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Abstract. We provide a corrected proof of [4, Theorem 2.2], which preserves

the validity of the theorem exactly under those assumptions as stated in the

original paper.

1. Corrigendum. This Corrigendum concerns the proof of [4, Theorem 2.2]. In
the original proof we used [1, Theorem 2.4] and [3, Proposition 3.2], which re-
quire more restrictive conditions than necessary. We provide here an elementary
maximum principle argument which preserves the validity of Theorem 2.2, exactly
under the assumptions as appeared in [4]. For the reader’s convenience we recall
the statement of Theorem 2.2 and give its complete proof.

The result concerns the unique positive solution θµ,α (µ > 0, α ≥ 0) of (See [2]
for existence and uniqueness results){

∇ · (µ∇θ − αθ∇m) + θ(m− θ) = 0 in Ω,
µ ∂θ∂n − αθ

∂m
∂n = 0 on ∂Ω,

(1)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, and ∂
∂n denotes

the outward normal derivative. Denote the set of local maximum points of m by M
and

Σ0 = {x ∈ Ω : ∇m = 0 and x 6∈M},
M+ = {x ∈M : m(x) > 0}.

We recall the following non-degeneracy assumption on m(x) contained in [4]:
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(M1) Every critical points of m are non-degenerate, and ∆m > 0 on Σ0. Moreover,
∂m
∂n < 0 on ∂Ω.

Theorem 2.2. Assume (M1). There exist some positive constants α1, C, r, γ and
δ∗ < 1 such that for all µ > 0 and α ≥ α1,

θµ,α(x) ≤

{
Ceαδ

∗[m(x)−m(x0)]/µ in Br(x0), for any x0 ∈M+,

e−γα/µ in Ω \ ∪x0∈M+
Br(x0).

Proof of Theorem 2.2. Transform the equation by w(x) = e−αm(x)/µθµ,α which sat-
isfies {

µ∇ · (eαm/µ∇w) + eαm/µw
[
m(x)− eαm/µw

]
= 0 in Ω,

∂w
∂n = 0 on ∂Ω.

If α/µ is bounded, by applying the maximum principle, we have

‖θµ,α‖L∞(Ω) ≤ ‖eαm/µ‖L∞(Ω)‖w‖L∞(Ω) ≤ ‖eαm/µ‖L∞(Ω)‖me−αm/µ‖L∞(Ω). (2)

Next we consider α/µ→∞. As a consequence of (M1), M consists of finitely many
points. Denote

{m(x) : x ∈M} = {m1,m2, ...,mk}, m1 < m2 < ... < mk;

Mi = {x ∈M : m(x) = mi}, i = 1, . . . , k.

By the non-degeneracy of critical points of m, there exist r > 0, K > 0 such that
for any z ∈M, {

1
K |z − x|

2 ≤ m(z)−m(x) ≤ K|z − x|2
1
K |z − x| ≤ |∇m(x)| ≤ K|z − x| (3)

for all x ∈ Br(z). Set m0 = minΩm and choose 0 < η < min1≤i≤k{mi −
mi−1, r

2/K} such that

mi − η are regular values of m as well as m
∣∣
∂Ω

for all i. (4)

Fix 0 < δ1 < 1 and define recursively

δi+1 =
δiη

mi+1 −mi + η
, i = 1, 2, ..., k − 1. (5)

Then we have

1 > δ1 > δ2 > · · · > δk ≡ δ∗ = δ1

k−1∏
i=1

η

mi+1 −mi + η
> 0.

Furthermore, by (3) and (M1) there exists a large constant K1 independent of µ, α
such that

δ∗α

µ
|∇m|2 + ∆m > 0 in Ω \D, D = ∪z∈MB√ µ

αK1
(z). (6)

Define

Ω1 = Ω, Ωi+1 = {x ∈ Ω : m(x) > mi − η} \ ∪z∈MiBr(z).

