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Abstract. In this survey paper, we outline the proofs of the rigidity results (Mostow type,
quasi-isometric, and Diagram rigidity) for simple, thick, hyperbolic P-manifolds found in
[L1], [L2], [L3]. The later spaces are in some sense the simplest non-manifold locally CAT(-
1) spaces one can create. All the proofs depend on the highly non-homogenous structure of
the boundary at infinity of the (universal covers of the) spaces in question. We emphasize
the similarities and differences in the proofs of the various rigidity results.

1. Introduction.

In recent years, there has been much interest in proving rigidity type theorems for non-

positively curved spaces. All of these results originated from Mostow’s seminal work [M], in

which he showed that homotopy equivalent compact, rank one, locally-symmetric spaces of

non-compact type are always isometric.

In the series of papers [L1], [L2], [L3], the author exhibited rigidity results for a particularly

nice class of singular spaces. The spaces in question, called hyperbolic P-manifolds, are in

some sense the simplest non-manifold CAT(-1) spaces one can consider. Let us start by

defining these spaces:

Definition 1.1. A closed n-dimensional piecewise manifold (henceforth abbreviated to P-

manifold) is a topological space which has a natural stratification into pieces which are

manifolds. More precisely, we define a 1-dimensional P-manifold to be a finite graph. An n-

dimensional P-manifold (n ≥ 2) is defined inductively as a closed pair Xn−1 ⊂ Xn satisfying

the following conditions:

• Each connected component of Xn−1 is either an (n − 1)-dimensional P-manifold, or

an (n− 1)-dimensional manifold.

• The closure of each connected component of Xn−Xn−1 is homeomorphic to a compact

orientable n-manifold with boundary, and the homeomorphism takes the component

of Xn −Xn−1 to the interior of the n-manifold with boundary; the closure of such a

component will be called a chamber.

Denoting the closures of the connected components of Xn−Xn−1 by Wi, we observe that we

have a natural map ρ :
∐

∂Wi −→ Xn−1 from the disjoint union of the boundary components

of the chambers to the subspace Xn−1. We also require this map to be surjective, and a
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homeomorphism when restricted to each component. The P-manifold is said to be thick

provided that each point in Xn−1 has at least three pre-images under ρ. We will henceforth

use a superscript Xn to refer to an n-dimensional P-manifold, and will reserve the use of

subscripts Xn−1, . . . , X1 to refer to the lower dimensional strata. For a thick n-dimensional

P-manifold, we will call the Xn−1 strata the branching locus of the P-manifold.

Intuitively, we can think of P-manifolds as being “built” by gluing manifolds with boundary

together along lower dimensional pieces. Examples of P-manifolds include finite graphs and

soap bubble clusters. Observe that compact manifolds can also be viewed as (non-thick)

P-manifolds. Less trivial examples can be constructed more or less arbitrarily by finding

families of manifolds with homeomorphic boundary and glueing them together along the

boundary using arbitrary homeomorphisms. We now define the family of metrics we are

interested in.

Definition 1.2. A Riemannian metric on a 1-dimensional P-manifold (finite graph) is merely

a length function on the edge set. A Riemannian metric on an n-dimensional P-manifold

Xn is obtained by first building a Riemannian metric on the Xn−1 subspace, then picking,

for each Wi a Riemannian metric with totally geodesic boundary satisfying that the gluing

map ρ is an isometry. We say that a Riemannian metric on a P-manifold is hyperbolic if at

each step, the metric on each Wi is hyperbolic.

A hyperbolic P-manifold Xn is automatically a locally CAT (−1) space (see Chapter II.11

in Bridson-Haefliger [BH]). Furthermore, the lower dimensional strata Xi are totally geodesic

subspaces of Xn. In particular, the universal cover X̃n of a hyperbolic P-manifold Xn is

a CAT (−1) space (so is automatically δ-hyperbolic), and has a well-defined boundary at

infinity ∂∞X̃n. Finally we note that the fundamental group π1(Xn) is a δ-hyperbolic group.

