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Abstract. Recently, the ideal free dispersal strategy has been proven to be

evolutionarily stable in the spatially discrete as well as continuous setting. That
is, at equilibrium a species adopting the strategy is immune against invasion

by any species carrying a different dispersal strategy, other conditions being

held equal. In this paper, we consider a two-species competition model where
one of the species adopts an ideal free dispersal strategy, but is penalized

by a weak Allee effect. We will show rigorously in this case that the ideal

free disperser is invasible by a range of non-ideal free strategies, illustrating
the trade-off between the advantage of being an ideal free disperser and the

setback caused by the weak Alee effect. Moreover, a sharp integral criterion

is given to determine the stability/instability of one of the semi-trivial steady
state, which is always linearly neutrally stable due to the degeneracy caused

by the weak Allee effect.

1. Introduction. Habitat selection plays a pivotal role in a species’ life history,
i.e. its endeavor to survive and reproduce. While accounting for all factors in this
complicated process is a formidable task, ecologists attempt to identify elements
which capture the essential mechanisms of habitat choice. One such perspective
is known as ideal free distribution (IFD) theory, proposed by Fretwell and Lucas
in their study of birds [10]. This framework operates from two assumptions: (i)
each individual has complete knowledge of its environment to determine the most
favorable locations for growth and (ii) each individual is able to freely move to these
“best” spots. Provided the assumptions hold, the theory predicts that the resulting
distribution of the species will be proportional to the amount of available resources
at each location in the habitat [10].

Although the presuppositions of IFD theory are regarded by some in the em-
pirical research community as being overly simplistic [15], there are a number of
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experimental studies confirming its predictions (see for example [9, 12, 21]). More
importantly, this simple principle provides a striking, quantitative link between
habitat choice and evolution of dispersal that allows for rigorous theoretical inves-
tigation.

For instance, a kind of dispersal behavior known as “balanced dispersal” arises
from the evolution of dispersal in patchy environments. Balanced dispersal, as
described in [3], “implies that at equilibrium individuals in any patch will have
the same fitness, namely zero, because all populations are at carrying capacity”.
Hence it is capable of producing an ideal free distribution. Since individuals at all
locations have the same fitness, there is no advantage for anyone to move to another
location to increase fitness. Furthermore, if the resident species adopts the balanced
dispersal strategy, then it cannot be invaded by another rare species playing a
different strategy. In the game-theoretic setting, the balanced dispersal strategy,
regarded as a strategy played by the resident population, is an evolutionarily stable
strategy (ESS).

The spatially continuous case is taken up by Cantrell et. al. [5] where a reaction-
diffusion-advection model of two competing species was proposed. (See system (1)
below.) The species disperses via a combination of diffusion and advection, the
latter component captures the conditional, or biased, aspect of dispersal. Among
all of the advection modes (admissible under their formulation), only one allows for
the possibility for the resident to equilibrate to a form of ideal free distribution.
Sufficient conditions were obtained for the ideal free dispersal strategy to be able to
defend against any invader, showing that IFD is a local ESS. Later it was further
shown in [1] that this IFD strategy is a global ESS. (See Theorem 2.1.)

All of the above lines of research show that in the context of an environment
that is spatially variable but temporally constant, the species adopting IFD is able
to resist invasion by any other dispersal strategies, with other properties being
held equal. But how robust is this conclusion? For instance, can the ideal free
disperser, vulnerable to some fitness cost or constraint, still resist invasion by a rare
species? The subtlety of this question lies in the fact that at equilibrium, an ideal
free dispersing resident leaves absolutely no resource for an invader to draw upon
for growth.

We narrow our inquiry into this multi-faceted question by assuming that the ideal
free disperser is subjected to a weak Allee effect, which causes a reduction in its
fitness at low density. This question was first posed in [23], where numerical evidence
presented therein suggested that the ideal free disperser can indeed be invaded
by a certain range of non-IFD strategies. Our present paper presents analytical
justification for this phenomenon, and offers conditions and intuition as to how the
ideal free disperser may give way to an invading species, and in some cases even be
driven to extinction.

2. Model and Main Results. Let Ω be a bounded domain in RN for N ≥ 2, with
smooth boundary ∂Ω. Consider the following reaction-diffusion-advection model of
Lotka-Volterra type:

ut = ∇ · (d1∇u− u∇P̃ (x)) + u(m(x)− u− v) in Ω× (0,∞),

vt = ∇ · (d2∇v − v∇Q̃(x)) + v(m(x)− u− v) in Ω× (0,∞),

d1∂nu− u∂nP̃ = d2∂nv − v∂nQ̃ = 0 on ∂Ω× (0,∞).

(1)
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where u(x, t) and v(x, t) represent species’ densities at location x ∈ Ω and time

t; d1 and d2 are their respective diffusion rates; P̃ (x), Q̃(x) ∈ C2(Ω̄) specify the
advective direction and the corresponding speeds; m(x) describes the quality of the
habitat at location x. Throughout this paper, we assume that

(M1): m ∈ C2(Ω̄) is positive and non-constant.

Finally, ∂n is the outward normal derivative on ∂Ω and reflecting boundary condi-
tions are imposed, i.e. there is no net movement across any point on ∂Ω.

Note that the species u and v in (1) have identical population dynamics but dif-

ferent movement strategies. Setting P (x) = P̃ (x)
d1

and Q(x) = Q̃(x)
d2

, we reformulate

our system to match the model in [5]:
ut = d1∇ · (∇u− u∇P (x)) + u(m(x)− u− v) in Ω× (0,∞),

vt = d2∇ · (∇v − v∇Q(x)) + v(m(x)− u− v) in Ω× (0,∞),

∂nu− u∂nP = ∂nv − v∂nQ = 0 on ∂Ω× (0,∞).

(2)

As pointed out in [5], if we set P = lnm, then (m, 0) is a steady state of (2). That
is, in the absense of competitor, the species adopting dispersal strategy P = lnm
exactly matches the local carrying capacity at equilibrium ũ ≡ m. (Note also that
the net flux is zero as well: ∇ũ − ũ∇ lnm ≡ 0.) Hence P = lnm is a form of
IFD strategy. The significance here is that the strategy yielding IFD is a globally
evolutionarily stable strategy (Theorem 1.2 in [1]). Mathematically, the result can
be stated as follows:

Theorem 2.1. Suppose m ∈ C2(Ω̄) is non constant and positive. Given any
d1, d2 > 0, if P = lnm, and Q − lnm is not constant, then (m, 0) is the globally
asymptotically stable steady state of (2) among any nonnegative and not identically
zero initial data.

Theorem 2.1 holds on the premise that both species have identical population
dynamics. To explore the robustness of IFS, we subject the ideal free disperser to a
weak Allee effect by replacing the reaction term for species u in (2) by u2(m−u−v)
[23]. Our question then becomes, is the ideal free disperser subject to a weak Allee
effect invadable by a species playing a different strategy? Suppose that P ≡ lnm
and Q = β lnm (0 ≤ β <∞), we obtain

ut = d1∇ · (∇u− u∇ lnm) + u2(m− u− v) in Ω× (0,∞),
vt = d2∇ · (∇v − βv∇ lnm) + v(m− u− v) in Ω× (0,∞),
∂nu− u∂n lnm = ∂nv − βv∂n lnm = 0 in ∂Ω× (0,∞),
u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω.

(3)

Mathematically, our goal is to find β ∈ [0,∞) such that (m, 0) is unstable in system
(3).

Before stating our main results, we make a few preliminary remarks. System (3)
has two semitrivial steady states (m, 0) and (0, v∗), where v∗ is the unique positive
solution of {

d2∇ · (∇v − βv∇ lnm) + v(m− v) = 0 in Ω,
∂nv − βv∂n lnm = 0 on ∂Ω.

(4)

In this paper, we are interested in the local and global stabilities of the steady
states of (3). The mathematical subtlety lies in the fact that, due to the degener-
acy caused by the IFD and the weak Allee effect, both of the semi-trivial steady
states are linearly neutrally stable. i.e. the principal eigenvalues of the linearized
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system at (m, 0) or (0, v∗) are identically zero. Therefore, we need to argue for
nonlinear stability/instability directly. Our staring point is the following integral
characterization of the local stability of (0, v∗), proved in Section 3.

Theorem 2.2. Let v∗ be the unique positive solution of (4).

(i) If
∫

Ω
m2(m− v∗) < 0, then (0, v∗) is locally asymptotically stable.

(ii) If
∫

Ω
m2(m− v∗) ≥ 0 and β 6= 1, then (0, v∗) is unstable.

Using the criterion in Theorem 2.2, we can determine the local behavior of system
(3) near (0, v∗) for β close to 1. Confirming the conjecture in [23], we demonstrate
that (0, v∗) does indeed change stability as β crosses the threshold value of 1.

