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Abstract. In this paper, we introduce a particularly nice family of locally CAT()1) spaces,
which we call hyperbolic P-manifolds. For X 3 a simple, thick hyperbolic P-manifold of

dimension 3, we show that certain subsets of the boundary at infinity of the universal cover of
X 3 are characterized topologically. Straightforward consequences include a version of Mostow
rigidity, as well as quasi-isometry rigidity for these spaces.

1. Introduction

In this paper, we prove various rigidity results for certain three-dimensional

hyperbolic P-manifolds. These spaces form a family of stratified metric spaces built

up from hyperbolic manifolds with boundary (a precise definition is given below).

The main technical tool is an analysis of the boundary at infinity of the spaces we

are interested in. We introduce the notion of a branching point in an arbitrary

topological space, and show how branching points in the boundary at infinity can

be used to determine both the various strata and how they are pieced together. The

argument for this relies on a result which might be of independant interest: a

version of the Jordan separation theorem that applies to maps S1 ! S2 which are

not necessarily injective. In this section, we introduce the objects we are interested

in, provide some basic definitions, and state the theorems we obtain. The proof of

the main theorem will be given in Section 2. The various applications will be

discussed in Section 3. We will close the paper with a few concluding remarks and

open questions in Section 4.

1.1. HYPERBOLIC P-MANIFOLDS

DEFINITION 1.1. We define a closed n-dimensional piecewise manifold

(henceforth abbreviated to P-manifold) to be a topological space which has a

natural stratification into pieces which are manifolds. More precisely, we define a

one-dimensional P-manifold to be a finite graph. An n-dimensional P-manifold

(nP2) is defined inductively as a closed pair Xn�1 � Xn satisfying the following

conditions:
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� Each connected component of Xn�1 is either an ðn� 1Þ-dimensional P-manifold,

or an ðn� 1Þ-dimensional manifold.

� The closure of each connected component of Xn � Xn�1 is homeomorphic to a

compact orientable n-manifold with boundary and the homeomorphism takes

the component of Xn � Xn�1 to the interior of the n-manifold; the closure of such

a component is called a chamber.

Denoting the closure of the connected components of Xn � Xn�1 by Wi, we observe

that we have a natural map q :
‘

oðclðWiÞÞ �! Xn�1 from the disjoint union of the

boundary components of the chambers to the subspace Xn�1. We also require this

map to be surjective, and a homeomorphism when restricted to each component.

The P-manifold is said to be thick provided that each point in Xn�1 has at least three

pre-images under q. We will henceforth use a superscript Xn to refer to an n-
dimensional P-manifold, and will reserve the use of subscripts Xn�1 . . .X1 to refer to

the lower dimensional strata. For a thick n-dimensional P-manifold, we will call the

Xn�1 strata the branching locus of the P-manifold.

Intuitively, we can think of P-manifolds as being ‘built’ by gluing manifolds with

boundary together along lower dimensional pieces. Examples of P-manifolds include

finite graphs and soap bubble clusters. Observe that compact manifolds can also be

viewed as (nonthick) P-manifolds. Less trivial examples can be constructed more or

less arbitrarily by finding families of manifolds with homeomorphic boundary and

gluing them together along the boundary using arbitrary homeomorphisms. We now

define the family of metrics we are interested in.

DEFINITION 1.2. A Riemannian metric on a one-dimensional P-manifold (finite

graph) is merely a length function on the edge set. A Riemannian metric on an n-

dimensional P-manifold Xn is obtained by first building a Riemannian metric on the

Xn�1 subspace, then picking, for each Wi a Riemannian metric with totally geodesic

boundary satisfying that the gluing map q is an isometry. We say that a Riemannian

metric on a P-manifold is hyperbolic if at each step, the metric on each Wi is

hyperbolic.

A hyperbolic P-manifold Xn is automatically a locally CATð�1Þ space (see

Chapter II.11 in [5]), and hence is also a d-hyperbolic space. Furthermore, the lower-

dimensional strata Xi are totally geodesic subspaces of Xn. In particular, the

universal cover ~Xn of a hyperbolic P-manifold Xn is a CAT(–1) space (so is auto-

matically d-hyperbolic), and hence has a well-defined boundary at infinity o1 ~Xn.

We also note that examples of hyperbolic P-manifolds are easy to obtain. In

dimension two, for instance, one can take multiple copies of a compact hyperbolic

manifold with totally geodesic boundary, and identify the boundaries together. In

higher dimension, one can similarly use the arithmetic constructions of hyperbolic

manifolds (see [2]) to find hyperbolic manifolds with isometric totally geodesic

boundaries. Gluing multiple copies of these together along their boundaries yield
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examples of hyperbolic P-manifolds. More complicated examples can be constructed

by finding isometric codimension one totally geodesic submanifolds in distinct

hyperbolic manifolds. Once again, cutting the manifolds along the totally geodesic

submanifolds yield hyperbolic manifolds with totally geodesic boundary, which we

can glue together to build hyperbolic P-manifolds (see the construction of non-

arithmetic lattices by Gromov, Piatetski and Shapiro [9]).

DEFINITION 1.3. We say that an n-dimensional P-manifold Xn is simple provided

its codimension two strata is empty. In other words, the ðn� 1Þ-dimensional strata

Xn�1 consists of a disjoint union of ðn� 1Þ-dimensional manifolds.

An illustration of a simple, thick P-manifold is given in Figure 1. It has four

chambers, and two connected components in the codimension one strata. We point

out that P-manifolds show up naturally in the setting of branched coverings. Starting

from a hyperbolic manifold M , one can take a totally geodesic codimension two

subspace N � M , with the property that N bounds a codimension one totally geodesic

subspace W . One could look at a ramified cover �Mi of M , of degree i, where the

ramification is over N . This naturally inherits a (singular) CAT(�1) metric from the

metric on M (note that Gromov and Thurston [10] have shown that, when i is suffi-

ciently large, it is possible to smooth this singular metric to a negatively curved

Riemannian metric). The pre-image X � �Mi of the subspace W � M will be a simple

hyperbolic P-manifold, isometrically embedded in �Mi (with respect to the singular

metric). The codimension one strata in X will consist of a single connected compo-

nent, isometric to N , and there will be i chambers, each isometric to W .

We also point out that related spaces include hyperbolic buildings. Indeed, these

share the property that they are naturally stratified spaces, built out of pieces that are

isometric to subsets of hyperbolic space. The difference lies in that for hyperbolic

buildings, the boundary of the chambers are not totally geodesic in the space.

Hyperbolic buildings have been studied by Bourdon and Pajot [4]; they obtain quasi-

isometric rigidity for some two-dimensional hyperbolic buildings (compare to our

Theorem 1.3). Note that, unlike hyperbolic P-manifolds, hyperbolic buildings can

Figure 1. Example of a simple, thick P-manifold.
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only exist in low dimensions (O 29). This follows from a result of Vinberg [21],

showing that compact Coxeter polyhedra do not exist in hyperbolic spaces of

dimension P 30. Since the existence of such polyhedra is a pre-requisite for the

existence of hyperbolic buildings, Vinberg’s result immediately implies the desired

nonexistence result.

Next we introduce a locally defined topological invariant. We use D
n to denote a

closed n-dimensional disk, and D
n
0 to denote its interior. We also use I to denote a

closed interval, and I0 for its interior.