We refer the reader to [BH] for background on CAT (−1) and δ-hyperbolic spaces.

Definition 1.3. We say that an n-dimensional P-manifold Xn is simple provided its codi-

mension two strata is empty. In other words, the (n−1)-dimensional strata Xn−1 consists of

a disjoint union of (n−1)-dimensional manifolds. We further assume that for each chamber,

the various boundary components get attached to distinct components of the codimension

one strata.

Examples of simple, thick, hyperbolic P-manifolds can easily be constructed via arith-

metic techniques. The rigidity results contained in the papers [L1], [L2], [L3] can now be

summarized in the following:

Theorem 1.4. Let Xn be an n-dimensional, simple, thick, hyperbolic P-manifold. Then we

have:

• if n = 2, then Xn is topologically rigid.

• if n ≥ 3, then Xn is Mostow rigid.

• if n ≥ 3, then π1(X
n) is quasi-isometrically rigid.
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In particular, if n ≥ 2, the class of fundamental groups of n-dimensional, simple, thick,

hyperbolic P-manifolds exhibits diagram rigidity.

Let us briefly recall the terms involved. By topological rigidity, we mean that if X2
1 and

X2
2 have isomorphic fundamental group, then they are in fact homeomorphic. By Mostow

rigidity, we mean that if Xn
1 and Xn

2 have isomorphic fundamental group, then they are

in fact isometric. Quasi-isometric rigidity, refers to the fact that the only groups which

are quasi-isometric to π1(X
n) are, up to finite extension, uniform lattices in Isom(X̃n).

Finally, observe that the generalized Seifert-Van Kampen theorem allows us to write the

fundamental group of any n-dimensional, simple, thick, hyperbolic P-manifold as the direct

limit of a canonical diagram of groups. Diagram rigidity now refers to the fact that two such

direct limits are isomorphic if and only if their diagrams are isomorphic.

The proof of these results naturally breaks down into two steps. The first step requires

an analysis of the topology of the boundary at infinity of the universal cover of the simple,

thick, hyperbolic P-manifolds. The second step ‘pushes back’ the information garnered at

the boundary at infinity into the universal cover.

We will use the following standard notation: Sn refers to an n-dimensional sphere, Dn to a

closed n-dimensional ball, and Dn
◦ to an open n-dimensional ball. Hn refers to the standard

hyperbolic space of constant curvature −1.

2. Topology of the boundary at infinity.

We start by noting that, in a simple, thick, hyperbolic P-manifold Xn, there is a codimen-

sion one singular set B which consists of a union of closed hyperbolic (n − 1)-dimensional

manifolds. Let B denote the full pre-image of the singular set in the universal cover X̃n.

Observe that each connected component B̃j of B, lies as a totally geodesic subspace (iso-

metric to Hn−1) of the universal cover. This implies that the boundary at infinity of B̃j

(homeomorphic to Sn−2) naturally embeds in the boundary at infinity of X̃n. By abuse of

notation, let ∂∞B denote the subset of ∂∞X̃n consisting of the union of all the boundaries at

infinity of the various connected components of the branching locus, i.e. ∂∞B =
⋃

j ∂∞B̃j.

Theorem 2.1. Let ∂∞X̃n
1 , ∂∞X̃n

2 (n ≥ 2) be the boundary at infinity of the universal

cover of a pair of simple, thick, hyperbolic P-manifold Xn
i , and let φ : ∂∞X̃n

1 → ∂∞X̃n
2 be

an arbitrary homeomorphism. Then for each connected component B̃1,j in B1, there is a

connected component B̃2,j′ in B2 with the property that φ(∂∞B̃1,j) = ∂∞B̃2,j′.

In order to show this result, the natural starting point is to obtain a topological charac-

terization of points lying in ∂∞B that will distinguish them from points that are not in ∂∞B.