Proposition 2.3. There exists ε0 > 0 such that

(i) If β ∈ [0, 1), then (0, v∗) is unstable.
(ii) If β ∈ (1, 1 + ε0), then (0, v∗) is locally asymptotically stable.

If we assume in addition that

(M2): m ∈ C3(Ω) has a unique critical point x0 ∈ Ω, which is a non-degenerate
local (hence global) maximum, and ∂nm|∂Ω ≤ 0.

then (0, v∗) is unstable for all β sufficiently large.

Biologically, Proposition 2.3 (ii) indicates that there is a range of strategies which
prevent invasion by an ideal free disperser. This is interesting because we can
mathematically justify that the cost of the weak Allee effect is enough to offset the
invasion success enjoyed by a resource matching strategy.

One can actually say more. By demonstrating that system (3) has no positive
coexistence states for β near but larger than 1 (see Section A), the local asymptotic
stability of (0, v∗) actually determines the global dynamics of (3), thanks to the
general theory of monotone dynamical systems [7, 13, 14, 19, 26]. In particular,
this means that (m, 0) is unstable for some β. This line of attack can be found also
in [5]. The local stability of the IFD steady state (m, 0) is often difficult to assess
directly, considering the degeneracy associated to linearizing (3) at (m, 0). To state
the global result, we prescribe the following assumption for m.

(M3): Suppose Ω = BR ⊆ RN , m = m(r) is non-constant, mr(0) = 0, mrr < 0
in [0, R) and satisfies m+ 2rmr ≥ 0 in (0, R).

Theorem 2.4. (i) (Theorem 2.1 and 2.2 in [23]) There exists 0 < β1 < 1 such
that for all β ∈ (0, β1) and any d1, d2 > 0, the steady state (m, 0) of (3) is
globally asymptotically stable.

(ii) Assume (M3). There exists 0 < β2 < 1 such that for all β ∈ (β2, 1) and any
d1, d2 > 0, the steady state (m, 0) of (3) is globally asymptotically stable.

(iii) Assume (M3). There exists β3 > 1 such that for all β ∈ (1, β3) and any
d1, d2 > 0, the steady state (0, v∗) of (3) is globally asymptotically stable.

(iv) Assume (M2). There exists β4 � 1 such that for all β > β4 and any d1, d2 >
0, the steady state (m, 0) of (3) is globally asymptotically stable.

While the mathematics are compelling in their own right, the biological implications
of the instability of (m, 0) are quite strong: a rare species v can invade an ideal free
disperser with significant resident population and drive it to extinction. This result
seems counter intuitive as species u should have large enough density to minimize
the cost of the weak Allee effect (which expresses itself mostly when the species is
rare) and therefore dominate resource acquisition throughout the habitat. However,
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because v has slightly stronger advection, numerical simulations suggest that v is
able to quickly establish itself at resource maxima. Focusing on the most abundant
resource sites, species v eventually overtakes u, forcing it towards less favorable
locations and eventually to extinction.

The paper is organized as follows: In Section 3 we determine conditions for the
local stability of (0, v∗). In Section 4, we discuss and prove the global dynamics
of system (3), making use of the non-existence results of positive steady states
contained in the appendix sections. Finally, we present our conclusions and discuss
the intuition behind Theorem 2.2 in Section 5.

3. Local Stability of (0, v∗). In this section we discuss the local asymptotic sta-
bility of (0, v∗). First, we recall several definitions from dynamical systems.

Definition 3.1. (i) A steady state (ũ, ṽ) of (3) is unstable if there is some ε0 > 0
such that for all δ > 0, there exists non-negative initial data (u0, v0) and t0
such that

‖u0 − ũ‖L∞(Ω) + ‖v0 − ṽ‖L∞(Ω) < δ

and the corresponding solution (u, v) of (3) satisfies

‖u(·, t0)− ũ‖L∞(Ω) + ‖v(·, t0)− ṽ‖L∞(Ω) ≥ ε0.

(ii) A steady state (ũ, ṽ) of (3) is locally asymptotically stable if for some δ > 0,
the solution (u(x, t), v(x, t)) of (3) with non-negative initial data (u0, v0) such
that

‖u0 − ũ‖L∞(Ω) + ‖v0 − ṽ‖L∞(Ω) < δ

satisfies

‖u(·, t)− ũ‖L∞(Ω) + ‖v(·, t)− ṽ‖L∞(Ω) → 0. (5)

(iii) A steady state (ũ, ṽ) of (3) is globally asymptotically stable if (5) holds for
each non-negative, not identically zero initial data (u0, v0).

Next, we state and prove the integral characterization of local stability of (0, v∗).

Theorem 3.2. Let v∗ be the unique positive solution of (4).

(i) If
∫

Ω
m2(m− v∗) < 0, then (0, v∗) is locally asymptotically stable.

(ii) If
∫

Ω
m2(m− v∗) ≥ 0 and β 6= 1, then (0, v∗) is unstable.

Remark 1. In [18], a PDE model in population genetics was considered where a
degeneracy analogous to Allee effect is present. Amoung other things, the change
in stability of the trivial solution was demonstrated via variational and degree-
theoretical methods and a similar integral condition was obtained (See Theorem 1.1
therein). In our local stability analysis of (0, v∗), a non-variational proof using the
upper and lower solution method is presented. Our approach has the advantage of
being more transparent and shows that a kind of transcritical bifurcation is present
(see Remark 2). See also [25] for a Crandall-Rabinowitz type bifurcation analysis of
a single species model with a non-degenerate type of Allee effect.

Proof of Theorem 3.2. Define

Cβ :=

∫
Ω

m2(m− v∗).
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First we prove (i). Suppose Cβ =
∫

Ω
m2(m − v∗) < 0. We will construct, for all

ε > 0 sufficiently small, a pair of super/subsolution of the form

ū(x) = εm+ ε2w(x)

v(x) = v∗ + εzε(x)
(6)

such that 
d1∇ · (∇ū− ū∇(lnm)) + ū2(m− ū− v) < 0 in Ω,

d2∇ · (∇v − βv∇ lnm) + v(m− ū− v) = 0 in Ω,

∂nū− ū∂n(lnm) = ∂nv − βv∂n(lnm) = 0 on ∂Ω,

(7)

and zε → −v∗ uniformly as ε → 0. Now we begin the construction. Firstly, let w
be the unique solution to

d1∇ ·
[
m∇

(w
m

)]
= −m2(m− v∗) + Cβ in Ω,

∂n

(w
m

)
= 0 on ∂Ω,

∫
Ω

w

m
= 0.

(8)

Note that the existence of w follows from the fact that
∫

Ω
[−m2(m− v∗) +Cβ ] = 0.

Secondly, for zε, we have the following lemma.

Lemma 3.3. There exists ε0 > 0, and a small neighborhood U of −v∗, such that
for all ε ∈ (−ε0, ε0), the problem{

d2∇ ·
(
mβ∇

(
z
mβ

))
+ z[(1− ε)m− ε2w − 2v∗ − εz]− v∗(m+ εw) = 0 in Ω,

∂n
(
z
mβ

)
= 0 on ∂Ω.

(9)
has a unique solution zε in U . Moreover, zε → −v∗ uniformly as ε→ 0.

Proof of Lemma 3.3. Define F :
{
y ∈ C2,α(Ω̄) : ∂n

(
z
mβ

) ∣∣
∂Ω

= 0
}
×R→ Cα(Ω̄) by

F(z, ε) := d2∇ ·
(
mβ∇

( z

mβ

))
+ z[(1− ε)m− ε2w − 2v∗ − εz]− v∗(m+ εw) = 0

Then F(−v∗, 0) = 0 and

DzF(−v∗, 0)[y] = d2∇ ·
[
mβ∇

( y

mβ

)]
+ (m− 2v∗)y.

Claim 3.4. DzF(−v∗, 0) is an isomorphism.

First, from the equation of v∗, we observe that zero is the principal eigenvalue of
d2∇ ·

[
mβ∇

( ϕ

mβ

)]
+ (m− v∗)ϕ+ σϕ+ µϕ = 0 in Ω,

∂n

( ϕ

mβ

)
= 0 on ∂Ω,

i.e.

inf
ψ∈C1(Ω̄)

∫
Ω

[
d2m

β
∣∣∣∇ ψ

mβ

∣∣∣2 + (v∗ −m)m−βψ2

]
∫

Ω
m−βψ2

= 0

Hence, the principal eigenvalue σ1 of
d2∇ ·

[
mβ∇

( ϕ

mβ

)]
+ (m− 2v∗)ϕ+ σϕ+ σ1ϕ = 0 in Ω,

∂n

( ϕ

mβ

)
= 0 on ∂Ω,
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satisfies

σ1 = inf
ψ∈C1(Ω̄)

∫
Ω

[
d2m

β
∣∣∣∇ ψ

mβ

∣∣∣2 + (2v∗ −m)m−βψ2

]
∫

Ω
m−βψ2

> inf
ψ∈C1(Ω̄)

∫
Ω

[
d2m

β
∣∣∣∇ ψ

mβ

∣∣∣2 + (v∗ −m)m−βψ2

]
∫

Ω
m−βψ2

= 0.

