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This note is the proof of the critical slope lemmas taken from Imbert and Monneau.
The proof for the one-dimensional case is detailed in [!, Lemmas 2.9 & 2.10]. The multi-
dimensional case, stated below, is contained in [2], but the proof is omitted. Here we
supply the proof for the multi-dimensional case, which is essentially the same as the

one-dimensional case.
Define X+ as the half space

X" ={(t,z,y): y >0}
Fix a point (¢,7,0) € X', and define the 3-dimensional half ball
B =B} (t,2,0)={(t.z,y) e X : |t -tz —T,y)| <

Lemma 0.1 ([2, Lemma A.9]). Let u : B — R be a lower semicontinuous function
and suppose ¢(t,x,y) is a test function that touches u(t,z,y) from below at some (t, 7).
Define the critical slope at (t,T,0)

]_? - Sup{p Ddr> Oa U(t,l’,y) > ¢(t,$,0) +py f07" all (t,l’,y) € B;_(Eaf70)} (01)
If p < 400, and u and is a viscosity supersolution of

u + H(ug, uy) =0 (0.2)

then
(8, 7,0) + H(po(t, T, O),E) > 0. (0.3)

Remark 0.2. Note that p is well-defined as the existence of test function implies the set
of subdifferential is nonempty.

Proof. By the definition of p, there exists § > 0 and (., 2., ¥.) € Bgr/z(f, z,0) such that
ult,2,y) > 0(t,1,0)+ (p— )y for all (t,2,y) € By (7,7,0), (0.4

u(tswxs?ys) < ¢(t5,$5,0) + (I_)+5)y€' (05)
Now consider a smooth function ¥ : R® — [—1,0] such that

U(t,z,y) =0 in Byp(0), ¥(t,x,y)=-1 inR*B;(0)

and define
O(t,z,y) = o(t, x) + 2eV5(t, z,y) + (p+ )y,
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where Us(t, x,y) = JU (%t_, ==, %) is bounded in C* uniformly in §. Then we have

(L, x,y) = ¢(t,2,0) — 260 + (p+ &)y < u(t,z,y) on IBJ(t,%,0)N{y >0}, (0.6)
which is satisfied on the curved part of the boundary of Bj (¢, z,0).
O(t,2,0) < ¢(t,2,0) < ul(t,x,0) on {(t,z,y) € dB;t,z,0)N{y > 0}, (0.7)
which is satisfied on the hyperplane part of the boundary of By (¢, z,0).
O(te, xe,y:) = ¢(te; xc) + (p + )ye > ulle, v, ye). (0.8)

It follows that u — ® has an interior maximum point P. = (., Z.,J.) € By (£,7,0), which
implies

Gi(P.) 4 2e(Vs),(P2) + H(0pp(P:) + 26(Vs)o(Pr), 26(Vs)y(Pe) +p+¢) > 0.
Since |(¥s);| +|VWs| are uniformly bounded in ¢, we may take e — 0 to deduce (0.3). O

Lemma 0.3 ([2, Lemma A.9]). Let u : B — R be a lower semicontinuous function
and suppose ¢(t,x,y) is a test function that touches u(t,z,y) from below at some (t, 7).
Define the critical slope at (t,T,0)

p=suplp: 3r >0, ult,z,y) > o(t,,0)+ py for all (t,2,5) € B (E.7,0)}. (0.9

If p < 400, and u and is a viscosity supersolution of
w + H(ug,uy) =0 (0.10)

then
¢(t,Z,0) + H(¢(t,Z,0),p) > 0. (0.11)

Lemma 0.4 ([2, Lemma A.10)). Let u : Bf — R be a upper semicontinuous function
and suppose ¢(t,x,y) is a test function that touches u(t,z,y) from above at some (t, ).
Define the critical slope at (t,T,0)

p=inf{p: Ir >0, ut,z,y) < é(t,x,0) +py forall (t,z,y) € BS ({,z,0)}. (0.12)
If p > —o0, and u and is a viscosity subsolution of (0.10), then
o1, T,0) + H(py(t,7,0),p) < 0. (0.13)
Furthermore, if H is coercive and u satisfies the weak continuity assumption, namely,

limsup u(t, z,y) = u(t, z,0) (0.14)
(t,z,y)—(£,7,0)

then p > —o0.

Proof. We only prove that p > —oc since this is the main difference with the proof of the
previous lemma.
Assume that p = —oo, then there exists p, — —oo and r, \, 0 such that

o(t,2,0) +puy > ult,z,y) in B, =B} .
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By replacing ¢ by ¢ + (t — t)* + (z — Z)? + y? if necessary, we may assume that
u(t,z,y) < ¢(t,x,0) +pyy in B, =B \{(t,z,0)}. (0.15)

In particular, there exists d, > 0 such that ¢(¢,z,0) + p,y > u + 9, on the curved part
of OB . Since u satisfies (0.14), there exists P. = (t.,.,y.) — P = (,7,0) such that

ye > 0 and u(P.) — u(P).
We now introduce the following perturbed test function

2
U(t,2,y) = 6(6,2,0) + poy + 'y;' |

Fix n and observe that U > w on both the curved and flat part of 0B, . Let P. =
(t.,x.,y.) be the minimum point of ¥ — v in 9B, , then

(@ +pn - —u)(P) < (¥ —u)(P) < (¥ —u)(P) = ¢(F) —u(F) + % +o(1) = o(1),

since ¢ touches u from above at P. It follows that the minimum point P! is achieved in
the interior, so

&i(P) + H(o(PL), pn — Z—E) <0.

Denote p® = liminf._,(p, — Z—%) € [—00,0], then

which in particular implies p® > —oo and is bounded uniformly from below, independent
of n. It follos that {p,} is also bounded from below, which is a contradiction. The proof
is now complete. O

1 Restating the lemmas using super/subdifferentials

This can be equivalently stated in terms of subdifferential.

Definition 1.1. Let u : X — R, be given. We say that the constant vector (—\, ¢, p)
is an element of the set Dy, u(Fy) (which is called the set of subdifferential of u at
Py = (to, o, yo)) provided that there exists ry > 0 such that

u(t, z,y) > u(to, o, yo) + (=, q,p) - (t —to, & — 0,y — Yo) + (|t —to| + |z — 20| + |y — vol)

for (t,z,y) € B.(to,xo,y0) N XT.
Similarly, we define the set D;FHU(PO) of superdifferential of u at Fy by reversing the
inequality.

Lemma 1.2. Letu : B — R be a lower semicontinuous function and suppose Dy, u(t, z,0)
is nonempty. Fiz an element (—Xo, go,po) € Dy u(t,z,0) at (t,7,0), and define the crit-
1cal slope

p=sup{p: (=Xo,q0,p) € Dy, u(t,Z,0)}. (1.1)

If p < 400, and u and is a viscosity supersolution of (0.10), then

—Xo + H(qo,p) > 0. (1.2)
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Lemma 1.3. Letu : B — R be a upper semicontinuous function and suppose D;rﬁu(f, z,0)
is nonempty. Fiz an element (— N, qo, po) € Dy, u(t,7,0) at (¢,2,0), and define the crit-
1cal slope

p=inf{p: (=X, q,p) € Dy u(t,z,0)}. (1.3)
If p > —o0, and u and is a viscosity subsolution of (0.10), then

—Xo + H(qo,p) < 0. (1.4)

Furthermore, p > —o0 is verified if u satisfies the weak continuity assumtion.
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