limitations on our technique of proof
(Section 5.3), and work out a detailed class of examples (Section 5.4).

5.1. Bounded cohomology

Let X = G/K be a symmetric space of non-compact type, and 0 be a cocompact lattice
in G. We recall the definition of group cohomology, working with R coefficients (so that
we can relate these to the de Rham cohomology). Let Cn(0,R) = {f : 0n → R} be the
space of n-cochains. Then the coboundary map d : Cn(0,R) → Cn+1(0,R) is defined
by

df (γ1, . . . , γn+1) = f (γ2, . . . , γn+1)

+

n∑
i=1

(−1)if (γ1, . . . , γi−1, γiγi+1, γi+2, . . . , γn+1)

+ (−1)n+1f (γ1, . . . , γn).

The homology of this chain complex is H ∗(0,R), the group cohomology of 0 with R
coefficients. Moreover, if we restrict the cochains above to bounded functions, we obtain
the space of bounded n-cochains, Cnb (0,R) = {f : 0

n
→ R | f is bounded}, and

the corresponding bounded cohomology H ∗b (0,R) of 0. The inclusion of the bounded
cochains into the ordinary cochains induces the comparison mapH ∗b (0,R)→ H ∗(0,R).

Similarly, we can define the (bounded) continuous cohomology of G, by taking the
space of continuous n-cochains, Cnc (G,R) = {f : Gn → R | f is continuous}, or the
space of bounded continuous cochains, Cnc,b(G,R) = {f : G

n
→ R | f is continu-

ous and bounded}. With the same coboundary maps as above, this gives two new chain
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complexes, whose homology will be denoted by H ∗c (G,R) and H ∗c,b(G,R) respectively.
Again, one has a naturally induced comparison map H ∗c,b(G,R)→ H ∗c (G,R).

Now letM = X/0 be the closed locally symmetric space covered by X. Note thatM
is a K(0, 1), so

H ∗dR(M,R) ' H
∗

sing(M,R) ' H
∗(0,R).

The isomorphism between the de Rham cohomology and group cohomology is explicitly
given by

φ : H k
dR(M,R)→ H k(0,R), ω 7→ fω,

where fω(γ1, . . . , γk) =
∫
1(γ1,...,γk)

ω̃. Here, ω̃ is a lift of ω to X, and 1(γ1, . . . , γk)

is any natural C1 k-filling with ordered vertices {x, γ1x, (γ1γ2)x, . . . , (γ1 · · · γk)x} for
some fixed basepoint x ∈ X (for instance, one can choose 1(γ1, . . . , γk) to be the
geodesic coning simplex, see Dupont [9]). Alternatively, we can use the barycentric
straightened C1 simplex st(1(γ1, . . . , γk)) (which we defined in Section 2.3). That is,
if we define fω(γ1, . . . , γk) =

∫
st(1(γ1,...,γk))

ω̃, then fω represents the same cohomology
class as fω. This is due to the fact that the barycentric straightening is 0-equivariant (see
[16, Section 3.2]). We call fω the barycentrically straightened cocycle.

On the other hand, there is a theorem of van Est [18] which gives the isomorphism
between the relative Lie algebra cohomology H ∗(g, k,R) and the continuous bounded
cohomologyH ∗c (G,R). A class inH k(g, k,R) can be expressed by an alternating k-form
ϕ on g/k ' TxX. By left translation, it gives a closed C∞ k-form ϕ̃ on X = G/K . In [9],
this isomorphism is explicitly given by

φ : H k(g, k,R)→ H k
c (G,R), ϕ 7→ fϕ,

where fϕ(g1, . . . , gk) =
∫
1(g1,...,gk)

ϕ̃, and 1(g1, . . . , gk) is the geodesic simplex
with ordered vertices consisting of {x, g1x, (g1g2)x, . . . , (g1 · · · gk)x} for some fixed
basepoint x ∈ X. Again, we can replace 1(g1, . . . , gk) by the barycentric straight-
ened C1 simplex st(1(g1, . . . , gk)), and the resulting barycentrically straightened func-
tion fϕ(g1, . . . , gk) =

∫
st(1(g1,...,gk))

ϕ̃ is in the same cohomology class as fϕ .

