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Abstract. We compute the equivariant K-homology of the classifying space
for proper actions, for cocompact 3-dimensional hyperbolic reflection groups.

This coincides with the topological K-theory of the reduced C∗-algebra as-
sociated to the group, via the Baum-Connes conjecture. We show that, for

any such reflection group, the associated K-theory groups are torsion-free. As

a result we can promote previous rational computations to integral compu-
tations. Our proof relies on a new efficient algebraic criterion for checking

torsion-freeness of K-theory groups, which could be applied to many other

classes of groups.

1. Introduction

For a discrete group Γ, a general problem is to compute K∗(C
∗
rΓ), the topological

K-theory of the reduced C∗-algebra of Γ. The Baum-Connes Conjecture predicts
that this functor can be determined, in a homological manner, from the complex
representation rings of the finite subgroups of Γ. This viewpoint led to general
recipes for computing the rational topological K-theory K∗(C

∗
rΓ) ⊗ Q of groups,

through the use of Chern characters (see for instance Lück and Oliver [18] and
Lück [15], [17], as well as related earlier work of Adem [1]). When Γ has small
homological dimension, one can sometimes even give completely explicit formulas
for the rational topological K-theory, see for instance Lafont, Ortiz, and Sánchez-
Garćıa [13] for the case where Γ is a 3-orbifold group.

On the other hand, performing integral calculations for these K-theory groups
is much harder. For 2-dimensional crystallographic groups, such calculations have
been done in M. Yang’s thesis [27]. This was subsequently extended to the class of
cocompact planar groups by Lück and Stamm [20], and to certain higher dimen-
sional dimensional crystallographic groups by Davis and Lück [5] (see also Langer
and Lück [14]). For 3-dimensional groups, Lück [16] completed this calculation
for the semi-direct product Hei3(Z) o Z4 of the 3-dimensional integral Heisenberg
group with a specific action of the cyclic group Z4. Some further computations were
completed by Isely [8] for groups of the form Z2 o Z; by Rahm [24] for the class
of Bianchi groups; by Pooya and Valette [23] for solvable Baumslag-Solitar groups;
and by Flores, Pooya and Valette [6] for lamplighter groups of finite groups.

Our present paper has two main goals. Our first goal is to add to the list of
examples, by providing a formula for the integral K-theory groups of cocompact 3-
dimensional hyperbolic reflection groups. The study of hyperbolic reflection groups
has a long history, and is motivated for instance in Davis’ book [4].

Date: April 5, 2018.

1



2 LAFONT, ORTIZ, RAHM, AND SÁNCHEZ-GARCÍA

Main Theorem. Let Γ be a cocompact 3-dimensional hyperbolic reflection group,
generated by reflections in the side of a hyperbolic polyhedron P ⊂ H3. Then

K0(C∗r (Γ)) ∼= Zcf(Γ) and K1(C∗r (Γ)) ∼= Zcf(Γ)−χ(C),

where the integers cf(Γ), χ(C) can be explicitly computed from the combinatorics of
the polyhedron P.

Here, cf(Γ) denotes the number of conjugacy classes of elements of finite order
in Γ, and χ(C) denotes the Euler characteristic of the Bredon chain complex. By a
celebrated result of Andre’ev [2], there is a simple algorithm that inputs a Coxeter
group Γ, and decides whether or not there exists a hyperbolic polyhedron PΓ ⊂ H3

which generates Γ. In particular, given an arbitrary Coxeter group, one can easily
verify if it satisfies the hypotheses of our Main Theorem.

Note that the lack of torsion in the K-theory is not a property shared by all
discrete groups acting on hyperbolic 3-space. For example, 2-torsion occurs in
K0(C∗r (Γ)) whenever Γ is a Bianchi group containing a 2-dihedral subgroup C2×C2

(see [24]). In fact, the key difficulty in the proof of our Main Theorem lies in showing
that these K-theory groups are torsion-free. Some previous integral computations
yielded K-theory groups that are torsion-free, though in those papers the torsion-
freeness was a consequence of ad-hoc computations. Our second goal is to give a
general criterion which explains the lack of torsion, and can be efficiently checked.
This allows a systematic, algorithmic approach to the question of whether a K-
theory group is torsion-free.

Let us briefly describe the contents of the paper. In Section 2, we provide
background material on hyperbolic reflection groups, topological K-theory, and the
Baum-Connes Conjecture. We also introduce our main tool, the Atiyah-Hirzebruch
type spectral sequence. In Section 3, we use the spectral sequence to show that the
K-theory groups we are interested in coincide with the Bredon homology groups
HFin

0 (Γ; RC) and HFin
1 (Γ; RC) respectively. We also explain, using the Γ-action on

H3, why the homology group HFin
1 (Γ; RC) is torsion-free. In contrast, showing that

HFin
0 (Γ; RC) is torsion-free is much more difficult. In Section 4, we give a geometric

proof for this fact in a restricted setting. In Section 5, we give a linear algebraic
proof in the general case, inspired by the “representation ring splitting” technique
of [24]. In particular, we establish a novel criterion (Theorem 5) for verifying that

HFin
0 (Γ; RC) is torsion-free, for any collection of groups Γ with prescribed types

of finite subgroups. In Sections 6.1 and 6.2, we further illustrate this criterion by
applying it to the Heisenberg semidirect product group of [16] and to the crystallo-
graphic groups of [5] respectively. As the rank of the K-theory groups can be easily
computed, this gives an alternate proof of the integral K-theoretic computations
in [16] and [5]. Finally, in Section 7, we return to our Coxeter groups, and provide
an explicit formula for the rank of the Bredon homology groups (and hence for the
K-groups we are interested in), in terms of the combinatorics of the polyhedron P.

Our results rely on fairly standard but rather long representation theoretic cal-
culations which have not been included in this article, but are available for the
interested reader in the two appendices of the arXived version of the present paper
[12], making our results self-contained and fully verifiable.
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2. Background Material

2.1. K-theory and the Baum-Connes Conjecture. Associated to a discrete
group Γ, one has C∗rΓ, the reduced C∗-algebra of Γ. This algebra is defined to be
the closure, with respect to the operator norm, of the linear span of the image
of the regular representation λ : Γ → B(l2(Γ)) of Γ on the Hilbert space l2(Γ)
of square-summable complex valued functions on Γ. This algebra encodes various
analytic properties of the group Γ [22].

For a C∗-algebra A, one can define the topological K-theory groups K∗(A) :=
π∗−1(GL(A)), which are the homotopy groups of the space GL(A) of invertible ma-
trices with entries in A. Due to Bott periodicity, there are canonical isomorphisms
K∗(A) ∼= K∗+2(A), and thus it is sufficient to consider K0(A) and K1(A).

In the special case where A = C∗rΓ, the Baum-Connes Conjecture predicts that
there is a canonical isomorphism KΓ

n (X)→ Kn(C∗r (Γ)), where X is a model for EΓ
(the classifying space for Γ-actions with isotropy in the family of finite subgroups),
and KΓ

∗ (−) is the equivariant K-homology functor. The Baum-Connes conjecture
has been verified for many classes of groups. We refer the interested reader to the
monograph by Mislin and Valette [22], or the survey article by Lück and Reich [19]
for more information on these topics.

2.2. Hyperbolic reflection groups. We will assume some familiarity with the
geometry and topology of Coxeter groups, which the reader can obtain from Davis’
book [4]. By a d-dimensional hyperbolic polyhedron, we mean a bounded region of
hyperbolic d-space Hd delimited by a given finite number of (geodesic) hyperplanes,
that is, the intersection of a collection of half-spaces associated to the hyperplanes.
Let P ⊂ Hd be a polyhedron such that all the interior angles between intersecting
faces are of the form π/mij , where the mij ≥ 2 are integer (although some pairs of
faces may be disjoint). Let Γ = ΓP be the associated Coxeter group, generated by
reflections in the hyperplanes containing the faces of P.

The Γ-space Hd is then a model for EΓ, with fundamental domain P. This
is a strict fundamental domain – no further points of P are identified under the
group action – and hence P = Γ\Hd. Recall that Γ admits the following Coxeter
presentation:

(1) Γ = 〈s1, . . . , sn | (sisj)mij 〉,

where n is the number of distinct hyperplanes enclosing P, si denotes the reflection
on the ith face, and mij ≥ 2 are integers such that: mii = 1 for all i, and, if i 6= j,
the corresponding faces meet with interior angle π/mij . We will write mij =∞ if
the corresponding faces do not intersect. For the rest of this article, d = 3, and X
is H3 with the Γ-action described above, with fundamental domain P.
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2.3. Cell structure of the orbit space. Fix an ordering of the faces of P with
indexing set J = {1, . . . , n}. We will write 〈S〉 for the subgroup generated by a
subset S ⊂ Γ. At a vertex of P, the concurrent faces (a minimum of three) must
generate a reflection group acting on the 2-sphere, hence it must be a spherical tri-
angle group. This forces the number of incident faces to be exactly three. The only
finite Coxeter groups acting by reflections on S2 are the triangle groups ∆(2, 2,m)
for some m ≥ 2, ∆(2, 3, 3), ∆(2, 3, 4) and ∆(2, 3, 5), where we use the notation

(2) ∆(p, q, r) =
〈
s1, s2, s3 | s2

1, s
2
2, s

2
3, (s1s2)p, (s1s3)q, (s2s3)r

〉
.

From our compact polyhedron P, we obtain an induced Γ-CW-structure on X = H3

with:

• one orbit of 3-cells, with trivial stabilizer;
• n orbits of 2-cells (faces) with stabilizers 〈si | s2

i 〉 ∼= Z/2 (i = 1, . . . , n);
• one orbit of 1-cells (edges) for each unordered pair i, j ∈ J with mij 6=∞,

with stabilizer a dihedral group Dmij
— this group structure can be read

off straight from the Coxeter presentation 〈si, sj | s2
i , s

2
j , (sisj)

mij 〉;
• one orbit of 0-cells (vertices) per unordered triple i, j, k ∈ J with 〈si, sj , sk〉

finite, with stabilizer the triangle group 〈si, sj , sk〉 ∼= ∆(mij ,mik,mjk).