By the choice of η as in (4) and the fact that ∂m
∂n

∣∣
∂Ω

< 0, the domains Ωi,Ωi \D
are piecewise smooth. Moreover, Ωi+1 ⊂ Ωi, since {x ∈ Ω : m(x) > mi − η} ⊂ Ωi.
Define

M = ‖θµ,α‖L∞(Ω), d = KK2
1 , φi = Medeαδi(m(x)−mi)/µ

and

N [φ] := −∇ · (µ∇φ− αφ∇m)− φ(m− θµ,α).
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Then we have

N [φi] ≥ φi
[
α(1− δi)

(
δiα

µ
|∇m|2 + ∆m

)
−m

]
≥ 0 (7)

in Ω1 \D = Ω \D for i = 1, ..., k by (6) and by choosing α ≥ α1 large. Moreover,
by (M1) we see that

µ
∂φi
∂n
− αφi

∂m

∂n
= α(δi − 1)φi

∂m

∂n
> 0 on ∂Ω. (8)

Note that in D ∩ Ωi, m(x)−mi ≥ −K(K1

√
µ/α)2. Hence for all i,

φi(x) = Medeδiα(m(x)−mi)/µ ≥Medeδiα(−KK2
1µ/α)/µ ≥M ≥ θµ,α in D∩Ωi. (9)

Now by (7), and the fact that N [θµ,α] = 0,

N [φi − θµ,α] ≥ 0 in Ωi \D, for i = 1, 2, ..., k. (10)

We shall show by induction that θµ,α ≤ φi in Ωi, for i = 1, ..., k. Consider φ1 on
Ω1 = Ω. By (9), it remains to prove that φ1 ≥ θµ,α in Ω1 \D. We already have a
differential inequality given in (10). Therefore, we proceed to look at the boundary
condition satisfied by φ1 − θµ,α. Since Ω = Ω1 and α

µ is large, one may decompose

∂(Ω1 \D) = ∂D ∪ ∂Ω. By (9),

φ1 − θµ,α ≥ 0 in ∂(Ω1 \D) ∩ ∂D, (11)

while

µ
∂

∂n
(φ1 − θµ,α)− α(φ1 − θµ,α)

∂m

∂n
≥ 0 in ∂(Ω1 \D) ∩ ∂Ω. (12)

Figure 1. Diagram illustrating the case when M = M1 ∪M2.

Figure 2. Diagram illustrating Ω1 \D when M = M1 ∪M2.

Now φ1 is a supersolution which is strictly positive on ∂Ω and that φ1, θµ,α ∈
C2(Ω̄). It is elementary that the maximum principle applies to yield that φ1 ≥ θµ,α
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on Ω1 \ D. But for the sake of completeness, we include a proof here. Using the

fact that φ > 0 in Ω̄, we define z1 :=
φ1−θµ,α

φ1
, which satisfies

∆z1 +

(
2eαm/µ

µφ1
∇(e−αm/µφ1) +

α

µ
∇m

)
· ∇z1 −

N [φ1]

µφ1
z1 ≤ 0.

Since z1 ∈ C2(Ω̄), φ1 > 0 in Ω̄ and N [φ1] ≥ 0 (by (7)), we easily deduce that
infΩ1\D z1 is attained on ∂(Ω1 \D) = (∂D) ∪ (∂Ω).
Case (i). infΩ1\D z1 = z1(x0) for some x0 ∈ ∂D.

Then infΩ1\D z1 = z1(x0) =
φ1−θµ,α

φ1
(x0) ≥ 0 by (11).

Case (ii). infΩ1\D z1 = z1(x0) for some x0 ∈ ∂Ω.

Since ∂Ω is smooth, and ∂(Ω1 \D) = ∂Ω ∪ ∂D, the outer normal derivative ∂
∂n

is well defined at x0,

0 ≤ −∂z1

∂n
=

[
1

µφ1

(
µ
∂φ1

∂n
− αφ1

∂m

∂n

)]
z1(x0).

Since the terms in the square bracket is strictly positive (by (8)), we deduce that
infΩ1\D z1 ≥ 0.

Therefore, in any case we have infΩ1\D
φ1−θµ,α

φ1
≥ 0, and hence φ1 ≥ θµ,α in

Ω1 \D. Combining with (9), we have proved that φ1 ≥ θµ,α in Ω1.
Next, suppose for induction that for some 1 ≤ i ≤ k − 1,

φi ≥ θµ,α in Ωi. (13)

By (9), it remains to show that φi+1 ≥ θµ,α in Ωi+1 \D. By (7), we have N [φi+1−
θµ,α] ≥ 0 in Ωi+1 \D. Again, φi+1 satisfies a differential inequality given by (10).
We turn to the boundary condition of φi+1 − θµ,α. Firstly, by (8),

µ
∂

∂n
(φi+1 − θµ,α)− α(φi+1 − θµ,α)

∂m

∂n
≥ 0 in ∂(Ωi+1 \D) ∩ ∂Ω. (14)

(Note that by (4) and the fact that ∂m
∂n

∣∣
∂Ω

< 0, ∂
∂n (φi+1 − θµ,α) is well-defined by

values in Ωi+1 \D even at x0 ∈ {y ∈ ∂Ω : m(y) = mi− η}. Here n denotes the unit
outer normal of ∂Ω at x0.) Secondly, observe that

∂(Ωi+1 \D) = [∂(Ωi+1 \D) ∩ ∂Ω] ∪ [∂(Ωi+1 \D) ∩ Ω],

and that
[∂(Ωi+1 \D) ∩ Ω] ⊂ [Ωi+1 ∩ (∂D)] ∪ [(∂Ωi+1) ∩ Ω].

