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ABSTRACT. We construct a class of finitely presented groups wherestiraarphism
problem is solvable but the commensurability problem isolwable. Conversely, we
construct a class of finitely presented groups within whitthdcommensurability prob-
lem is solvable but the isomorphism problem is unsolvablesk are first examples of
such a contrastive complexity behavior with respect to sheniorphism problem.

1. INTRODUCTION

The purpose of this paper is to study the relative algoritomulexities of the fol-
lowing two major group theoretical decision problems: th@morphism problem and
the commensurability problem.

Both of these problems have a long histaryl[12, 26], a mednirtgpological inter-
pretation[[27], 5], and a number of famous solutions for dediasses of groups [13, 20,
[21]. However, their comparison from the algorithmic poiftview seems not to have
been done up to now. Moreover, there have been numeroussresatparing decision
problems dealing with elements in a single group, such awtié problem, conjugacy
problem, power problem, etc. (see, for instance] [18, 2lt])contrast, there have so
far been no comparative results involving the isomorphisablem. We remedy this
situation, by establishing the following two complemenptdreorems:

Theorem 1.1. There exists a recursively enumerable cl&§f finite presentations of
groups, with uniformly solvable word problem, such that is@morphism problem is
solvable but the commensurability problem is unsolvabtaiwthis class.

Theorem 1.2. There exists a recursively enumerable cl&of finite presentations of
groups such that the commensurability problem is solvabié¢iz isomorphism problem
is unsolvable within this class.

These results are all the more unexpected as Thamas [30, Thihshowed that
the isomorphism and commensurability problems have thes samplexity from the
viewpoint of descriptive set theory.

Let us now explain the terminology and the meaning of our rtta@orems.
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A class % of finite presentations of groups hasiformly solvable word problem
if there is an algorithm which takes as input a presentafien%” and a word in the
generators of this presentation, and decides whether othitvord represents the
identity element of the group given B

Two groupsGi, G, arecommensurabld there exist two subgroups of finite index
H; < G fori = 1,2, such thaH; andH, are isomorphic. It is not difficult to see that
commensurability is an equivalence relation.

Given a clas¥’ of finite presentations of groups, we say thatidwmorphism prob-
lem is solvable withirg’ [commensurability problem is solvable with4f] if there is an
algorithm, taking on input two group presentations frehand deciding whether or not
these presentations define isomorphic [commensurablapgro

Often, when considering the isomorphism problem, one ikilapat a certain clasg
of finitely presentedjroups This actually means the class of all finite presentations of
groups from#. At first glance, it might seem that our Theordmd 1.1[anH JeZame-
what more restrictive, as we are only picking out some spef@fily of presentations.
Let us clarify this issue.

Let ¢; denote the collection of aIIAgroups defined via the presemtstin the class
%1 appearing in Theoref 1.1, and I&t denote the class @il finite presentations of
groups from¥; (so clearlysy C <5A1). It follows immediately from Theorerin 1.1 that
the commensurability problem is unsolvable for the cFa%s)f finite presentations of
groups, as it is already unsolvable within the subcléssOn the other hand, the iso-
morphism problem is still solvable within the clafg%. Indeed, given any presentation
Pe %Al one can start applying Tietze transformations to it; stan#ously we can start
writing down the finite presentations fro#i, because the clas$ is recursively enu-
merable. At each step we can compare the transformatioRs aftained so far, with
the presentations from the cl&gs, written down by this step. After finitely many steps
we will find a finite presentatioR’ € 41 which defines the same group (up to isomor-
phism) asP (see[[19, 11.2.1])). This easily yields an algorithm thag¢mdifies a pair of
presAentations fror®, which define the same groups as the given pair of presengation
in 1. Taking the resulting pair of presentations4h, we can then apply the algo-
rithm for deciding the isomorphism problem within the sw#ssd47. As such, we view
Theoreni 11l as a statement about the corresponding classupfsy; .

Similarly, let%, denote the collection oanII groups defined via the presemsain the
classé, appearing in Theorem 1.2, and ‘{é;denote the class @il finite presentations
of groups fron4, (so again, we havé, C %>). By an argument, identical to the one in
trle previous paragraph, we have that the isomorphism proislansolvable in the class
%>, but the commensurability problem is solvable. This allasto view Theorem 112
as a statement about the corresponding class of grgups

The fact that the isomorphism problem is unsolvable witlhi@ tlassz> implies,
in particular, that there are infinitely many pairwise nsnfmorphic groups withit.
More precisely, the set of representatives of isomorphisisses of groups fror is
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not recursively enumerable. This fact is of particulariegt because it cannot be seen
directly from our construction of the clags below.