DEFINITION 1.4. Define the 1-tripod T to be the topological space obtained by

taking the join of a one point set with a three point set. Denote by � the point in T

corresponding to the one point set. We define the n-tripod (nP2) to be the space

T� D
n�1, and call the subset � � D

n�1 the spine of the tripod T� D
n�1. The subset

� � D
n�1 separates T� D

n�1 into three open sets, which we call the open leaves of the

tripod. The union of an open leaf with the spine will be called a closed leaf of the

tripod. We say that a point p in a topological space X is n-branching provided there is

a topological embedding f : T� D
n�1 �! X such that p 2 fð� � D

n�1
0 Þ.

It is clear that the property of being n-branching is invariant under homeomor-

phisms. We show some examples of branching in Figure 2. Note that, in a simple,

thick P-manifold of dimension n, points in the codimension one strata are auto-

matically n-branching. One can ask whether this property can be detected at the level

of the boundary at infinity. This motivates the following:

CONJECTURE. Let Xn be a simple, thick hyperbolic P-manifold of dimension n, and
let p be a point in the boundary at infinity of ~Xn. Then p is ðn� 1Þ-branching if and only

if p ¼ cð1Þ for some geodesic ray c contained entirely in a connected lift of Xn�1.

One direction of the above conjecture is easy to prove (see Proposition 2.1). In the

case where n ¼ 3, we will see that the reverse implication also holds. Note that in

general, the (local) structure of the boundary at infinity of a CAT(–1) space (or of a d-
hyperbolic group) is difficult to analyze. The conjecture above says that with respect to

branching, the boundary of a simple, thick hyperbolic P-manifold of dimension n is

particularly easy to understand.

Figure 2. Examples of 1-branching and 2-branching.
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In our proofs, we will make use of a family of nice metrics on the boundary at

infinity of an arbitrary n-dimensional hyperbolic P-manifold (in fact, on the

boundary at infinity of any CAT(–1) space).

DEFINITION 1.5. Given an n-dimensional hyperbolic P-manifold, and a basepoint

� in ~Xn, we can define a metric on the boundary at infinity by setting

d1ðp; qÞ ¼ e�dð�;cpqÞ, where cpq is the unique geodesic joining the points p; q (and d

denotes distance inside ~xn).

The fact that d1 is a metric on the boundary at infinity of a proper CATð�1Þ
space follows from Bourdon (Section 2.5 in [3]). Note that changing the basepoint

from � to �0 changes the metric, but that for any p; q 2 o1ðXnÞ, we have the

inequalities:

A�1 � d1;�ðp; qÞO d1;�0 ðp; qÞOA � d1;�ðp; qÞ;
where A ¼ edð�;�

0Þ, and the subscripts on the d1 refers to the choice of basepoint used in

defining the metric. In particular, different choices for the basepoint induce the same

topology on o1 ~Xn, and this topology coincides with the standard topology on o1 ~Xn

(the quotient topology inherited from the compact-open topology in the definition of

o1 ~Xn as equivalence classes of geodesic rays in ~Xn). This gives us the freedom to select

basepoints at our convenience when looking for topological properties of the

boundary at infinity.

1.2. STATEMENT OF RESULTS, OUTLINES OF PROOFS

We will start by proving the following theorem:

THEOREM 1.1. Let X3 be a simple, thick hyperbolic P-manifold of dimension 3.

Then a point p 2 o1 ~X3 is branching if and only if there is a geodesic ray cp � ~X2 in a

lift of the two-dimensional strata, with the property that cpð1Þ ¼ p.

This theorem has immediate applications, in that it allows us to show several

rigidity results for simple, thick hyperbolic P-manifolds of dimension 3. The first

application is a version of Mostow rigidity.

THEOREM 1.2 (Mostow rigidity). Let X3
1;X

3
2 be a pair of simple, thick hyperbolic P-

manifolds of dimension 3. Assume that the fundamental groups of X3
1 and X3

2 are

isomorphic. Then the two P-manifolds are in fact isometric (and the isometry induces

the isomorphism of fundamental groups).

This is proved in Section 3.1, but the idea of the proof is fairly straightforward:

one uses the isomorphism of fundamental groups U : p1ðX1Þ �! p1ðX2Þ to induce a

homeomorphism o1U : o1 ~X1 �! o1 ~X2 between the boundaries at infinity of the

respective universal covers. Theorem 1.1 implies that the subsets of the o1 ~Xi cor-
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responding to the lifts of the branching loci are homeomorphically identified. A

separation argument ensures that the boundaries of the various chambers are like-

wise identified. One then uses the dynamics of the p1ðXiÞ actions on the o1 ~Xi to

ensure that corresponding chambers have the same fundamental groups. Mostow

rigidity for hyperbolic manifolds with boundary allows us to conclude that, in the

quotient, the corresponding chambers are isometric. Finally, the dynamics also al-

lows us to identify the gluings between the various chambers, yielding the theorem.

As a second application, we consider groups which are quasi-isometric to the

fundamental group of a simple, thick hyperbolic P-manifold of dimension 3. We

obtain:

THEOREM 1.3. Let X be a simple, thick hyperbolic P-manifold of dimension 3. Let

C be a group quasi-isometric to p1ðXÞ. Then there exists a short exact sequence of the

form:

1 ! F ! C ! C0 ! 1

where F is a finite group, and C0O Isomð ~X Þ is a subgroup of the isometry group of ~X
with ~X=C0 compact.

Here our argument relies on showing that any quasi-isometry of the corre-

sponding P-manifold is in fact a bounded distance from an isometry. The key idea is

that (by Theorem 1.1) any quasi-isometry is bounded distance from a quasi-isometry

which preserves the chambers. For compact hyperbolic manifolds with totally geo-

desic boundary, a ‘folklore theorem’ states that quasi-isometries of the universal

cover are a bounded distance from isometries (note that the corresponding statement

for closed hyperbolic manifolds is false); see Footnote on p. 648 in [12]. Assuming

this result (whose proof we sketch out in Section 3.2), we then show that the bounded

distance isometries can glue together to give a global isometry which is still at a

bounded distance from the original quasi-isometry. From such a statement, standard

methods yield a quasi-isometry classification.

2. The Main Theorem

In this section, we provide a proof of Theorem 1.1. We start by noting that one

direction of the conjecture stated in the introduction is easy to prove:

PROPOSITION 2.1. Let X n be a simple, thick n-dimensional P-manifold. If c is a

geodesic ray contained entirely in a connected lift ~B of Xn�1, then cð1Þ is ðn� 1Þ-
branching.

Proof. This is easy to show: by the thickness hypothesis, there are at least three

distinct chambers ~Wi containing ~B. For each of these chambers, we can consider the

various boundary components of ~Wi. To each boundary component distinct from ~B,
we can again use the thickness hypothesis to find chambers incident to each of the

boundary components. Extending this procedure, we see that we can find three

totally geodesic subset in ~Xn glued together along the codimension one strata ~B.
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Furthermore, the simplicity assumption implies that ~B is isometric to H
n�1, while

each of the three totally geodesic subsets is isometric to a ‘half ’ Hn. This implies that,

in the boundary at infinity, there are three embedded disks D
n�1 glued along their

boundary to Sn�1 ffi o1 ~B. It is now immediate that cð1Þ is ðn� 1Þ-branching. (

For the reverse implication, we will need a strong form of the Jordan separation

theorem. The proof of this theorem is the only place where the condition n ¼ 3 is used.

THEOREM 2.1 (Strong Jordan separation). Let f : S1 ! S2 be a continuous map,

and let I � S1 be the set of injective points (i.e. points p 2 S1 with the property that

f�1ðfðpÞÞ ¼ fpgÞ. If I contains an open set U, and q 2 U, then:

� f ðS1Þ separates S2 into open subsets (we write S2 � f ðS1Þ as a disjoint union qUi,

with each Ui open),

� there are precisely two open subsets U1, U2 in the complement of f ðS1Þ which

contain p :¼ f ðqÞ in their closure.