5.2. Proof of the Main Theorem

In this section, we use Theorem 3.1 to establish the Main Theorem. We need to show
that both comparison maps η and η′ are surjective. Let us start with η. We use the van
Est isomorphism (see Section 5.1) to identify H ∗c (G,R) with H ∗(g, k,R). For any class
[fϕ] ∈ H

k
c (G,R) where fϕ(g1, . . . , gk) =

∫
1(g1,...,gk)

ϕ̃, we instead choose the barycen-
trically straightened representative fϕ . Then for any (g1, . . . , gk) ∈ G

k ,

|fϕ(g1, . . . , gk)| =

∣∣∣∣∫
st(1(g1,...,gk))

ϕ̃

∣∣∣∣ ≤ ∣∣∣∣∫
1ks

st∗V ϕ̃
∣∣∣∣ ≤ ∫

1ks

|Jac(stV )| · ‖ϕ̃‖ dµ0 (5.1)

where dµ0 is the standard volume form of1ks . But from Proposition 2.3 and Theorem 3.1,
the expression |Jac(stV )| is uniformly bounded above by a constant (independent of the
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choice of the vertices V and the point δ ∈ 1ks ), while the form ϕ̃ is invariant under the
G-action, hence bounded in norm. It follows that the last expression above is less than
some constant C that depends only on the choice of the alternating form ϕ. We have thus
produced, for each class [fϕ] in H k

c (G,R), a bounded representative fϕ . So the compar-
ison map η is surjective. The argument for surjectivity of η′ is virtually identical, using
the explicit isomorphism between H k(0,R) and H k

dR(M,R) discussed in Section 5.1.
For any class [fω] ∈ H k(0,R), we choose the barycentrically straightened representative
fω. The differential form ω̃ has bounded norm, as it is the 0-invariant lift of the smooth
differential form ω on the compact manifold M . So again, the estimate in (5.1) shows the
representative fω is bounded, completing the proof.

5.3. Obstruction to straightening methods

In this section, we give a general obstruction to the straightening method that is applied in
Section 5.2. In the next section, we will use this to give some concrete examples showing
that the conclusion of Theorem 3.1 is not true when dim(S) ≤ n − r . Throughout this
section, we let X = G/K be an n-dimensional symmetric space of non-compact type,
and we give the following definitions.

Definition 5.1. Let C0(1k, X) be the set of singular k-simplices in X, where 1k is as-
sumed to be equipped with a fixed Riemannian metric. Assume that we are given a col-
lection of maps stk : C0(1k, X) → C0(1k, X). We say that this collection forms a
straightening if:

(a) the maps induce a chain map, that is, they commute with the boundary operators,
(b) stn is C1-smooth, that is, the image of stn lies in C1(1n, X).

For a subgroup H ≤ G, we say that the straightening is H -equivariant if the maps stk all
commute with the H -action.

Since X is simply connected, property (a) of Definition 5.1 implies that the chain map st∗
is actually chain homotopic to the identity. Also, property (b) implies that the image of
any straightened k-simplex is C1-smooth, i.e. Im(stk) ⊂ C1(1k, X). The barycentric
straightening introduced in Section 2.3 is a G-equivariant straightening. As we saw in
Section 5.2, obtaining a uniform control on the Jacobian of the straightened k-simplices
immediately implies a surjectivity result for the comparison map from bounded cohomol-
ogy to ordinary cohomology. This motivates the following:

Definition 5.2. We say the straightening is k-bounded if there exists a constant C > 0,
depending only on X and the chosen Riemannian metric on 1k , with the following prop-
erty. For any k-dimensional singular simplex f ∈ C0(1k, X) and the corresponding
straightened simplex stk(f ) : 1k → X,

|Jac(stk(f ))(δ)| ≤ C

where δ ∈ 1k is arbitrary (and the Jacobian is computed relative to the fixed Riemannian
metric on 1k).
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Our Theorem 3.1 and Proposition 2.3 then tell us that when r = R-rank(G) ≥ 2 (exclud-
ing the two cases SL(3,R)/SO(3) and SL(4,R)/SO(4)), our barycentric straightening is
k-bounded for all k ≥ n− r + 2. One can wonder whether this range can be improved. In
order to obtain obstructions, we recall [16, Theorem 2.4]. Upon restriction to the case of
locally symmetric spaces of non-compact type, the theorem says:

Theorem 5.3 ([16, Theorem 2.4]). Let M be an n-dimensional locally symmetric space
of non-compact type, with universal cover X, and 0 be the fundamental group of M . If
X admits an n-bounded, 0-equivariant straightening, then the simplicial volume of M is
positive.

Corollary 5.4. If X splits off an isometric R-factor, thenX does not admit an n-bounded,
G-equivariant straightening.