The proofs of both theorems rely on a combination of varicubedding theorems
from combinatorial and geometric group theory involvingtéty presented infinite sim-
ple groups and infinite groups with no finite quotients. Themi@dea is to start with a
single groupG and construct a clasg”, of mapping tori ofG, for which the isomor-
phism problem is directly related to the word problem@n Similarly, the commen-
surability problem inZ” will be directly related to the torsion problem @ Thus the
solvability/unsolvability of the word [resp. torsion] gotem in G will yield the same
for the isomorphism [resp. commensurability] problenyif

Besides isomorphism and commensurability, there are otiteral equivalence rela-
tions on the class of finitely presented groups such as Vigamorphism, bi-Lipschitz
equivalence, quasi-isometry, etc. We discuss the cornespg algorithmic problems in
the last section, where we also state some open questions.

2. MAPPING TORI OF GROUPS WITHOUT PROPER FINITE INDEX SUBGROUPS

LetG be a group ang € Aut(G) be an automorphism @. LetGy := G x4 Z denote
the associatethapping torus As a setGy = G x Z and the group product is defined
by (g,n)(d’,m) :=(g- ¢"(d'),n+m), where¢" denotes the automorphism Gfwhich
is then-fold composition ofg, with the convention thap® = idg, whereidg € Aut(G)
the identity automorphism d3.

We shall consider the class of groufig o = {Gg | ¢ € ®}, whered is some subset
of Aut(G), and analyze the isomorphism problem within the corresppandlass of
group presentations. We denote@yhe image ofp under the canonical epimorphism
Aut(G) — Out(G) := Aut(G)/Inn(G) onto the quotient of AYG) by the subgroup
consisting of inner automorphisms.

Proposition 2.1. Suppose that G is a group which has no epimorphisms @ntnd
¢, Y € Aut(G). Then the following are equivalent.
(i) Gy isisomorphic to G;
(i) ¥ € Out(G) is conjugate to one of the two elemefitsp— € Out(G).
Proof. Suppose thaby is isomorphic taGy via an isomorphism
pP: GxpZ — GxyZ.
Let7: G — Z be the homomorphism defined by the composition

G—GxypZ 5 GxyZ—7Z,

with the natural inclusion and epimorphism maps. It folloiuat 7 is trivial as by
hypothesis we know th& does not map ontd. Therefore, the restriction @fto G has
image entirely contained i6 < Gy. Applying the same argument w1 and recalling
thatp~lop = idg,, we can conclude thags maps theG-factor in Gy isomorphically
onto theG-factor inGy.
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On the other hand, a generatoof the Z—factor inGy = G x4 Z has to map to a
generator under the composition

(1)=Z—GxpZ -5 GxyZ 7.

Indeed, the composition mapy LN Gy — Z is surjective ap is an isomorphism.
SinceG < Gy is contained in the kernel of this map, the image is deterchimethe
image of the quotient grouBy /G. However, such an image coincides wjt) through

the short exact sequen¢é} — G — Gy—Z — {1}. Thus, the surjectivity 0Gy £,
Gy — Z implies thatt € Gy maps to a generatst! of the Z—factor inGy,.
Thus, in terms of splittings, the isomorphigmis of the form:

(x0) & (a(x).0)
el & (g=+1)

for anyx € G and some fixedr € Aut(G) andg € G (e € G is the identity element).

Let us now focus on the case whegel) LR (g,1). Since the map is assumed to
be an isomorphism, it must preserve the relations of them@y Evaluatingp on the
relation (e, 1)(x,0)(e,1) 1 = (¢(x),0) yields the required constraint on the automor-
phisms. Indeed, evaluating the left hand side, we obtain

P((e)(x0)(e 1)) = (3. 1)(a(x),0) (¥ Hg™),~1) = (g¥(a(x)g *,0),
while evaluating the right hand side, we obtain

P((6(x),0)) = (a(¢(x).0)).

We deduce that the automorphisme Aut(G) and the elemerg € G are related to the
given automorphismé, ¢ € Aut(G) as follows:

aop =cgolpoaq,

wherecy € Aut(G) is the inner automorphism defined by(y) = gyg * for ally € G.
Passing to the outer automorphism group, we see that webénaeéa o = Poaq,
that is, the classef and@ are conjugate in OyG).
Conversely, if the class@s @ € Out(G) are conjugate by sonte Out(G), then one
can find an elemem e G so thata o ¢ =cgo o a. Itis now immediate thaBy = Gy,
via the isomorphism map defined by, 0) — (a(x),0) and(e, 1) — (g,1).