This motivated the notion of n-branching, defined as follows:

Definition 2.2. Define the 1-tripod T to be the topological space obtained by taking the

join of a one point set with a three point set. Denote by ∗ the point in T corresponding to

the one point set. We define the n-tripod (n ≥ 2) to be the space T × Dn−1, and call the
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subset ∗ ×Dn−1 the spine of the tripod T ×Dn−1. The subset ∗ ×Dn−1 separates T ×Dn−1

into three open sets, which we call the open leaves of the tripod. The union of an open leaf

with the spine will be called a closed leaf of the tripod. We say that a point p in a topological

space X is n-branching provided there is a topological embedding f : T × Dn−1 −→ X such

that p ∈ f(∗ × Dn−1
◦ ).

The topological characterization of points lying in B is contained in the following:

Proposition 2.3. Let Xn be a simple, thick, hyperbolic P-manifold (n ≥ 2), ∂∞X̃n the

boundary at infinity of its universal cover. Then p ∈ ∂∞X̃n is (n− 1)-branching if and only

if p ∈ ∂∞B.

We will first explain how Theorem 2.1 follows from Proposition 2.2, and then proceed to

explain the argument behind Proposition 2.2.

2.1. Reducing the Theorem to the Proposition. Let us briefly explain how Theorem

2.1 can be obtained from Proposition 2.2. We first observe that the property of being

(n − 1)-branching is clearly a topological invariant. So the proposition implies that, if

φ : ∂∞X̃n
1 → ∂∞X̃n

2 is an arbitrary homomorphism, we have that φ(∂∞B1) = ∂∞B2.

Now recall that Bi =
⋃

j ∂∞B̃i,j. It is easy to see that each ∂∞B̃i,j is a closed subset of

∂∞X̃n
i , that they are pairwise disjoint, and furthermore if n ≥ 3 that each ∂∞B̃i,j is connected

(being homeomorphic to Sn−2). So if n ≥ 3, we can now apply a result of Sierpinski [S] that

states the following: let X be an arbitrary topological space, {Ci} a countable collection of

disjoint path connected closed subsets in X. Then the path connected components of ∪Ci

are precisely the individual Ci. Applying this to the subset ∂∞Bi in ∂∞X̃n
i , we see that

the path-connected components of ∂∞Bi are precisely the individual ∂∞B̃i,j. This forces the

map φ to take each ∂∞B̃1,j homeomorphically onto some ∂∞B̃2,j′ , which is the statement in

Theorem 2.1.

In the case where n = 2, one needs to be a bit more careful. The problem here is that

when n = 2, the branching locus in X2
i is 1-dimensional, i.e. consists of a finite union of

closed geodesics. This implies that each ∂∞B̃i,j in fact consists of just a pair of points (i.e.

an S0), corresponding to the two endpoints of a geodesic ray (a lift of the closed geodesic).

In particular, in this case, each subset ∂∞B̃i,j is not connected, and so Sierpinski’s result is of

no use. In order to get around this, we refine the information we have in the 2-dimensional

setting by considering separation properties of pairs of points in ∂∞X̃2
i . Namely, one shows

the following:

Proposition 2.4. Let ∂∞X̃2 be the boundary at infinity of the universal cover of a simple,

thick, hyperbolic P-manifold of dimension 2. Then for a pair of points x, y ∈ ∂∞X̃2, the

following statements are equivalent:

• ∂∞X̃2 − {x, y} has at least three path-connected components.

• ∂∞B̃j = {x, y} for some connected component Bj in B.
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The argument for this Proposition relies on the fact that ∂∞X̃2 contains many isometrically

embedded H2 (this is ensured by the thickness hypothesis). Each of these yields an embedded

S1 in the boundary at infinity, allowing us to construct paths between points in the boundary

at infinity by concatenating paths traveling along the various S1’s. The details of the proof

can be found in [L3], and constitute the main difference between the 2-dimensional case and

the higher dimensional cases.