We introduce the following notation for the simplices of P:

fi (faces),

eij = fi ∩ fj (edges),(3)

vijk = fi ∩ fj ∩ fk = eij ∩ eik ∩ ejk (vertices),

whenever the intersections are non-empty.

2.4. A spectral sequence. We ultimately want to compute the K-theory groups
of the reduced C∗-algebra of Γ via the Baum-Connes conjecture. Note that the
conjecture holds for these groups: Coxeter groups have the Haagerup property [3]
and hence satisfy Baum-Connes [7]. Therefore, it suffices to compute the equivari-
ant K-homology groups KΓ

∗ (X), since X is a model of EΓ. In turn, these groups
can be obtained from the Bredon homology of X, calculated via an equivariant
Atiyah-Hirzebruch spectral sequence coming from the skeletal filtration of the Γ-
CW-complex X (cf. [21]). The second page of this spectral sequence is given by
the Bredon homology groups

(4) E2
p,q =

{
HFin
p (Γ; RC) q even,

0 q odd.

The coefficients RC of the Bredon homology groups are given by the complex repre-
sentation ring of the cell stabilizers, which are finite subgroups. In order to simplify
notation, we will often write Hp to denote HFin

p (Γ; RC). In our case dim(X) = 3, so
the Atiyah-Hirzebruch spectral sequence is particularly easy to analyze, and gives
the following:

Proposition 1. There are short exact sequences

0 // coker(d3
3,0) // KΓ

0 (X) // H2
// 0

and

0 // H1
// KΓ

1 (X) // ker(d3
3,0) // 0 ,
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where d3
3,0 : E3

3,0 = H3 −→ E3
0,2 = H2 is the differential on the E3-page of the

Atiyah-Hirzebruch spectral sequence.

Proof. This follows at once from a result of Mislin [21, Theorem 5.29]. �

2.5. Bredon Homology. To lighten the notation, we write Γe for the stabilizer
in Γ of the cell e. The Bredon homology groups in Equation (4) are defined to be
the homology groups of the following chain complex:

(5) . . . //⊕
e∈Id RC (Γe)

∂d //⊕
e∈Id−1

RC (Γe) // . . . ,

where Id is a set of orbit representatives of d-cells (d ≥ 0) in X. The differentials ∂d
are defined via the geometric boundary map and induction between representation
rings. More precisely, if ge′ is in the boundary of e (e ∈ Id, e′ ∈ Id−1, g ∈ Γ), then
∂ restricted to RC (Γe)→ RC (Γe′) is given by the composition

RC (Γe)
Ind // RC (Γge′)

∼= // RC (Γe′) ,

where the first map is the induction homomorphism of representation rings asso-
ciated to the subgroup inclusion Γe ⊂ Γge′ , and the second is the isomorphism
induced by conjugation Γge′ = gΓe′g

−1. Finally, we add a sign depending on a
chosen (and thereafter fixed) orientation on the faces of P. The value ∂d(e) equals
the sum of these maps over all boundary cells of e.

Since P is a strict fundamental domain, we can choose the faces of P as orbit
representatives. With this choice of orbit representatives, the g in the previous
paragraph is always the identity. We will implicitly make this assumption from
now on.

3. Analyzing the Bredon chain complex for Γ

Let S = {si : 1 ≤ i ≤ n} be the set of Coxeter generators and J = {1, . . . , n}.
Since X is 3-dimensional, the Bredon chain complex associated to X reduces to

(6) 0 // C3
∂3 // C2

∂2 // C1
∂1 // C0 // 0 .

We will now analyse the differentials in the above chain complex in turn.
First, let us recall some basic concepts from representation theory [25, 9] and

explain the upcoming notation. For a finite group G, the complex representation
ring RC(G) is a free abelian group with basis the set of irreducible representations
of G (the ring structure is not relevant in this setting). Hence RC(G) ∼= Zc(G),
where we write c(G) for the set of conjugacy classes in G. If H is a subgroup of

G, we write IndGH : RC(H) → RC(G) for the induction homomorphism and denote

IndGH(ρ) simply by ρ ↑ when the groups are clear from the context. Similarly, we

use ResGH(ρ) or ρ ↓ for restriction of representations.
We will use the character tables of the groups involved in the Bredon chain

complex (6), that is, the finite Coxeter subgroups of Γ up to rank three. These are
based on the representation theory described in e.g. [9], where all these character
tables are constructed. In the character tables below, rows correspond to irreducible
representations, and columns to representatives of conjugacy classes, written in
term of the Coxeter generators s1, . . . , sn in a fixed Coxeter presentation of Γ (1).

The induction homomorphisms appearing in the Bredon chain complex (6) can

be easily computed using Fröbenius reciprocity [25]: 〈IndGH(ρ), τ〉 = 〈ρ,ResGH(τ)〉,



6 LAFONT, ORTIZ, RAHM, AND SÁNCHEZ-GARCÍA

where 〈·, ·〉 is the scalar product of representations. Computing restrictions and
scalar products is straightforward and thus Fröbenius reciprocity give ρ ↑ as a
linear combination of the irreducible representation of the larger group. Note that,
for consistency across subgroups, one must pay particular attention to the order
of the Coxeter generators within a subgroup when computing character tables or
induction homomorphisms.

Let us write e for the identity element in Γ and, when discussing a dihedral group
Dm, use the hat ̂ to denote an entry which appears only when m is even.

3.1. Analysis of ∂3. Let G be a finite group with irreducible representations
ρ1, . . . , ρm of degree n1, . . . , nm, and τ the only representation of the trivial sub-
group {1G} ≤ G. Then τ induces the regular representation of G:

(7) IndG{1G}(τ) = n1ρ1 + . . .+ nmρm .

Lemma 1. Let X be a Γ-CW-complex with finite stabilizers, and k ∈ N. If there is
a unique orbit of k-cells and this orbit has trivial stabilizer, then Hk = 0, provided
that ∂k 6= 0.

Proof. The Bredon module Ck equals RC(〈1〉) ∼= Z with generator τ , the trivial rep-
resentation. Then ∂k(τ) 6= 0 implies ker(∂k) = 0; and therefore the corresponding
homology group vanishes. �

From the lemma, we can easily see that H3 = 0 if ∂3 6= 0. Indeed, for ∂3 = 0 to
occur, one would need all boundary faces of P to be pairwise identified. This cannot
happen since P is a strict fundamental domain – the group acts by reflections on
the faces. The Lemma then forces H3 = 0, and Proposition 1 gives us:

Corollary 1. We have KΓ
1 (X) ∼= H1, and there is a short exact sequence

0 // H0
// KΓ

0 (X) // H2
// 0 .

3.2. Analysis of ∂2. Let f be a face of P and e ∈ ∂f an edge. Suppose, using
the notation of Equation (3), that f = fi and e = eij . Then we have a map
RC (〈si〉)→ RC (〈si, sj〉) induced by inclusion. Recall that 〈si〉 ∼= C2 and 〈si, sj〉 ∼=
Dmij . Denote the characters of these two finite groups as specified in Tables 1
and 2; and denote by a character name with the suffix “↑” the character induced
in the ambient larger group.

C2 e si
ρ1 1 1
ρ2 1 −1

Table 1. Character table of 〈si〉 ∼= C2.

A straightforward analysis (cf. [12, B.2]) shows that

ρ1 ↑ = χ1 + χ̂4 +
∑

φp ,

ρ2 ↑ = χ2 + χ̂3 +
∑

φp ,
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Dm (sisj)
r sj(sisj)

r

χ1 1 1
χ2 1 −1
χ̂3 (−1)r (−1)r

χ̂4 (−1)r (−1)r+1

φp 2 cos
(

2πpr
m

)
0

Table 2. Character table of 〈i, sj〉 ∼= Dm, where i < j and 0 ≤
r ≤ m−1, while 1 ≤ p ≤ m/2−1 ifm is even, and 1 ≤ p ≤ (m−1)/2
if m is odd, and where the hat ̂ denotes a character which appears
only when m is even.

if i < j, or

ρ1 ↑ = χ1 + χ̂3 +
∑

φp ,

ρ2 ↑ = χ2 + χ̂4 +
∑

φp ,

if j < i. Thus the induction map on the representation rings is the morphism of

free abelian groups Z2 → Zc(Dmij
) given by

(a, b) 7→ ±(a, b, b̂, â, a+ b, . . . , a+ b) or

(a, b) 7→ ±(a, b, â, b̂, a+ b, . . . , a+ b),

where again the hat ̂ denotes an entry which appears only when mij is even. Using
the analysis above, we can now show the following.

Theorem 1. If P is compact, then H2 = 0.

From this theorem and Corollary 1, we immediately obtain:

Corollary 2. KΓ
0 (X) = H0 and KΓ

1 (X) = H1.

Proof of Theorem 1. Fix an orientation on the polyhedron P, and consider the
induced orientations on the faces. At an edge we have two incident faces fi and fj
with opposite orientations. So without loss of generality we have, as a map of free
abelian groups,

RC (〈si〉)⊕RC (〈sj〉) → RC (〈si, sj〉) ,(8)

(ai, bi | aj , bj) 7→ (ai − aj , bi − bj , âi − bj , b̂i − aj , S, . . . , S),

where S = ai + bi − aj − bj , and the elements with a hat ̂ appear only when mij

is even. Note that we use vertical bars ‘|’ for clarity, to separate elements coming
from different representation rings.

By the preceding analysis, ∂2(x) = 0 implies that, for each i, j ∈ J such that the
corresponding faces fi and fj meet, we have

(1) ai = aj and bi = bj , and
(2) ai = aj = bi = bj , if mij is even.