A similar analysis can be done in the cdsegl) L (g,—1). This yields the relation
aod =cyo Y loa, that is, the classeg and @ are conjugate in OuG). This
finishes the proof. U

In order to facilitate the notation let us give the following

Definition 2.2. We will say that groupG is NFQ (No Finite Quotients), if the only
finite quotient ofG is the trivial group.
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Since every finite index subgroup contains a finite index rasubgroup, a grou@
is NFQ if and only ifG has no proper subgroups of finite index. It is easy to see that
any NFQ groups has no epimorphisms onfa and thus it satisfies the assumptions of
Propositiod 2.11. Basic examples of NFQ groups are infinitgos groups.

To study the commensurability problem within the claés », we need to know the
structure of subgroups of finite index in the correspondigping tori. The following
observation shows that all such subgroups are “congrueraggreups”

Proposition 2.3. Let G be a NFQ group, an¢ € Aut(G). Letm: Gy — Z be the
canonical projection onto th&—factor of the mapping torus. Assume thatHGy is
a finite index subgroup of §& Then H= Tl'_l(kZ) = Gyk, where k is the index of H in
Gy (and in particular, H must be normal in £3.

Proof. By the assumptionsgGy : H] < «, hence[G: (GNH)] < o, therefore kerr=
G < H asGis NFQ. This forcesd to be of the formmr1(kZ) for somek. The value of
k can then be easily deduced:

k=[Z:Kz] =[Gy : m H(KZ)] = [Gy : H],
as stated in the proposition. O
Combining Propositioris 2.1 ahd 2.3, we immediately obtain

Corollary 2.4. Let G be a NFQ group, an¢d € Aut(G). Then G is commensurable
with Gy, = G x Z if and only if the elemergy € Out(G) has finite order.

Given two groupsA andB, consider their free produ& = AxB. For any element
ac Awe can define a natural automorphisgre Aut(G) by 14(x) := a~xafor allx € A
andT,(y) := yfor all y € B. Note that(1,)k = 1 in Aut(G) for all k € Z.

Lemma 2.5. Suppose that B- {1}, ac A and G= AxB. Thent, € Inn(G) if and only
if a belongs to the center of A.

Proof. Clearly, if a is central inA, thenty = idg € Inn(G). Conversely, suppose that
there isc € A such tha—'ca+ cin A. Take anyb € B\ {1} and consider the element
g:=cbe G. Thenty(g) = acabis not conjugate tgin G = AxB by the criterion of
conjugacy in free products (see [19, IV.1.4]). Henge Inn(G), as required. O

Since the free product of two NFQ groups is again a NFQ groepcan put together
Proposition 211, Corollafy 2.4 and Leminal2.5 to achieve

Corollary 2.6. Let A and B be NFQ groups such thatB{1} and A has trivial center.
Then for G= Ax B and any a A the following are true:

e Gy, isisomorphicto G, if and only if a=1in A;
e Gy, is commensurable withig if and only if a has finite order in A.



Isomorphism versus commensurability for a class of finipgsented groups 6

3. WORD AND TORSION PROBLEMS INNFQ GROUPS

For a finite seiX, we useX* to denote the set of words with letters frofiL. Let
R be a set of words fronX* and suppose th& is a group given by the presentation
P=(X||R).

For a subseZ C X*, we say thewvord problem for Z in G is solvablé there is an
algorithm, which takes on input a wosd € Z and decides whether or not this word
represents the identity element Gf If Z = X*, then the word problem foZ in G
is simply known aghe word problem in G The word problem is one of the three
fundamental group-theoretical decision problems intoediby Max Dehn[12] in 1911
(other two being the conjugacy and the isomorphism probjeitbss well known that
if the word problem foiG is solvable with respect to one finite generating set, then it
solvable with respect to any other finite generating s&.of

For an arbitrary subseét C X*, one can also consider thersion problem for Z in
G, asking whether there exists an algorithm which inputs adwoE Z, and decides
whether or notw represents an element of finite orderGn This is closely related to
some decision problems considered by Lipschutz and Mitl§t8] (for instance, itis a
special case of thpower problem

Proposition 3.1. Every finitely presented group H can be embedded into a et
sented NFQ group A with trivial center. Moreover, if the wprdblem in H is solvable
then it is also solvable in A.