Therefore σ1 > 0 and zero is not an eigenvalue of DzF and the claim is proved.
Lemma 3.3 follows from an application of the Implicit Function Theorem.

Now, define ū and v as in (6). Then the second equation of (7) is equivalent to
(9), which holds by definition of zε. It remains to show the first inequality in (7):

d1∇ ·
(
m∇

( ū
m

))
+ ū2(m− ū− v)

= ε2d1∇ ·
(
m∇

(w
m

))
+ (εm+ ε2w(x))2(m− εm− ε2w(x)− v∗ − εz)

= ε2
{
d1∇ ·

(
m∇

(w
m

))
+m2(m− v∗) +O(ε)

}
= ε2 {Cβ +O(ε)} < 0

since Cβ < 0 is independent of ε small. This proves (i).
Now, we take up (ii). Suppose Cβ =

∫
Ω
m2(m − v∗) ≥ 0 and β 6= 1. We now

construct, for ε > 0 sufficiently small, a pair of super/subsolution (u, v̄) of the form

(u, v̄) = (εm+ ε2w + ε3y′, v∗ + εz′ε), (10)

satisfying 
d1∇ · (∇u− u∇(lnm)) + u2(m− u− v̄) > 0 in Ω,

d2∇ · (∇v̄ − βv̄∇ lnm) + v̄(m− u− v̄) = 0 in Ω,

∂nu− u∂n(lnm) = ∂nv̄ − βv̄∂n(lnm) = 0 on ∂Ω,

(11)

First we define w to be the unique solution to (8). Multiplying by w
m and integrating

by parts, using the fact that v∗ 6= m if β 6= 1, we deduce that w
m is non-constant

and ∫
Ω

mw(m− v∗) = d1

∫
Ω

m
∣∣∣∇w
m

∣∣∣2 + Cβ

∫
Ω

w

m
> 0. (12)

Next, define y′ to be the unique solution to
d1∇ ·

[
m∇

(
y′

m

)]
+ 2mw(m− v∗)−m2(m− v∗) = 2

∫
Ω

mw(m− v∗)− Cβ in Ω,

∂n

(
y′

m

)
= 0 on ∂Ω,

∫
Ω

y′

m
= 0.

And we define z′ε to be the unique solution close to −v∗ to

d2∇ ·
(
mβ∇

(
z′

mβ

))
+ z′[(1− ε)m− ε2w − ε3y − 2v∗ − εz′]− v∗(m+ εw) = 0

satisfying ∂n

(
z′

mβ

)
= 0 on ∂Ω.

Note that, as in (i), the existence of z′ε can be deduced from Implicit Function
Theorem, and that

z′ε → −v∗ uniformly as ε→ 0. (13)
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Then the second equation of (11) follows from the definition of z′ε. It remains to
verify the differential inequality in (11):

d1∇ · (∇u− u∇(lnm)) + u(m− u− v̄)

= d1∇ ·
(
m∇ u

m

)
+ ε2(m+ εw + ε2y′)2(m− εm+ ε2w + ε3y′ − v∗ − εz′ε)

= ε2
{
d1∇ ·

(
m∇w

m

)
+m2(m− v∗)

+ ε

[
d1∇ ·

(
m∇ y

′

m

)
+ 2mw(m− v∗)−m2(m− v∗)−m2(v∗ + z)

]
+O(ε2)

}
= ε2

{
Cβ + ε

[
2

∫
Ω

mw(m− v∗)− Cβ −m2(v∗ + zε)

]
+O(ε2)

}
= ε2

{
(1− ε)Cβ + ε

[
2

∫
Ω

mw(m− v∗)−m2(v∗ + zε)

]
+O(ε2)

}
> 0

where the last strict inequality follows from Cβ ≥ 0, (12) and (13).

Remark 2. An examination of the proof of Theorem 3.2(ii) yields the following
result: Suppose that there exists β0 > 1 and δ > 0 such that Cβ0

= 0 and Cβ > 0
for β ∈ (β0, β0 + δ), then there exists ε0 > 0 such that for all β ∈ [β0, β + δ), if
(u, v) is a steady state of (3) and infΩ u < ε0, then (u, v) = (0, v∗). i.e. (0, v∗) is
an isolated steady state with a uniform neighborhood for β ∈ [β0, β0 + δ).

3.1. Local stability of (0, v∗) when β ≈ 1.

Proposition 3.5. There exists ε0 > 0 such that

(i) If β ∈ [0, 1), then (0, v∗) is unstable.
(ii) If β ∈ (1, 1 + ε0), then (0, v∗) is locally asymptotically stable.

Note that (i) is Lemma 3.4 and Lemma 4.1 from [23]. We need some perparation
for the proof of (ii).

Let β = 1 + ε, for 0 < ε� 1. Then we know that v∗ satisfies:{
d2∇ · (∇v∗ − (1 + ε)v∗∇(lnm)) + v∗(m− v∗) = 0 in Ω,

∂nv
∗ − (1 + ε)v∗∂n(lnm) = 0 on ∂Ω.

(14)

Put ŵ = v∗

m1+ε . Then ŵ satisfies:{
d2∇ · (m1+ε∇ŵ) +m1+εŵ(m−m1+εŵ) = 0 in Ω,

∂nŵ = 0 on ∂Ω.
(15)

Note that (15) can be rewritten as{
d2∆ŵ + d2∇[ln(m1+ε)]∇ŵ + ŵ(m−m1+εŵ) = 0 in Ω,

∂nŵ = 0 on ∂Ω.
(16)

By the implicit function theorem, we can write ŵ = 1 + εw1 + O(ε2). Plugging in
this expression to (16), we find that w1 satisfies:{

d2∆w1 + d2∇(lnm)∇w1 −m(w1 + lnm) = 0 in Ω,

∂nw1 = 0 on ∂Ω.
(17)

Lemma 3.6.
∫

Ω
m3(w1 + lnm) > 0.
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Proof. Let w1 = ϕ− lnm, then ϕ satisfies{
d2∇ · (m∇ϕ−∇m)−m2ϕ = 0 in Ω,

m∂nϕ− ∂nm = 0 on ∂Ω.
(18)

Claim 3.7.
∫

Ω
m3ϕe−ϕ ≥ 0.

To see the claim, multiply (18) by me−ϕ and integrate the resulting equation in
Ω, ∫

Ω

m3ϕe−ϕ = d2

∫
Ω

∇ · (m∇ϕ−∇m) ·
(
me−ϕ

)
= −d2

∫
Ω

(m∇ϕ−∇m) · ∇
(
me−ϕ

)
= −d2

∫
Ω

(m∇ϕ−∇m) · e−ϕ (−m∇ϕ+∇m)

= d2

∫
Ω

e−ϕm2|∇(ϕ− lnm)|2 ≥ 0.

This proves Claim 3.7. Finally,∫
Ω

m3ϕ ≥
∫

Ω

m3ϕ−
∫

Ω

m3ϕe−ϕ =

∫
Ω

m3e−ϕ(ϕ− 0)(eϕ − e0) > 0,

where ϕ is non-constant as m is non-constant.

We now directly prove Proposition 3.5(ii):

Proof of Proposition 3.5(ii). Since β = 1+ε, by Theorem 3.2, we need only demon-
strate that

∫
Ω
m2(m − v∗) < 0 for all ε > 0 sufficiently small. Using Lemma 3.6,

v∗ = m1+εŵ, and the expansion of ŵ for ε small, we see that for 0 < ε� 1,∫
Ω

m2(m− v∗) =

∫
Ω

m2[m− (m1+ε(1 + εw1))] +O(ε2)

=

∫
Ω

m2(m−m− εmw1 − εm lnm) +O(ε2)

= −ε
∫

Ω

m3(w1 + lnm) +O(ε2) < 0

for ε sufficiently small. This completes the proof.

Remark 3. We have actually proved that d
dβ

∫
Ω
m2(m − v∗)

∣∣
β=1

< 0. This also

gives an alternative proof of (i) for β less than and close to 1.

3.2. Local stability of (0, v∗) when β � 1. We impose the following non-
degeneracy condition on m.

(M2): m ∈ C3(Ω) has a unique critical point x0 ∈ Ω, which is a non-degenerate
local (hence global) maximum, and ∂nm|∂Ω ≤ 0.

Proposition 3.8. Suppose (M2) holds, then there exists β0 > 1 such that (0, v∗)
is unstable for all β ∈ [β0,∞).