2.2. The argument for the Proposition. We now proceed to explain how to prove Propo-

sition 2.2. Recall that the Proposition states that points in ∂∞X̃n are (n − 1)-branching

precisely if they lie in some ∂∞B̃j.

Well one direction of the implication is relatively easy: to show that each point in ∂∞B̃j

is (n− 1)-branching, we start by observing that B̃j, being a connected component of the lift

of the branching locus, is in fact an isometrically embedded Hn−1 (this follows immediately

from the simplicity assumption), and hence that ∂∞B̃j is homeomorphic to an Sn−2.

Furthermore, it is easy to show that there exist, inside X̃n, three isometrically embedded

“half Hn’s”, with the property that their common boundary is B̃j (this follows from the

thickness hypothesis). The net effect is that, on the level of the boundary at infinity, one

can find three disjoint embedded (n − 1)-dimensional closed disks Dn−1 with the property

that their boundaries all map homeomorphically to the ∂∞B̃j (an embedded Sn−2). But this

immediately gives you that the points in ∂∞B̃j are (n− 1)-branching, completing one of the

desired implications.

The reverse implication is considerably harder. One wants to argue that if p ∈ ∂∞X̃n

does not lie in one of the ∂∞B̃j, then p is not (n− 1)-branching. So pick a point that does

not lie in ∂∞B̃j. With some work, one can argue that it is suffices to assume that p lies

in ∂∞W̃ where W̃ is a connected lift of one of the chambers. We now would like to prove

that the point p is not (n − 1)-branching, i.e. to show that there are no injective maps

f : T × Dn−2 → ∂∞X̃n satisfying p ∈ f(∗ × Dn−2).

The immediate difficulty is that one does not know much about the topology of ∂∞X̃n.

But one of the nice properties of CAT(-1) spaces is the existence of continuous maps from

the boundary at infinity to the link of any point inside the space. Recall that the link of

a point essentially encodes the space of “directions” at that point. The key feature we will

need is that the link of a point in the interior of W̃ is homeomorphic to Sn−1 (since such a

point has a manifold neighborhood). If ρ denotes the projection map, we can now study the

composite map:

ρ ◦ f : T × Dn−2 −→ ∂∞X̃n −→ Sn−1

Note that it is immediate that points in Sn−1 cannot be (n − 1)-branching (for instance,

they have the wrong local homology), and hence the composite map ρ ◦ f must fail to be

injective.

The trick now boils down to ensuring that the composite map fails to be injective at a point

q in the target where the projection map ρ is injective. This will immediately imply that
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the original map f was not injective at the point ρ−1(q). So the next step is to understand

the subset of Sn−1 where the map ρ is injective. This is not too hard: an easy exercise in

elementary hyperbolic geometry gives you that the set of injective points in Sn−1 consists of

the complement of a countable dense set of disjoint open metric balls in Sn−1. Let us denote

this set by I, and the subset consisting of the boundaries of the various open metric balls by

∂I ⊂ I (note that this subset is not the boundary of the set I in the topological sense).

One also has that the point ρ(p) in fact lies in I − ∂I. Points inside I − ∂I ⊂ Sn−1 can be

seen to have a very special property: if an open set U ⊂ Sn−1 contains one of these points in

its closure, then U must in fact contain a point in I. Since the set I consists of those points

where ρ is injective, we have reduced the proof of Proposition 2.2 to the following:

Claim: Let ρ ◦ f : T × Dn−2 → Sn−1 be as above. Then there exists an open set U ⊂ Sn−1

with the property that:

• for every point y in U , (ρ ◦ f)−1(y) consists of at least two points.

• the closure of U contains ρ(p).