Proof. Take any infinite finitely presented simple gro8for instance, Thompson’s
groupT orV [17], or seel[6], 17,18.19] for other such groups) and considefrée product
G =SxS ThenGis NFQ and hyperbolic relative to these two copieS.of herefore, by
Theorem 1.1 from[3]H can be isomorphically embedded into some quoti@of G.
Moreover, from the proof of this theorem, it follows tH@atcan be obtained froril x G
by adding only finitely many defining relations. Consequerdks bothH and G are
finitely presented( will also be finitely presented. The gro@pis NFQ as a quotient
of the NFQ groupG. One can check that the center of the gr@mbtained from([[B,
Thm. 1.1], is in fact trivial. However, it is easy to bypasssthy settingA := Q* Sand
observing thaA is still finitely presented, NFQ, has trivial center (as a4tovial free
product — se€ [24, 6.2.6]) and contains a copiiof

Now, suppose that the word problemthis solvable. Note that the same is true
in S, because the word problem is solvable in any recursivelggmed simple group
([19, IV.3.6]). By [3, Thm. 1.1] the grou@ above is hyperbolic relative to the family of
subgroups, consisting &f and two copies 06. ThereforeQ has solvable word problem
(seel[14, Thm. 3.7] ot [22, Cor. 5.5]). Finally, the word plerh is solvable ilA= QxS
by [19, IV.1.3]. O

Proposition 3.2. There exists a NFQ group;Awith trivial center and finite presentation
Pr = (X1]|Ry), and a recursively enumerable subset of words=7{z;,2,...} C X{
such that the word problem iniAs solvable but the torsion problem for Zn A; is
unsolvable.
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Proof. Let Hy be the center-by-metabelian group constructed by P. HillGnp. 435].
Namely,Hg is generated by two elemerdgh, subject to the relations

[[bi,bj],b] = 1, fori, j,k=0,+1,+2,..., whereb ;= a 'bd, [x,y] := x 1y 1xy, and

Gi,j = Citk j+k, fOr j>i, i,j,k=0,£1,£2,..., wheregc j:= [bj,bj].

As Hall proved in [15, p. 435], the center bfy is the free abelian group with free
abelian basigdy, dy, ... }, whered; :==co, = [a "bd,b],r =1,2,....

Let (a,b|| Ry) be the above presentation fdg. Clearly this presentation is recursive.
Now, consider a computable (recursive) functibnN — N with non-recursive range
f(N) C N. Let H1 be the quotient oHg by the central subgrou{ml?(n) | ne N) where

dr, r € N, are as above. Thefi; has the presentation

<a,b H Ro, ([a‘f(”)baf(”), b])n, ne N> .

The groupH; will be recursively presented sin€ is recursively enumerable arfds
computable.

By abusing notation, we will continue writing, b, b;, d; for the images of the cor-
responding elements dfy in Hi. We can solve the word problem y as follows.
Given a wordw, over the alphabefa®™, b*'}, we want to determine whether= 1
in Hy. First we compute the suiy(w) of all exponents of in w. If g5(w) # 0, then
w # 1 in Hj as there is a homomorphism: H; — (a), whose kernel is generated by
i € Z, such thatr (w) = afW) £ 1. If g5(w) =0, thenw € B:= (b;,i € Z) and we can
re-writew as a wordw in lettershy, i € Z. If for somei € Z, &, (w1) # 0, then, again,
w # 1 in Hq, because its image will be non-trivial in the abelianizatid B. Otherwise,
w will represent an element of the cen@r= (d,,r € N) of Hy, and we can re-write
wi as a wordwy = drdi?---dr, wherel >0, 1<ry <rp <--- <1, andn; € Z\ {0}

for j =1,...,1. Note thatC = @, n(dr) by definition. Ifl =0 thenw=w, =1 in
Hqi. If | > 0, thenw, = 1 in C if and only if the order ofdrj in Hy dividesn; for all
j =1,2,...,1. The latter can be verified as follows: for every positiveigtivm of nj,

we computef (m) and check if it is equal to;. If this happens for some divison of
nj, then the order otﬂrj in Hy is m, by construction, and sd}njj = 1. If this is true for all
j=1,...,1, thenw=w, =1 inH;. As each; has only finitely many divisors, this can
be checked in finitely many steps. Finally, if thergjis {1,...,1} such that for every
positive divisorm of nj, f(m) # rj, then the order ofl;; in H; does not dividen;, and
hencew =wy # 1 in Hj.