� if F : D2 ! S2 is an extension of the map f to the closed ball, then F ðD2Þ surjects
onto either U1 or U2.

Before starting with the proof, we note that this theorem clearly generalizes the

classical Jordan separation theorem in the plane (corresponding to the case I ¼ S1).
The author does not know whether the hypotheses on I can be weakened to just

assuming that I is measurable.

Proof. We start out by noting that the map f ðS1Þ cannot surject onto S2. Since I is
assumed to contain an open set, we can find an I � I � S1, i.e. a (small) interval on

which f is injective. Since f is injective on I, one can find a small closed ball in S2

with the property that the ball intersects f ðS1Þ in a subset of f ðI0Þ. But an imbedding

of a one-dimensional space into a two-dimensional space has an image which must

have zero measure, so in particular, there is a point in the closed ball that is not in the

image of f ðI0Þ.
Since f is not surjective, we use stereographic projection to view f as a map into

R
2. A well known theorem now tells us that, given any embedded arc in the plane,

there is a homeomorphism of the plane taking the arc to a subinterval of the x-axis
(this follows for instance from Theorem III.6.B in [1]). Applying this homeomor-

phism we can assume that f maps the interval I to the x-axis. Now let x1; x2 be a pair

of points lying slightly above and slightly below the image f ðIÞ. If the points xi are
close enough to the x-axis, we can find a path g which intersects the f ðIÞ transversaly
in a single point, joins x1 to x2, and has no other intersection with f ðS1Þ. Now

perturb the map f , away from f ðIÞ, so that it is PL. If the perturbation is slight

enough, the new map g will be homotopic to f in the complement of the xi. Fur-
thermore, g will intersect the map g transversally in precisely one point. It is now

classical that the map g must represent distinct elements in H1ðR2 � x1Þ ffi Z and
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H1ðR2 � x2Þ ffi Z (and in fact, that the integers it represents differ by one). Since g is

homotopic to f in the complement of the xi, the same holds for the map f . In
particular, the connected components in S2 � f ðS1Þ containing x1 and x2 are distinct,
giving the first two claims. Furthermore, f represents a nonzero class in one of the

H1ðR2 � xiÞ, giving us the third claim. (

Note that geodesic rays c which are not asymptotic to a ray contained in a lift of

the branching locus are of one of two types:

� either c eventually stays trapped in a ~Wi, and is not asymptotic to any boundary

component, or

� c passes through infinitely many connected lifts ~Wi.

In the next proposition, we deal with the first of these two cases. Let us first intro-

duce some notation. Given a point x 2 ~X 3, we denote by px : o
1 ~X 3 �! lkðxÞ the

projection from the boundary onto the link at the point x. Recall that the link of a

point in a piecewise hyperbolic CAT(-1) space is a metric sphere of radius � centered

at the point. If � is small enough, the link is unique up to homeomorphism.

We denote by Ix the set fp 2 lkðxÞ : jp�1
x ðpÞj ¼ 1g � lkðxÞ, in other words, the set

of points in the link where the projection map is actually injective. The importance of

this set lies in that it consists of those directions (points in the boundary) where

injectivity of a map (into the boundary) can be detected from the point x.

PROPOSITION 2.2. Let X3 be a simple, thick three-dimensional hyperbolic P-man-

ifold. Let c � ~X3 be a geodesic ray lying entirely within a connected lift ~W of a chamber

W, and not asymptotic to any boundary component of ~W. Then cð1Þ is not 2-branching.
Proof. We start by observing that, by our hypothesis, we can take any x 2 c as a

basepoint, and pxðcð1ÞÞwill lie within Ix (since by hypothesis c lies entirely within ~Wi).

Now assume, by way of contradiction, that cð1Þ 2 o1 ~X 3 is 2-branching. Then we

have an injective map f : T � I �! o1 ~X 3 such that cð1Þ 2 f ð� � I0Þ. Consider the
composite map px � f : T � I �! lkðxÞ into the link at x. Since x lies in a chamber, we

have lkðxÞ ffi S2. Now note that the composite map px � f must be injective on the set

ðpx � f Þ�1ðIxÞ. Indeed, by the definition of Ix, those are the points p in lkðxÞwhich have

a unique pre-image under px. Hence, if the composite map px � f has more than one

pre-image at such a point p , it would force the map f to have two distinct pre-images

at p�1
x ðpÞ 2 o1 ~X 3, which violates our assumption that f is injective.

In order to get a contradiction, we plan on showing that the composite map fails

to be injective at some point in the set Ix. We start with a few observations on the

structure of the set Ix.

CLAIM 1. The complement of Ix has the following properties:

� it consists of a countable union of open disks Ui in S2,
� the Ui are the interiors of a family of pairwise disjoint closed disks,
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� the Ui are dense in S2.

Proof. If px fails to be injective at a point p 2 lkðxÞ, then there are two distinct

geodesic rays emanating from x, in the direction p. Since x lies within a chamber these

two geodesic rays must agree up until some point, and then diverge. This forces these

geodesic rays to intersect the branching locus.

This immediately tells us that the set Ix is the projection of o1 ~W onto the link.

Note that this is a homeomorphism, and since o1 ~W is a Sierpinski carpet, we

immediately get all three claims. (

Since the point pxðcð1ÞÞ lies in Ix � [ðoUiÞ, we would like to get some further

information about the density of the Ui away from the set [ðoUiÞ.

CLAIM 2. For any point p 2 Ix � [ðoUiÞ, and any neighborhood Np of p, there exist

arbitrarily small Ui with Ui � Np.

Proof. By density of the Ui, we have that for any point p 2 Ix � [ðoUiÞ, arbitrarily
small neighborhoods of p must intersect an open disk. To see that arbitrary small

neighborhoods actually contain an open Ui, we consider the standard measure l on

the sphere (identified with the link). Note that since the measure of the sphere is

finite, for any � > 0 there are at most finitely many Ui with lðUiÞ > �. Since the union

of the boundaries of these Ui form a closed subset of S2, and this subset does not

contain p (since we assumed p 2 Ix � [ðoUiÞ), we have that the distance from p to the

boundaries of these Ui is positive.

In particular, for an arbitrary neighborhood Np of p, and an arbitrary � > 0, we

can find a smaller neighborhood N 0
p � Np with the property that any Ui intersecting

N 0
p satisfies lðUiÞ < �. However, since the Ui are actually round disks in S2, we have

that diamðUiÞ < C � lðUiÞ
1
2 (for some uniform constant C), which gives us control of

diamðUiÞ in terms of lðUiÞ. So in particular, picking N 0
p much smaller than Np, we

can force diamðUiÞ to be much smaller than the distance from N 0
p to the boundary of

Np. Hence Ui � Np, completing the claim. (

CLAIM 3. The image ðpx � fÞðoðT� IÞÞ is a bounded distance away from pxðcð1ÞÞ.
Proof. First of all, observe that the boundary oðT � IÞ of the set T � I is compact,

forcing ðpx � f ÞðoðT � IÞÞ to be compact. Since f is injective by hypothesis, we must

have cð1Þ j2f ðoðT � IÞÞ, so pxðcð1ÞÞ j2ðpx � f ÞðoðT � IÞÞ. Hence the minimal distance

between pxðcð1ÞÞ and ðpx � f ÞðoðT � IÞÞ is positive. (

Now recall that we need to find a point in Ix where the composite map px � f :

T � I ! S2 fails to be injective. To do this, we start by observing the following claim:

CLAIM 4. The image of the spine is entirely contained in Ix (i.e. ðpx � fÞð� � I0Þ � Ix).