Proof. First, we state the following result which follows from Theorem B.1 in Ap-
pendix B.

Lemma 3.9. v∗ → 0 in L2(Ω) as β →∞.
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Therefore
∫

Ω
m2(m− v∗) < 0 for β sufficiently large, and the proposition follows

from Theorem 3.2.

Remark 4. The assumption (M2) can be relaxed here. In fact, by the proof of
Theorem 3.5 of [4] (with modification as in Lemma 2.2(ii) of [16]), the conclusion
of Lemma 3.9 and hence Proposition 3.8 hold provided the set of critical points of
m is of measure zero.

Because of the degeneracy of the linearization of (3) at (m, 0), we will determine
the local stability of (m, 0) indirectly through the global dynamics, which is the
subject of the following section.

4. Global dynamics. We now discuss the global dynamics of system (3) for β ∈
[0,∞). We begin with a result from [23].

Theorem 4.1. (Theorem 2.1 and 2.2 in [23]) Suppose m ∈ C2(Ω̄) is positive and
non-constant. Then there exists a 0 < β∗ � 1, such that for all β ∈ [0, β∗), (m, 0)
is globally asymptotically stable.

Since (3) gives rise to a strongly monotone dynamical system, the proof of Theo-
rem 4.1 in [23] follows a standard procedure: establish the stability of one of the two
semi-trivial steady states and then show that the system does not admit any strictly
positive steady states. We already know that (0, v∗) is unstable for all β ∈ (0, 1)
(Lemma 4.1 in [23]). In order to ensure the non-existence of positive steady states,
we prescribe the following restriction on m and Ω.

(M3): Suppose Ω = BR ⊆ RN , m = m(r) is non-constant, mr(0) = 0, mrr < 0
in [0, R) and satisfies m+ 2rmr ≥ 0 in (0, R).

Proposition 4.2. Suppose (M3) holds. Then there exists ε1 > 0 such that if
0 < |β − 1| < ε1, then (3) does not have any positive steady states.

Proof. See Section A.

With non-existence of positive steady states for β sufficiently close to 1, we can
infer the global dynamics of the system from the local stability results of (0, v∗)
established in the previous section.

Theorem 4.3. Suppose (M3) holds. Then for β ∈ (1 − ε1, 1), (m, 0) is globally
asymptotically stable.

Proof. By Lemma 4.1 in [23] we have that (0, v∗) is unstable for all β ∈ (0, 1).
Proposition 4.2 says that for all β ∈ (1 − ε1, 1), (3) has no positive steady states.
Hence by monotone dynamical system theory [13, 26], the result is established.

As the stability of (0, v∗) depends on the fact that
∫

Ω
m2(m − v∗) > 0 and this

quantity remains positive for all β ∈ (0, 1), we conjecture that (m, 0) will be globally
attracting for all β ∈ (0, 1). Biologically, this means that the IFD strategy remains
dominant even with the “penalty” of a weak Allee effect. However, this result
dramatically changes when species v plays a strategy with advection slightly larger
than 1. This is when v approximately attains an IFD while slightly overmatching
the global maximum of m.

Theorem 4.4. Suppose (M3) holds. Then there exists ε′ > 0 such that for all
β ∈ (1, 1 + ε′), (0, v∗) is globally asymptotically stable.
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Proof. By Proposition 3.5 (ii), (0, v∗) is locally asymptotically stable for β ∈ (1, 1+
ε0). Also, Proposition 4.2 ensures us that for β ∈ (1, 1 + ε1), (3) has no positive
steady states. Set ε′ = min{ε0, ε1}. Then by monotone dynamical system theory
[13, 26], (0, v∗) is globally stable for all β ∈ (1, 1 + ε′).

This result provides analytic justification to the prediction made in [23] and
demonstrates that the ideal free disperser not only may be driven to extinction, but
it may not be able to even invade.

However, as β grows larger, the stability of (0, v∗) changes to be unstable again
(see Theorem 2.3 in [23]), indicating that the ideal free disperser is not significantly
affected by weak Allee effect. In order to capture the global picture, we want to
demonstrate that (3) has no positive steady states for large β.

Proposition 4.5. Suppose (M1) holds. Then for some β1 > 1, (3) has no positive
steady states for β > β1.

Proof. See Appendix B.

This immediately leads to the global stability result:

Theorem 4.6. Suppose (M1) holds. Then for some β′ > 1, (m, 0) is globally
asymptotically stable for β > β′.

Proof. Proposition 3.8 indicates that for β > β0, (0, v∗) is unstable. By Proposition
4.5, we have that for β > β1, (3) has no positive steady states. Let β′ = max{β0, β1}.
Then by monotone dynamical system theory [13, 26], (m, 0) is globally asymptoti-
cally stable for all β > β′.

5. Discussion. This study builds on the work in [1], where it was proven that
the IFD strategy adopted by species u is evolutionarily stable. In other words,
everything else being held equal, an established population of u is immune against
invasion by any rare competitor species adopting a different dispersal strategy. In
this paper, by establishing the global asymptotic stability of (0, v∗) for β close to
but greater that 1, we have shown that the ideal free disperser u is sometimes
invadable by a rare competitor species v with a dispersal strategy that is not ideal
free, provided that the fitness of u has a weak Allee effect. This illustrates the
trade-off, in the dynamics of competing species in a spatially variable environment,
between the advantage of an IFD strategy on the one hand, and the setback of a
weak Allee effect on the other.

Not only is this biologically interesting, but the mathematics on which this notion
rests are curious. First, the instability of the semi-trivial steady state (m, 0) is es-
tablished indirectly, through the local asymptotic stability and the non-existence of
positive steady states. This indirect method is adopted due to the highly degenerate
nature of (m, 0) as a steady state of (3).

Second, we discuss the local stability of (0, v∗), or equivalently, the invasibility
of species v, when established, by species u. As shown above (see Section 3), the
invasibility of u depends on the sign of the following integral condition:

Cβ =

∫
Ω

m2(m− v∗). (19)

To give an intuitive connection between (19) and the growth/decay of a rare ideal
free disperser u, we first linearize system (3) at (0, v∗), setting u(x, t) = εψ(x)e−λt+
O(ε2) and v(x, t) = v∗ + εφ(x)e−λt +O(ε2). Substituting these expressions into (3)
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Figure 1. Three steady state profiles of species v: (i) β ∈ (β2, 1)
(ii) β ∈ (1, β3) (iii) β � 1. Note the resource m(x) = 3 sin(πx)+0.5
is black and the dotted blue curve represents v∗ in each subfigure.

and letting ε→ 0, we can show that λ = 0 is the principal eigenvalue and ψ satisfies
the following:  d1∇ ·

(
m∇

(
ψ

m

))
= 0 in Ω,

∂n(ψ/m) = 0 on ∂Ω.

(20)

By the maximum principle and after suitable rescaling, ψm ≡ 1 in Ω, and therefore,
ψ = m in Ω. This means that apart from the principal eigenfunction m, all other
modes of invasion for species u decay exponentially to zero. Therefore, we can write
u(x, t) = εm + O(ε2, e−λ2t), where λ2 > 0 is the second eigenvalue of system (3)
linearized at (0, v∗).

If we integrate the equation for u in (3) over Ω we have:

d

dt

∫
Ω

u =

∫
Ω

u2(m− u− v)

=

∫
Ω

u2(m− u− v + v∗ − v∗)

= ε2
∫

Ω

m2(m− v∗) +O(ε3, e−λ2t)

Thus, we see that the growth or decay (on average) of u depends on the sign of Cβ .
What is remarkable is that Cβ changes from positive to negative as β increases

to surpass the critical value 1. Locally, this means that (0, v∗) changes from being
unstable (for β < 1) to asymptotically stable for β > 1. Using steady state profiles,
we further illustrate this connection:
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β = 0 β >>1 

(0,v*) 

(m,0) 

β = 1 
	
  

 
	
  

β1	
   β2 β3 
	
  

β4 
	
  

Figure 2. Bifurcation diagram illustrating the ideal free strategy
tradeoff with the weak Allee effect.

β = 0 β = 1 
	
  

β >>1 

(0,v*) 

(m,0) 

Figure 3. Bifurcation diagram illustrating the ideal free strategy
as a global ESS for species with identical population dynamics.

• For β ∈ (β2, 1), v∗ under-matches m near the global maximum x0 and over-
matches away from this maximum (see Figure 1(i)) In this case, (19) is pos-
itive, indicating that u can invade. Here u, when rare, will have a positive
growth rate for all time near the maximum point x0, which is enough for it
to overcome the weak Allee effect.

• For β ∈ (1, β3), we see that v∗ over matches near x0 and under matches
elsewhere (see Figure 1(ii)). While u can have positive growth rates away
from x0, the integral condition specifies that this is not enough to overcome
the Allee effect and compete with resident species v∗.

