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MONOTONICITY AND GLOBAL DYNAMICS OF A NONLOCAL
TWO-SPECIES PHYTOPLANKTON MODEL*

DANHUA JIANG', KING-YEUNG LAM#, YUAN LOU$, AND ZHICHENG WANGY

Abstract. We investigate a nonlocal reaction-diffusion-advection system modeling the popula-
tion dynamics of two competing phytoplankton species in a eutrophic environment, where nutrients
are in abundance and the species are limited by light only for their metabolism. We first demonstrate
that the system does not preserve the competitive order in the pointwise sense. Then we introduce a
special cone IC involving the cumulative distributions of the population densities, and a generalized
notion of super- and subsolutions of the nonlocal competition system where the differential inequal-
ities hold in the sense of the cone K. A comparison principle is then established for such super- and
subsolutions, which implies the monotonicity of the underlying semiflow with respect to the cone K
(Theorem 2.1). As application, we study the global dynamics of the single species system and the
competition system. The latter has implications for the evolution of movement for phytoplankton
species.

Key words. Phytoplankton; competition for light; nonlocal reaction-diffusion equations; mono-
tone dynamical system.

AMS subject classifications. 35B51, 35K57, 47TH07, 92D25

1. Introduction. Phytoplankton are microscopic plant-like photosynthetic or-
ganisms that drift in the water columns of lakes and oceans. They grow abundantly
around the globe and are the foundation of the marine food chain. Since they trans-
port significant amounts of atmospheric carbon dioxide into the deep oceans, they
play a crucial role in climate dynamics. Nutrients and light are the essential resources
for the growth of phytoplankton. There are three possible ways for phytoplankton
to compete for nutrients and light. At one extreme, in oligotrophic ecosystems with
an ample supply of light, species compete for limiting nutrients [22,27]. At the other
extreme, in eutrophic ecosystems with ample nutrient supply, species compete for
light [8,16,17,33]. In some ecosystems of intermediate conditions, they compete for
both nutrients and light [3,4,18,21,36]. In the water column, phytoplankton diffuse
by water turbulence, and also sink or buoy, depending on whether they are heavier
than water or not [8].

In this paper, we study the two-species nonlocal reaction-diffusion-advection sys-
tem proposed by Huisman et al. [16,18]. The system models the growth of phyto-
plankton species in a eutrophic vertical water column, where the species is limited by
light only for their metabolism. Consider a water column with unit cross-sectional
area and with two phytoplankton species. Let & denote the depth within the water
column where z varies from 0 (the top) to L (the bottom), and let u(x,t), v(x,t) stand
for the population densities of two phytoplankton species at the location = and time
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2 D. JIANG, K.-Y. LAM, Y. LOU AND Z. WANG

t, respectively. The following system of reaction-diffusion-advection equations was
proposed in [16] to describe the population dynamics of two phytoplankton species:

(1.1)

ut:Dluzm*alum‘F[gl(I SU,t)) 1}“7 O0<z <L, t>0,
vy = Dovge — ¥z + [92(I(xvt)) ]'U, O<z <L, t>0,

with no-flux boundary conditions

(1 2) Dlur(x7 )70[1’“( €z, ):07 T = 07La t> 07
’ Dovy(x,t) — agu(z,t) =0, x=0,L, t>0,

and initial conditions
(1.3) u(z,0) = ug(z) >,#0, v(z,0) =vo(z) >,#0, 0<z <L,

where for i = 1,2, D; > 0 is the diffusion coefficient, a; € R is the sinking (a; > 0)
or buoyant (a; < 0) velocity, d; > 0 is the death rate, ¢;(I) represents the specific
growth rate of phytoplankton species as a function of light intensity I(z,t).

Light intensity is decreasing with depth due to light absorption via phytoplankton
and water. By the Lambert-Beer law [23], the light intensity I(x,t) is given by

(1.4) I(x,t) = Iy exp ( — kox — /Oz[klu(s, t) + kav(s, t)]ds),

where Iy > 0 is the incident light intensity, ko > 0 is the background turbidity
that summarizes light absorption by all non-phytoplankton components, and k; is
the absorption coefficient of the corresponding phytoplankton species. In this model
ample nutrient supply is assumed so that the phytoplankton growth is only limited
by the light availability. We assume that g;(I) is a smooth function satisfying

(1.5) gi(0)=0 and g¢;(I)>0 for I>0.
A typical example of g;(I) takes the Michaelis-Menten form

a; + 1

gi(I) = )
where m; > 0 is the maximal growth rate and a; > 0 is the half saturation constant.

Most existing mathematical literatures on phytoplankton are focused on a single
species. The single species model was considered in [33] for the self-shading case (i.e.
ko = 0) and infinite long water column (L = oo0). The existence, uniqueness and
global stability of the steady state are established in [20,33]. It is shown in [24] that
the self-shading model with any finite water column depth has a stable positive steady
state, which means that the self-shading model has no critical water column depth
beyond which the phytoplankton cannot persist.