Heuristically, the idea is that if the claim was false, one would find a Ui inter-

secting the image of the spine. The pre-image of the boundary of this Ui would look
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like a tripod T within the space T � I (see Figure 3). But oUi lies within the set Ix, so
its pre-image should be homeomorphic to a subset of S1.

Proof. We argue by contradiction. If not, then there exists a point

q 2 ðpx � f Þð� � I0Þ with the property that q j2 Ix. This implies that q lies in one of the

open disks Ui. Note that we already have a point p :¼ pxðcð1ÞÞ whose image lies in

Ix � [ðoUiÞ.
Now consider the pre-image K of oUi. Let Lj (1OjO3) be the three closed leaves

of the tripod, and consider the intersection K 0 :¼ K \ ðL1 [ L2Þ. The set K 0 is the pre-

image of oUi for the restriction of the map to the union L1 [ L2, hence must separate

p and q. K 0 is a closed subset of L1 [ L2 ffi D
2, and since oUi � Ix, K 0 must be

homeomorphic to a closed subset of oUi ffi S1. This implies that K 0 consists of either

a union of intervals, or of a single S1.
We first note that K 0 cannot be an S1, for then K 0 would have to equal K (since the

map is injective on oUi). One could then take a path in the third leaf joining p to q,
contradicting the fact that K separates.

So we are left with dealing with the case where K 0 is a union of intervals. Now let

J � K 0 be a subinterval that separates p from q. Note that such an interval must

exist, else K 0 itself would fail to separate. Now J not only separates, but also locally

separates T � I. Furthermore, J cannot be contained entirely in the spine, so

restricting and reparametrizing if need be, we can assume that there is a subinterval

J1 having the property that J1ð½0; y	Þ � L1, and J1ð½x; 1	Þ � L2, where we are now

viewing J1 as a map from I into L1 [ L2, and 0 < xOy < 1 (so in particular, J1ð½x; y	Þ
lies in the spine). Observe that since J1 locally separates, we have that near J1ðxÞ, L3
must map into one component of S2 � oUi, while near J1ðyÞ it must map into the

other component of S2 � oUi. This implies that there is a subinterval J2 of K, lying in

L3, and separating the points near J1ðxÞ from those near J1ðyÞ. But the union J1 [ J2
is now a subset of K homeomorphic to a tripod T . Since K is homeomorphic to a

subset of S1, this gives us a contradiction, completing the claim. (

We now focus on the restriction Fi (1OiO3) of the composite map to each of the

three closed leafs. Each Fi is a map from D
2 to S2, and all three maps coincide on an

Figure 3. Pre-image of a Ui which intersects the spine.
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interval I � S1 ¼ oD2 (corresponding to the spine � � I). From Claim 4, each of the

maps Fi is injective on I.

CLAIM 5. There is a connected open set W � S2 with the property that

� at least two of the maps Fi surject onto V ,
� the closure of W contains the point pxðcð1ÞÞ.

Proof. To show this claim, we invoke the strong form of Jordan separation

(Proposition 2.1). Denote by Gi the restriction of the map Fi to the boundary of each

leaf. From the strong Jordan separation, each GiðS1Þ separates S2, and there are

precisely two connected open sets Ui; Vi � S2 � GiðS1Þ which contain GiðIÞ in their

closure. Furthermore, each of the maps Fi surjects onto either Vi or Ui.

Now if r is small enough, we will have that the ball D of radius r centered at

pxðcð1ÞÞ only intersects GiðIÞ (this follows from Claim 3). In particular, each path

connected component of D� GiðIÞ is contained in either Ui, or in Vi. Furthermore,

by an argument identical to that in Proposition 2.1, there will be precisely two path

connected components U ,V , of D� GiðIÞ containing pxðcð1ÞÞ in their closure. Note

that since the maps Gi all coincide on I, we must have (up to relabelling) U � Ui and

V � Vi for each i. From the strong Jordan separation, we know that each extension Fi
surjects onto either Ui or Vi, which implies that either U or V lies in the image of two

of the Fi. This yields our claim. (

CLAIM 6. Let V � S2 be a connected open set, containing the point pxðcð1ÞÞ in its

closure. Then V contains a connected open set Uj lying in the complement of the set Ix.

Proof. We first claim that the connected open set V contains a point from Ix.
Indeed, if not, then V would lie entirely in the complement of Ix, hence would lie

in some Ui. Since pxðcð1ÞÞ lies in the closure of V , it would also lie in the closure

of Ui, contradicting the fact that c is not asymptotic to any of the boundary

components of the chamber containing c.
So not only does V contain the point pxðcð1ÞÞ in its closure, it also contains some

point q in Ix. We claim it in fact contains a point in Ix � [ðoUiÞ. If q itself lies in

Ix � [ðoUiÞ then we are done. The other possibility is that q lies in the boundary of one

of the Ui. Now since V is connected, there exists a path g joining q to pxðcð1ÞÞ. Now

assume that g \
�
Ix � [ðoUiÞ

�
¼ fpxðcð1ÞÞg. Let �Ui denote the closed disks (closure of

the Ui), and note that the complement of the set Ix � [ðoUiÞ ¼ [ð �UiÞ.
A result of Sierpinski [20] states the following: let X be an arbitrary topological

space, fCig a countable collection of disjoint path connected closed subsets in X .
Then the path connected components of [Ci are precisely the individual Ci.

Applying Sierpinski’s result to the set [ð �UiÞ shows that the path connected

component of this union are precisely the individual �Ui. So if g \
�
Ix � [ðoUiÞ

�
¼

fpxðcð1ÞÞg, we see that the path g must lie entirely within the �Ui containing q. This
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again contradicts the fact that pxðcð1ÞÞ j2 [ ðoUiÞ. Finally, the fact that V contains a

point in Ix � [ðoUiÞ allows us to invoke Claim 2, which tells us that there is some Uj

which is contained entirely within the set V , completing our argument. (

Finally, we note that Claim 6 shows that we must have one of the connected open

components Uj of S2 � Ix lying in the image of at least two distinct leaves. In par-

ticular, the boundary of the set Ui is an S1 which lies in the image of two distinct

closed leaves. Since the boundary lies in the set of injectivity, Ix, the only way this is

possible is if the spine maps to the boundary of Ui. As the map is injective on the

spine, this implies that the spine � � I contains an embedded copy of S1. This gives us
our contradiction, completing the proof of the proposition. (

We now have to deal with the second possibility: that of geodesic rays that pass

through infinitely many connected lifts ~Wi. We start by proving a few lemmas con-

cerning separability properties for the ~Bi and ~Wi, which will also be useful for our

applications.

LEMMA 2.1. Let ~Bi be a connected lift of the branching locus, and let ~Wj, ~Wk be two

lifts of chambers which are both incident to ~Bi. Then ~Wj � ~Bi and ~Wk � ~Bi lie in different

connected components of ~X 3 � ~Bi.

Proof. We start with a trivial observation, which will be crucial in the proof of

both this lemma and the following one. Take any cyclic sequence
~W0; ~B0; ~W1; ~B1; . . . ; ~Wr; ~Br of distinct connected lifts of chambers and branching locus

with the property that each term is incident to the following one. Then the union

of all these sets forms a totally geodesic subset of ~X 3. Furthermore, by a simple

application of Seifert and Van Kampen, we find that this totally geodesic subset of

a simply connected non-positively curved space has p1 ffi Z. But this is impossible,

so no such sequence can exist.

Now, assume that we have two lifts of chambers ~Wj, ~Wk which are both incident

to a connected lift ~Bi, but which lie in the same connected component of ~X 3 � ~Bi.