ThusHys is a finitely generated recursively presented group witkiadme word prob-
lem. By a theorem of Clapham [[L0, Thm. 6l; can be embedded in a finitely presented
groupHz with solvable word problem. Now we can use Proposifion 3.&riedH,
into a finitely presented NFQ growjs, with trivial center and solvable word problem.
Let P = (X1||R1) be some finite presentation fég. SinceH; < Ag, the generators
a,b of Hy can be represented by some wondsw, (respectively) in the alphabmiﬂ,
and hence every word in letters fropa™, b*} can be effectively re-written in letters
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from Xlil. So, for everyr € N we can effectively compute a word € X; representing
dr in A; and seZ; ;= {z | r € N} C X{. By constructionZ; is recursively enumerable.
Suppose that the torsion problem for in A; is solvable. Then for any € N we
can compute the worgl € Z;, representingl, in A;, and check id, has finite order in
A;. But the latter happens if and onlyrife f(N). Thus we would be able to determine
whether or not belongs to the range df, contradicting to the choice df. Therefore
the torsion problem foZ; in A; is unsolvable and the proposition is proved. U

The next statement suggests a construction which is in semgeopposite to the
construction of Propositidn 3.2.

Proposition 3.3. There exists a NFQ groupAwith trivial center and finite presentation
P, = (X2||Rz), and a recursively enumerable subset of words=%{z;,25,...} C XJ
such that every word fromyZrepresents an element of order at m@sn A, but the
word problem for Z in A is unsolvable.

Proof. Again, let us start with Hall's grouply, used in the proof of Propositidn 3.2,
keeping the same notation as before. fetN — N be a computable function with
non-recursive range. We now let; be the quotient oHg by the central subgroup
(d8,demy) [ NEN).

As before H1 will be finitely generated and recursively presented, haxehe word
problem inH1 will be unsolvable (since the sé{N) is not recursive). By the celebrated
theorem of Higman([16], one can embkld into a finitely presented groud,, and
applying Proposition 311, we can embdglinto a finitely presented NFQ groue with
trivial center.

Let P, = (X2||R2) be some finite presentation fdp. Fix some wordsvy, wo € X5
representing the generat@s (respectively) oH; in Ay. Clearly there is an algorithm
which takes on input a word in the alphadet™!,b*!} and outputs a corresponding
word in the aIphabe)z(sz1 (substituting evena-letter byw; and everyb-letter byws,).
For eachr € N, let z € X5 be the word representingj € Hy, obtained this way, and
setZ, ;= {z | r € N} C X;. Evidently the set of wordZ, is recursively enumerable
and every word from this set represents an elerdenthich has order at most 2 iw.
By constructionz = 1 in Az if and only if d, = 1 in Hy, which happens if and only if
r € f(N). Sincef(N) is non-recursive, we see that the word problemZgin A; is
unsolvable. O

4. PROOFS OF THE THEOREMS
We are now ready to establish our two theorems.

Proof of Theorerh 111We start with the presentatidh = (X1 ||Ry) of the groupAy,

and the recursively enumerable set of wards= {z1,2,...,} C X{, which were con-
structed in Proposition 3.2. Take some infinite finitely preésed simple grou® and
fix some finite presentatiofY || S) of it; recall that the word problem iB is solvable
by [19, IV.3.6]. Letzy € X{ be the empty word. For eache NU {0}, let d. denote
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the element of\; represented by the € Z;; let G := A; B and letC, 1 be the cyclic
group of order + 1. Then the grouf, := G, x Cr;1 has the presentation

Pir = (X1,Y,t,u||R., S t 1% 'tz 1xz, ty My, utxtux
u~tytuy, umtttut, U forall x € Xg andy € Y).

Since the setXy, Y, Ry andSare finite, for every € NU {0}, Py, is a finite presen-
tation of a group. Note that the presentati®yp defines the groupo = Gig, = G x Z.

Now, consider the class of group presentatighs= {P., | r € NU{0}}. We can
make the following observations.

(a): the classs; is recursively enumerable by definition.

(b): the word problem ir¢7 is uniformly solvable. This easily follows from the
fact that the word problem i = A; « B is solvable and for eache NU {0},

G <K, andK; /G = Z x Cy41.

(c): the isomorphism problem withi#? is trivially solvable. This is because for
anyr € NU {0}, the abelianization of the groufy is isomorphic toZ x C; 1
(asGis NFQ), hence for ang € NU {0}, q # r, the grougK;, is not isomorphic
to Kq since their abelianizations have different torsion subgso Thus any two
distinct presentations frofd; define non-isomorphic groups.

(d): the commensurability problem withi#; is unsolvable. Indeed, since the
index[K, : Gy, | =r + 1is finite, the grougK, is commensurable with the group
Gr,, for eachr € NU{0}. So, if we could decide wheth&; is commensurable
with Ko, then we would be able to decide whetlgy, is commensurable with
Gidg, Which, by Corollary 2.6, would imply that the torsion prebi forZ; in
G = A1 xBis solvable, contradicting to the claim of Proposition 3.2.