For the case kg > 0, it is illustrated in [8] that the condition for phytoplankton
bloom development can be characterized by critical water column depth and some
critical values of the vertical turbulent diffusion coefficient. Du and Hsu [5] studied
both single and two species competing for light with no advection. For the single
species model, the existence, uniqueness, and global attractivity of a positive equilib-
rium was established. Hsu and Lou [13] analyzed the critical death rate, critical water
column depth, critical sinking or buoyant coefficient and critical turbulent diffusion
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A NONLOCAL TWO-SPECIES PHYTOPLANKTON MODEL 3

rate. Du and Mei [7] investigated the global dynamics of the single species model for
the case D = D(x), @ = a(x) and the asymptotic profiles of the positive steady states
for small or large diffusion and deep water column when D, « are constants. Peng and
Zhao [31,32] considered the effect of time-periodic light intensity Iy at the surface, due
to diurnal light cycle and seasonal changes. Ma and Ou [28] further studied the model
in [31,32] and assume that D(t), a(t) are time periodic functions. They obtained the
uniqueness and the global attractivity of the positive periodic solution of the single
species model, when it exists.

Du et al. [6] studied the effect of photoinhibition on the single phytoplankton
species, and they found that, in contrast to the case of no photoinhibition, where at
most one positive steady state can exist, the model with photoinhibition possesses at
least two positive steady states in certain parameter ranges. Hsu et al. [14] exam-
ined the dynamics of a single species under the assumption that the amount of light
absorbed by individuals is proportional to cell size, which varies for populations that
reproduced by simple cell division into two equal-sized daughter cells.

Although many mathematical theories have been developed for single species
phytoplankton model, there are very few results for two or more phytoplankton species
competing for light. The existence of positive steady state and uniform persistence for
two-species model were proved in [5], where there is no sinking or buoyancy. In [29],
Mei and Zhang studied a nonlocal reaction-diffusion-advection system modeling the
growth of multiple competitive phytoplankton species and they found that when the
diffusion of the system is large, there are no positive steady states, and when the
diffusion is not large, there exists at least one positive steady state under proper
conditions.

Unlike two-species Lotka-Volterra competition model with diffusion, one main
difficulty for system (1.1)-(1.4) is the lack of comparison principle, i.e.

u1(z,0) <wug(z,0), vi(z,0) > va(z,0) vz € [0, L]
7E> ul(xvt) < u2($,t), 'Ul(xat) > U2(xvt) V(th) € [OaL] X (0,00),

due to the nonlocal nature of the nonlinearity. See Remark 3.10.

For order-preserving properties in the single species model, Shigesada and Okubo
[33] observed that the cumulative distribution function U (x;,t) fo s, t)ds satisfies
a single reaction-diffusion equation without nonlocal terms. Subsequently, Ishii and
Takagi [20] showed that the flow retains the natural order in U. For a related model
with a water column of infinite depth, they made use of this fact to obtain a complete
classification of the long-time behavior of the population. This fact was used again
in Du and Hsu [5] to determine the long-time dynamics for a single species model
with finite water depth. More recently, Ma and Ou [28] established the comparison
principle for U in the single species model.

For the competition model, we will show, by adapting arguments due to Du and
Hsu [5] and Ma and Ou [28], that the cumulative distribution functions

(U(z,t),V(x,t)) = (/01 u(s,t) ds,/oa: v(s,t) ds)

satisfy a nonlocal, strongly coupled system, with non-standard boundary condition

(see (3.3)), and that the resulting system has the strong order-preserving property.
Our main result (Theorem 2.1) says that system (1.1)-(1.4) forms a strongly

monotone dynamical system with respect to the order induced by the special cone
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4 D. JIANG, K.-Y. LAM, Y. LOU AND Z. WANG
K= IC1 X (—Kl), where

(1.6) K= {(b e C([0, L], R) : /OI d(s)ds >0 for x € (O,L]}.

The new features of this paper can be described as follows: First, Theorem 2.1
is the first monotonicity result for the nonlocal competition system involving two
phytoplankton species. Second, the definition of the relevant cone K facilitates the
connection with general theory of monotone dynamical systems. Third, generalized
notion of super- and subsolutions (see Definition 3.2), which is new even for the case of
single species, are given. They can potentially be used to obtain qualitative properties
of solutions for the nonlocal system (1.1)-(1.4).

The rest of the paper is organized as follows: In Section 2, we state our main
results. In Section 3, we first introduce the notion of super- and subsolutions of
(1.1)-(1.4) with respect to the cone K, and establish the comparison principle for
the super- and subsolutions. Then we apply the monotonicity result to establish the
global dynamics of the single species model in a general setting. Section 4 is devoted to
the spectral analysis of semi-trivial steady states, and the global dynamics of system
(1.1)-(1.4) are established for three different biological scenarios. In Section 5, we
present some numerical results and discussion.

2. Main Results. Let X be a Banach space over R. We call a subset K € X
a cone if (i) K is convex, (ii) pK C K for all 4 > 0, and (iii) K N (—K) = {0}. A
cone K is said to be solid if it has nonempty interior. Furthermore, for z,y € X, we
write t gy, s <gyandrz L<gyify—z e K,y—x € K\{0}and y —z € Int K
respectively.