Then taking a geodesic joining a point in ~Wj to a point in ~Wk but not intersecting
~Bi, we can consider the sequence of (connected lifts of) chambers and branching

locus that the geodesic passes through to get a sequence as above. But as we

explained, this gives us a contradiction. (

LEMMA 2.2. Let ~Wi be a connected lift of a chamber, and let ~Bj, ~Bk be two connected

lifts of the branching locus which are both incident to ~Wi. Then ~Bj and ~Bk lie in different

connected components of ~X 3 � Intð ~WiÞ.
Proof. This proof is identical to the previous one: just interchange the roles of the

connected lifts of chambers and the connected lifts of the branching locus. (

Next, we note that, in the setting we are considering, we can push the separability

properties out to infinity, obtaining that the corresponding boundary points separate.
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LEMMA 2.3. Let o1 ~Bi be the boundary at infinity of a connected lift of the branching

locus, and let o1 ~Wj, o
1 ~Wk be the boundaries at infinity of two lifts of chambers which

are both incident to ~Bi. Then o1 ~Wj � o1 ~Bi and o1 ~Wk � o1 ~Bi lie in different connected

components of o1 ~X 3 � o1 ~Bi.

Proof. Let g : ½0; 1	 �! o1 ~X 3 be a path in the boundary at infinity joining a point

in o1 ~Wj � o1 ~Bi to a point in o1 ~Wk � o1 ~Bi, which avoids o1 ~Bi. Fix a basepoint

p 2 ~Bi, and consider the pair of geodesics ci : ½0;1Þ �! ~X 3 (i ¼ 0; 1) satisfying

cið0Þ ¼ p, and cið1Þ ¼ gðiÞ.
Now observe that, by assumption, gð½0; 1	Þ \ o1 ~Bi ¼ ;, and as they are both

compact subsets, this forces d1ðgð½0; 1	Þ; o1 ~BiÞ > � > 0. So let us consider a covering

of gð½0; 1	Þ by open balls of radius r ¼ �=4 in the compactification ~X 3 [ o1 ~X 3. Note

that these open balls are all path-connected. By compactness of g, we can extract a

finite subcover fUig which still covers g. The union of these open sets form a

neighborhood of g in the compactification, which, by our choice of r cannot intersect
~Bi. Furthermore, this neighborhood is connected, and for sufficiently large t, both
c0ðtÞ and c1ðtÞ lie in the neighborhood. By concatenation of paths, we can obtain a

path c which completely avoids ~Bi, but joins a point in ~Wi to a point in ~Wj. However,

we have already shown that the latter two subsets lie in distinct path components of
~X 3 � ~Bi. Our claim follows. (

LEMMA 2.4. Let o1 ~Wi be the boundary at infinity corresponding to a connected lift

of a chamber, and let o1 ~Bj, o
1 ~Bk be the boundary at infinity of two connected lifts of

the branching locus which are both incident to ~Wi. Then o1 ~Bj and o1 ~Bk lie in different

connected components of o1 ~X3 � ðo1 ~Wi � o1 ~BlÞ, where the union is over all ~Bl which

are boundary components of ~Wi.

Proof. Let us start by noting that all of the sets o1 ~Bj are closed subsets of o1 ~X 3.

Let us focus on those ~Bj which are the boundary of our ~Wi. By our previous result,

each of those separates within ~X 3. So for each of them, we can consider the union of

the components which do not contain ~Wi. Together with the corresponding ~Bj, these

will form a countable family of closed totally geodesic subsets Cj indexed by the

boundary components of ~Wi. Consider the corresponding subsets o1Cj in o1 ~X 3.

Since each of these Cj is totally geodesic, the corresponding subset o1Cj is a closed

subset of o1 ~X 3. Furthermore, their union is the whole of o1 ~X3 � ðo1 ~Wi � o1 ~BlÞ.
We now claim that the sets o1Cj are pairwise disjoint. But this is clear: by con-

struction, we have that the o1 ~Bj separate o1Cj from all the other o1Ck. So the

distance from any point p 2 o1Cj to any point q 2 o1Ck is at least as large as the

distance between the corresponding o1 ~Bj and o1 ~Bk. But since the two totally geo-

desic subsets ~Bj and ~Bk diverge exponentially, the sets o1 ~Bj and o1 ~Bk are some

positive distance apart.

Finally, let us assume there is some path g : I �! o1 ~X 3 satisfying gð0Þ 2 o1 ~Bj,

gð1Þ 2 o1 ~Bk (j 6¼ k), and g \ ðo1 ~Wi � o1 ~BlÞ ¼ ;. Then g is a continuous map that

lies entirely in the complement of ðo1 ~Wi � o1 ~BlÞ. Consider the pre-image of the
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various closed sets o1 ~Cr under g. This provides a covering of the unit interval by a

countable family of disjoint closed sets. Applying the result of Sierpinski [20] which

was stated in the proof of Proposition 2.2 (Claim 6), this is impossible unless the

covering is by a single set, consisting of a single interval. This concludes our argu-

ment. (

Note that the previous two lemmas allow us to identify separability properties

within the space with separability properties on the boundary at infinity. In partic-

ular, we can talk about a point within the space lying in a different component from a

point at infinity (i.e. the unique geodesic joining the pair of points intersects the totally

geodesic separating subset, whether this is a ~Bi or a ~Wi). We are now ready to deal with

the second case of Theorem 1.1:

PROPOSITION 2.3. Let X3 be a simple, thick three-dimensional hyperbolic P-

manifold. Let c � ~X3 be a geodesic that passes through infinitely many connected lifts
~Wi. Then cð1Þ is not 2-branching.
Proof. The approach here consists of reducing to the situation covered in

Proposition 2.2. We start by re-indexing the various consecutive connected lifts ~Wi

that c passes through by the integers. Fix a basepoint x 2 ~W0 interior to the con-

nected lift ~W0, and lying on c. Now assume that there is an injective map

f : T � I �! o1 ~X 3 with cð1Þ 2 f ð� � I0Þ.
We start by noting that, between successive connected lifts ~Wi and ~Wiþ1 that c

passes through, lies a connected lift of the branching locus, which we denote ~Bi.

Observe that distinct connected lifts of the branching locus stay a uniformly

bounded distance apart. Indeed, any minimal geodesic joining two distinct lifts of

the branching locus must descend to a minimal geodesic in a Wi with endpoints in

the branching locus. But the length of any such geodesic is bounded below by half

the injectivity radius of DWi, the double of Wi across its boundary. By setting d to

be the infimum, over all the finitely many chambers Wi, of half the injectivity

radius of the doubles DWi, we have d > 0. Let Ki be the connected component of

o1 ~X 3 � o1 ~Bi containing cð1Þ. Then for every p 2 Ki (iP1), we have:

dxðp; cð1ÞÞ < e�dði�1Þ:

Indeed, by Lemma 2.1, ~Bi separates ~Xn into (at least) two totally geodesic compo-

nents. Furthermore, the component containing cð1Þ is distinct from that containing

x. Hence, the distance from x to the geodesic joining p to cð1Þ is at least as large as
the distance from x to ~Bi. But the later is bounded below by dði� 1Þ. Using the

definition of the metric at infinity corresponding to x, our estimate follows.