Suppose that f1, . . . , fn are the faces of P. Let x = (a1, b1| . . . |an, bn) ∈ C2 be
an element in Ker(∂2). Note that ∂P is connected (since P is homeomorphic to
D3), so by (1) and (2) above, we have that a1 = . . . = an and b1 = . . . = bn.
Since the stabilizer of a vertex is a spherical triangle group, there is an even mij ,
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which also forces a = b. Therefore, we have x = (a, a| . . . |a, a), so x = ∂3(a) (note
that the choice of orientation above forces all signs to be positive). This yields
ker(∂2) ⊆ im(∂3), which gives the vanishing of the second homology group. �

3.3. Analysis of ∂1. A similar argument shows that H1 is torsion-free.

Theorem 2. There is no torsion in H1.

Proof. Consider the Bredon chain complex

C2
∂2 // C1

∂1 // C0.

To prove thatH1 = ker(∂1)/im(∂2) is torsion-free, it suffices to prove that C1/im(∂2)
is torsion-free. Let α ∈ C1 and 0 6= k ∈ Z such that kα ∈ im(∂2). We shall prove
that α ∈ im(∂2).

Since kα ∈ im(∂2), we can find β ∈ C2 with ∂2(β) = kα. Suppose that P has
n faces, and write β = (a1, b1| . . . |an, bn) ∈ C2, using vertical bars ‘|’ to separate
elements coming from different representation rings. We shall see that one can find
a 1-chain β′, homologous to β, and with every entry of β′ a multiple of k.

At an edge eij , the differential ∂2 is described in Equation (8). Since every entry
of ∂2(β) is a multiple of k, we conclude from Equation (8) that for every pair of
intersecting faces fi and fj ,

ai ≡ aj (mod k) and bi ≡ bj (mod k).

Equation (8) also shows that 1∂P = (1, 1| . . . |1, 1), the formal sum over all
generators of representation rings of face stabilizers of ∂P ∈ C2, is in the kernel
of ∂2. In particular, setting β′ = β − a11∂P , we see that ∂2(β′) = ∂2(β) = α and
we can assume without loss of generality that β′ satisfies a′1 ≡ 0 (mod k).

Let us consider the coefficients for the 1-chain β′. For every face fj intersecting
f1, we have a′1 − a′j ≡ 0 (mod k), which implies a′j ≡ 0 (mod k). Since ∂P is
connected, repeating this argument we arrive at a′i ≡ 0 (mod k) for all i. In
addition, there are even mij (the stabilizer of a vertex is a spherical triangle group),
and hence (8) also yields a′i − b′j ≡ 0 (mod k), which implies b′j ≡ 0 (mod k).
Exactly the same argument as above then ensures that b′i ≡ 0 (mod k) for all i.

Since all coefficients of β′ are divisible by k, we conclude that α = ∂2(β′/k) ∈
im(∂2), as desired. �

We note that a similar method of proof can be used, in many cases, to show that
H0 is torsion-free – though the argument becomes much more complicated. This
approach is carried out in Section 4.

Corollary 3. Let cf(Γ) be the number of conjugacy classes of elements of finite
order in Γ, and χ(C) the Euler characteristic of the Bredon chain complex (6).
Then we have

H1
∼= Zcf(Γ)−χ(C).

Proof. The Euler characteristic of a chain complex coincides with the alternating
sum of the ranks of the homology groups, giving us

χ(C) = rank(H0)− rank(H1) + rank(H2)− rank(H3).

Since H3 = H2 = 0, we have rank(H1) = rank(H0) − χ(C), and rank(H0) =
cf(Γ) [21]. Since H1 is torsion-free (Theorem 2), the result follows. �
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Note that both cf(Γ) and χ(C) can be obtained directly from the geometry of
the polyhedron P or, equivalently, from the Coxeter integers mij . We discuss this
further, and give explicit formulas, in Section 7.

Remark 1. A previous article by three of the authors [13] gave an algorithm to
compute the rank of the Bredon homology for groups Γ with a cocompact, 3-
manifold model X for the classifying space EΓ. The interested reader can easily
check that the computations in the present paper agree with the calculations in [13].

To complete the computation of the Bredon homology, and hence of the equi-
variant K-homology, all that remains is to compute the torsion subgroup of H0.
We will show that in fact H0 is also torsion-free.

Theorem 3. There is no torsion in H0.

We postpone the proof to Section 5 below. We note the following immediate
consequence of Theorem 3.

Corollary 4. KΓ
0 (X) is torsion-free of rank cf(Γ).

Our Main Theorem now follows immediately by combining Corollaries 2, 3, and 4.
Moreover, in Section 7, we will give a formula for cf(Γ) and χ(C) from the combi-
natorics of the polyhedron.

4. No torsion in H0 – the geometric approach

We present a geometric proof for a restricted version of Theorem 3. The method
of proof is similar to the proof of Theorem 2, but with further technical difficulties.
We will show:

Theorem 4. Assume the compact polyhedron P is such that all vertex stabilizers
are of the form Dm × Z2, where m ≥ 3 can vary from vertex to vertex. Then there
is no torsion in the 0-dimensional Bredon homology group HFin

0 (Γ; RC).

First, we discuss some terminology and the overall strategy of the proof. Fix
k ≥ 2 an integer. Our overall objective is to rule out k-torsion in H0. Let β ∈ C1 (in
the Bredon chain complex of Γ) such that ∂1(β) is the zero vector modulo k. Note
that an element α ∈ C0 has order k in H0 = C0/im(∂1) if and only if kα = ∂1(β).
Recall that

C1 =
⊕

eij edge

RC (〈si, sj〉) ,

is the direct sum of the representation rings (as abelian groups) of the edge stabiliz-
ers. The coefficients of x supported along a particular edge eij is by definition the
projection of x to Znij ∼= RC (〈si, sj〉), where nij is the dimension of the represen-
tation ring of the edge stabilizer. We say an element x is k-divisible along an edge
eij provided the coefficients of x supported along eij are congruent to zero mod k.

By establishing k-divisibility of β along an edge eij , we mean: substituting β
by a homologous element β′ ∈ C1 (homologous means that ∂1(β) = ∂1(β′)), such
that β′ is k-divisible along eij . When the 1-chain β is clear from the context, we
will abuse terminology and simply say that the edge e is k-divisible. We sometimes
refer to an edge with stabilizer Dn as an n-edge, or edge of type n.

Our goal is to replace β with a homologous chain β′ for which all the edges are
k-divisible, that is,
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(1) ∂1(β′) = ∂1(β), and
(2) every coefficient in the 1-chain β′ is divisible by k.

If we can do this, it follows that α = ∂1(β′/k), and hence that α is zero in H0.
The construction of β′ is elementary, but somewhat involved. It proceeds via a

series of steps, which will be described in the following subsections. Sections 4.1 to
4.9 contain the conceptual, geometric arguments needed for the proof. At several
steps in the proof, we require some technical algebraic lemmas. For the sake of
exposition, we defer these lemmas and their proofs to the very last Section 4.11.

4.1. Coloring the 1-skeleton. Recall that β ∈ C1 =
⊕

e∈P(1) RC(Γe), so we can
view β as a formal sum of complex representations of the stabilizers of the various
edges in the 1-skeleton of P. The edge stabilizers are dihedral groups. Let us 2-color
the edges of the polyhedron, blue if the stabilizer is D2, and red if the stabilizer is
Dm, where m ≥ 3. From our constraints on the vertex groups, we see that every
vertex has exactly two incident blue edges. Of course, any graph with all vertices
of degree 2 decomposes as a disjoint union of cycles.

The collection of blue edges thus forms a graph, consisting of pairwise disjoint
loops, separating the boundary of the polyhedron P (topologically a 2-sphere) into a
finite collection of regions, at least two of which must be contractible. The red edges
appear in the interior of these individual regions, joining pairs of vertices on the
boundary of the region. Fixing one such contractible region R∞, the complement
will be planar. We will henceforth fix a planar embedding of this complement. This
allows us to view all the remaining regions as lying in the plane R2.

R1 R2 R4

R3

R5

Figure 1. Example of enumeration of regions (see Section 4.2).

4.2. Enumerating the regions. Our strategy for modifying β is as follows. We
will work region by region. At each stage, we will modify β by only changing it on
edges contained in the closure of a region. In order to do this, we need to enumerate
the regions.

We have already identified the (contractible) region R∞ – this will be the last
region dealt with. In order to decide the order in which we will deal with the
remaining regions, we define a partial ordering on the set of regions. For distinct
regions R,R′, we write R < R′ if and only if R is contained in a bounded component
of R2 \R′. This defines a partial ordering on the finite set of regions. For example,
any region which is minimal with respect to this ordering must be simply connected
(hence contractible). We can thus enumerate the regions R1, R2, . . . so that, for any
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i < j, we have Rj 6< Ri (Figure 1). We will now deal with the regions in the order
they are enumerated. Concretely, the choice of enumeration means that by the
time we get to the ith region, we have already dealt with all the regions which are
“interior” to Ri (i.e. in the bounded components of R2 \Ri).

F1

F2

F3

F4

F5

F9

F6

F7 F8

F11

F13

F10

F12

v1

v2

v3 v4

v5

v6

v7

v8

v11
v12

v13

v10

v9

Figure 2. Contractible region, its dual tree T with an enumera-
tion of its vertices, and the corresponding enumeration of the faces
in the region (see Section 4.3).

4.3. Enumerating faces within a region. We now want to establish k-divisibility
of the red edges inside a fixed region R. To do this, we first need to order the 2-faces
inside R. Consider the graph G dual to the decomposition of R into 2-faces. This
graph has one vertex for each 2-face in R, and an edge joining a pair of vertices if
the corresponding 2-faces share a (necessarily red) edge. Notice that every vertex
of R lies on a pair of blue edges. It follows that, if we remove the blue edges from
the region R, the result deformation retracts to G.