Let K1 be given by (1.6). It is straightforward to verify that K; is a solid cone in
the Banach space C([0, L]; R) with interior

Int Ky = {¢€ C([0,L];R) : ¢(0) > O,/wgb(s)ds >0 forxze (O,L]}.
0

Let K = K1 x (—K1). Then K is likewise a solid cone in the Banach space C([0, L]; R?)
with interior given by Int K = Int Iy x (—Int Ky). The cone K induces the partial
order relations <y, <x and < in the usual way.

We shall prove that (1.1)-(1.4) is a strongly monotone dynamical system with
respect to the order induced by the cone K.

THEOREM 2.1. Suppose {(u;,v;)}i=1,2 are non-negative solutions of (1.1)-(1.4)
such that ug(-,0) >,%2 0 and v1(-,0) >,# 0 and

(ul('ﬂ0)>v1('70>) <K (UQ(-,O),’UQ(-,O)).
Then (u1(-,1),v1(-, 1)) <ic (ua(-,t),v2(+, 1)) for all t > 0.

By Theorem 2.1, system (1.1)-(1.4) is a strongly monotone dynamical system on
C([0, L]; R%) with respect to the order generated by K, which together with the theory
of strongly monotone dynamical systems [2,12,15,25,34,37], provides a useful tool to
investigate the global dynamics of two-species system (1.1)-(1.4). As a by-product of
our monotonicity result, we also generalize the existing results for single species (see
Subsection 3.2) and give a simple proof based on monotonicity arguments and the
concept of subhomogeneous mappings.

As application, we turn our attention to the effects of diffusion and advection on
the global dynamics of (1.1)-(1.4).

This manuscript is for review purposes only.
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A NONLOCAL TWO-SPECIES PHYTOPLANKTON MODEL 5

THEOREM 2.2. If D1 = Dy, a1 < g, g1 = g2, d1 = do, and that both semi-trivial
steady states exist, then the first species u drives the second species v to extinction,
regardless of initial condition.

Theorem 2.2 shows that the competitor with smaller advection rate has compet-
itive advantages, i.e., smaller advection rate is selected. By the Lambert-Beer law,
the deeper the water column, the weaker the light intensity. Therefore, it is more
advantageous for phytoplankton species to move up.

THEOREM 2.3. If D1 < D3, ay = ag > [g(1) — d|L, g1 = g2, di = da, and that
both semi-trivial steady states exist, then the faster diffuser v drives the slower diffuser
u to extinction, regardless of initial condition.

Theorem 2.3 implies that if sinking rate is large, competitor with faster diffusion
will always displace the slower one, i.e., faster diffuser wins. Intuitively, when both
species are sinking with equal and large velocity, faster diffusion can counter balance
the tendency to sink and provide individuals with better access to light.

THEOREM 2.4. If D1 < D3, a1 = as < 0, g1 = g2, di = da, and that both
semi-trivial steady states exist, then the slower diffuser u drives faster diffuser v to
extinction, regardless of initial condition.

Theorem 2.4 suggests that if the phytoplankton species are buoyant, the competi-
tor with slower diffusion rate will always displace the faster one, i.e., slower diffusion
rate will be selected. This is in sharp contrast to Theorem 2.3. The reason for this
result is that when the phytoplankton are buoyant, turbulent diffusion actually dis-
places individuals from the top of the water column, where the light intensity is the
strongest.

3. A General Model with Spatio-Temporally Varying Coefficients. We
shall study a generalized version of system (1.1)-(1.4), which allows coefficients to vary
explicitly with both space and time. We formulate the nonlocal reaction-diffusion-
advection model as follows:

(3.1)
up = (Dyuy — aqu), + fi(z,t, [ u(s, t)ds, f; v(s,t)ds)u, 0<z<L,t>0,
vy = (Davy — agv)e + folx,t, [ u(s, t)ds, [; v(s,t)ds)v, 0<z<L,t>0,
Diuy — aju =0, z=0,L, t>0,
Dyv, — asv =0, z=0,L, t >0,
u(x,O):uo(x) >, #0, U(x,O):Uo(x) >, #0, 0<z<L,

where, for i = 1,2, D; = D;(z,t) > 0, a; = o;(x,t), and the functions f;(z,t,p,q) are
smooth and satisfy

Ofi Ofi

H () () a]l(l

Oz

The assumption holds, e.g. when f;(z,t,p,q) = g:(Ip exp(—kox — k1p — k2q)) —
d;(z,t) such that g; is non-decreasing, and d; is non-decreasing in z. In particular, it
includes (1.1)-(1.4), and the previous works [5,29] as particular cases.

<0 forallzel0,L] and t,p,q > 0.

3.1. Strong Monotonicity of (3.1). This subsection is devoted to proving the
monotonicity of system (3.1) with respect to the order induced by cone K under the
assumption (H). First, we state the following standard result (see, e.g. [10, Ch. 3]).