Before discussing the general case, let us explain the Claim in the specific case where

n = 2. In this situation the argument is particularly easy: we have a map ρ ◦ f : T → S1,

and the set of points I where the geodesic retraction ρ is injective is actually a Cantor set

embedded in S1. Now observe that the set I can be decomposed into two disjoint pieces:

∂I, consisting of the endpoints of the open intervals appearing in the creation of the Cantor

set, and I − ∂I consisting of the remaining points. The hypothesis forces ρ(p) ∈ I − ∂I,

and in particular the composite map ρ ◦ f is injective at that point. Since we are inside S1,

the point ρ(p) locally separates S1 into two components, and we must have two of the three

leaves of the tripod T mapping to the same side of the point ρ(p). Taking U to be a small

enough open interval in S1 in the appropriate side, and containing ρ(p) in its closure, this

immediately implies the claim.

We now proceed to the general case, i.e. where n ≥ 3. The first step is to establish that an

entire neighborhood V of f−1(p) inside the spine ∗ ×Dn−2 maps to the set I. Now consider

the restriction of the composite map ρ ◦ f to each of the three closed leaves of T × Dn−2.

Note that each of the closed leaves is homeomorphic to Dn−1, with boundary homeomorphic

to Sn−2. Hence the restriction of the composite to the boundary of each closed leaf yields a

continuous map from Sn−2 into Sn−1. Furthermore, the three maps F1, F2, F3 obtained from

the three closed leaves have the property that they coincide on the spine, and in particular

on the open subset V of the spine. To conclude the argument for the claim, we would like

to make precise the following heuristic argument:

(1) since the composite ρ ◦ f is injective on V , its image is a topological embedding of

Dn−2 inside Sn−1, and hence should “locally separate” Sn−1 into two components.
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(2) the restriction of ρ ◦ f to each of the three closed leaves must surject onto one of the

two components, and hence one of the two components must lie in the image of two

distinct closed leaves.

Note that this is an immediate analogue of what occurs in the simpler n = 2 case.

In trying to make the above argument precise, one ends up involved in the study of the

maps F1, F2, F3, which are maps from Sn−2 into Sn−1 with the property that they are injective

on the small open set V . The key property concerning these maps is the following strong

form of the Jordan separation theorem:

Theorem 2.5. Let f : Sn−2 → Sn−1 be a continuous map, and assume that f is injective

on an open set V ⊂ Sn−2. Then:

• f(Sn−2) separates Sn−1.

• there are precisely two connected components U1, U2 in Sn−1 − f(Sn−2) having the

property that there closure intersects f(V ).

• if F : Dn−1 → Sn−1 is any extension of the map f , then F must surject onto either

U1 or U2.

In the first paper [L1] in the series, Theorem 2.4 was shown in the case where n = 3.

Note that in this case, one is looking at maps from S1 to S2; the situation is then greatly

simplified by the Schoenflies Theorem, which was the key to establishing Theorem 2.4 in the

n = 3 case.

When n > 3, we know that the Schoenflies Theorem fails, and the argument used in [L1]

has no chance of extending to higher dimensions. So in [L2], a different argument was used

to establish Theorem 2.4. The argument relies on Alexander duality, local Betti numbers,

as well as the sophisticated codimension one taming results of Bing [B], Ancel-Cannon [AC],

and Ancel [A].

3. Concluding the proofs.

As we mentioned earlier, Theorem 2.1 is the key result towards proving the Main Theorem.

We now proceed to explain how to conclude the proof of the Main Theorem.

3.1. The common feature. First of all, recall that quasi-isometries between δ-hyperbolic

spaces induce homeomorphisms between their boundaries at infinity. Note that an isomor-

phism between fundamental groups yield quasi-isometries of the universal cover.

Now Theorem 2.1 essentially tells you that if Xn
i are a pair of simple, thick, hyperbolic

P-manifolds, and if Γi = π1(X
n
i ) are the two fundamental groups, then any isomorphism

φ : Γ1 → Γ2 naturally induces a bijection from the connected components of B1 to the

connected components of B2.