• For larger β, while v∗ still dominates resource acquisition near x0, its concen-
tration near x0 implies that Cβ is negative again (see Figure 1(iii)) and, by
making use of resources away from x0, u is able to invade.
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We summarize the global results for system (3) in Figure 2. For convenience, we
also summarize the global results for system (3) when u is not subject to the weak
Allee effect (coming from [1]) in Figure 3.

Appendix A. Non-existence of Positive Steady States when β ≈ 1.

Lemma A.1. For each t ∈ [0, 1], there exists non-negative eigenfunction (φ′, ψ′)
satisfying  d1∇ · (m∇φ′)− (1− t)2m3φ′ + tm2ψ′ = 0 in Ω,

d2∇ · (m∇ψ′) + (1− t)2m3φ′ − tm2ψ′ = 0 in Ω,
∂nφ

′ = ∂nψ
′ = 0 on ∂Ω.

(21)

Moreover,

(i) d1φ
′ + d2ψ

′ = const.;
(ii) If t ∈ (0, 1), then φ′ > 0 and ψ′ > 0 in Ω̄;

(iii) If we normalize by d1φ
′ + d2ψ

′ = 1, then ψ′ is give by{
∇ · (m∇ψ′)−

[
(1−t)2

d1
m3 + t

d2
m2
]
ψ′ = − (1−t)2

d1d2
m3 in Ω,

∂nψ
′ = 0 on ∂Ω,

(22)

and satisfies limt→0 ψ
′ = ψ′

∣∣
t=0

= 1
d2

.

Proof. By the spectral theory of cooperative system, there exists a principal eigen-
value λ′ with non-negative eigenfunction (φ′, ψ′), satisfying

∇ · (m∇φ′)− (1−t)2

d1
m3φ′ + t

d1
m2ψ′ + λ′φ′ = 0 in Ω,

∇ · (m∇ψ′) + (1−t)2

d2
m3φ′ − t

d2
m2ψ′ + λ′ψ′ = 0 in Ω,

∂nφ
′ = ∂nψ

′ = 0 on ∂Ω.

To show (i), it remains to show that λ′ = 0. To this end, multiply the first equation
by d1 and the second equation by d2, and then add the two equation. We then see
that ρ = d1φ

′ + d2ψ
′ ≥ 0 is a non-negative eigenfunction of{

∇ · (m∇ρ) + λ′ρ = 0 in Ω,
∂nρ = 0 on ∂Ω.

Hence λ′ = 0 and ρ is a positive constant. This proves (i). (ii) follows from the fact
that when t ∈ (0, 1), then (21) is irreducible. For (iii), (22) follows by substituting
φ′ = 1/d1 − d2ψ

′/d1 into the second equation of (21). The final claim follows by
observing that 1/d2 is the unique solution of (22) when t = 0.

Lemma A.2. Suppose (M3) holds, then for all t ∈ (0, 1),
∫

Ω
∇m · ∇ψ′ 6= 0. More-

over,

lim inf
t→0+

1

t

∣∣∣∣∫
Ω

∇m · ∇ψ′
∣∣∣∣ > 0.

Proof. Assume (M3), then m = m(r) implies, by uniqueness, that ψ′ is radially
symmetric, i.e. ψ′ = ψ′(r). Written in radial coordinate, (22) becomes{

mψ′rr +
[
N−1
r +mr

]
ψ′r −

[
(1−t)2

d1
m3 + t

d2
m2
]
ψ′ = − (1−t)2

d1d2
m3 in (0, R),

ψ′r0 = ψ′r(R) = 0.
(23)
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Note that ψ′ > 0 in Ω by the maximum principle. Differentiating (23) with respect
to r and multiplying the result by m, we deduce that

m2ψ′rrr +

(
2mmr +m2N − 1

r

)
ψ′rr

+

{
mmr

N − 1

r
−m2N − 1

r2
+mmrr −m

[
(1− t)2

d1
m3 +

t

d2
m2

]}
ψ′r

=3mr

[
(1− t)2

d1
m3 +

t

d2
m2

]
ψ′ − t

d2
m2mrψ

′ − (1− t)2

d1d2
3m3mr

=3mr

[
mψ′rr +m

N − 1

r
ψ′r +mrψ

′
r

]
− t

d2
m2mrψ

′.

where we used equation (22) in the second to last equality. In conclusion, ψ′r satisfies
the inhomogeneous linear elliptic equation

m2ψ′rrr +

(
−mmr +m2N − 1

r

)
ψ′rr

+

{
−mN − 1

r

(m
r

+ 2mr

)
+mmrr − 3m2

r −m
[

(1− t)2

d1
m3 +

t

d2
m2

]}
ψ′r

= − t

d2
m2mrψ

′ in Ω, ψ′r(0) = ψ′r(R) = 0.

(24)
Because of the assumptions on m and the fact that ψ′ > 0 in Ω, for all t ∈ (0, 1),
the strong maximum principle implies that ψ′r < 0 in (0, R). Hence,

∫
Ω
mrψ

′
r 6= 0.

Moreover, by Lemma A.1, limt→0 ψ
′ → 1/d2. Hence, ρ = limt→0 ψ

′
r/t satisfies

m2ρrr +

(
−mmr +m2N − 1

r

)
ρr

+

[
−mN − 1

r

(m
r

+ 2mr

)
+mmrr − 3m2

r −
m4

d1

]
ρ

=− 1

d2
2

m2mr in Ω, ρ(0) = ρ(R) = 0.

(25)

and we see that ρ < 0 in (0, R). Therefore, limt→0 t
−1
∣∣∫

Ω
mrψ

′
r

∣∣ =
∣∣∫

Ω
mrρ

∣∣ >
0.

A.1. Proof of Proposition 4.2. Suppose to the contrary that for a sequence of
ε = β− 1, system (3) has a corresponding positive steady state (u, v) = (u(ε), v(ε)).
By compactness, we see that as ε → 0, (u, v) converges to a non-negative solution
of 

d1∇ ·
(
m∇

( u
m

))
+ u2(m− u− v) = 0 in Ω,

d2∇ ·
(
m∇

( v
m

))
+ v(m− u− v) = 0 in Ω,

∂n

( u
m

)
= ∂n

( v
m

)
= 0 on ∂Ω.

(26)

Claim A.3. If (ũ, ṽ) is a non-negative solution of (26), then either (ũ, ṽ) = 0 or
(ũ, ṽ) = ((1− t0)m, t0m) for some t0 ∈ [0, 1].

If one of ũ or ṽ is identically zero, it is easy to see that

(ũ, ṽ) = (0, 0), (m, 0), or (0,m).
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Suppose ũ, ṽ are both not identically zero, then by the maximum principle (see also
Proposition 2.2 of [17]), we have

0 < ũ < m and 0 < ṽ < m in Ω̄.

Let t0 be the maximal positive number such that ũ ≤ (1− t0)m and ṽ ≥ t0m, then
one of the non-negative functions w := (1 − t0)m − ũ and z := ṽ − t0m vanishes
somewhere in Ω̄. It suffices to show that w ≡ z ≡ 0. Note that w, z satisfies

d1∇ ·
(
m∇

(w
m

))
− ũ2m(w/m) = −ũ2z ≤ 0 in Ω,

d2∇ ·
(
m∇

( z
m

))
− ṽm(z/m) = −ṽw ≤ 0 in Ω,

∂n

(w
m

)
= ∂n

( z
m

)
= 0 on ∂Ω.

(27)

Suppose that w(x0) = 0 for some x0 ∈ Ω̄. If w > 0 in Ω and x0 ∈ ∂Ω, then by
Hopf’s boundary point lemma, ∂n(w/m)(x0) < 0 and this contradicts the boundary
condition of w. Therefore we must have x0 ∈ Ω, but then by the strong maximum
principle, w ≡ 0 and hence z ≡ 0. This shows that (ũ, ṽ) = ((1−t0)m, t0m) for some
t0 ∈ (0, 1). The case where z vanishes somewhere in Ω̄ can be handled similarly.
This proves Claim A.3.

Claim A.4. As ε→ 0, by passing to a subsequence, the positive steady state (u, v)
converges to ((1− t0)m, t0m) for some t0 ∈ [0, 1].

By Claim A.3, it suffices to show that (u, v) 6→ (0, 0). Suppose to the contrary
that (u, v)→ (0, 0), then v/‖v‖∞ → v̂ in C1(Ω̄) where v̂ is non-negative, ‖v̂‖∞ = 1
and satisfies {

d2∇ ·
(
m∇ v̂

m

)
+mv̂ = 0 in Ω,

∂n
(
v̂
m

)
= 0 on ∂Ω.

Integrating over Ω, we have
∫
mv̂ = 0. This contradiction proves Claim A.4.