PROPOSITION 3.1. For continuous, non-negative initial data (uo(z),vo(z)), sys-
tem (3.1) has a unique solution

(u,v) € C([0,00); C([0, L, RZ)) N CH((0, 00); € ([0, L; RZ)),

This manuscript is for review purposes only.
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6 D. JIANG, K.-Y. LAM, Y. LOU AND Z. WANG

which depends continuously on initial data. Moreover, if ug(x) Z 0, (resp. vo(z) Z 0),
then u(x,t) > 0 (resp. v(z,t) > 0) for (z,t) € [0, L] x (0,00).

Next, we define the following super- and subsolution concepts for (3.1). Note that
the differential inequalities appearing below are to be understood in the sense of cone
K for each time t. These inequalities hold, in particular, if the differential inequalities
hold in the pointwise sense everywhere.

DEFINITION 3.2. We say that

(@, v), (u, ) € C([0,T); C([0, L;; RY)) N C'((0,T); C>=([0, L]; R?))
form a pair of super- and subsolutions of (3.1) in the interval [0,T], if
Uy >, (D1, — oqu + f1(z, ¢, f u(s,t)ds, f% v(s,t)ds)u, 0<t<T
v, <k, (Dav, — aov), + falw,t f U(s,t)ds, [, v(s,t)ds)v, 0<t<T
u, <icy (Dru, — ), + f1(z,t, fg u(s,t) ds fg (s, t)ds)u, 0<t<T
Ty 21, (DaTy — @), + fo(x, t, fo u(s,t)ds *(s,t) ds)v, 0<t<T
(3.2) Diu, —onu <0< Dy, — aqu, r=0,0<t<T
D1ty —oqu > 0> Diu, — oqu, r=L,0<t<T
Dovy — ot < 0 < Doy, — agv, r=0,0<t<T
Dovy — ot > 0 > Doy, — agv, =L 0<t<T
(ﬂ(~,0),g(~, O)) ZK (g(',()),@(', O))

The main result of this section is

THEOREM 3.3. Assume that f1, fo satisfy (H). Let (@,v) and (u,v) be a pair
of super- and subsolutions of (3.1) in the interval [0,T]. If u > 0 and v > 0 in
[0, L] x [0,T], then

Moreover, if there exists to € (0,T] such that w >0 and T > 0 in [0, L] x (0,%], and

(u(-,to) — u(- o), v(:,to) — (- t0)) & Int K,
then (u(z,t),v(z,t)) = (u(x,t),v(x,t)) for x €[0,L] and 0 <t < tg.

A direct consequence of Theorem 3.3 is the strong monotonicity of the continuous
semiflow generated by (3.1). It includes Theorem 2.1 as a particular case.

COROLLARY 3.4. Assume that f1, fo satisfy (H). Suppose {(ui,v;)}i=1,2 are two
non-negative solutions of (3.1), such that uy(-,0) >,# 0, va(-,0) >,#£ 0, and

(U1(-,0),’U1(-,0)) >K (UQ(WO)"UQ(WO))'
Then (u1(-,t),v1(-,t)) >k (u2(-,t),va2(-, 1)) for all t > 0.

The proof is postponed to later in the section.
To show Theorem 3.3, we consider the cumulative distribution functions

Uz, t) = /Oi u(s,t)ds, V(z,t)= /01 v(s,t)ds.

Then U(0,t) =0, V(0,t) =0 for t > 0, and U, (z,t) = u(x,t), Vy(z,t) = v(z,t). In
this way, (3.1) is transformed into the following strongly coupled, non-local system of

This manuscript is for review purposes only.
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Iso [28] for the single species case):
Ui = D1Uyy — U, + G1[U, V, Uy, Vo, 0<z<L,t>0,
Vi = DaViyy — Vi + Go[U, V, Uy, Vo, 0<z<L,t>0,
U(0,t) =0, DiUzu(L,t) — onUy(L,t) =0, >0,
V(0,t) =0, DQVM(L t) — asV,(L, t):O t>0,
U(z,0) = fo uo s)ds = Up(x), 0<z<IL,
V(z,0) = [ vo(s)ds = Vo(), 0<z<L,

Gl [U7 ‘/7 U:Ea Vw] ('Ta t)

- /0 “h(s /O Cu(y.t)dy, /0 oly, ) dy us, 1) ds

(3.5)

For (3.3),

/Of1(s,t,U(s,t),V(s,t))UI(s,t)ds

/Ow {j[Fl(sataU(S,t),V(s,t))] %Fxl (s t,U(s, 1), V(s,t))

Fi(a,t,U(x,t),V(z,t)) — /0 % (s,t, Uls,1), V(s,t)) ds

,/0 ?;/1 (5., U(s.1), V(s,0))Vals, 1) ds

Gq[U,V, Uy, Vo |(z,

—/Oa:fg(s,t/ u(y dy,/o u( (s,t)ds
/ fg(s,t,U s, t), s,t)>
:Fg(x,t,U(x,t),V(x,t))—/O %ZQ (s LU(s.1), V(s 1)) ds

_/0 g};? (s t,U(s,1t), V(s,t))Ug;(s,t) ds.

we define the Banach space

X1={p € CY([0,L],R) : ¢(0) =0}

with the usual C! norm. The usual cone P; in X is

with interior

P={¢peX1:¢(x) >0 for z €[0,L]},

Int P, ={¢ € X;:¢4'(0) >0, ¢(x) >0 for x € (0,L]}.