We claim that φi+1 − θµ,α ≥ 0 in ∂Ωi+1 ∩ Ω. By (9),

φi+1 − θµ,α ≥ 0 in Ωi+1 ∩ (∂D). (15)

Whereas in (∂Ωi+1) ∩ Ω, we have m(x) ≥ mi − η. We either have (i) x ∈
∪z∈Mi

∂Br(z); or (ii) x 6∈ ∪z∈Mi
∂Br(z) and m(x) = mi − η. But (i) is impos-

sible, since on ∪z∈Mi
∂Br(z),

m(x) ≤ mi −
1

K
|x− z|2 = mi −

r2

K
< mi − η.

So we must have (ii), i.e. m(x) = mi − η. Consequently on ∂Ωi+1 ∩ Ω,

φi+1

φi
= exp{δi+1α(m(x)−mi+1)/µ− δiα(m(x)−mi)/µ}

= exp {α[δi+1(mi − η −mi+1) + δiη]/µ}
= 1 by (5).



CORRIGENDUM 5

Hence φi+1 = φi on ∂Ωi+1 ∩ Ω. Also, (∂Ωi+1 ∩ Ω) ⊂ Ωi, so by (13)

φi+1 − θµ,α ≥ φi − θµ,α ≥ 0 on ∂Ωi+1 ∩ Ω. (16)

Now let zi+1 :=
φi+1−θµ,α

φi+1
, then zi+1 satisfies

∆zi+1+

(
2eαm/µ

µφi+1
∇(e−αm/µφi+1) +

α

µ
∇m

)
·∇zi+1−

N [φi+1]

µφi+1
zi+1 ≤ 0 in Ωi+1\D.

Since zi+1 ∈ C2(Ω̄) and N [φi+1]
µφi+1

≥ 0, we deduce that infΩi+1\D zi+1 is attained on

∂(Ωi+1 \D).

Claim 1. infΩi+1\D zi+1 ≥ 0.

Suppose to the contrary that

inf
Ωi+1\D

zi+1 = inf
∂(Ωi+1\D)

zi+1 < 0. (17)

Figure 3. Diagram illustrating Ω2 when M = M1 ∪M2.

We decompose as before

∂(Ωi+1 \D) = [∂(Ωi+1 \D) ∩ ∂Ω] ∪ [∂(Ωi+1 \D) ∩ Ω].

Since by (15) and (16),

zi+1 ≥ 0 in [∂(Ωi+1 \D)] ∩ Ω = ∂(Ωi+1 \D) ∩ [∂D ∪ {x ∈ Ω : m(x) = mi − η}].
Hence necessarily x0 ∈ [∂(Ωi+1 \D)] ∩ (∂Ω). Moreover, x0 is bounded away from
[∂(Ωi+1 \D)]∩Ω, and hence ∂(Ωi+1 \D) contains a smooth neighborhood of x0 in

∂Ω. Hence the outer normal derivative ∂
∂n

(
zi+1|Ωi+1\D

)
(x0) is well-defined. Since

the minimum of zi+1 is attaned at x0,

0 ≤ −∂zi+1

∂n
(x0) =

[
1

µφi+1

(
µ
∂φi+1

∂n
− αφi+1

∂m

∂n

)]∣∣∣∣
x=x0

zi+1(x0).

This contradicts the strict positivity of the square bracket term (by (8)) and the
hypothesis that zi+1(x0) = inf∂(Ωi+1\D) zi+1 < 0. This contradiction establishes
that infΩi+1\D(φi+1 − θµ,α) ≥ 0. Combining with (9), we deduce that φi+1 ≥ θµ,α
in Ωi+1.