Lemma A.5. For all ε sufficiently small, there exists u1, v1 ∈ C1(Ω̄) such that
‖u1‖C1 + ‖v1‖C1 ≤ O(ε) and

(u− u1, v − v1) ∈
{

((1− t)m, tm)
∣∣ t ∈ R

}
.

In particular, ‖m− u− v‖C1 ≤ O(ε).

Proof of Lemma A.5. Let X = {(w, z) ∈ [W 2,p(Ω)]2
∣∣ ∂nw = ∂nz = 0 on ∂Ω} for

some p > N , and let X1 be a proper subspace of X, such that

X1 + span {(1, 1)} = [W 2,p(Ω)]2.

Then for any (u, v) ∈ X, we can decompose

(u, v) = ((1− t)m−mw1, tm
1+ε +m1+εz1) (28)

for some t ∈ R and (w1, z1) ∈ X1 satisfying
d1∇ · (m∇w1)−m3(1− t− w1)2[t+ w1 −mε(t+ z1)] = 0 in Ω,

d2∇ ·
(
m1+ε∇z1

)
+m2+ε(t+ z1)[t+ w1 −mε(t+ z1)] = 0 in Ω,

∂nw1 = ∂nz1 = 0 on ∂Ω.

(29)

Let us define F : X1 × (−ε0, ε0)× (−δ, 1 + δ)→ [Lp(Ω)]2 (with δ as given in Claim
A.6 below) as

F(w, z, ε, t) :=

(
d1∇ · (m∇w)−m3(1− t− w1)2[t+ w1 −mε(t+ z1)]

d2∇ ·
(
m1+ε∇z

)
+m2+ε(t+ z1)[t+ w1 −mε(t+ z1)]

)
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then the Frechét derivative D(w,z)F at (w, z, ε, t) = (0, 0, 0, t) is given by Lt
∣∣
X1

,

where Lt : X → [Lp(Ω)]2 is given by

Lt(φ, ψ) =

(
d1∇ · (m∇φ) + (1− t)2m3(−φ+ ψ)

d2∇ · (m∇ψ) + tm2(φ− ψ)

)
.

Claim A.6. For some δ > 0, kerLt = span{(1, 1)} for all t ∈ [−δ, 1 + δ].

It is easy to see the claim when t = 0, 1. For t ∈ (0, 1), Lt is an irreducible,
cooperative operator with zero as an eigenvalue corresponding a positive eigenfunc-
tion (1, 1). It follows that zero must be the principal eigenvalue, and is necessarily
simple. This proves the claim for t ∈ [0, 1], and the rest follows by continuity.

Hence kerLt ∩ X1 = {(0, 0)}. On the other hand, since zero is the principal
eigenvalue of the cooperative operator Lt (for t ∈ [0, 1]), one can deduce that
Lt − σI : X → [Lp(Ω)]2 is invertible for any σ > 0 and t ∈ [0, 1]. Therefore, Lt is
Fredholm with index zero for t ∈ (−δ, 1+δ+1), for some δ > 0 small, i.e., (together
with Claim A.6)

dim cokerLt = dim kerLt = 1 for all t ∈ (−δ, 1 + δ). (30)

Next, we define a projection operator

Pt(f, g) =

∫
(fφ′ + gψ′)∫

[(φ′)2 + (ψ′)2]

(
φ′

ψ′

)
,

where (φ′, ψ′) is given in Lemma A.1. Observe that the range of Lt is given by
kerPt (by Range of Lt ⊆ kerPt and (30)), and hence Lt is an isomorphism from X1

to ker Pt. As (I − Pt)F(·, ·, ε, t) : X1 → kerPt satisfies

D(w,z)[(I − Pt)F ]
∣∣
(w1,z1,ε,t)=(0,0,0,t)

= (I − Pt)Lt = Lt,

we may apply the Implicit Function Theorem to (I − Pt)F . For each steady state
(u, v) of (3), by the decomposition (28) and Claim A.4, we have (u, v) = ((1−t)m−
mw1, tm + mz1), for some t ∈ [−δ, 1 + δ] and (w1, z1) ∈ X1 close to (0, 0), which
satisfies

F(w1, z1) = 0 =⇒ (I − Pt)F(w1, z1) = 0.

Now, (i) if ε = 0, then (w1, z1) = 0 for all t (Claim A.3), and (ii) for ε sufficiently
small, any steady state (u, v) of (3) is close to {(1 − t)m, tm)|t ∈ (−δ, 1 + δ)}.
If we decompose (u, v) as in (28), then the Implicit Function Theorem implies
‖w1‖C1 + ‖z1‖C1 ≤ O(ε), uniformly for t ∈ (−δ/2, 1 + δ/2). Finally, the conclusion
follows by setting u1 = −mw1 and v1 = tm(mε − 1) +m1+εz1.

It remains to consider three cases: (1) (u, v) → ((1 − t0)m, t0m) for some t0 ∈
(0, 1); (2) (u, v)→ (m, 0); (3) (u, v)→ (0,m).

Case (1): (u, v)→ ((1− t0)m, t0m) as ε→ 0, for some t0 ∈ (0, 1).

By Proposition A.5, we may write u = (1− t)m− u1 and v = tm+ v1 for some t
and (u1, v1) such that |t− t0| = o(1) with ‖u1‖C1 + ‖v1‖C1 ≤ O(ε). Divide (29) by
ε and pass to the limit, letting φ1 := limε→0 u1/ε and ψ1 := limε→0 v1/ε. Then φ1
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and ψ1 satisfies

d1∇ ·
(
m∇φ1

m

)
+ [(1− t0)m]2(−φ1 + ψ1) = 0 in Ω,

d2∇ ·
(
m∇ψ1

m

)
+ t0m(φ1 − ψ1) = d2t0∆m in Ω,

∂n

(
φ1

m

)
= 0, ∂n

(
ψ1

m

)
=
t0
m
∂nm on ∂Ω.

(31)

Note that (φ1, ψ1) 6= (0, 0), otherwise ∆m = 0 in Ω and ∂nm = 0 on ∂Ω, which
contradicts the assumption that m is non-constant. Let (φ′, ψ′) be the principal
eigenfunction guaranteed by Lemma A.1, i.e. φ′, ψ′ > 0 in Ω̄ satisfies (21) with
t = t0 ∈ (0, 1). Multiply the first equation of (31) by φ′ and integrate by parts, we
have ∫ {

φ1

m
d1∇ · (m∇φ′) + [(1− t0)m]2(−φ1 + ψ1)φ′

}
= 0. (32)

Multiply the second equation of (31) by ψ′ and integrate by parts, we have∫ {
ψ1

m
d2∇ · (m∇ψ′) + t0m(φ1 − ψ1)ψ′

}
= −d2t0

∫
∇m · ∇ψ′. (33)

Adding (32) and (33), we deduce by (21) that

0 =

∫
φ1

m

[
d1∇ · (m∇φ′)− (1− t0)2m3φ′ + t0m

2ψ′
]

+

∫
Ω

ψ1

m

[
d2∇ · (m∇ψ′) + (1− t0)2m3φ′ − t0m2ψ′

]
= −d2t0

∫
∇m · ∇ψ′

which is impossible, as the last integral is non-zero by Lemma A.2.

Case (2): (u, v)→ (m, 0) as ε→ 0.

Claim A.7. Let δ := (‖u−m‖∞ + ‖v‖∞)/(2‖m‖∞), then(
m− u
δ

,
v

δ

)
→ (m,m) in C1(Ω̄).

To see the claim, we write u = m − δu2 and v = δv2, then u2, v2 ≥ 0 and by
definition ‖u2‖∞ + ‖v2‖∞ = 2‖m‖∞. Moreover, u2, v2 satisfy

d1∇ ·
[
m∇

(u2

m

)]
− (m− δu2)2(u2 − v2) = 0 in Ω,

d2∇ ·
[
m∇

(v2

m

)]
+ v2(δu2 − δv2) = d2ε∇ · [v2∇ lnm] in Ω,

∂nu2 −
u2

m
∂nm = ∂nv2 − (1 + ε)

v2

m
∂nm = 0 on ∂Ω.
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By elliptic estimates, we may let u2 → φ2 and v2 → ψ2 in C1(Ω̄), where φ2, ψ2

satisfy (weakly) the following system

d1∇ ·
[
m∇

(
φ2

m

)]
−m2(φ2 − ψ2) = 0 in Ω,

d2∇ ·
[
m∇

(
ψ2

m

)]
= 0 in Ω,

∂n

(
φ2

m

)
= ∂n

(
ψ2

m

)
= 0 on ∂Ω,

‖φ2‖∞ + ‖ψ2‖∞ = 2‖m‖∞.

which implies that (φ2, ψ2) = (m,m). This proves Claim A.7.
Hence, we may write

u = (1− δ)m− u3, v = δm+ v3, ‖u3‖C1 + ‖v3‖C1 ≤ o(δ).