This manuscript is for review purposes only.
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8 D. JIANG, K.-Y. LAM, Y. LOU AND Z. WANG

Let X = Xy x Xy, and P = P; X (—P;). Then P is a cone in X with interior given by
Int P =1Int P; x (—Int P;). The cone P generates the partial order relations <p, <p
and <p on X.
By construction, the solutions (U, V') of (3.3) live in the convex set E = FE; x Fy,
where
By ={¢pcCY[0,L]): $(0) =0, and ¢'(z) >0 for z € [0, L]}

From now on we assume the initial data of (3.3) to be in E. Under this assumption,
the existence and uniqueness of the solution (U(x,t),V(x,t)) can be derived from
those of (u(x,t),v(x,t)).

DEFINITION 3.5. We say that
(U,V),(U,V) € C([0,T]; E)y N C*((0,T]; C>([0, L]; R%))

form a pair of super- and subsolutions of (3.3) in the interval [0,T], if the derivatives
(u,v) = (Ux,zx) and (u,7) = (Qx,Va,) form a pair of super- and subsolutions of
(3.1) in the interval [0, T}, in the sense of Definition 3.2.

We now prove a strong maximum principle for the system (3.3), which is the key
to proving the strong monotonicity of (3.3).

LEMMA 3.6. Assume that fi, fo satisfy (H). Let (U,V) and (U,V) be a pair of
super- and subsolutions of (3.3) in the interval [0,t*] for some t* > 0, so that

(3.6) Uy(z,t) >0 and Vi(z,t)>0 for0<z<L, and 0 <t <t
and
U(x,t) <U(z,t), V(z,t)>V(x,t) for0<z<L, and 0<t<t"

If one of the following holds:

(a) U(z*,t*) = U(z*,t*) or V(z*,t*) = V(z*,t*) for some x* € (0, L];
0,t

(. (z )
(2)) (U—=U):(0,t") =0 or (V—-V),(0,t*) =0,
then

(3.7 (U(x,t),V(x,t)) = (U(z,t),V(z,t)) for 0<az <L, 0<t <t

Proof. In the following we improve upon the arguments of [28] to prove the strong
maxmimum principle for (3.3). We first consider the case when (a) holds. For defi-

niteness assume that U(z*,t*) = U(z*,t*) for some z* € (0, L]. Denote
W(z,t) = Uz, t) — U(x,t).
Then by (3.2),
(@)~ [Dy(E-w)tor (@), >x, 1,6, Tz, 1), V(w, )~ fa Ul 1), Vi, )
Fixing t, and integrating the above from 0 to x, we have, in terms of W,
Wi — Dy (2, 6) Wy + a1 (2, )W,
> /0 Fi (5.0 T, 1), V(s.1) ) U (s, 1) ds — /0 Ju (5.0 U, 1), Vi(s.1) ) U (5.1 ds

> /O fi (5.0 00, 1). V(s.) ) U (s, 1) ds — /O fu (5.0 U, 1), V(. ) ) U (5. 1) ds
(3.9)

This manuscript is for review purposes only.
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A NONLOCAL TWO-SPECIES PHYTOPLANKTON MODEL 9

where we used V(x,t) > V(x,t) for (z,t) € [0, L] x [0,t*]. Integrating by parts as in
(3.4), we have

Wi — Di(z, t)Wae + aq(x, )W,
> F (ac, t,U(z,t),V(z, t)) - R (m, t,U(z,t),V(z, t)>

+/Ox Bl;l(s,t,lj(s,t),ws,t)) - ;(s,t,U(s,t),V(s,t)ﬂ V,(s,t)ds
+/Ox [%F (s t,U(s,t), V(s,t)) 88F1 (s t,U(s,1), V(s,t))} ds

for x € [0, L], t € (0,t*], where

mat) = [ (o 60050 + (1= OUs.0). V(s.1)) de € L35,(0.1] x ).

Note that we have used 8U (%1;1) = %fl <0, ie. % is non-increasing in U in the

last inequality of (3.9). Summarizing, we have
Wi — Dy (2, t) Wy + a1 (x, t)W,, — h(x, t)W

(3.10) > /Ow {g};l(s,t, Q(s,t),V(s,t)) - 6;1;1(s,t,U(s,t),V(s,t))}vm(s,t) ds.

1é)

Since 777 (%13) =20 < 0, i.e. % is non-increasing in U, U > U, and V, > 0,

the last integral is non-negative. Thus W = U — U satisfies the following linear
differential inequality:

(3.11) W, — Dy (z,t)Wyy + an (z, )Wy — h(x,t)W >0, for x € (0, L], t € (0,t7].