By induction, φi ≥ θµ,α on Ωi, i = 1, ..., k. Hence there exists r1 ∈ (0, r] such
that

for all i, θµ,α(x) ≤Medeδ
∗α(m(x)−mi)/µ in ∪z∈Mi

Br1(z), (18)

θµ,α(x) ≤Mede−δ
∗αr21/(µK) in Ω \ ∪z∈MBr1(z). (19)
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It remains to show that M is bounded independent of µ > 0 and α ≥ α1. Firstly,
there exists R0 > 0 such that for each i and each z ∈Mi, (by (3))

d− δ∗α(m(x)−mi)

µ
< d− δ∗α|x− z|2

µK
< − log 2 in Br1(z) \B√ µ

αR0
(z).

Secondly, since α/µ→∞, we may assume d− δ∗αr21
µK < − log 2. Hence, by (18) and

(19),

θµ,α(x) ≤ M

2
in Ω \

(
∪z∈MB√ µ

αR0
(z)
)

and the maximum value M = ‖θµ,α‖L∞(Ω) must be attained in B√ µ
αR0

(zµ,α) for

some zµ,α ∈M. Set x = zµ,α +
√

µ
αy, then

µ

(
α

µ
∆yθµ,α

)
− α

√
α

µ
∇xm · ∇yθµ,α + θµ,α(m− θµ,α − α∆xm) = 0.

Divide the above equation by α,

∆yθµ,α −
√
α

µ
∇xm · ∇yθµ,α +

(
m− θµ,α − α∆m

α

)
θµ,α = 0. (20)

By applying the maximum principle to θµ,α and using ∂m
∂n ≤ 0, we have M =

‖θµ,α‖L∞(Ω) ≤ ‖m‖L∞(Ω)+α‖∆m‖L∞(Ω). Also, the middle term
√
α/µ∇xm(zµ,α+√

µ
αy) in the above equation is bounded by 2‖D2m‖L∞(Ω)‖y‖. Hence the coefficients

of (20) are bounded in L∞(B4R0(0)). By the Harnack Inequality (Theorem 8.20,
[5]), there exists a constant c = c(N,R0) > 0 (N being the dimension) such that

θµ,α(x) ≥ cM in B√ µ
αR0

(zµ,α).

Hence

c2M2
(µ
α

)N/2
RN0 Vol(B1(0)) ≤

∫
B√ µ

α
R0

(zµ,α)

θ2
µ,α ≤

∫
Ω

θ2
µ,α. (21)

Moreover, by (18) and (19),∫
Ω

θµ,αm ≤ ‖m‖L∞(Ω)

∫
Ω

θµ,α ≤ CM
(µ
α

)N/2
Vol(B1(0)). (22)

Now integrating the equation of θµ,α to obtain∫
Ω

θ2
µ,α =

∫
Ω

θµ,αm. (23)

Combining (21), (22) and (23) we infer that

c2M2
(µ
α

)N/2
RN0 ≤ CM

(µ
α

)N/2
.

This gives the boundedness of M as α/µ→∞ and proves the theorem in the case
M = M+, i.e. m(x) > 0 for all x ∈M. If it is not the case, assume

m1 < m2 < ... < ml−1 ≤ 0 < ml < ... < mk, for some l ≥ 2.

Then (18) and (19) can be obtained as before. Next, define φ0 = Medeα(m(x)−η̂)/µ
where −η̂ is a regular value of both m and m

∣∣
∂Ω

, chosen such that M∩ [−η̂, 0) = ∅
and

0 < η̂ < min

{
η,

δlml

2− δl

}
. (24)
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Now consider Ω0 = {x ∈ Ω : m < −η̂} ∪ (∪z∈M0Br(z)) where M0 := {x ∈ M :
m(x) = 0} (possibly empty). Note that by similar considerations as before ∂Ω0 \
∂Ω ⊂ {x ∈ Ω : m(x) = −η̂} and it is smooth as −η̂ is a regular value of m. Since
m ≤ 0 in Ω0, it is easy to see that N [φ0 − θµ,α] ≥ 0 in Ω0. Define

B0u =

{
µ ∂u∂n − αu

∂m
∂n on ∂Ω0 ∩ ∂Ω,

u on ∂Ω0 \ ∂Ω.

Then B0[φ0 − θµ,α] = 0 on ∂Ω0 ∩ ∂Ω by simple calculation, and on ∂Ω0 ∩Ω ⊂ {x ∈
Ω : m(x) = −η̂} ∩ Ωl,

φ0 = Medeα(−η̂−η̂)/µ

> Medeδlα(−η̂−ml)/µ by (24)

= φl ≥ θµ,α.
Therefore, by applying the maximum principle much as before, φ0−θα,µ ≥ 0 in Ω0.
This completes the proof of the general case.
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