The next step is to also obtain a bijection between the lifts of chambers in the respective

X̃n
i . In order to do this, we exploit the separation properties of the ∂∞Bi,j ⊂ ∂∞X̃n

i .

Depending on the dimension, we prove that:
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• if n ≥ 3, each path-connected component of ∂∞X̃n − ∂∞B containing at least two

points corresponds canonically with a unique connected lift of a chamber in X̃n.

• if n = 2, we define an equivalence relation ≡ on ∂∞X̃2 − ∂∞B by defining x ≡ y

provided ∂∞X̃2 − {x, y} has precisely two connected components, and show that

there is a canonical correspondance between equivalence classes C in ∂∞X̃2 satisfying

|C| > 1 on the one hand, and connected lifts of chambers in X̃2 on the other.

Furthermore, in both cases above, if W is the connected lift of a chamber associated to the

subset Y ⊂ ∂∞X̃n − ∂∞B (where Y is as above, according to whether n = 2 or n ≥ 3), then

we also have that ∂∞W ⊂ ∂∞X̃n coincides with the closure of Y in ∂∞X̃n.

The upshot is that the homeomorphism between the boundaries at infinity take boundaries

of lifts of chambers in ∂∞X̃n
1 to boundaries of lifts of chambers in ∂∞X̃n

2 .

3.2. Mostow and topological rigidity. At this point, we have that the isomorphism

φ : Γ1 → Γ2 induces bijections between:

• connected components of B1 and connected components of B2, and

• connected lifts of chambers in X̃n
1 and connected lifts of chambers in X̃n

2 .

Furthermore, the bijections are compatible, in the sense that if a connected component of B1

is contained in the connected lift of a chamber in X̃n
1 , then the same statement holds for the

objects bijectively associated to them.

Next we observe that the boundaries at infinity ∂∞X̃n
i also come equipped with an action

of Γi = π1(X
n
i ) by homeomorphisms, and that the induced homeomorphism φ∞ : ∂∞X̃n

1 →
∂∞X̃n

2 is (Γ1, Γ2)-equivariant. It is easy to see that this implies that the bijection between

the connected components of the Bi actually descends to a bijection between the connected

components of the respective branching locis in the Xn
i . Similarly, we obtain a bijection

between the chambers of Xn
1 and those of Xn

2 . Furthermore, this pair of bijections are again

compatible.

Now note that the chambers and connected components of the branching locus are actually

topological spaces. We would like to ensure that the bijections we’ve obtained actually

preserve the topology of the objects we are looking at. This is achieved by establishing

that the fundamental group of the chambers (and branching locis) can be detected from the

boundary at infinity. The technical statement is the following:

Lemma 3.1. The stabilizer of a connected lift of a chamber under the Γ-action by deck

transformations coincides with the stabilizer of its boundary at infinity under the induced

Γ-action on ∂∞X̃n. The same statement holds for connected lifts of the branching locus.

The proof of this Lemma is not very hard, and makes use of the fact that the Γ-action on

∂∞X̃n exhibits sink/source dynamics. Now the (Γ1, Γ2)-equivariance of the homeomorphism

between the boundaries at infinity immediately gives that the bijections between chambers

(and between branching locis) preserve the respective fundamental groups.
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If n ≥ 3, we can now apply Mostow rigidity for hyperbolic manifolds with totally geodesic

boundaries (see Frigerio [Fr1]) to conclude that the chambers in bijective correspondance are

actually isometric. A little more work ensures that the isometries between chambers glue

together to give a global isometry from Xn
1 to Xn

2 , completing the argument for Mostow

rigidity when n ≥ 3.

If n = 2, we recall that an oriented surface with boundary is topologically determined by

its fundamental group and the number of boundary components it has. Since we know that

chambers in X2
1 correspond bijectively to chambers in X2

2 , and that corresponding chambers

have the same fundamental group and the same number of boundary components, we can

(being a little careful) glue together the homeomorphisms between the various chambers to

obtain a global homeomorphism. This gives us the desired topological rigidity result when

n = 2.