We claim that W = 0 in [0, L] x [0, t*]. If not, then the parabolic strong maximum
principle applied to (3.11) implies that W (z,t*) > 0 for « € (0, L). Therefore, if there
exists some z* € (0, L] such that W(z*,¢*) = 0, then 2* = L, i.e., W(L,t*) =0, and
hence W;(L,t*) < 0. By the boundary conditions at (z,t) = (L, t*),

DUy — U, > 0> DU, —aiU,,

we have Dy (L, t*)Wp (L, t*) — aq (L, t*)W,(L,t*) > 0. Then by (3.10) we have

0> Wy(L,t")
2/0 {?x} (5.7, Us, 1), Vi(s.1")) ‘?91;1(S’t*vU(s,t*),V(Svt*)ﬂvm(s’t*)ds'

Since U(z,t*) < U(x,t*) in [0, L], and V, > 0, we deduce that the above inequality
holds only if U(x,t*) = U(x,t*) for all z € [0, L], i.e., W(z,t*) = 0 for all z € [0, L].
This is a contradiction and thus W = U — U = 0 in [0, L] x [0,¢*]. It follows that
equality holds everywhere in (3.8) and (3.9), in particular,

/0 f (s,t,U(s,t),K(s,t))Um(s,t) ds = /0 f1 (s,t,U(s,t),V(s,t))Uz(s,t) ds,

This manuscript is for review purposes only.
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for all € [0,L] and 0 < ¢ < t*. Since U, > 0 and 28 < 0, we deduce that
V(z,t) = V(x,t) in [0, L] x (0,t*] and, by continuity, in [0, L] x [0, t*].

The remaining case V(x*,t*) = V(z*,t*) for some z* € (0, L] can be handled
similarly. This completes the proof in case (a) holds.

Next, assume (b) holds. We claim that necessarily there is a sequence of t; 7 t*
such that alternative (a) holds, so that we can deduce similarly that (U, V) = (U, V) in
[0, L] x [0, ;] for all j, whence (3.7) holds as well upon letting ¢; ,” t*. To see the claim,
assume for contradiction that U > U and V > V for (z,t) € (0, L] x[t*—¢',t*] for some
§'. Then, observe that the boundary condition ensures W (0,¢*) = U(0,t*)-U(0,t*) =
0. Since W satisfies the differential inequality (3.11), we may apply Hopf’s Lemma [26,
Lemma 2.8] to deduce that (U — U).(0,¢*) > 0. Similarly, we can deduce that
(V= V). (0,t*) > 0 as well, i.e. alternative (b) does not hold in this case. This
establishes the claim and finishes the proof. 0

Theorem 3.3 is a consequence of Lemma 3.6 and the following result:

LEMMA 3.7. Assume that fi, fa satisfy (H). Let (U,V) and (U,V) be a pair of
super- and subsolutions of (3.3) in the time interval [0,T]. If

(3.12) U, (z,t) >0, and V (x,t) >0 for (z,t) €[0,L] x [0,T],

then

(3.13)  U(z,t) > U(x,t) and V(z,t) <V(x,t) for0<z<L 0<t<T.
Proof. 1t is enough to prove the result for arbitrary but finite 7' > 0. Given a pair

of super- and subsolutions (U,V) and (U,V) in a bounded interval [0,7], we show

(3.13) in two steps.
Step 1. For each small § > 0, define

(U(Sazé) = (U+ 5/)17K - 6p2)5 and (Q(s?Vé) = (Qi 6p1aV+ 5102)7

where p;(z,t) = [ exp (Mt + [y gl((i?) ds) dy for i = 1,2. By (3.12), there exists
dp > 0 such that for each ¢ € (0, do],

(Uéa K(S), (Qé, Vé) er for t € [0,T7,
(314) S T.>0,V2>0,U2>0,V2>0 for (z,t) € [0, L] x [0, 7],

—5 —0
(U ('v 0)516(3 0)) >p (Qé('v 0)7 Vo, O))
It is also clear that there is Cy > 0 (independent of §) such that

(3.15) max lpilleqo,z1x 0,77 < Co in, [O’L%Ef[O’T](pi)x(xa t).

We claim that (Ué,z‘s) and (U’ 5,75) forms a pair of super- and subsolutions for
(3.3) in the interval [0,T], in the sense of Definition 3.5. It remains to show the
differential inequalities (3.2) for § small, as the initial and boundary conditions are
clearly satisfied. A sufficient condition for the first one to hold is
(3.16) B B - -
5(p1)$7t >’C1 [fl (LL‘, ta U+5pla K*(SPZ)*fl (213, ta U’ K)]Uz+5p1,xfl (IZ’, ta U+5p1 ’ Kﬁéf&)

This manuscript is for review purposes only.
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The inequality (3.16) holds since the following holds pointwisely in [0, L] x [0, T7:
5(p1)m,t_[f1 ($7 t? U + 5P1 ) Z - 5p2) - fl (LC, tv Ua K)]Um_épl,xfl (£E7 t7 U + 5P1 ) Z - 5P2)

> (g [pr4 [ (SR20) ds = 1file] — ID AN (o1 + )T )

(note that U, V, € C([0, L] x[0,T]) by definition of super- and subsolutions) and, by
(3.15), the term in the square bracket is non-negative provided the positive parameter
M = M(Cy, || fllct) is chosen large enough (but uniformly for 6 € (0, dg]). In the same
way, one can show the rest of the differential inequalities. In summary, there is M > 0

so that for all § € (0, dg], (U‘S,K‘S) and (U’ 6,76) form a pair of super- and subsolutions
for (3.3) in the interval [0, 7). This proves our first claim.
Step 2. Next, we claim that for all § > 0,

(3.17) T(a,t) > Ud(x,t) and  VO(x,t) < V'(z,8) for (z,t) € (0,L] x [0,T].