Thus the class of group presentatiéfissatisfies all of the required properties. [

Proof of Theorerh 112Now we start with the presentatid®h = (X ||Rz) of the group
Ao, constructed in Propositidn 3.3, and the recursively emabie set of word¥, =
{z1,22,...,} C X;. Take some infinite finitely presented simple grdipnd fix some
finite presentatiorY || S) of it; then B will have solvable word problem[([19, IV.3.6]).
Let zo € X5 be the empty word. For eache NU {0}, letd, denote the element &
represented by the € Z; and letG := Az x B. Then the grouii;, has the presentation

Por = (X, Y.t ||Re, S t I 1tz %z, t 1ty My, forallx e X, andy e Y).

Since the setX, Y, R, andSare finite, for every € NU {0}, P> is a finite presen-
tation of a group. As before, the presentati®r defines the grouig, = G x Z.
For the class of finite presentatios := {P,, | r € NU{0}} we can observe the
following.
(a): the classss is recursively enumerable by definition.
(b): the commensurability problem withi#> is trivially solvable, because any
presentation from this class defines the gr@up, for somer € NU {0}, which
is commensurable witlig, by Corollary(2.6, as the elemedt € A has finite
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order by construction. Thus any two presentations f@ndefine commensu-
rable groups.

(c): the isomorphism problem withia is unsolvable. Indeed, according to Corol-
lary 2.8, for anyr € N, the groupGy, , defined byP, is isomorphic toGiqg,
defined byP,, if and only if z = 1 in G. Thus the isomorphism problem
within %> is equivalent to the word problem f@ in Ay, which is unsolvable
by construction.

Thus the clas%? satisfies all of the needed properties. O

5. DECISION PROBLEMS IN GEOMETRIC GROUP THEORY

From the viewpoint of geometric group theory, besides tbenisrphism and com-
mensurability relations, there are several other equinaeelations on groups which
are of natural interest:

e Two finitely generated group&y,G, are virtually isomorphic(sometimes also
calledcommensurable up to finite kerngisthere exist a pair of finite index subgroups
H; < Gj, and some further finite normal subgrougs< H;, i = 1,2, with isomorphic
quotientsHy /N1 = Hy/No.

e Two finitely generated group&;,G, are quasi-isometricf there exists a map
f : Gy — Gy and a constarK > 0 so that for allk,y € G

1
cdi(xy) =K <da(f(x), F(y)) <K-di(xy)+K
and theK-neighborhood of (G;) is all of G, (thed; are word metrics on th@;, i = 1, 2).

e Two finitely generated groups abe-Lipschitz equivalenif there is a bi-Lipschitz
map betweeliGy,d;) and(Gg,d;), where again the; are word metrics (this is equiva-
lent to the existence of a bijective quasi-isometry betwteem - see Whyte [32]).

We can now state the corresponding decision problems:vitfgal isomorphism
problem (respectively,quasi-isometry probleror bi-Lipschitz problejasks whether
there exists an algorithm which, given two finite preseotaiof groups, can decide
whether or not they define virtually isomorphic (resp. gussmetric or bi-Lipschitz
equivalent) groups. Several of these problems have beedredtérom the viewpoint
of descriptive set theory by Thomas [28 29| 30, 31]. Noté éhgroup is bi-Lipschitz
equivalent to the trivial group if and only it is trivial, attidat it is virtually isomorphic,
commensurable, or quasi-isometric to the trivial groupnil @nly if it is finite. Since
the problem of deciding whether a finitely presented groujinige (or trivial) is un-
solvable (this follows from the famous Adian-Rabin theoresee [2[ 1] and [23]), we
immediately obtain

Lemma 5.1. Within the class of all finite presentations of groups, théuel isomor-
phism, quasi-isometry, bi-Lipschitz, and commensurgiplioblems are all unsolvable.
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It would be of some interest to study the relative complegitihese various decision
problems. A straightforward consequence of our conswacppearing in the proof of
Theoreni LR is the following:

Corollary 5.2. There exists a recursively enumerable class of finite ptasens of
groups within which the isomorphism problem is unsolvablé, the virtual isomor-
phism, quasi-isometry, and bi-Lipschitz problems aretaVi@lly) solvable.