If s denotes the number of regions Ri < R with ∂R ∩ ∂Ri non-empty, then the
first homology H1(G) = H1(R) will be free abelian of rank s. We now choose any
spanning tree T for the graph G, and note that G \ T consists of precisely s edges,
each of which is dual to a red edge inside the region R. Since T is a tree, we can
enumerate its vertices v1, v2, . . . , vn so that

(1) v1 is a leaf of the tree (vertex of degree one), and
(2) the subgraph induced by any {v1, . . . , vk}, 1 ≤ k ≤ n, is connected.

Since vertices of the dual tree correspond to 2-faces in R, this gives us an enumera-
tion of the 2-faces F1, F2, . . . , Fn inside the regionR. Figure 2 illustrates this process
for a contractible region, while Figure 3 gives an illustration for a non-contractible
region.

4.4. Establishing k-divisibility of red edges dual to a spanning tree. Con-
tinuing to work within a fixed region R, we now explain how to establish k-
divisibility of all the red edges which are dual to the edges in the spanning tree
T . As explained in Section 4.3, we have an enumeration F1, F2, . . . of the 2-faces
contained inside the region R. With our choice of enumeration, we have guar-

anteed that each Fk+1 shares precisely one distinguished red edge with
⋃k
i=1 Fi,
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F1

F2

F3

F4

F5

F9

F6

F17 F10

F16

F14

F11

F15

F7

F8

F12

F13

v2 v4

v5 v7

v8

v9

v10

v11

v12

v13
v14

v15

v16

v17
v1

v3

v6

Figure 3. Non-contractible region and its dual graph G. A span-
ning tree T for G consisting of all edges except (v4, v17) and
(v17, v10). The enumeration of the vertices, and corresponding enu-
meration of the faces is done according to Section 4.3.

distinguished in the sense that this red edge is dual to the unique edge in the tree
T connecting the vertex vk+1 to the subtree spanned by v1, . . . , vk.

We orient the (blue) edges along the boundary loops of R clockwise, and the red
edges cutting through R in an arbitrary manner. For each 2-face Fi, we want to
choose corresponding elements ηi in the representation ring RC(ΓFi)

∼= Z2, where
ΓFi
∼= C2 is the stabilizer of Fi. These ηi shall be chosen such that all red edges

dual to T are k-divisible for the 1-chain β+ ∂2

(∑
ηi), which is clearly homologous

to β.
Pick an η1 arbitrarily. We now assume that η1, . . . , ηk are given, and explain

how to choose ηk+1. By our choice of enumeration of vertices, the vertex vk+1 is
adjacent to some vj where j ≤ k. Dual to the two vertices vj , vk+1 we have a pair
Fj , Fk+1 of 2-faces inside the region R. Dual to the edge that joins vj to vk+1 is the
(red) edge Fj ∩Fk+1. We see that ∂2(ηj + ηk+1) is the only term which can change
the portion of β supported on the edge Fj ∩ Fk+1. Since ηj is already given, we
want to choose ηk+1 in order to ensure that the resulting 1-chain is k-divisible on
the edge Fj ∩Fk+1. This will arrange key property (2) for the (red) edge Fj ∩Fk+1.

That such an ηk+1 can be chosen is the content of Lemma 3 in Section 4.11.
Iterating this process, we find that the 1-chain β + ∂2

(∑
ηi) is homologous to β,

and that all red edges dual to edges in T are k-divisible for β + ∂2

(∑
ηi).

4.5. Forming the graph B. Performing the process in Section 4.4 for each region
R (including the region R∞), we finally obtain a 1-chain homologous to our original
β (which by abuse of notation we will still denote β) which is k-divisible except
possibly along:

• si red edges inside each region Ri, where si denotes the number of regions
entirely enclosed by the region Ri who share a boundary with Ri;

• all the blue edges inside the 1-skeleton, which we recall decompose into a
finite collection of blue loops.
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R1 R2

R3

R4

R5

γ1 γ2

γ3
γ4

γ5

v5

v4

v3

v2

v1

Figure 4. (Left) Non-contractible region R with blue loops and
red edges. (Right) Graph B associated to R. (See Section 4.5).

We now use these to form a graph B, which captures all the remaining potentially
bad edges for the chain β, i.e. edges that are still not k-divisible. B is formed with
one vertex for each blue loop. Note that each remaining red edge that is potentially
not k-divisible joins a pair of vertices which lie on some blue loops γ1, γ2 (as all
vertices lie on blue loops). For each such red edge, we define an edge in the graph
B joining the two vertices vi corresponding to the blue loops γi (Figure 4).

Lemma 2. The graph B is a tree.

Proof. It follows immediately from the discussion in Section 4.3 that B is connected.
Thus it suffices to show B has no embedded cycles. Observe that, since blue loops
separate the plane into two connected components, the corresponding vertex of B
likewise partitions the graph B into two connected components (corresponding to
the “interior” component and the “exterior” component determined by the blue
loop). Thus if there is an embedded cycle, then for each vertex v of B, it must
remain within one connected component of B\{v}. This means that any embedded
cycle has the property that all the vertices it passes through correspond to blue
components lying in the closure of a single region R (and all red edges lie inside
that region R).

Now by way of contradiction, assume that e1, . . . , ek forms a cycle in B, cyclically
joining vertices γ1, . . . , γk, where the γi are blue loops inside the closure of the
region R. We can concatenate the corresponding (red) edges ei along with paths
on the blue loops γi to obtain an embedded edge loop η contained in the closure
of the region R. Now pick a pair of 2-faces F1, F2 inside the region R, where F1 is
contained inside the loop η, while F2 is contained outside of the loop η, e.g. pick
the 2-faces on either side of the red edge e1. Note that, by construction, the closed
loop η separates these regions from each other.

These two regions correspond to vertices v1, v2 in the graph G associated to the
region R. Since T was a spanning tree for the graph G, it follows that we can find
a sequence of edges in the tree T connecting v1 to v2. This gives rise to a sequence
of 2-faces connecting F1 to F2, where each consecutive face share an edge distinct
from any of the red edges ei. Thus we obtain a continuous path joining F1 to F2

which is completely disjoint from η, a contradiction. We conclude that B cannot
contain any cycles, and hence is a tree. �
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Notice that each vertex in B corresponds to a blue loop, which lies in the closure
of precisely two regions. There will thus be a unique such region which lies in the
bounded component of the complement of the loop. This establishes a bijection
between the regions and the vertices of B. From the enumeration of regions in
Section 4.2, we can use the bijection to enumerate vertices of B. For example,
the vertex with smallest labelling will always correspond to the boundary of a
contractable region. We refer the reader to Figure 4 for an illustration of this
labelling.

4.6. Coefficients along the blue loops. Our next goal is to modify β in order
to make all the remaining red edges (i.e. edges in the graph B) k-divisible. Note
that the 1-chain β might not be an integral 1-cycle, but it is a 1-cycle mod k. We
will now exploit this property to analyze the behavior of the 1-chain β along the
blue loops.

Proposition 2. Let γ be any blue loop, oriented clockwise. Then the coefficients
on the blue edges are all congruent to each other modulo k, that is, if (a, b, c, d) and
(a′, b′, c′, d′) are the coefficients along any two blue edges in a given blue loop, then
(a, b, c, d) ≡ (a′, b′, c′, d′) mod k. Moreover, along any red edge in the graph B, the
coefficient is congruent to zero mod k, except possibly if the edge has an even label,
in which case the coefficient is congruent to (0, 0, ẑ,−ẑ, 0, . . . , 0) for some z (which
may vary from edge to edge).

Proof. To see this, we argue inductively according to the ordering of the blue con-
nected components (see Section 4.5).

Base Case. For the initial case, consider the blue loop corresponding to vertex v1

in the tree B. By hypothesis, this blue loop γ has a single (red) edge incident
to it which is potentially not k-divisible, corresponding to the unique edge in the
tree B incident to v1. Let w denote the single vertex on γ where that red edge
is incident, allowing us to view γ as a path starting and terminating at w. Since
all the remaining red edges incident to γ are k-divisible, applying Lemma 4 in
Section 4.11 (with all the ẑ ≡ 0) for each incident k-divisible red edge shows that
all the coefficients along the path γ are congruent to each other mod k. Note that,
in this base case, we are always in the cases i < j < k or j < k < i of Lemma 4,
according to whether the k-divisible red edge lies in the unbounded or bounded
region determined by the blue loop γ. This establishes the first statement of the
Proposition. To get the second statement, we apply Lemma 5 in Section 4.11 at
the vertex w, and we are done.

Inductive Step. Now inductively, let us assume that we are focusing on the blue
loop γi corresponding to some vertex vi in B. We assume that all the blue loops
γj corresponding to vertices vj with j < i already satisfy the desired property. We
also assume that all red edges in the graph B connected to vertices vj with j < i
have coefficients of the form described in the Proposition.

From the directed structure of the graph B, the vertex vi has a unique edge e
connecting to a vertex vj with index j > i, and all the remaining edges in B connect
to a vj for some j < i.

By the inductive hypothesis, this tells us that all but one of these red edges have
coefficients congruent to (0, 0, ẑj ,−ẑj , 0, . . . , 0) for some zj (which might depend on
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the edge). Again, viewing γi as a path starting and terminating at the same vertex
w (where e is incident to γ), we may apply Lemma 4 and conclude that γi has
coefficients along all edges that are congruent to each other. Applying Lemma 5 at
the vertex w, shows that the coefficients along the edge e must also be of the form
(0, 0, ẑ,−ẑ, 0, . . . , 0) for some z. This completes the inductive step and the proof of
the Proposition. �

4.7. Equivalence classes of red edges. Now consider a red edge which is po-
tentially not k-divisible, corresponding to an edge in the graph B joining vertices
vi to vj . The red edge thus joins the blue loop γi to the blue loop γj . From
Proposition 2, we see that the coefficient along the red edge must be congruent to
(0, 0, ẑ,−ẑ, 0, . . . , 0) for some z. In particular, there is a single residue class that
determines the coefficients along the red edge (modulo k).