Suppose not, then it follows from (3.14) that there exists a positive maximal time
denoted by t* € (0,T] such that U°(z,t) < Ué(x,t), Vé(x7t) > V%(z,t) hold for 0 <
z<Land0<t<t* and U’(z*,t*) = Ué(x*,t*) or Va(x*,t*) = VO(z*,t*) for some
z* € (0, L]. Tt follows from Lemma 3.6 that U° (z,t) = U’ (z,t) and Vé(x, t) = V(1)
forall0 <z < L and 0 <t < ¢*, which is a contradiction to (3.14). This shows (3.17).
Letting 6 — 0 in (3.17), we deduce that (3.13) holds for (z,t) € [0, L] x [0,T]. 0

Now we prove Corollary 3.4, which includes Theorem 2.1 as a special case.
Proof of Corollary 3.4. For i =1,2, let

(318) Wit Vi) = ([Cutsityas, [Cutsas).
0 0
If we assume in addition that
(3.19) ug(2,0) = U z(x,0) >0 and wv1(z,0) = Vi ,(2,0) >0 in [0, L],

then by applying the strong maximum principle to the first and second equations of
(3.1) separately, we deduce that

ug=Us,>0 and v =V ,>0 1in0,L] x[0,T].

Therefore, applying Lemma 3.7, we see that if (U (-,0),V1(+,0)) =p (Uz(+,0), Va(-,0))
and (3.19) holds, then

(3.20) (UL, 1), Vi, 1) =p (Us(-, 1), Va(-,t))  for all ¢ > 0.

By the fact that initial data satisfying (3.19) is dense in E, we can show that for
general initial data in E, if (U1(+,0), Vi(+,0)) >p (Ua(-,0), V2(-,0)), then (3.20) holds.

It remains to show that if (Uy(-,0),Vi(-,0)) >p (Uz2(-,0),V2(-,0)) and that both
Ui z, V2, are non-negative and non-trivial, then

(U1(-, ), Va(+, 1)) >p (Ua(-,t), Va(-,t)) for all £ > 0.
This follows from Lemma 3.6, provided it can be verified that
ur(z,t) = (U1)g(z,t) >0, wvo(z,t) = (Va)p(z,t) >0 for 0<a<L, 0<t<T.

But this is an immediate consequence of the strong maximum principle applied to the
equations of u; and vy separately. 0

This manuscript is for review purposes only.
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3.2. Global Dynamics of the Single Species Model. In this section, we gen-
eralize some known results about the following single species model, which is obtained
by setting v =0 in (3.1):

0, = (D16, — a10), + fi(z,t, [} 0(s,t)ds, 000, 0<z <L, t>0,
(321) D16, — a0 = 0, T = O,L, t>0,
0(z,0) = bo(z) >, # 0, 0<z<L,

where Dy = Dq(x,t) > 0, a; = a1(z,t), and f; are smooth and (H) holds.

The equation (3.21) generates a continuous semiflow in C([0,L];Ry) (see, e.g.
[10]). Furthermore, by regarding the nonlocal term fi(z,, fow 0(s,t)ds,0) as a given
coefficient, we can view (3.21) as a linear non-autonomous parabolic equation. It
follows from the classical maximum principle that 6(z,t) > 0 for « € [0, L] and ¢ > 0.

Define 6 € C([0,00); C([0, L); R ) N C*((0,00); C>=([0, L]; R4)) to be a superso-
lution of (3.21) if

(3.22) 0, >K, (Dlﬁlc — o), + f1 (2, ¢, [y 0(s, t)ds,0) 0, t>0,
D19x7a10:0, z=0,L, t>0.

And define 6 to be a subsolution of (3.21) if it satisfies the reverse inequality. As a
by-product of the proofs of Lemmas 3.6 and 3.7, we can similarly show that the single
species model is strongly monotone with respect to the order generated by cone ;.

COROLLARY 3.8. Assume that fy satisfies (H). Let 6 and 6 be super- and subso-
lution of (3.21) such that

O(z,t) >0, O(x,t) >0, inl[0,L] x[0,T], and 6(-,0) =k, 6(-,0).

Then 0(-,t) >k, 0(-,t) for all t > 0. Furthermore, if for some ty > 0 we have
0(-,to) — 0(-,to) & Int Ky, then 0(-,t) = 0(-,t) fort € [0,to].

In particular, the continuous semiflow generated by (3.21) is strongly monotone with
respect to the order induced by the cone K;.

In contrast to Corollary 3.8, we show here that the pointwise competitive order
is not preserved by (3.21).