Proof. Let X ' X0 × R for some symmetric space X0. If X admits an n-bounded,
G-equivariant straightening, then consider a closed manifold M ' M0 × S

1, where
M̃0 ' X0. According to Theorem 5.3, the simplicial volume ‖M‖ is positive. But on
the other hand ‖M‖ = ‖M0 × S

1
‖ ≤ C · ‖M0‖ · ‖S

1
‖ = 0. This contradiction completes

the proof. ut

We will use subspaces satisfying the assumption of Corollary 5.4 to obstruct bounded
straightenings.

Definition 5.5. For X a symmetric space of non-compact type, we define the splitting
rank ofX, denoted srk(X), to be the maximal dimension of a totally geodesic submanifold
Y ⊂ X which splits off an isometric R-factor.

For irreducible symmetric spaces of non-compact type, computations of the splitting rank
can be found in a recent paper by the second author [19] (see also Berndt and Olmos [2]
for some related work).

Theorem 5.6. If k = srk(X), then X does not admit any k-bounded, G-equivariant
straightening.

Proof. Assume, contrary to the claim, thatX = G/K admits a k-bounded,G-equivariant
straightening sti , and let Y ⊂ X be a k-dimensional totally geodesic subspace which
splits isometrically as Y ′ × R. Denote by p : X → Y the orthogonal projection from
X to Y , and note that the composition p ◦ st∗ is a straightening on Y , which we denote
by st∗. Notice that Y is also a symmetric space and can be identified withG0/K0 for some
G0 < G and K0 < K . Then the straightening st∗ is certainly G0-equivariant. We claim it
is also k-bounded. This is because the projection map p is volume-decreasing, hence

|Jac(stk(f ))| = |Jac(p(stk(f )))| ≤ |Jac(stk(f ))| ≤ C

for any f ∈ C0(1k, X). Thus, Y admits a G0-equivariant, k-bounded straightening, con-
trary to Corollary 5.4. ut
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Remark. In view of Proposition 2.3 and the arguments in Section 5.2, we can view The-
orem 5.6 as obstructing the bounded ratio Theorem 3.1. Specifically, if k = srk(X),
then Theorem 5.6 tells us that one has a sequence fi : 1ks → X with the Jacobian
of stk(fi) unbounded. From the definition of stk , this means one has a sequence Vi =
{v
(i)
0 , . . . v

(i)
k } ⊂ X of (k + 1)-tuples of points (the vertices of the singular simplices fi),

and a sequence of points δi = (a
(i)
0 , . . . , a

(i)
k ) inside the spherical simplex 1ks ⊂ Rk+1,

satisfying the following property. If one looks at the corresponding sequence of points

pi := (stk(fi))(δi) = bar
( k∑
j=0

a
(i)
j µ(v

(i)
j )

)
,

one has a sequence of k-dimensional subspace Si ⊂ TpiX (given by the tangent spaces
D(stVi )(Tδi1

k
s ) to the straightened simplex stk(fi) at the point pi), and the sequence of

ratios det(Q1|Si )
1/2/det(Q2|Si ) tends to infinity. It is not too hard to see that, for each

k′ ≤ k, one can find a k′-dimensional subspace S̄i ⊂ Si such that the sequence of de-
terminants for the quadratic forms restricted to the S̄i must also tend to infinity. Thus the
conclusion of the bounded ratio Theorem 3.1 fails whenever k′ ≤ srk(X).

5.4. The case of SL(m,R)

We conclude with a detailed discussion of the special case of the Lie groupG=SL(m,R),
m ≥ 5. Its continuous cohomology has been computed (see e.g. [12, p. 299]) and can be
described as follows. If m = 2k is even, then H ∗c (SL(2k,R)) is an exterior algebra on k
generators in degrees 5, 9, . . . , 4k−3, 2k. Ifm = 2k+1 is even, thenH ∗c (SL(2k + 1,R))
is an exterior algebra on k generators in degrees 5, 9, . . . , 4k + 1.

The associated symmetric space is X = SL(m,R)/SO(m), and we have

n = dim(X) = dim(SL(m,R))−dim(SO(m)) = (m2
−1)− 1

2m(m−1) =
(
m+ 1

2

)
−1,

while the rank of the symmetric space is clearly r = m − 1. Thus, our Main Theorem
tells us that, for these Lie groups, the comparison map

H ∗c,b(SL(m,R))→ H ∗c (SL(m,R))

is surjective within the range of degrees ∗ ≥
(
m+1

2

)
−m+ 2.