Next let us momentarily focus on a blue loop γ, and assume the coefficients along
the edges of γ are all congruent to (a, b, c, d) modulo k, as ensured by Proposition 2
(Figure 5). We define an equivalence relation on all the red edges with even label
incident to γ, by defining the two equivalence classes:

(a) the incident red edges that lie in the bounded region corresponding to γ, and
(b) those that lie in the unbounded region.

It follows from Lemma 4 (Section 4.11), that all edges in the equivalence class
(a) have corresponding coefficients congruent to (0, 0, ẑj ,−ẑj , 0, . . . , 0) where each
zj ≡ b − a, while all edges in equivalence class (b) have corresponding coefficients
congruent to (0, 0, ẑj ,−ẑj , 0, . . . , 0) where each zj ≡ c− a (Figure 5).

zj ≡ b− a

γ

congruent to (a, b, c, d) zj ≡ c− a

Figure 5. Bad red edges incident to blue loop γ. All interior
edges have coefficients satisfying one congruence, while all exterior
edges have coefficients satisfying a different congruence (Sec-
tion 4.7).

This equivalence relation is defined locally, and can be extended over all blue
loops in the 1-skeleton, resulting in an equivalence relation on the collection of all
red edges with even label. Observe that, by construction, each equivalence class has
the property that there is a single corresponding residue class z mod k, with the
property that all the edges within that equivalence class have coefficient congruent
to (0, 0, ẑ,−ẑ, 0, . . . , 0), i.e. the z is the same for the entire equivalence class.
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Corollary 5. The edges in the graph B that are not k-divisible are a finite union
of equivalence classes for this relation.

Proof. Let e be an edge in B, and assume that e is equivalent to an edge e′ which
is not an edge in B. Since all edges that are not in B are k-divisible, it follows
that the coefficient on e′ is congruent to zero mod k. Thus the value of z for the
equivalence class E containing e′ is z = 0. Since e ∈ E , this forces e to be k-divisible,
a contradiction. �

4.8. Establishing k-divisibility of the remaining red edges. Observe that
the edges in each equivalence class form a connected subgraph, and hence a subtree
(see Lemma 2), of the graph B. This collection of subtrees partitions the graph B.
Any vertex of B is incident to at most two such subtrees – the incident red edges
lying “inside” and “outside” the corresponding blue loop.

We now proceed to establish k-divisibility of the remaining red edges for our
chain. Fix an equivalence class E of red edges, and associate to it a 1-chain αE
whose coefficients are given as follows:

(1) if a blue loop γ has an incident red edge e ∈ E , and e lies in the bounded
region of γ, then assign (0, 1, 0, 0) to each blue edge on γ;

(2) if a blue loop γ has an incident red edge e ∈ E , and e lies in the unbounded
region of γ, then assign (0, 0, 1, 0) to each blue edge on γ;

(3) along the red edges in the equivalence class (recall that all these edges have

even labels), assign ±(0, 0, 1̂,−1̂, 0, . . . , 0), with sign chosen to ensure that
the local 1-cycle condition holds at both endpoints (see Lemma 4).

Notice that, one can choose the signs in (3) coherently because the equivalence
class defines a subtree of the tree B – and thus there are no cycles (these could
have potentially forced the sign along an edge to be both positive and negative).
Another key feature of the 1-chains αE is that they are linearly independent. More
precisely, two distinct equivalence classes E , E ′ have associated 1-chains αE and αE′

whose supports are disjoint, except possibly along a single blue loop γ. In the case
where the supports overlap along γ, adding multiples of αE does not affect the
z-value along the class E ′ (and vice versa).

It is now immediate from the equality case of Lemma 4 in Section 4.11 that the
1-chain αE is in fact an integral 1-cycle. Subtracting multiples of αE from our given
chain β, we may thus obtain a homologous 1-chain for which all the red edges in
E are now k-divisible. Repeating this for each of the equivalence classes, we have
now obtained a homologous 1-chain (still denoted β) for which all the red edges are
k-divisible.

4.9. Establishing k-divisibility of the remaining blue edges. We now have
obtained a 1-chain with prescribed differential, whose coefficients along all red edges
are k-divisible. It remains to establish k-divisibility of the blue loops for the 1-chain.

If γ is one of the blue loops, then since all incident red edges are k-divisible, we
see that all the edges on γ have coefficients which are congruent to either (a, b, c, d),
(a, b, a, b), (a, a, c, c), or (a, a, a, a), according to the equivalence classes that are
incident to γ (see also Proposition 2).

Let us discuss, as an example, the case (a, b, a, b). Note that this case occurs
if the only incident red edges to γ with even label lie in the unbounded region
determined by γ. Consider the pair of integral 1-cycles α13, α24 supported on γ,
obtained by assigning to each edge on γ the coefficient (1, 0, 1, 0) and (0, 1, 0, 1)
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respectively. From the equality case of Lemma 4 we see that α13, α24 are in fact
1-cycles. By adding multiples of α13, α24, we can now arrange for the coefficients
along the blue loop γ to all be k-divisible. The three other cases can be dealt with
similarly; we leave the details to the reader.

4.10. Completing the proof. Performing this process described in Section 4.9
for all the blue components, we finally obtain the desired 1-chain β′. Since β′ now
satisfies properties (1) and (2) mentioned at the beginning of the proof, we conclude
that the given hypothetical torsion class α ∈ H0 was in fact the zero class. This
completes the proof of Theorem 4.

Remark 2. It is not obvious how to adapt the strategy in the geometric proof above
to the case when other vertex stabilizer types are allowed. In the case of vertex
stabilizers of the type ∆(2, 3, 3), ∆(2, 3, 4), and ∆(2, 3, 5), most of the arguments
can be adapted. The main difficulty lies in the arguments of Section 4.4, which rely
heavily on Lemma 4 in Section 4.11. Unfortunately, the analogue of that Lemma
does not seem to hold when one allows these other types of vertices as endpoints
of the edge. For vertices with stabilizer ∆(2, 2, 2), additionally difficulties arise,
notably in Sections 4.7, 4.8, and 4.9.

4.11. Local Analysis. The geometric proof that HFin
0 (Γ; RC) is torsion free, The-

orem 4, relies on a detailed local analysis of the induction homomorphism at the
vertices of the polyhedron P. We state and prove the results needed here. Although
rather technical, they are all, unless an explicit proof is given, straightforward con-
sequences of the induction homomorphisms (cf. [12, Appendix B]). Let us introduce
some notation. Throughout this section, α will denote an integral 1-chain that is
also a 1-cycle (mod k), i.e. ∂1(α) ≡ 0. Our goal is to understand how this condition
constrains the coefficients of α.

At every vertex v = vijl, there are three incident edges e1 = eij , e2 = eil
and e3 = ejl, and let x1, x2 and x3 be α projected along those edges, written
as column vectors. Write A1 for the integer matrix representing the induction
homomorphism from e1 to v, that is, RC(〈si, sj〉) −→ RC(〈si, sj , sl〉) (as always, we
will implicitly identify representation rings with free abelian groups, via the bases
explicitly described in [12, Appendix A], and define A2 and A3 analogously for e2

and e3. So each of these matrices is a submatrix of ∂1 in matrix form. Then the
value of ∂1(x) at the vertex v = vijl (that is, projected to RC(〈si, sj , sl〉)) is given

by the matrix product (±A1| ±A2| ±A3) ·

x1

x2

x3

 , with signs depending on edge

orientations. The product above is zero modulo k, by the hypothesis on α being a
1-cycle mod k. We can reduce modulo k all the entries and, abusing notation, still
call the resulting matrices and vectors A1, A2, A3, x1, x2 and x3. Furthermore, for
simplicity, let us redefine A1 as −A1 etc as needed to take account of the chosen
orientations. Then we have that the column vector representing α locally at v
(i.e. along the incident edges) is in the kernel of the matrix representing ∂1 locally

at v, that is,

x1

x2

x3

 ∈ ker (A1|A2|A3) . One important consequence is that we can

perform row operations on the matrix A = (A1|A2|A3) without changing its kernel
and, in particular, we may row reduce A, for instance into its Hermite normal form,
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to simplify calculations. (Obviously, row reduction must be performed modulo k,
that is, in Z/kZ.) Another consequence is that, to study the consequences of
establishing k-divisibility of an edge, we only need to remove the corresponding
matrix block and vector. For example, if k-divisibility of e1 has been established
for α, that is, if x1 is zero modulo k, then the equation above is equivalent to(
x2

x3

)
∈ ker (A2|A3) , and we can now row reduce this matrix to help us calculate

its kernel, if needed. Recall that, throughout Section 4, we are only interested in
the case where all vertices have stabilizers of the form ∆(2, 2,m), with m > 2 (see
statement of Theorem 4). So let us now focus on that case.

For a ∆(2, 2,m), m > 2, vertex, recall that we assume j < l and we have (cf. [12,

Appendix B]) induction matrices M
(1)<
2,m (if i < j) or M

(1)>
2,m (if i > j), M

(2)<
2,m (if

i < l) or M>
2,m (if i > l), and Mm,m where

M
(1)<
2,m =



1 0 0 0

0 1 0 0

0̂ 1̂ 0̂ 0̂

1̂ 0̂ 0̂ 0̂

1 1 0 0
...

...
...

...
1 1 0 0

0 0 1 0

0 0 0 1

0̂ 0̂ 0̂ 1̂

0̂ 0̂ 1̂ 0̂

0 0 1 1
...

...
...

...

0 0 1 1



, M
(2)<
2,m =



1 0 0 0

0 1 0 0

1̂ 0̂ 0̂ 0̂

0̂ 1̂ 0̂ 0̂

1 1 0 0
...

...
...

...

1 1 0 0
0 0 1 0

0 0 0 1

0̂ 0̂ 1̂ 0̂

0̂ 0̂ 0̂ 1̂

0 0 1 1
...

...
...

...