Proof. In the notations from the proof of theordm[1.2, fet= {14 |r e NU{0}} C
Aut(G). Then the class of finite presentatiods, constructed in the proof of Theo-
rem[1.2, defines the clasgc o = {Gy, |r € NU{0}} of finitely presented groups.
As we noticed above, any two groups from this class are coraurahle. And since
commensurable groups are automatically quasi-isometiliche groups ing o are
guasi-isometric to each other, and the quasi-isometrylpnolvithin %> is (trivially)
solvable.

Moreover, none of the groui@y, , r € NU{0}, can contain a non-trivial finite normal
subgroup, for such a subgroup would have to map to the igamtitier the canonical
projectionGy, — Z, and hence it would have to be a normal subgroup in the group
G = Ay« B. But a non-trivial free product does not have any non-tfifirate normal
subgroups. This tells us that within the cla%g ¢, two groups are virtually isomorphic
if and only if they are commensurable. Therefore the virisamorphism problem
within %> is also (trivially) solvable.

Finally, noting thatG = A, x B is non-amenable, as a non-elementary free product,
and embeds into evefyy, , r € NU{0}, we see that all the groups in the cla%g ¢ are
non-amenable. The work of Block and Weinbergér [4, Thm. iBaplies that the groups
in this class all have vanishing 0-dimensional uniformlytéiomology. Whyte’s thesis
[32, Thm. 1.1] then implies that commensurability betweey avo groups from#g o
can be promoted to a bi-Lipschitz equivalence. We conclbdedll the groups 07 ¢
are bi-Lipschitz equivalent to each other, so that the psthitz problem withirg? is
also (trivially) solvable. U

More generally, we expect that these various decision problare fundamentally
unrelated to each other (with the possible exception of tHagschitz problem, in
view of Whyte's thesis [32]). To be more precise, we susgetdiven any two disjoint
subsets of these decision problems, one can find a recyrsieierable class of finite
presentations of groups such that any problem from the fithtase subsets is solvable
within this class, while problems from the second subsethnsolvable.

In another vein, these algorithmic problems are also opewudious natural classes
of groups. For instance, one could focus on certain claskkdt@es within a fixed
semi-simple Lie grougs of non-compact type. If th&®-rank of G is > 2, and one
restricts to uniform lattices (so that the quasi-isometgbtem is trivially solvable),
is the isomorphism problem or commensurability problenvaiole? If one focuses
on G=SQNn,1), n > 4, and restrict to non-uniform lattices (so that the isorhsm
problem is solvable, by Dahmani and Grovees [11]), is the cemsurability problem
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(equivalent to the quasi-isometry problem, by Schwart3)[86lvable or not? Surpris-
ingly, these questions do not seem to have been considetied literature.

Acknowledgments

The authors thank Cornelia Drutu, Daniel Groves, and MagitSfor helpful con-
versations. The research of the first author was partialypsrtied by the ERC grant
ANALYTIC no. 259527, and by the Swiss NSF, under Sinergiang@RSI22-130435.
The second author was partially supported by the NSF, urrdet §MS-0906483, and
by an Alfred P. Sloan research fellowship. The work of thediuthor was supported
by the EPSRC grant EP/H032428/1.