Since our estimate shrinks to zero, and since the distance from cð1Þ to

f ðoðT � IÞÞ is positive, we must have a point q 2 f ð� � I0Þ satisfying

dxðq; cð1ÞÞ > e�dði�1Þ for i sufficiently large. Since ~Bi separates, we see that for i
sufficiently large, f ð� � I0Þ contains points on both sides of o1 ~Bi. This implies that

there is a point q0 2 f ð� � I0Þ that lies within some o1 ~Wi �
S
o1 ~Bl. But such a point
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corresponds to a geodesic ray lying entirely within ~Wi, and not asymptotic to any of

the lifts of the branching locus. Finally, we note that any point in the image f ð� � I0Þ
can be considered 2-branching, so in particular the point q0 is 2-branching. But in the

previous proposition, we showed this is impossible. Our claim follows. (

Combining Propositions 2.1–2.3 gives us the result claimed in Theorem 1.1. We

round out this section by making a simple observation, which will be used in the

proof of Theorems 1.2 and 1.3.

LEMMA 2.5. Let Xn be a simple hyperbolic P-manifold of dimension at least three

Let o1 ~B � o1 ~Xn consist of all limit points of geodesics in the branching locus. If

nP3, then the maximal path-connected components of o1 ~B are precisely the sets of

the form o1 ~Bi, where ~Bi � ~B is a single connected component of the lifts of the

branching locus.

Proof. Clearly, the sets o1 ~Bi are closed (since the ~Bi are totally geodesic) and path-

connected (since each ~Bi is an isometrically embedded H
n�1, so the corresponding

o1 ~Bi ffi Sn�2). Now let ~Bi; ~Bj be distinct connected components of ~B. We are left with

showing that o1 ~Bi \ o1 ~Bj ¼ ;. Consider a geodesic c joining ~Bi to ~Bj. Since they are

distinct connected lifts of the branching locus, this geodesic must intersect a ~Wk. By

lemma 2.4, o1 ~Wi �
S
o1 ~Bl must separate o1 ~Bi from o1 ~Bj. In particular, this forces

the latter two sets to be disjoint. To conclude, we apply the result of Sierpinski [20]

(stated in the proof of Proposition 2.2, Claim 6). Our claim immediately follows.(

3. Applications: Rigidity Results

3.1. MOSTOW RIGIDITY AND CONSEQUENCES

In this section, we provide a proof of Mostow rigidity for simple, thick, hyperbolic P-

manifolds of dimension 3 (Theorem 1.2). We also mention some immediate conse-

quences of the main theorem.

Proof. We are given a pair X1, X2 of simple, thick, hyperbolic P-manifolds of

dimension 3, with isomorphic fundamental groups, and we want to show that the

two spaces are isometric. We start by noting that our isomorphism of the funda-

mental groups is a quasi-isometry, so that we get an induced homeomorphism

o1U : o1 ~X1 �! o1 ~X2 between the boundaries at infinity of the two universal covers
~X1 and ~X2. Let Y1 � o1 ~X1, Y2 � o1 ~X2 be the set of points in the respective bound-

aries at infinity that are 2-branching. Note that since o1U is a homeomorphism, and

since the property of being 2-branching is a topological invariant, we must have

ðo1UÞðY1Þ ¼ Y2. Let B1;i � ~X1, B2;i � ~X2 be the various connected lifts of the

branching locus.

Theorem 1.1 tells us that we have the equalities Y1 ¼
S
ðo1 ~B1;iÞ, Y2 ¼

S
ðo1 ~B2;iÞ.

In particular, o1U must map each path connected component of Y1 to a
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path-connected component of Y2. This implies (by Lemma 2.5) that o1U induces a

bijection between the lifts ~B1;i and the lifts ~B2;i. Furthermore, the homeomorphism

o1U must map the complement of the set Y1 to the complement of the set Y2. Note

that in o1 ~X1 and o1 ~X2, the complements of the sets Y1, Y2 will have path com-

ponents of the following two types:

(1) path-isolated points, corresponding to geodesic rays that pass through infinitely

many ~Wi, and

(2) nonpath-isolated points, corresponding to geodesic rays that eventually lie en-

tirely within a fixed ~Wi (and are not asymptotic to a boundary component).

We note that there are uncountably many of the former, but only countably many

path connected components of the latter. In particular, our homeomorphism cannot

map a non-isolated point to an isolated point. Hence our homeomorphism provides

us with a bijection from the set of connected lifts of chambers in ~X1 to the set of

connected lifts of chambers in ~X2.

The next claim is that if a lift of a chamber ~W1 � ~X1 corresponds to a lift of a

chamber ~W2 � X2, that they are in fact isometric. To see this, we consider the

chamber W1 � X1,W2 � X2 whose lifts we are dealing with, and note that they have

isomorphic fundamental groups. Indeed, consider the action of the fundamental

groups of the two P-manifolds on their boundary at infinity. Then the fundamental

group of a chamber Wi can be identified with the stabilizer of ~Wi for the action of

p1ðX1Þ as deck transformations. We would like to identify p1ðWiÞ from the boundary

at infinity. This is the content of the following:

Assertion. The stabilizer of the lift of a chamber ~Wi coincides with the stabilizer of

the set o1 ~Wi in the boundary at infinity. The respective actions are those of p1ðX Þ as
deck transformations on ~X , and the corresponding induced action on the boundary

at infinity.

To see this, we note that the stabilizer of ~Wi will clearly stabilize o
1 ~Wi. Conversely,

assume that we have a nontrivial element a in p1ðX Þ which stabilizes o1 ~Wi. Note that

the ~Bi must be permuted by any isometry, and from Lemma 2.1 they separate ~X into

the various lifts of chambers. Hence, it is sufficient to exhibit a point in the interior of
~Wi whose image under a is also in the interior of ~Wi.

Note that if a stabilizes o1 ~Wi, then so do all its powers. Since a acts hyperbolically

on the boundary at infinity, this implies that the sink/source of the a action lies in the

set o1 ~Wi. Hence a stabilizes a geodesic c lying entirely in ~Wi (joining the sink and

source of the a action on the boundary at infinity). There are now two possibilities:

either c lies in the interior of ~Wi and we are done, or c lies on the boundary. If c lies
on the boundary, then we have that amust stabilize that boundary component, call it
~D. Now pick a point q in o1 ~Wi which is not on o1 ~D, and let g be a geodesic from a

point in D to the point q. Since a stabilizes D, and stabilizes o1 ~Wi it maps g to a

geodesic ray emanating from a point in D, and having endpoint not on o1 ~D. In
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particular, amaps a point in the interior of ~Wi (namely an interior point on the ray g)
to another interior point. As we remarked earlier, this implies that a stabilizes ~Wi,

giving us the assertion.

From the assertion, we now have the desired claim that if ~W1 � ~X1 corresponds to

a ~W2 � ~X2, then the chambers W1 and W2 have isomorphic fundamental groups.

Mostow rigidity for hyperbolic manifolds with boundary (see [7]) now allows us to

conclude that the W1 is isometric to W2, and that the isometry induces the isomor-

phism given above. Lifting this isometry, we see that there is an isometry of ~W1 to ~W2

which induces the isomorphism between the two respective stabilizers.

Next we discuss how the isometries on the lift of the chambers glue together to

give a global isometry. We first need to ensure that adjacent chambers in X1 map

to adjacent chambers in X2. Note that two chambers in X1 are adjacent if and only

if there is a unique B1;i separating them. But by Lemma 2.3, this can be detected on

the level of the boundary at infinity. Since the B1;i map bijectively to the B2;i, there

will be a unique B1;i separating a pair of chambers if and only if there is a unique

B2;i separating the corresponding chambers in X2. This implies that incident

chambers map to incident chambers. Finally, we can recognize the fundamental

group of the common codimension one manifold Bi in terms of the sink/source

dynamics of the action of the fundamental group of each chamber on the corre-

sponding boundary component. This also allows us to recognize the subgroups of

the p1ðW1;iÞ and p1ðW1;jÞ that get identified. Equivariance of the homeomorphism

ensures that the corresponding image groups get identified in precisely the same

way, which implies that the corresponding lifts of the chambers are glued together

in an equivariant, isometric manner. Finally, we see that there is an equivariant

isometry between the universal covers ~X1 and ~X2, which gives us our desired claim.