0 0 1 1



, Mm,m =

(
Idc(Dm)

Idc(Dm)

)
,

and M
(1)>
2,m , respectively M

(2)>
2,m , equals M

(1)<
2,m , respectively M

(2)<
2,m , with the 2nd

and 3rd columns interchanged.
In the following lemmas, recall that α is an integral 1-chain which is also a 1-

cycle mod k. Moreover, in Lemmas 4 and 5, let ̂ denote coefficients that only
appear when m is even, and recall the standard labelling of faces: the m-edge lies
between the faces labelled Fj and Fl, and the labelling always satisfies (without
loss of generality) that j < l. Finally, recall that we refer to an edge with stabiliser
Dm as an m-edge, or edge of type m.

Lemma 3. Let α be an integral 1-chain, which we assume is also a 1-cycle mod k.
Let F1, F2 be a pair of adjacent 2-faces, sharing a common edge e, with endpoint v
whose stabilizer is of the form ∆(2, 2,m), with m > 2. Assume that we are given
an η1 = (n1,m1) in the representation ring RC(C2) associated to the stabilizer of
the 2-face F1. Then there exists a choice of η2 = (n2,m2) in the representation
ring RC(C2) associated to the stabilizer of the 2-face F2, with the property that
α + ∂2(η1 + η2) has coefficient along e congruent to zero mod k (i.e. the edge e is
now k-divisible).

Proof. The edge e has stabilizer Dm, with m > 2. We will assume the orientations
along the edges and faces are as given in Figure 6. Assume the coefficients of

α supported on the edge e are given by (a, b, ĉ, d̂, r1, . . . , rs). We choose η2 :=
(a+n1, r1 +m1− a). A straightforward computation using the induction formulas
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e

ē1 ē2

ē3 ē4

FlFj

Figure 6. Local picture near the edge e (Lemma 3).

shows that, with this choice of η2, the coefficient of α′ := α+ ∂2(η1 + η2) along the

edge e is of the form z := (0, b′, ĉ′, d̂′, 0, r′2, . . . , r
′
s). That is to say, we chose η2 in

order to force a′ = r′1 = 0.
We are left with checking that the remaining coefficients of α′ are all congruent

to zero mod k. To see this, we use the fact that α′ is also a 1-cycle mod k. From
the labelings of the faces around the vertex v, and the order in which we label faces
(one region at a time), we see that we are in one of the two cases i < j < l or
j < l < i. Let us consider the case i < j < l, and assume that the coefficients along
the 2-edges incident to v are given by x := (x1, x2, x3, x4) and y := (y1, y2, y3, y4).
As α′ is a 1-cycle mod k, we have

(
M

(1)<
2,m

∣∣∣ −M (2)<
2,m

∣∣∣ −Mm,m

)xy
z

 ≡ 0,

Note that the last s rows of the matrix are identical, giving rise to s identical
relations x2 + x4 − y2 − y4 + r′t ≡ 0 (for 1 ≤ t ≤ s). Since r′1 = 0, these equations
immediately imply that all the remaining r′t ≡ 0.

Let us now assume that m is odd. The first and third row of the matrix give
rise to equations x1 − y1 ≡ 0 and x1 + x3 − y1 − y3 ≡ 0, forcing x3 − y3 ≡ 0.
Using the second row, we get x3 − y3 + b′ ≡ 0, which immediately gives b′ ≡ 0.
This completes the proof when i < j < l and m is odd. The case where m is even
is analogous – one just uses the equations obtained from the first five rows of the

matrix to conclude that a′, b′, ĉ′, and d̂′ are all congruent to zero mod k.
Finally, if j < l < i, then one proceeds in a completely similar manner, but using

the block matrix
(
M

(1)>
2,m | −M

(2)>
2,m | −Mm,m

)
instead. It is again straightforward

to work through the equations – we leave the details to the reader. �

Lemma 4. Consider a vertex of type ∆(2, 2,m), m > 2, with the incident 2-
edges oriented compatibly. If the coefficients of α along the m-edge are congruent
to (0, 0, ẑ,−ẑ, 0, . . . , 0) for some z, then the coefficients (a, b, c, d) and (a′, b′, c′, d′)
along the pair of 2-edges satisfy the following congruences:

(i) if i < j < l, then (a, b, c, d) ≡ (a′, b′, c′, d′), and ẑ ≡ b− a ≡ d− c;
(ii) if j < i < l, then (a, b, c, d) ≡ (a′, c′, b′, d′), and ẑ ≡ c− a ≡ d− b;

(iii) if j < l < i, then (a, b, c, d) ≡ (a′, b′, c′, d′), and ẑ ≡ c− a ≡ d− b;
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and we have oriented the m-edge so that the vertex is its source. (With the opposite
orientation, simply replace ẑ by −ẑ.) Moreover, the same statement holds if one
changes all congruences to equalities.

Proof. Let x1 = (a, b, c, d), x2 = (a′, b′, c′, d′) and x3 = (0, 0, ẑ,−ẑ, 0, . . . , 0) be the
coefficients of α along the edges incident to the vertex. Consider the case i < j < l
first. Since α is a 1-cycle mod k,

(
M

(1)<
2,m

∣∣∣ −M (2)<
2,m

∣∣∣ −Mm,m

)x1

x2

x3

 ≡ 0,

which gives a− a′ ≡ 0, b− b′ ≡ 0, b− a′ − ẑ ≡ 0, a− b′ + ẑ ≡ 0, a+ b− a′ − b′ ≡ 0,
c − c′ ≡ 0, d − d′ ≡ 0, d − c′ − ẑ ≡ 0, c − d′ + ẑ ≡ 0, and c + d − c′ − d′ ≡ 0,
from which the result follows. The other two cases, j < i < l and j < l < i,

are analogous but for the block matrix
(
M

(1)>
2,m | −M

(2)<
2,m | −Mm,m

)
, respectively(

M
(1)>
2,m | −M

(2)>
2,m | −Mm,m

)
. The former gives the same congruences but with b

and c interchanged, and the latter with b and c, and b′ and c′, interchanged. For
the opposite orientation of the m-edge, replace −Mm,m by Mm,m in the calculation
above. �

Lemma 5. Consider a vertex of type ∆(2, 2,m), m > 2, with the incident 2-edges
oriented compatibly. Assume the coefficients along the 2-edges are both congruent
to (a, b, c, d), that the m-edge is oriented compatibly with the first 2-edge, and that
the faces are labelled so that i < j < l or j < l < i (so we are excluding the
case j < i < l). Then the m-edge coefficients are congruent to (0, 0, ẑ,−ẑ, 0, . . . , 0)
where

(i) if i < j < l, then ẑ ≡ a− b;
(ii) if j < l < i, then ẑ ≡ a− c.

(If we reverse the orientation on the m-edge, the congruencies above hold with ẑ
replaced by −ẑ.) In particular, if m is odd, the m-edge is automatically k-divisible.

Proof. We are assuming x1 ≡ x2 ≡ (a, b, c, d), and that x3 = (x, y, ẑ, t̂, r1, . . . , rs)
are the coefficients of α along the edges incident to the vertex. Consider the case
i < j < l first. Since α is a 1-cycle mod k,

(
M

(1)<
2,m

∣∣∣ −M (2)<
2,m

∣∣∣ −Mm,m

)x1

x2

x3

 ≡ 0,

which gives x ≡ a − a ≡ 0, y ≡ b − b ≡ 0, ĉ ≡ a − b, d̂ ≡ b − a, while all the
remaining equations are of the form rt ≡ (a+ b)− (a+ b) ≡ 0 (for 1 ≤ t ≤ s). The
claim follows. The case j < l < i is completely analogous, but uses instead the

block matrix
(
M

(1)>
2,m | −M

(2)>
2,m | −Mm,m

)
. The details are left to the reader. �

It is perhaps worth noting that the analogue of Lemma 5 is false if the faces
are enumerated to satisfy j < i < l. In particular, the corresponding block ma-

trix
(
M

(1)>
2,m | −M

(2)<
2,m | −Mm,m

)
leads to, for example, y ≡ b − c, which is not

necessarily zero.
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5. No torsion in H0 – the linear algebra approach

In this section, we give a proof of Theorem 3 inspired by the representation ring
splitting technique of [24]. We do this by establishing a criterion for HFin

0 (Γ; RC) to
be torsion-free. Our criterion is efficient to check, and only requires elementary lin-
ear algebra. Furthermore, we will see it is satisfied for Γ a 3-dimensional hyperbolic
Coxeter group.

The verification of our criterion relies on simultaneous base transformations of
the representation rings, bringing the induction homomorphisms into the desired
form. For the 3-dimensional hyperbolic Coxeter groups, these transformations are
carried out in Appendices A and B in [12]. In Section 6 which comes next, we will
also see that this condition is satisfied for several additional classes of groups that
had previously been considered by other authors.

Definition 1. The vertex block of a given vertex v in a Bredon chain complex
differential matrix ∂1 consists of all the blocks of ∂1 that are representing maps
induced (on complex representation rings from Γe → Γv) by edges e incident to v.

We represent elements in the Bredon chain complex as column vectors. So the
matrix D for the differential ∂1 is a rankZ C0 × rankZ C1 matrix, acting by left
multiplication on a column vector in C1. For a vertex v, denote by n0 the rank of
RC (Γv), and by n1, n2, n3, the ranks of the representation rings corresponding to
the three edges e1, e2 and e3 incident to v. Then the vertex block for v is a submatrix
of D of size n0×(n1+n2+n3). Since vertex blocks have been constructed to contain
all entries from incident edges, we note that the rest of the entries in their rows are
zero.

Theorem 5. If there exists a base transformation such that all minors in all vertex
blocks are in the set {−1, 0, 1}, then HFin

0 (Γ; RC) is torsion-free.

Proof of Theorem 5. We start by recalling a general result on Smith Normal Forms,
already observed by Smith [26]. Denote by di(A) the i-th determinant divisor di(A),
defined to be the greatest common divisor of all i × i minors of a matrix A when
i ≥ 1, and to be d0(A) := 1 when i = 0. Then the elementary divisors of the

matrix A, up to multiplication by a unit, coincide with the ratios αi = di(A)
di−1(A) .