Finally, let us say a few words about diagram rigidity. Note that we can associate to each

P-manifold a diagram of groups obtained as follows:

• corresponding to chambers and connected components of the branching locus we

associate vertices labelled with the fundamental group of the respective object.

• corresponding to each containment of a connected component of the branching lo-

cus in a chamber, we associate a directed edge between the corresponding vertices,

labelled with the morphism between fundamental groups induced by the inclusion.

The generalized Seifert-Van Kampen theorem now tells us that the fundamental group of

the P-manifold is in fact the direct limit of the diagram of groups described above.

But we know that if the dimension is n ≥ 2, any abstract isomorphism between fundamen-

tal groups of a pair of n-dimensional simple, thick, hyperbolic P-manifolds is in fact induced

by a homeomorphism (an isometry if n ≥ 3) between the respective P-manifolds. So in

particular, if we have an abstract isomorphism between the direct limits of two diagrams

as above, there is in fact an isomorphism between the underlying graphs of the diagrams

of groups, having the property that corresponding vertices have isomorphic fundamental

groups. Furthermore, the isomorphisms between the vertex groups can be chosen to be

compatible with the edge morphisms (up to inner automorphisms), which is precisely the

statement of diagram rigidity.

3.3. Quasi-isometric rigidity. For quasi-isometric rigidity, we will appeal to the following

well-known result (see for instance the survey by Farb [Fa]):

Lemma 3.2. Let X be a proper geodesic metric space, and assume that every quasi-isometry

from X to itself is in fact a bounded distance (in the sup norm) from an isometry. Further-

more, assume that a finitely generated group G is quasi-isometric to X. Then there exists a

cocompact lattice Γ ⊂ Isom(X), and a finite group F which fit into a short exact sequence:

0 −→ F −→ G −→ Γ −→ 0
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In view of the Lemma, all we need to establish is that every quasi-isometry of X̃n is bounded

distance from an isometry. In order to do this, we note that a quasi-isometry f of X̃n induces

a self-homeomorphism of ∂∞X̃n. From our knowledge of the topology of ∂∞X̃n, this implies

that for every lift of a chamber in X̃n, the quasi-isometry f maps it to within finite distance

of a (possibly different) lift of a chamber.

By suitably perturbing the map f by a bounded amount, we can assume that the restriction

of f maps each lift of a chamber quasi-isometrically into the lift of another chamber. At this

point, we appeal to a well known ‘folk-theorem’ (a rigorous proof of which can be found in

[Fr2]): if Y1,Y2 are the universal covers of two compact hyperbolic manifolds with non-empty

totally geodesic boundaries, and g : Y1 → Y2 is a quasi-isometry, then there is an isometry

ḡ : Y1 → Y2 within bounded distance of g.

One now patches together the isometries between the various chambers to obtain that the

original f : X̃n → X̃n is at finite distance from an isometry. There are two points to be

careful with:

• we need to ensure that the isometries on the chambers do indeed glue together to

give a global isometry.

• we need to make sure that the resulting isometry is at bounded distance from the

map f (i.e. that the bounded distance on each of the chambers is actually uniformly

bounded).

But neither of these two points are very hard to establish. Applying the Fact now completes

the argument for quasi-isometric rigidity.

4. Concluding remarks.

We conclude this paper by pointing out to the reader that there are several natural ques-

tions which are still unanswered:

• Does topological rigidity hold for simple, thick, negatively curved P-manifolds of

dimension ≥ 5?

• For which classes of diagrams of groups does diagram rigidity hold?

• Does Mostow type rigidity still hold if we allow for a more complicated singular set

(i.e. weaken the simplicity hypothesis)?

With respect to the last question, we point out that the structure of the singular set

influences whether Mostow type rigidity holds. In [L1] a counterexample was given to Mostow

rigidity in the general situation of thick hyperbolic P-manifolds (without the simplicity

hypothesis).
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