It is clear from our construction that the isometry we obtain induces the original

isomorphism between the fundamental groups. (

We point out two immediate (and standard) corollaries:

COROLLARY 3.1. Let X3 be a simple, thick hyperbolic P-manifold of dimension 3,

C its fundamental group. Then the outer automorphism group OutðCÞ is a finite group,

isomorphic to IsomðX3Þ (the isometry group of the P-manifold).

COROLLARY 3.2. Let X3 be a simple, thick hyperbolic P-manifold of dimension 3,

C its fundamental group. Then C is a co-Hopfian group.

Concerning Corollary 3.1, we remark that Paulin [16] has shown that a d-
hyperbolic group with infinite outer automorphism group splits over a virtually

cyclic group. As for Corollary 3.2, we point out that Sela has shown that torsion-free

d-hyperbolic groups are Hopfian [18], and that a non-elementary torsion-free d-
hyperbolic group is co-Hopfian if and only if it is freely indecomposable [17].

RIGIDITY RESULTS AND FUNDAMENTAL GROUPS 213



Now let R3 consist of those groups which arise as the fundamental group of a

simple, thick hyperbolic P-manifold of dimension 3. Note that every group in R3

arises as the fundamental group of a graph of groups, induced by the decomposition

of the P-manifold into its chambers (see [19] for definitions). Furthermore, the

gluings between the chambers are encoded in the morphisms attached to each edge in

the graph of groups. A purely group theoretic reformulation of Mostow rigidity is

the following:

COROLLARY 3.3 (Diagram rigidity). Let H1;H2 be groups in R3. Then H1 ffi H2 if

and only if there is an isomorphism between the underlying graph of groups with the

property that:

� the isomorphism takes vertex and edge groups to isomorphic vertex and edge

groups,

� isomorphisms can be chosen between the vertex and edge groups which intertwine

all the edge morphisms.

This result essentially asserts that the ‘structure’ of the graph of groups that yield

groups in R3 is in fact unique. For related results, we refer to Forester [8] (see also

[11]).

3.2. QUASI-ISOMETRY RIGIDITY

In this section, we provide a proof of Theorem 1.3, giving a quasi-isometry classi-

fication for fundamental groups of simple, thick hyperbolic P-manifolds of dimen-

sion 3. In proving this theorem, we will use the following well known result (for a

proof, see Proposition 3.1 in [6]):

LEMMA 3.1. Let X be a proper geodesic metric space, and assume that every quasi-

isometry from X to itself is in fact a bounded distance from an isometry. Furthermore,

assume that a finitely generated group G is quasi-isometric to X . Then there exists a

cocompact lattice C � IsomðX Þ, and a finite group F which fit into a short exact

sequence:

0 �! F �! G �! C �! 0

So to prove the theorem, it is sufficient to show that any quasi-isometry of a simple,

thick P-manifold of dimension 3 is a bounded distance away from an isometry. In

order to do this, we begin by recalling a well known ‘folklore’ result. Proofs of this

have been given at various times by Farb, Kapovich, Kleiner, Leeb, Schwarz, Wil-

kinson, and others, though no published proof exists (both B. Kleiner and B. Farb

were kind enough to e-mail us their arguments, which we sketch out below).

PROPOSITION 3.1. Let M3 be a compact hyperbolic 3-manifold with nonempty

totally geodesic boundary. Then any quasi-isometry of the universal cover ~M3 is a finite

distance from an isometry.
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The idea of the argument is to repeatedly reflect ~M3 through the totally geodesic

boundary components to get a copy of H3, tiled by copies of ~M3. Now given a quasi-

isometry of the original ~M3, we can extend to a quasi-isometry of all of H3, which has

the special property that it preserves the union of the boundaries (as sets). This

quasi-isometry extends to a quasi-conformal homeomorphism of the boundary S2

that interchanges certain families of S1 (the points at infinity corresponding to the

various boundaries). Using the fact that this homeomorphism preserves a family of

circles containing nested circles of arbitrarily small size, one shows that the quasi-

conformal homeomorphism is in fact conformal. This implies that there is an

isometry of H
3 which is bounded distance from the original quasi-isometry. Fur-

thermore, by construction, this isometry preserves our original ~M3.

Now assuming the preceding folklore theorem, we proceed to give a proof of

Theorem 1.3:

Proof. Let us start by showing our first claim: that any quasi-isometry of the

universal cover ~X of a simple, thick P-manifold X of dimension 3 lies a finite distance

away from an isometry. Notice that our quasi-isometry induces a self-homeomor-

phism of the boundary at infinity o1 ~X . Once again, Theorem 1.1 implies that the

induced map on the boundary at infinity acts as a permutation on the set of

boundaries of connected lifts of the branching locus.

In particular, this forces our quasi-isometry to map each of the branching strata ~Bi

inside the P-manifold to within finite distance of another branching strata, call it ~B0
i.

Since under a quasi-isometry we have uniform control of the distance between the

images of geodesics and actual geodesics, we see that there is a uniform upper bound

on the distance between the image of ~Bi and the strata ~B0
i. As such, we can modify

our quasi-isometry by projecting the images of each ~Bi to the corresponding ~B0
i. Since

this projection only moves points by a bounded distance, we have that the new map

is still a quasi-isometry, and is bounded distance from the one we started with.

So we have now reduced to the case where the quasi-isometry maps each ~Bi into

the corresponding ~B0
i. Since our induced homeomorphism on the boundary also

permutes the boundaries of the ~Wi, we can apply the same projection argument to

ensure that our new quasi-isometry actually maps each ~Wi strictly into a corre-

sponding ~W 0
i . Let us denote this new quasi-isometry by f . Now Proposition 3.1

forces ~Wi ffi ~W 0
i , and the restriction of our quasi-isometry f to ~Wi is a bounded

distance from an isometry /i : ~Wi �! ~W 0
i . Furthermore, as in our proof of Mostow

rigidity, a separation argument ensures that incidence of the chambers ~Wi, ~Wj forces

the corresponding chambers ~W 0
i and ~W 0

j to be incident.

We now want to get a global isometry from the isometries on chambers. Observe

that, for an incident pair of chambers ~Wi and ~Wj, we can consider the branching

strata ~Wi \ ~Wj. The image of this map under f is ~W 0
i \ ~W 0

j ffi H
2. Furthermore, we

have a pair of isometries /i;/j from ~Wi \ ~Wj to ~W 0
i \ ~W 0

j , each of which is a finite

distance from the map f , so in particular, which must be a finite distance from each

other. Considering the isometry g :¼ /�1
j � /i : ~Wi \ ~Wj �! ~Wi \ ~Wj, we obtain an
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isometry of ~Wi \ ~Wj which is bounded distance from the identity. But the only

isometry of H2 which is bounded distance from the identity is the identity itself. This

allows us to conclude that /i and /j are exactly the same isometry when restricted to
~Wi \ ~Wj, allowing us to glue them together. Since this holds for arbitrary incident

chambers, we can combine all the various isometries into a globally defined isometry

on ~X .

We are left with showing that the resulting isometry is a bounded distance from

the original quasi-isometry. Note that, for the time being, we only know that on

each lift of a chamber ~Wi the isometry is bounded distance Di from an isometry. We

still need to deal with the possibility that the individual Di might be tending to

infinity.