Let us use the notation

pre-rank(∂1) := rankZ C1 − rankZ ker ∂1,

where C1 is the module of 1-chains in the Bredon chain complex (Equation (6)).
Observe that, if A is any i × i submatrix of D of non-zero determinant, and i <
pre-rank(∂1), then A can be expanded to some (i+1)×(i+1) submatrix of non-zero
determinant.

Now HFin
0 (Γ; RC) is torsion-free if and only if αi = ±1 for all 1 ≤ i ≤ pre-rank(∂1).

From the discussion above, it is sufficient to find, for each 1 ≤ i ≤ pre-rank(∂1), an
i × i minor in the Bredon chain complex differential matrix ∂1 with determinant
±1. We produce such a minor by induction on i.

Base Case. For i = 1, we observe there are vertices with adjacent edges, hence there
are non-zero vertex blocks. As by assumption all the entries in the vertex blocks
are in the set {−1, 0, 1}, there exists an entry of value ±1.
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Inductive step. Let 2 ≤ i ≤ pre-rank(∂1), and assume we already have an (i− 1)×
(i− 1) minor of ∂1 of value ±1, corresponding to a submatrix B. We want to find
an i× i minor of ∂1 of value ±1.

Given any vertex block V , choose a maximal square submatrix B◦ of B which
is disjoint from the rows and columns of V . At the two extremes, this submatrix
could be empty (if B is contained in V ) or could coincide with B (if B is completely
disjoint from V ). Note that, after possibly permuting rows, we get a square sub-
block M of V such that the submatrix B takes the form

B = det

(
M 0
∗ B◦

)
.

Then in particular ±1 = det(B) = det(M) · det(B◦), which forces det(B◦) = ±1.
One can then consider extending B◦ to an i× i block B′ by picking a submatrix M ′

inside V of size i− size(B◦). Such an extension might not be possible, but when it
is, the resulting block B′ takes the form (possibly after permuting rows)

B′ = det

(
M ′ 0
∗ B◦

)
.

Consider the collection of all i × i blocks obtained in this manner, and note that
for any such block, we have det(B′) = det(M ′) · det(B◦).

Since i ≤ pre-rank(∂1), there exists a vertex block V for which this construction
yields an i × i-block with det(B′) 6= 0. We have that M ′ is a minor in the vertex
block V , so by hypothesis det(M ′) ∈ {−1, 0, 1}. Since det(B′) 6= 0, we conclude
that det(M ′) = ±1. And as we already noted above, the submatrix B◦ of B′

satisfies det(B◦) ∈ {−1, 1}. This implies our submatrix B′ satisfies det(B′) =
det(M ′) ·det(B◦) = ±1, which completes the inductive step and hence the proof of
the theorem.

�

Our proof of Theorem 3 now reduces to verifying the hypotheses of Theorem 5,
when Γ is a 3-dimensional hyperbolic reflection group. We will rely on the simul-
taneous base transformations that can be found in [12, Appendix A].

Proposition 3. For a system of finite subgroups of types A5 × C2, S4, S4 × C2,
∆(2, 2, 2) = (C2)3 and ∆(2, 2,m) = C2 ×Dm for m ≥ 3 as vertex stabilizers, with
their three 2-generator Coxeter subgroups as adjacent edge stabilizers, there is a
simultaneous base transformation such that all vertex blocks have all their minors
contained in the set {−1, 0, 1}.

Proof. We apply the base transformation specified in [12, Appendix A]. Then we
have that all of the induced maps have all of their entries in the set {−1, 0, 1}.
Next, for each vertex stabilizer type, we assemble the vertex blocks from the three
vertex-edge-adjacency induced maps.

Let us provide full details for the case of vertex stabilizer ∆(2, 2,m) = C2 ×Dm

for m ≥ 3. The vertex block of a stabilizer of type C2×Dm for m ≥ 3 odd consists
of (cf.[12, Appendix B])



EQUIVARIANT K-HOMOLOGY FOR HYPERBOLIC REFLECTION GROUPS 23

two blocks ±



1 0 0 0
0 0 0 1

0 0 0 0
...

...
...

...

0 0 0 0
0 1 0 0

0 0 1 0

0 0 0 0
...

...
...

...
0 0 0 0



and one block ±
(

identity matrix of size m+3
2

0

)
.

Note that all the columns in this matrix have a very special form: all but one of the
entries are zero, and the single non-zero entry is ±1. An easy induction shows that,
when checking whether the minors all take value in the set {0,±1}, such columns
can always be discarded (and likewise for rows). This fact is very useful for reducing
the size of the matrices to check. For the matrix above, this fact immediately lets
us conclude that all minors are in {0,±1}.

For m ≥ 6 even, but not a power of 2, we have the following vertex block, where
each matrix block is specified up to orientation sign (we make this assumption from
now on),

Dm × C2 Dm ↪→ Dm × C2 D2 ↪→ Dm × C2 D2 ↪→ Dm × C2

ρ1 ⊗ χ1 ↓ 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0

ρ1 ⊗ (χ2 − χ1) ↓ 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1

ρ1 ⊗ (χ3 − χ2) ↓ 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 0
ρ1 ⊗ (χ4 − χ1) ↓ 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

ρ1 ⊗ (φ1 − χ3 − χ1) ↓ 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
... ρ1 ⊗ (φp − φp−1) ↓

... 0 0 0 0 0
. . . 0

...
...

...
...

...
...

...
...

ρ1 ⊗ (φm
2
−1 − φm

2
−2) ↓ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

(ρ2 − ρ1)⊗ χ1 ↓ 0 1 0 0 0 1 0 0

(ρ2 − ρ1)⊗ (χ2 − χ1) ↓ 0 0 1 0 0 0 1 0

(ρ2 − ρ1)⊗ (χ3 − χ2) ↓ 0 0 0 0 0 0 0 0
(ρ2 − ρ1)⊗ (χ4 + χ3 − χ2 − χ1) ↓ 0 0 0 0 0 0 0 0 0

(ρ2 − ρ1)⊗ (φ1 − χ2 − χ1) ↓ 0 0 0 0 0 0 0 0
... ρ1 ⊗ (φp − φp−1) ↓

...
...

...
...

...
...

...
...

...
ρ1 ⊗ (φm

2
−1 − φm

2
−2) ↓ 0 0 0 0 0 0 0 0

Again, we can discard all the rows and columns which have at most one entry
±1 (and all other entries zero). This reduces the above vertex block to the much
smaller matrix


1 0 1 0 ±1 ±1
0 1 −1 0 0 0
0 0 1 0 0 0
0 0 1 1 0 0

 ,

for which we can easily check that all minors lie in {0,±1}.



24 LAFONT, ORTIZ, RAHM, AND SÁNCHEZ-GARCÍA

For m ≥ 4 a power of 2, we have the following vertex block,

Dm × C2 Dm ↪→ Dm × C2 D2 ↪→ Dm × C2 D2 ↪→ Dm × C2

ρ1 ⊗ χ1 ↓ 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0

ρ1 ⊗ (χ2 − χ1) ↓ 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1
ρ1 ⊗ (χ3 − χ1) ↓ 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

ρ1 ⊗ (χ4 − χ2) ↓ 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

ρ1 ⊗ (φ1 − χ2 − χ1) ↓ 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
... ρ1 ⊗ (φp − φp−1) ↓

... 0 0 0 0 0
. . . 0

...
...

...
...

...
...

...
...

(φm
2
−1 − φm

2
−2) ↓ 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

(ρ2 − ρ1)⊗ χ1 ↓ 0 1 0 0 0 1 0 0

(ρ2 − ρ1)⊗ (χ2 − χ1) ↓ 0 0 1 0 0 0 1 0
(ρ2 − ρ1)⊗ (χ3 − χ1) ↓ 0 0 0 0 0 0 0 0

(ρ2 − ρ1)⊗ (χ4 + χ3 − χ2 − χ1) ↓ 0 0 0 0 0 0 0 0 0
(ρ2 − ρ1)⊗ (φ1 − χ2 − χ1) ↓ 0 0 0 0 0 0 0 0

... ρ1 ⊗ (φp − φp−1) ↓
...

...
...

...
...

...
...

...
...

ρ1 ⊗ (φm
2
−1 − φm

2
−2) ↓ 0 0 0 0 0 0 0 0

Again, we can discard the rows and columns which have at most one entry ±1 (and
all other entries zero). This reduces the above vertex block to the matrix

1 0 0 0 0 ±1 0 ±1 0
0 1 0 1 0 0 ±1 0 ±1
0 1 1 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0

 ,

for which we can easily check that it has all its minors in {0,±1}. This completes
the verification of the vertex block condition in the case of vertices with stabilizer
∆(2, 2,m) = C2 ×Dm for m ≥ 3.

For the finitely many remaining stabilizer types, we can proceed case-by-case:
we input each vertex block into a computer routine which computes all of its mi-
nors. Such a routine is straightforward to implement and takes approximately two
seconds per vertex block on a standard computer. The authors’ implementation
is available at http://math.uni.lu/˜rahm/vertexBlocks/. Note that for the groups
under consideration, the matrix rank of the vertex block is at most 7, so the 8× 8-
minors are all zero, and it is enough to compute the n× n-minors for n ≤ 7. This
computer check verifies the minor condition for the vertex blocks associated to all
remaining vertex stabilizers, and completes the proof of the theorem. �

Corollary 6. For any Coxeter group Γ having a system of finite subgroups of types
∆(2, 2, 2) = (C2)3, ∆(2, 2,m) = C2 × Dm for m ≥ 3, S4, S4 × C2 or A5 × C2 as

vertex stabilizers, we have that the Bredon homology group HFin
0 (Γ; RC) is torsion-

free.

Remark 3. (a) When trying to extend the proof of Theorem 5 to HFin
n (Γ; RC) for

n > 0, one should take into account the natural map HFin
n (Γ; RC)→ Hn(BΓ;Z)

described by Mislin [22], which is an isomorphism for n > dim EΓsing + 1,
where EΓsing consists of the non-trivially stabilized points in EΓ. Hence such
an extension of the theorem can only be useful when n ≤ dim EΓsing + 1.