Moreover, u3, v3 satisfies d1∇ ·
[
m∇

(
u3

m

)]
+ [(1− δ)m− u3]

2
(−u3 + v3) = 0 in Ω,

d2∇ ·
[
m∇

(
v3

m

)]
+ (δm+ v3)(u3 − v3) = d2ε∇ · [(δm+ v3)∇ lnm] in Ω

∂nu3 − u3

m ∂nm = 0, ∂nv3 − v3

m ∂nm = ε
m (δm+ v3) ∂nm on ∂Ω.

(34)
Similar to Lemma A.1, we have the following result.

Lemma A.8. For all ε = β − 1 small (hence δ > 0 small), there exists a pair of

positive eigenfunctions (φ̂, ψ̂) satisfying d1φ̂+ d2ψ̂ = 1, and
d1∇ · (m∇φ̂)− [(1− δ)m− u3]

2
mφ̂+ (δm+ v3)mψ̂ = 0 in Ω,

d2∇ · (m∇ψ̂) + [(1− δ)m− u3]
2
mφ̂− (δm+ v3)mψ̂ = 0 in Ω,

∂nφ̂ = ∂nψ̂ = 0 on ∂Ω,

(35)

where ψ̂ is given by the unique solution to
∇ · (m∇ψ̂)−

{
m
d1

[(1− δ)m− u3]
2

+ m
d2

(δm+ v3)
}
ψ̂ = − m

d1d2
[(1− δ)m− u3]2

in Ω,

∂nψ̂ = 0 on ∂Ω,
(36)

and satisfies limε→0 ψ̂ = 1/d1. Moreover, if (M3) holds, then ‖∇ψ̂‖∞ = O(δ) and

lim inf
ε→0

1

δ

∣∣∣∣∫ ∇m · ∇ψ̂∣∣∣∣ > 0.

Proof of Lemma A.8. The existence of (φ̂, ψ̂) and the limit limε→0 ψ̂ = 1/d1 can be
proven in a similar manner as Lemma A.1 and is omitted. For the remaining part,

we assume (M3) and write the equation of ψ̂ in radial coordinate:
mψ̂rr +

[
N−1
r m+mr

]
ψ̂r −

{
m
d1

[(1− δ)m− u3]2 + m
d2

(δm+ v3)
}
ψ̂

= − m
d1d2

[(1− δ)m− u3]2 in (0, R),

ψr(0) = ψr(R) = 0.
(37)
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Differentiate (37) with respect to r, we deduce

m2ψ̂rrr +

[
−mmr +

N − 1

r
m2

]
ψ̂rr −

{
m2

d1
[(1− δ)m− u3]2 +

m2

d2
(δm+ v3)

}
ψ̂r

+

{
−N − 1

r
m
(

2mr +
m

r

)
+mmrr − 3m2

r

}
ψ̂r

=− δ

d2
m2mrψ̂ +O(‖u3‖C1 + ‖v3‖C1)

=− δ

d2
m2mrψ̂ + o(δ) > 0,

where the last inequality follows from the fact that ψ̂ → 1/d1 as ε → 0. Hence

‖∇ψ̂‖∞ = ‖ψ̂r‖∞ = O(δ) and ψ̂r < 0 for ε sufficiently small. The rest of the proof
is similar to the proof of Lemma A.2 and is omitted.

Now, similar to the procedure in Case (i), let (φ̂, ψ̂) be given by Lemma A.8.

Multiply the first equation of (34) by φ̂ and the second by ψ̂. Upon integrating by
parts and adding the equations, we have

0 =

∫ {
u3

m

[
d1∇ · (m∇φ̂)−

[
(1− δ)mφ̂+ u3

]2
mφ̂+ (δm+ v3)mψ′

]
+
v3

m

[
d2∇ · (m∇ψ̂) + [(1− δ)mφ′ + u3]

2
mφ̂− (δm+ v3)mψ′

]}
= −d2ε

∫
(δm+ v3)∇ lnm · ∇ψ̂

= −d2ε

[
δ

∫
∇m · ∇ψ̂ + o(δ2)

]
,

where in the last line, we have used the fact that ‖∇ψ̂‖∞ ≤ O(δ) (Lemma A.8). By
Lemma A.8, the last term is non-zero for sufficiently small ε, δ. This is a contradic-
tion.

Case (3): (u, v)→ (0,m) as ε→ 0.

Write

u = sm+ u4,

∫
u4m = 0, and v = (1− s)v∗ + v4

where v∗ = v∗(ε) is the positive steady state of (4) when β = 1 + ε. By Lemma
A.5, s = o(1). Moreover,

u4 + v4 = (u+ v −m) + (1− s)(m− v∗) = O(ε), (38)

as u+ v −m = O(ε) by Lemma A.5 and m− v∗ = O(ε).

Claim A.9. ‖u4‖∞ ≤ o(s).

To see the claim, first observe that u
‖u‖∞ →

m
‖m‖∞ in C1 (by dividing the equation

of u by ‖u‖∞, and using compactness). Hence,

sm+ u4 =
‖u‖∞
‖m‖∞

m+ o(‖u‖∞). (39)

Multiply (39) by m and integrate, we have

s

∫
m2 =

‖u‖∞
‖m‖∞

∫
m2 + o(‖u‖∞),
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and hence ‖u‖∞ = ‖m‖∞s+ o(s). Therefore by (39), we deduce

sm+ u4 = sm+ o(s).

And the desired conclusion follows upon canceling sm from both sides.

Claim A.10. ‖u4‖C1 + ‖v4‖C1 ≤ o(ε).

First, observe that u4 satisfies{
d1∇ ·

(
m∇u4

m

)
= −u2[(1− s)(m− v∗)− u4 − v4] = o(ε)

∂n
u4

m

∣∣
∂Ω

= 0 and
∫
u4m = 0

where the estimate follows from (38). Hence by Poincaré’s inequality, ‖u4‖C1 ≤ o(ε).
Next, observe that v4 satisfies

d2∇ ·
(
m∇ v4

m

)
+ [(1− s)(m− 2v∗)− (u4 + v4)]v4

= (1− s)v∗u4 + (1− s)sv∗(m− v∗)
∂n

v4

mβ

∣∣
∂Ω

= 0 and
∫
u4m = 0.

Simplifying,{
d2∇ ·

(
m∇ v4

m

)
+ [(m− 2v∗) + o(1)]v4 = O(‖u4‖C1 + sε) = o(ε)

∂n
v4

mβ

∣∣
∂Ω

= 0.

By the uniform invertibility of the corresponding linear problem (see Claim 3.4),
we have ‖v4‖C1 ≤ o(ε). This proves Claim A.10.

Next, by integrating the equation of u over Ω and dividing by s2, we have

0 =

∫ (u
s

)2

(m− u− v)

=

∫ (
m+

u4

s

)2

[(1− s)(m− v∗)− u4 − v4]

= (1− s)
∫ (

m+
u4

s

)2

(m− v∗)−
∫ (

m+
u4

s

)2

(u4 + v4)

= (1− s)
∫
m2(m− v∗) + (1− s)

∫
u4

s

(
2m+

u4m

s

)
(m− v∗)

−
∫ (

m+
u4

s

)2

(u4 + v4)

= (1− s)

[
∂

∂β

∫
m2(m− v∗)

∣∣∣∣
β=1

]
ε+ o(ε)

by Claims A.9 and A.10. Recalling that ∂
∂β

∫
m2(m− v∗)|β=1 < 0 (see Remark 3),

the last line is nonzero for all s, ε sufficiently small. This contradiction completes
the proof of Proposition 4.2.

Appendix B. Appendix B: Non-existence of Positive Steady States when
β � 1.

Theorem B.1. Suppose (M1) holds. For each d > 0, there exists β1 > 0 large and
C, ε > 0 such that

v∗(x) ≤ C
(

m(x)

maxΩ̄m

)εβ
in Ω, (40)

whenever β ≥ β1 and d2 ≥ d. In particular, for all p ∈ [1,∞), v∗ → 0 in Lp(Ω) as
β →∞.
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Proof of Theorem B.1. This is a special case of Theorem 1.6 of [16]. For com-
pleteness’ sake, we shall give a short proof here, which follows from the methods
developed in [6]. First, we fix, by the non-degeneracy of x0, two positive constants
κ,K > 0 such that

κ|x−x0|2 ≤ m(x0)−m(x) ≤ K|x−x0|2, κ|x−x0|2 ≤ |∇m(x)|2 ≤ K|x−x0|2 (41)

Let M = M(d2, β) = ‖v∗‖L∞(Ω) and fix ε ∈ (0, 1). Define

v̄(x) = CM

(
m(x)

maxΩ̄m

)εβ
.