Observe that the exterior product of all the generators of H ∗c (SL(m,R)) yields the
generator for the top-dimensional cohomology, which lies in degree

(
m+1

2

)
− 1. Dropping

off the 5-dimensional generator in the exterior product yields a non-trivial class in de-
gree

(
m+1

2

)
− 6. Comparing with the surjectivity range in our Main Theorem, we see that

the first interesting example occurs in the case of SL(8,R), where our results imply that
H 30
c,b(SL(8,R)) 6= 0 (as well as H 35

c,b(SL(8,R)) 6= 0, which was previously known). Of
course, as m increases, our method provides more and more non-trivial bounded coho-
mology classes. For example, once we reach SL(12,R), we get new non-trivial bounded
cohomology classes in H 68

c,b(SL(12,R)) and H 72
c,b(SL(12,R)).
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Finally, let us consider Theorem 5.6 in the special case of X = SL(m,R)/SO(m).
Choose a maximally singular direction in the symmetric space X, and let X0 be the set
of geodesics that are parallel to that direction. Without loss of generality, we can take
X0 = G0/K0, where

G0 =

{(
A 0
0 a

) ∣∣∣∣ det(A) · a = 1, a > 0
}

and K0 = SO(m) ∩G0.

Moreover, X0 clearly splits off an isometric R-factor, and can be isometrically identi-
fied with SL(m − 1,R)/SO(m − 1) × R. This is the maximal-dimensional subspace of
SL(m,R) that splits off an isometric R-factor (see [2, Table 3]), and the splitting rank
is just dim(X0) =

(
m
2

)
. So in this special case, Theorem 5.6 tells us that our method

for obtaining bounded cohomology classes fails once we reach degrees ≤
(
m
2

)
. Compar-

ing this to the range where our method works, we see that, in the special case where
G = SL(m,R), the only degree which remains unclear is

(
m
2

)
+ 1. This example shows

our Main Theorem is very close to being optimal.

6. Concluding remarks

As we have seen, the technique used in our Main Theorem seems close to optimal, at
least when restricted to the Lie groups SL(m,R). Nevertheless, the authors believe that
for other families of symmetric spaces, there are likely to be improvements on the range
of dimensions in which a barycentric straightening is bounded.

We also note that it might still be possible to bypass the limitations provided by the
splitting rank. Indeed, the splitting rank arguments show that the barycentric straightening
is not k-bounded when k = srk(X). But the barycentric straightening might still be k′-
bounded for some k′ < srk(X) (even though the bounded ratio Theorem 3.1 must fail for
k′-dimensional subspaces).
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MR 2275641

[18] van Est, W. T.: On the algebraic cohomology concepts in Lie groups. I, II. Nederl. Akad.
Wetensch. Proc. Ser. A. 58 = Indag. Math. 17, 225–233, 286–294 (1955) Zbl 0067.26202
MR 0070959

[19] Wang, S.: On splitting rank of non-compact type symmetric spaces and bounded cohomology.
J. Topol. Anal., to appear; arXiv:1602.01495 (2016)

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1079.53120&format=complete
http://www.ams.org/mathscinet-getitem?mr=2014967
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1067.53032&format=complete
http://www.ams.org/mathscinet-getitem?mr=3592693
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06682390&format=complete
http://www.ams.org/mathscinet-getitem?mr=3592693
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0595.53061&format=complete
http://www.ams.org/mathscinet-getitem?mr=0875338
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0331.55012&format=complete
http://www.ams.org/mathscinet-getitem?mr=0413122
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0511.57018&format=complete
http://www.ams.org/mathscinet-getitem?mr=0561216
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0883.53003&format=complete
http://www.ams.org/mathscinet-getitem?mr=1441541
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0667.17005&format=complete
http://www.ams.org/mathscinet-getitem?mr=0874337
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0516.53046&format=complete
http://www.ams.org/mathscinet-getitem?mr=0686042
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1246.22013&format=complete
http://www.ams.org/mathscinet-getitem?mr=2920824
http://arxiv.org/abs/1503.02381
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1111.57020&format=complete
http://www.ams.org/mathscinet-getitem?mr=2285319
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1127.55002&format=complete
http://www.ams.org/mathscinet-getitem?mr=2275641
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0067.26202&format=complete
http://www.ams.org/mathscinet-getitem?mr=0070959
http://arxiv.org/abs/1602.01495

	Introduction
	Preliminaries
	Jacobian estimate
	Reduction to a combinatorial problem
	Surjectivity of the comparison map in bounded cohomology
	Concluding remarks
	References