(b) Note that the search for suitable base transformations for a given group Γ (as
described in [12, Appendix A] in our case), can be quite laborious. If the reader
wants to apply Theorem 5 for a given group Γ, it is prudent to first construct the
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vertex blocks without any base transformation and compute their elementary
divisors. If there exists a suitable simultaneous base transformation which
satisfies the hypotheses of Theorem 5, then those elementary divisors must be
in the set {−1, 0, 1}.

6. Further examples with torsion-free HFin
0 (Γ; RC)

In this section we briefly steer away from Coxeter groups, and instead give
some further examples illustrating our criterion for the Bredon homology group
HFin

0 (Γ; RC) to be torsion-free.

6.1. The Heisenberg semidirect product group. Let us show that HFin
0 (Γ; RC)

is torsion-free for Γ the Heisenberg semidirect product group of Lück’s paper. In
Tables 3 and 4, we transform the character tables of all the non-trivial finite sub-
groups of the Heisenberg semidirect product group, as identified by Lück [16].

 C2 e s
ρ1 1 1
ρ2 1 −1

 7→
 C2 e s

ρ1 + ρ2 2 0
ρ2 1 −1


Table 3. Character table of the cyclic group C2 of order 2, with
generator s.


C4 e s s2 s3

ρ1 1 1 1 1
ρ2 1 −1 1 −1
ρ3 1 i −1 −i
ρ4 1 −i −1 i

 7→


C4 e s s2 s3

ρ1 1 1 1 1
ρ2 − ρ1 0 −2 0 −2
ρ3 − ρ1 0 i− 1 −2 −i− 1
ρ4 − ρ3 0 −2i 0 2i


Table 4. Character table of the cyclic group C4 of order 4, with
generator s. We let i2 = −1.

In Tables 5, 6 and 7, we compute all possible induction homomorphismsRC (H)→
RC (G) appearing in any possible Bredon chain complex.

C2 ↪→ C4 e s2 (·|ρ1 + ρ2) (·|ρ2)
ρ1 ↓ 1 1 1 0

(ρ2 − ρ1) ↓ 0 0 0 0
(ρ3 − ρ1) ↓ 0 −2 0 1

(ρ4 + ρ3 − ρ2 − ρ1) ↓ 0 0 0 0

Table 5. The only non-trivial inclusion C2 ↪→ C4 of a cyclic group
of order 2 into a cyclic group of order 4: s 7→ s2.

Obviously, any concatenation of copies of the three matrices given in Tables 5,
6 and 7 yields a matrix with all of its minors contained in the set {−1, 0, 1}. For
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C2 ↪→ C4 e e (·|ρ1 + ρ2) (·|ρ2)
ρ1 ↓ 1 1 1 0

(ρ2 − ρ1) ↓ 0 0 0 0
(ρ3 − ρ1) ↓ 0 0 0 0

(ρ4 + ρ3 − ρ2 − ρ1) ↓ 0 0 0 0

Table 6. The trivial inclusion C2 ↪→ C4 of a cyclic group of or-
der 2 into a cyclic group of order 4: s 7→ e.

C2 ↪→ C4 e (·|τ)
ρ1 ↓ 1 1

(ρ2 − ρ1) ↓ 0 0
(ρ3 − ρ1) ↓ 0 0

(ρ4 + ρ3 − ρ2 − ρ1) ↓ 0 0

Table 7. The only inclusion {1} ↪→ C4 of the trivial group into a
cyclic group of order 4.

the inclusions into cyclic groups of order 2, an analogous (and even simpler) proce-

dure works. Hence by Theorem 5, HFin
0 (Γ; RC) is torsion-free for Γ the Heisenberg

semidirect product group of Lück’s article [16].

6.2. Crystallographic groups. Davis and Lück [5] consider the semidirect prod-
uct of Zn with the cyclic p-group Z/p, where the action of Z/p on Zn is given
by an integral representation, which is assumed to act freely on the complement
of zero. The action of this semidirect product group Γ on EΓ ∼= Rn is crystallo-
graphic, with Zn acting by lattice translations, and Z/p acting with a single fixed
point. In particular, all cell stabilizers are trivial except for one orbit of vertices of
stabilizer type Z/p. So all maps in the Bredon chain complex are induced by the

trivial representation, and we can easily apply Theorem 5 to see that HFin
0 (Γ; RC)

is torsion-free for Γ.

7. cf(Γ) and χ(C) from the geometry of P

Let Γ be the reflection group of the compact 3-dimensional hyperbolic poly-
hedron P. In this final section, we compute the number of conjugacy classes of
elements of finite order of Γ, cf(Γ), and the Euler characteristic of the Bredon
chain complex (5), χ(C), from the geometry of the polyhedron P. This gives us
explicit combinatorial formulas for the Bredon homology and equivariant K-theory
groups computed in our Main Theorem.

7.1. Conjugacy classes of elements of finite order. We now give an algorithm
to calculate cf(Γ), the number of conjugacy classes of elements of finite order in
the Coxeter group Γ. We know that each element of finite order can be conjugated
to one which stabilizes one of the k-dimensional faces of the polyhedron, for some
k ∈ {0, 1, 2}. Of course, the only element which stabilizes all faces is the identity
element. Let us set that aside, and consider the non-identity elements, to which we
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associate the integer k. We now count the elements according to the integer k, in
descending order.

Case k = 2: These are the conjugacy classes represented by the canonical generators
of the Coxeter group Γ. The number of these is given by the total number |P(2)|
of facets of the polyhedron P.

Case k = 1: These elements are edge stabilizers which are not conjugate to the sta-
bilizer of a face. We first note that there are some possible conjugacies between edge
stabilizers. Geometrically, these occur when there is a geodesic γ ⊂ H3 whose pro-
jection onto the fundamental domain P covers multiple edges inside the 1-skeleton
P(1). A detailed analysis of when this can happen is given in [11]. Following the
description in that paper, we decompose the 1-skeleton into equivalence classes of
edges, where two edges are equivalent if there exists a geodesic whose projection
passes through both edges. Denote by [P(1)] the set of equivalence classes of edges,
and note that each equivalence class [e] has a well defined group associated to it,
which is just the dihedral group Γe stabilizing a representative edge. We can thus
count the conjugacy classes in the corresponding dihedral group, and discard the
three conjugacy classes already accounted for (the conjugacy class of the two canon-
ical generators counted in case k = 2, as well as the identity). Thus the contribution
from finite elements of this type is given by∑

[e]∈[P(1)]

(c(Γe)− 3).

(Recall that c(Dm), the number of conjugacy classes in a dihedral group of order
2m, is m/2 + 3 if m even, and (m− 1)/2 + 2 if m is odd.)

Case k = 0: Finally, we consider the contribution from the elements in the vertex
stabilizers which have not already been counted. That is to say, for each vertex v ∈
P(0), we count the conjugacy classes of elements in the corresponding 3-generated
spherical triangle group, which cannot be conjugated into one of the canonical 2-
generated special subgroups. This number, c̄(Γv), depends only on the isomorphism
type of the spherical triangle group Γv, see Table 8. The contribution from these
types of finite elements is thus ∑

v∈P(0)

c̄(Γv) .

Γv c(Γv) c̄(Γv)
∆(2, 2,m) 2 c(Dm) c(Dm)− 3
∆(2, 3, 3) 5 1
∆(2, 3, 4) 10 3
∆(2, 3, 5) 10 5

Table 8. Number of conjugacy classes in spherical triangle
groups. The left column is the total number, and the right col-
umn the number of those not conjugated into one of the three
canonical 2-generated special subgroups.
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Combining all these, we obtain the desired combinatorial formula for the number
of conjugacy classes of elements of finite order inside the group Γ:

cf(Γ) = 1 + |P(2)|+
∑

[e]∈[P(1)]

(c(Γe)− 3) +
∑

v∈P(0)

c̄(Γv) .

7.2. Euler characteristic. The Euler characteristic of the Bredon chain complex
can be easily calculated from the stabilizers of the various faces of the polyhedron
P, according to the formula:

χ(C) =
∑
f∈P

(−1)dim(f) dim(RC(Γf )) .

Depending on the dimension of the faces, we know exactly what the dimension of the
complex representation ring is (the number of conjugacy classes in the stabilizer):

• for the 3-dimensional face (the interior), the stabilizer is trivial, so there is
a 1-dimensional complex representation ring;
• for the 2-dimensional faces, the stabilizer are Z2, and there is a 2-dimensional

complex representation ring;
• for the 1-dimensional faces e, the stabilizers are dihedral groups, and there

is a c(Γe)-dimensional complex representation ring;
• for the 0-dimensional faces v, the stabilizers are spherical triangle groups,

and there is a c(Γv)-dimensional complex representation ring.

Putting these together, we obtain

χ(C) = −1 + 2|P(2)| −
∑
e∈P(1)

c(Γe) +
∑

v∈P(0)

c(Γv) .

Finally, we obtain the desired explicit version of the Main Theorem, expressing the
K-theory groups in terms of the geometry of the polyhedron P.

Main Theorem (explicit). Let Γ be a cocompact 3-dimensional hyperbolic reflec-
tion group, generated by reflections in the side of a hyperbolic polyhedron P ⊂ H3.
Then K0(C∗r (Γ)) is a torsion-free abelian group of rank

cf(Γ) = 1 + |P(2)|+
∑

[e]∈[P(1)]

(c(Γe)− 3) +
∑

v∈P(0)

c̄(Γv) ,

and K1(C∗r (Γ)) is a torsion-free abelian group of rank

cf(Γ)−χ(C) = 2−|P(2)|+
∑

[e]∈[P(1)]

(c(Γe)−3)+
∑
e∈P(1)

c(Γe)−
∑

v∈P(0)

(c(Γv)− c̄(Γv)) ,

where the values for the c(Γv) and c̄(Γv) are listed in Table 8.
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