REFERENCES

[1] S. I. Adian. Finitely presented groups and algorithidskl. Akad. Nauk SSSR17:9-12, 1957.
[2] S. I. Adian. The unsolvability of certain algorithmicgdslems in the theory of group3r. Mosk.
Mat. Obshch.6:231-298, 1957.
[3] G. Arzhantseva, A. Minasyan, and D. Osin. The SQ-uniitssand residual properties of relatively
hyperbolic groupsJ. Algebra 315:165-177, 2007.
[4] J. Block and S. Weinberger. Aperiodic tilings, positsealar curvature and amenability of spaces.
J. Amer. Math. So¢5:907-918, 1992.
[5] A. Borel. Commensurability classes and volumes of higpéc 3-manifolds.Ann. Scuola Norm.
Sup. Pisa Cl. Sci. (48(1):1-33, 1981.
[6] M. Burger and S. Mozes. Finitely presented simple groampd products of tree€. R. Acad. Sci.
Paris Sr. | Math, 324:747-752, 1997.
[7] M. Burger and S. Mozes. Lattices in product of trelest. HautesEtudes Sci. Publ. Math92:151—
194, 2000.
[8] P.-E. Caprace and B. Remy. Simplicité abstraite deapgs de Kac-Moody non affines. R. Math.
Acad. Sci. Paris342:539-544, 2006.
[9] P.-E. Caprace and B. Remy. Simplicity and superrigiditytwin building lattices.Invent. Math,
176:169-221, 2009.
[10] C. R. J. Clapham. An embedding theorem for finitely gatea groupsProc. London Math. Soc.
(3), 17:419-430, 1967.
[11] F. Dahmani and D. Groves. The isomorphism problem foalteelatively hyperbolic group$ubl.
Math. Inst. Haute€tudes Scj.107:211-290, 2008.
[12] M. Dehn.Uber unendliche diskontinuierliche Gruppéfath. Ann, 71:116-144, 1911.
[13] P.Deligne and G. D. Mostolzommensurabilities among latticesit(1, n), volume 132 oAnnals
of Mathematics StudiePrinceton University Press, Princeton, NJ, 1993.
[14] B. Farb. Relatively hyperbolic groupSeom. Funct. Anal8:810-840, 1998.
[15] P. Hall. Finiteness conditions for soluble grouBgoc. London Math. Soc. (34:419-436, 1954.
[16] G. Higman. Subgroups of finitely presented grouprec. Roy. Soc. Ser.,£62:455-475, 1961.
[17] W. R. Parry J. W. Cannon, W. J. Floyd. Introductory naiasRichard Thompson’s grougsnseign.
Math. (2) 42:215-256, 1996.
[18] S. Lipschutz and C. F. Miller, 11l. Groups with certainlgable and unsolvable decision problems.
Comm. Pure Appl. Math24:7-15, 1971.
[19] R. C. Lyndon and P. E. Schuppombinatorial group theorySpringer-Verlag, Berlin, 1977. Ergeb-
nisse der Mathematik und ihrer Grenzgebiete, Band 89.
[20] G. A. Margulis. Arithmeticity of nonuniform latticedzunkcional. Anal. i Pril&en, 7(3):88-89,
1973.



Isomorphism versus commensurability for a class of finipgsented groups 13

[21] C. F. Miller, IIl. Decision problems for groups—survand reflections. IRlgorithms and classifi-
cation in combinatorial group theory (Berkeley, CA, 198&lume 23 oMath. Sci. Res. Inst. Publ.
pages 1-59. Springer, New York, 1992.

[22] D. V. Osin. Relatively hyperbolic groups: intrinsic gaetry, algebraic properties, and algorithmic
problemsMem. Amer. Math. Socl79(843):vi+100, 2006.

[23] M. O. Rabin. Recursive unsolvability of group theocgiroblemsAnn. of Math, 67:172-194, 1958.

[24] D. J. S. RohinsorA course in the theory of groupgolume 80 ofGraduate Texts in Mathematics
Springer-Verlag, New York, second edition, 1996.

[25] R. E. Schwartz. The quasi-isometry classification afkrane latticesPubl. Math. Inst. Hautes
Etudes Scj.82:133-168, 1995.

[26] C. L. Siegel. Symplectic geometkmer. J. Math.65:1-86, 1943.

[27] J. Stillwell. Classical topology and combinatorial group thepmolume 72 ofGraduate Texts in
MathematicsSpringer-Verlag, New York, second edition, 1993.

[28] S. Thomas. The virtual isomorphism problem for finitglgnerated group®8ull. London Math.
Soc, 35:777-784, 2003.

[29] S. Thomas. On the complexity of the quasi-isometry anwi&l isomorphism problems for finitely
generated group&roups Geom. Dyn2:281-307, 2008.

[30] S. Thomas. The commensurability relation for finitegngrated groupd. Group Theory12:901—
909, 2009.

[31] S. Thomas and B. Velickovic. On the complexity of thensarphism relation for finitely generated
groupsJ. Algebrg 217:352-373, 1999.

[32] K. Whyte. Amenability, bi-Lipschitz equivalence, atite von Neumann conjectui@uke Math. J.
99:93-112, 1999.

UNIVERSITY OF VIENNA, FACULTY OF MATHEMATICS, NORDBERGSTRARE 15, 1090 VENNA,
AUSTRIA
E-mail addressgoulnara.arzhantseva@univie.ac.at

THE OHIO STATE UNIVERSITY, DEPARTMENT OFMATHEMATICS, 100 MATH TOWER, 231 WEST
18TH AVENUE, CoLuMBUS, OH 43210-1174, USA
E-mail addressjlafont@math.ohio-state.edu

SCHOOL OFMATHEMATICS, UNIVERSITY OF SOUTHAMPTON, HIGHFIELD CAMPUS, SOUTHAMP-
TON, SO17 1BJ, WITED KINGDOM
E-mail addressaminasyan@gmail . com



	1. Introduction
	2. Mapping tori of groups without proper finite index subgroups
	3. Word and torsion problems in NFQ groups
	4. Proofs of the theorems
	5. Decision problems in geometric group theory
	References