This prompts the question: given that a ðC;KÞ-quasi-isometry is a bounded dis-

tance from an isometry, can we obtain a uniform upper bound on how large this

distance can get? We need to obtain a uniform bound for quasi-isometries of the

universal cover of compact hyperbolic manifolds with (non-empty) totally geodesic

boundary.

In order to answer this, we recall that, for an arbitrary ðC;KÞ quasi-isometry f on a

CATðdÞ space ~W (d < 0), there is a uniform constantD :¼ DC;K;d (depending solely on

the constantsC;K; d) with the following property. Given any bi-infinite geodesic c, the
distance between the image f ðcÞ (which is referred to as a quasi-geodesic) and the bi-

infinite geodesic with endpoints o1f ðcð
1ÞÞ is bounded above byD. Naturally, if the

quasi-isometry is bounded distance from an isometry /, then the latter geodesic is

precisely /ðcÞ.
Now let us assume that we are dealing with a space with the property that every

point has a pair of perpendicular bi-infinite geodesics c1; c2 intersecting precisely in p.
We will abbreviate this property to saying that a space has (PBIG). Then for our

isometry, we see that /ðpÞ ¼ /ðc1Þ \ /ðc2Þ, while for our quasi-isometry we only

obtain f ðpÞ � f ðc1Þ \ f ðc2Þ. Since f ðciÞ lies in the D neighborhood of /ðciÞ, we see

that f ðpÞ lies in the intersection of the D-neighborhoods of a pair of intersecting

geodesics, which, since / is an isometry, are in fact perpendicular geodesics. But such

a neighborhood has a diameter that is uniformly bounded by some constant D0

which only depends on D (and, hence, on C;K; d).
Note that the spaces we are interested in are universal covers of compact hyper-

bolic manifolds with non-empty boundary, so it is not clear that the above property

holds. It is easy to see that every point is contained in a bi-infinite geodesic, but it is

less clear that one can find two such geodesics which are perpendicular. For the

spaces we are considering, we now make the:

Assertion. There exists a constant D00 with the property that if c is an inextendable

geodesic, then dðf ðcÞ;/ðcÞÞOD00.

Assuming this assertion, it is easy to obtain the upper bound we desire. Indeed,

every point in ~W is the intersection of a pair of perpendicular inextendable geodesics

c1; c2 (which either terminate at the boundary, or extend off to infinity). The same
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argument as before shows that f ðpÞ must lie in the intersection of the D00 neigh-

borhoods of /ðc1Þ and /ðc2Þ, giving uniform control of dðf ðpÞ;/ðpÞÞ:
To see that the desired assertion is true, we note that we only have to deal with

geodesic segments with both endpoints on boundary components, or geodesic rays

emanating from a boundary component (the case of bi-infinite geodesics having been

discussed above). Now note that, since the boundary components have the property

(PBIG) (indeed, they are totally geodesic H
2), we have that for points q on the

boundary components, dðf ðqÞ;/ðqÞÞOD0.

If c is a geodesic segment with both endpoints q1; q2 on boundary components,

then we have that dðf ðcÞ; gÞOD, where g is the geodesic joining f ðq1Þ to f ðq2Þ.
However, we also have that dðf ðqiÞ;/ðqiÞÞOD0, so by convexity of the distance

function dðg; mÞOD0, where m is the geodesic joining /ðq1Þ to /ðq2Þ. But that geo-
desic is precisely /ðcÞ, so the triangle inequality yields dð/ðcÞ; f ðcÞÞODþ D0 ¼: D00,

giving the desired upper bound for this case. The case of a geodesic ray with end-

point on a boundary component follows from an identical argument.

We conclude that we have the desired uniform bound, which implies that our

gluing of the ‘piecewise’ isometries is still a bounded distance from an isometry.

Now a consequence of every quasi-isometry being finite distance from an isometry

is that any group G quasi-isometric to H must fit into a short exact sequence:

0 �! F �! G �! C �! 0

where F is a finite group andC � Isomð ~X Þ (see Lemma 3.1). The theorem follows. (

For other recent results on the quasi-isometry behavior of graphs of groups, we

refer to Papasoglu [14], Papasoglu and Whyte [15], and Mosher, Sageev and Whyte

[13].

4. Concluding Remarks

We note that the only place in our arguments where we use the assumption that n ¼ 3

is in the proof of the strong Jordan separation theorem. More specifically, we make

use of the fact that the Schoenflies theorem holds in dimension 2. Of course, this

approach fails in higher dimension, as there are examples of wild embeddings of

spheres in all dimensions P3 . Nevertheless, we still believe that the conjecture put

forth in the introduction holds true (and in fact, that the strong Jordan separation

theorem also holds in higher dimension).

A more general question would be to determine which hyperbolic P-manifolds

exhibit rigidity. One would need some sort of hypotheses, as the following example

shows:

EXAMPLE. Let Xi (1OiO3) be simple, thick, hyperbolic P-manifolds of dimen-

sion 3. In each Xi, let Yi � Xi be one of the surfaces in the two-dimensional strata,

and let ci be a simple closed geodesic in each Yi. We now propose to build a thick,

hyperbolic P-manifold which is not rigid. Let G be a complete graph on four vertices,
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and Ti be three triangles in G. Assign a length to each edge in such a way that the

triangles Ti have length equal to the corresponding ci.

Note that given isometries from ci to Ti, we can form a thick, hyperbolic

P-manifold by gluing the Xi to G by identifying the ci with the Ti. Furthermore, as

long as the gluing isometries are homotopic, the resulting P-manifolds will all have

isomorphic fundamental group. So provided we can find two different gluings which

yield non-isometric P-manifolds, we will have exhibited nonrigidity.

To do this, fix the gluing of X2, X3, and ‘rotate’ the gluing map for the X1. Note

that, in the surface Y1, there are countably many geodesic segments which are per-

pendicular to c1 and intersect c1 precisely at their endpoints. By rotating the gluing

map suitably, we can ensure that one of the resulting P-manifolds has such a geo-

desic segment in Y1 emanating from a vertex of the triangle T1, whereas another one
of the resulting P-manifolds does not. It is now clear that these two P-manifolds

cannot be isometric, despite the fact that they have isomorphic fundamental groups.

Observe that these examples will have a nontrivial one-dimensional strata (namely

the graph G), so do not satisfy the simplicity hypothesis of this paper.

Note that if there is no one-dimensional strata, one cannot use the ‘rotation trick’

to get counterexamples (since the isometry group of compact hyperbolic manifolds is

finite if the dimension is at least two). Perhaps the following is reasonable:

QUESTION. Is every hyperbolic P-manifold with empty one-dimensional strata

Mostow rigid?

Other interesting questions arise from trying to further understand the (full) group

of isometries Isomð ~X Þ of the universal cover of a hyperbolic P-manifold X . These
groups will be discrete, and exhibit behavior which one would expect to be between

that of tree lattices (particularly if all the chambers are isometric), and that of lattices

in SOðn; 1Þ.
Finally, we point out that we can define negatively curved P-manifolds by allowing

metrics of negative curvature (with totally geodesic boundary) on each chamber. In

this setting, the proof of Proposition 2.2 still holds (with appropriate modifications

in the argument for Claim 2), and while there is no hope of a Mostow type rigidity,

one can still consider the quasi-isometry question for the resulting groups. The main

stumbling point lies in the (three-dimensional case of the) following:

QUESTION. Let Mn be a compact, negatively curved, n-dimensional manifold with

non-empty, totally geodesic boundary, and let ~Mn be it’s universal cover with the

induced metric. Is every quasi-isometry of ~Mn a bounded distance from an isometry?
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