Fix R0 > 0 large so that for all β ≥ 2/ε,

εβ − 1

2β
κR2

0 ≥ ‖m∆m‖L∞(Ω). (42)

Then there exists β1 = β1(d) ≥ 2/ε such that

d2(1− ε)(εβ − 1)
κR2

0

2
> ‖m‖3L∞(Ω) for all β ≥ β1 and d2 ≥ d. (43)

If we define

N [φ] := ν∇ · (∇φ− βφ∇ lnm) + (m− uk − vk)φ, (44)

then by (42) and (43),

N [v̄] =
v̄

m2

{
m2(m− v∗)− d2β(1− ε)[(εβ − 1)|∇m|2 +m∆m]

}
≤ 0

in Ω \ B̄R0/
√
β(x0) whenever β ≥ β1 and d2 ≥ d. Choose now C > 0 so that for all

β ≥ β1 (and independent of d2),

inf
BR0/

√
β(x0)

v̄ ≥M in BR0/
√
β(x0). (45)

This is possible in view of (41). Then v∗ satisfies
d2∇ · (∇v − βv∇ lnm) + (m− v∗)v = 0 in Ω′ := Ω \ B̄R0/

√
β(x0),

∂nv − βv∂n lnm = 0 on ∂Ω′ ∩ ∂Ω,
v = v∗ on ∂Ω′ ∩ Ω,

while v̄ satisfies
d2∇ · (∇v − βv∇ lnm) + (m− v∗)v ≤ 0 in Ω′ := Ω \ B̄R0/

√
β(x0),

∂nv − βv∂n lnm ≥ 0 on ∂Ω′ ∩ ∂Ω,
v ≥ ‖v∗‖L∞(Ω) ≥ v∗ on ∂Ω′ ∩ Ω.

Now by the equation of v∗, the principal eigenvalue of{
d2∇ · (∇ϕ− βϕ∇ lnm) + (m− v∗)ϕ+ µϕ = 0 in Ω,
∂nv − βv∂n lnm = 0 on ∂Ω,

is zero. By Proposition 3.2 of [2], it is apparent that the principal eigenvalue of
d2∇ · (∇ϕ− βϕ∇ lnm) + (m− v∗)ϕ+ µϕ = 0 in Ω′ := Ω \ B̄R0/

√
β(x0),

∂nv − βv∂n lnm = 0 on ∂Ω′ ∩ ∂Ω,
ϕ = 0 on ∂Ω′ ∩ Ω,

is positive. According to Theorem 2.4 of [1], one can infer by the strong maximum
principle that

v∗ ≤ v̄ in Ω′ = Ω \ B̄R0/
√
β(x0).
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Since we also have v∗ ≤ ‖v∗‖L∞(Ω) ≤ v̄ in B̄R0/
√
β(x0) (by (45)), we have

v∗ ≤ v̄ in Ω. (46)

It remains to show that M = ‖v∗‖L∞(Ω) is bounded independent of β large. Now
by (46), ∫

Ω

mv∗ ≤
∫

Ω

mv̄ ≤ CMβ−N/2. (47)

On the other hand, by fixing R1 > R0 suitably large, we have (independent of β
large)

v∗ ≤ v̄ ≤ M

2
=

1

2
‖v∗‖L∞(Ω) in Ω \ B̄R1/

√
β(x0).

Therefore, the maximum of v∗ is attained in BR1/
√
β(x0) for all β large. If we write

the equation of v∗ as{
d2∆v∗ − β

m∇m · ∇v
∗ + v∗

(
m− v∗ + β |∇m|

2

m2 − β∆m
m

)
= 0 in Ω,

∂nv
∗ − β(∂nm)v∗ = 0 on ∂Ω,

then (since β(∂nm) ≤ 0 on ∂Ω), we have by maximum principle

‖v∗‖L∞(Ω) ≤ O(β). (48)

Next, we change coordinates x = x0 + y√
β

, then V (y) = v∗(x0 + y√
β

) is a positive

solution to

d2∆yV −
√
β

m
∇xm

(
x0 +

y√
β

)
· ∇yV +

m− V + β|∇m|2m−2 − βm−1∆m

β
V = 0

(49)
in B2R1

(0). By (48) and√
β∇xm

(
x0 +

y√
β

)
→ D2

xm(x0)y uniformly for y ∈ B2R1
(0),

all the coefficients of (49) are bounded. We may apply the Harnack inequality to V
in B2R1(0), which implies that for some c depending on dimension and m(x), but
independent of β large,

v∗ ≥ c‖v∗‖∞ for x ∈ BR1/
√
β(x0) (or y ∈ BR1(0)).

Hence ∫
Ω

(v∗)2 ≥
∫
BR1/

√
β

(v∗)2 ≥ cM2β−N/2. (50)

Combining (47) and (50) by the identity
∫

Ω
v∗(m−v∗) = 0 (obtained by integrating

the equation of v∗ over Ω), we have

cM2β−N/2 ≤
∫

Ω

(v∗)2 =

∫
Ω

mv∗ ≤ CMβ−N/2.

Hence M = ‖v∗‖L∞(Ω) is bounded independent of β large. This proves the theorem.

Next, we show the nonexistence of positive steady states when β is sufficiently
large.

Proof of Proposition 4.5. Suppose to the contrary that for some fixed d1, d2 > 0,
there exists a sequence βk →∞ and positive solution (uk, vk) of (3) corresponding
to β = βk.

By a comparison argument, uk < m in Ω̄ for each k.
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Claim B.2. uk → m weakly in W 2,p(Ω) for all p ∈ [1,∞) and strongly in C1,α(Ω̄)
for all α ∈ (0, 1).

To see the claim, notice that 0 < vk < v∗ (by comparison) and v∗ → 0 in
Lp(Ω) for all p ∈ [1,∞) (by Theorem B.1). Hence the claim follows from elliptic Lp

estimates applied to the equation of u.

Claim B.3. There exists C such that ‖vk‖L∞(Ω) ≤ C‖m− uk‖L∞(Ω) for all k.

For t = ‖m − uk‖L∞(Ω)/minΩ̄m, we have ‖m − uk‖L∞(Ω) ≤ tm. Hence by
comparison, vk ≤ v(t), where v(t) is the unqiue positive solution of{

d2∇ · (∇v − βv∇ lnm) + v(tm− v) = 0 in Ω,
∂nv − βv∂n(lnm) = 0 on ∂Ω.

(51)

And v′ = v(t)/t satisfies{
t−1d2∇ · (∇v′ − βv′∇ lnm) + v′(m− v′) = 0 in Ω,
∂nv

′ − βv′∂n(lnm) = 0 on ∂Ω.
(52)

And is bounded independent of β (large) and t (small) by Theorem B.1. Hence
vk ≤ Ct = C‖m− uk‖L∞(Ω)/minΩ̄m. This proves Claim B.3.

Next, we prove the key lemma.

Lemma B.4. For each p ≥ 1,
vk

‖m− uk‖L∞(Ω)
→ 0 in Lp(Ω) as β →∞.

Proof. Let v̂ = C‖m − uk‖L∞(Ω)

(
m

maxΩ̄ m

)εβ
. Then, as in Proof of Theorem B.1,

there exists β2, R0 > 0 large such that

N [v̂] = v̂

{
m− uk − vk − d2(1− ε)β

[
(εβ − 1)

|∇m|2

m2
+

∆m

m

]}
≤ 0 in Ω\BR0/

√
βk

(x0),

(53)
where N is defined in (44). Hence by comparing vk and v̂ in Ω\BR0/

√
βk

(x0) (details

similar to proof of Theorem B.1)

vk ≤

{ ‖vk‖∞ ≤ C‖m− uk‖∞ in B̄R0/
√
βk

(x0)

C‖m− uk‖∞
(

m
maxΩ̄ m

)εβ
in Ω \ B̄R0/

√
βk

(x0).

And Lemma B.4 follows from Bounded Convergence Theorem.

Rewriting the equation of uk, we have

−d1∇ ·
[
∇(m− uk)− (m− uk)

∇m
m

]
+ u2

k(m− uk − vk) = 0

−d1∇ ·
[
m∇

(
m− uk
m

)]
+ u2

k(m− uk) = u2
kvk

Divide by ‖m− uk‖L∞(Ω), letting w = (m− uk)/(m‖m− uk‖L∞(Ω)),

−d1∇ · [m∇w] +mu2
kw = u2

k

vk
‖m− uk‖L∞(Ω)

.

where mu2
k → m3 in L∞(Ω) and the right hand side goes to zero in Lp(Ω). Hence

by Lp estimate, w → 0 weakly in W 2,p(Ω) and strongly in C1,α(Ω̄). i.e.

m− uk
‖m− uk‖L∞(Ω)

→ 0 uniformly in Ω as βk →∞. (54)



INVADING THE IDEAL FREE DISTRIBUTION 25

This is a contradiction. Therefore, (3) has no positive solutions for β large.
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