PROPOSITION 3.9. For i = 1,2, let 0; be a solution of (3.21), with initial condi-
tions 0; 0 € {1 € C*([0,L)) : D%, = 1% for x =0, L}. If

01,0 <,#Z 020 in[0,L], and 61,0 =620 in[L—0d,L] for somed >0,

then 61(L,t) > 02(L,t) for all 0 <t < 1.

Proof. Since the initial conditions are C? and consistent with the boundary con-

dition, the solutions 6; are of class C2} in [0, L] x [0, c0). Hence, it is enough to show

that (61)¢(L,0) > (62),(L,0). Precisely, at (z,t) = (L,0),

L

(01)¢ = [D1(01) — a161] + f1(L,0, [ 61(s,0)ds,0)0,

L

02(8,0) dS,O)eg = (92),5. O

OL
> [Dy(61)s — crbr], +f1(L,O,/O 0s(s,0) ds, 0)0;
= [D1(02)r — a10a2], + fl(L,O,/O

This manuscript is for review purposes only.
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To illustrate Proposition 3.9, we choose initial conditions {6;};=1,2 so that
010 <p, 020 and 019 <k, 02,0,

but only the order with respect to Ky is preserved by the semiflow; see Figure 1.

|
=

initial data 0,(x)

initial data ©,(x)

T
53

I L L L I I I I L I L L L L I I L I
0 w0 E) ) ) ) @ 10 0 ) ) E) [ £ n o @ 100

)
Depth x Depth x

(a) (b)

0(x,10)
[0(s,10)ds
\
\
\

O(x,10).
s 8 8

o L7

o 10 ) ) “ s w ™ w w0 0 0 10 ) E) ) 50 ) ) [ o 10
Depth x Depth x

(e) (d)

F1Gc. 1. Numerical solution of (3.21), with D1 = 1, ax = 0, L = 100, fi(z,t,©,0) =
g(exp(—kox — k1©)), where g(I) = ﬁ and ko = ki = d = 0.001, and initial condition
01,0 = Xjo,/2)(cos(2mz/L) + 1) + 1 and 020 = 1. Panels (a) and (c) are the population densi-
ties 0;(x,t) (i =1,2) at times t =0 and t = 10 resp.; Panels (b) and (d) are the initial cumulative
distribution functions of population densities ©;(z,t) = [ 0:(s,t)ds (i = 1,2) at times t = 0 and
t = 10. The first (resp. second) species is represented by the red/dotted line (resp. blue/solid line).

Remark 3.10. By choosing u;(-,0) = 6,9 for i = 1,2, and v1(-,0) = va(+,0) = ¢,
then (u1(-,0),v1(-,0)) <p (u2(-,0),v2(-,0)). However, it follows from the above result
and continuous dependence on initial data that (uq(-,t),v1(-,t)) €p (u2(:,t),va2(-,t))
for some ¢ > 0.

As a consequence of monotone dynamical systems theory, one can show the
uniqueness and global asymptotic stability of positive equilibria (in the case of au-
tonomous semiflow) or positive periodic solution (in the case of time-periodic semi-
flow). We will show the latter here, as the former follows as an easy consequence.

The following eigenvalue problem will be useful for our later purposes:

or = (D19pe — 1) + f1(2,1,0,0) 0+ pp, 0<x <L, 0<t<T

(323) Dl(,OI—O[l()O:O, J?:O,L,0<t<T,
' o(z,0) = p(z,T), 0<z<L,
p(z,t) >0, 0<z<L 0<t<T.

It is well known (see, e.g., [11]) that (3.23) has a principal eigenvalue, denoted by 1,
with the corresponding positive eigenfunction.

PROPOSITION 3.11. Assume that f1 satisfies (H), and let D1, a1, f1 be T-periodic
in t, and there exists My > 0 such that

(3.24) sup  fi(x,t, M1,0) <0 and [[fi(-;-,, 0)|| > (j0,21x[0,7)x[0,00)) < M1-
[0,L]x[0.7]

This manuscript is for review purposes only.
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Let py be the principal eigenvalue of (3.23).
(a) If w1 >0, then every solution of (3.21) converges to zero;
(b) If u1 < 0, then (3.21) has a unique positive T-periodic solution. Furthermore,
it attracts all non-negative, non-trivial solutions of (3.21).

In case fi(x,t,p,0) = g(loexp(—kox — k1p)) — d(z,t) where g(-) satisfies (1.5), the
condition (3.24) is clearly satisfied, and the above result generalizes all previous re-
sults [5,7,28,31,32]. Our main contribution is a short proof of the boundedness of
trajectories, which has not been proven when all coefficients vary periodically with
time. This allows the use of the concept of subhomogeneity to show the existence,
uniqueness and global stability of positive steady state simultaneously.

Proof of Proposition 3.11. We will apply [37, Theorem 2.3.4] to prove this propo-
sition. Let Q7 be the Poincaré map of time 7', generated by the T-periodic equation
(3.21). It is obvious that the Poincaré map QT is monotone by Corollary 3.8, and
compact in C([0, L]) by parabolic estimate. Therefore, we need only to verify that ev-
ery positive orbit of Q7 in C ([0, L); Ry4) is bounded, Q7 is strongly subhomogeneous,

and the Fréchet derivative DQr(0) is compact and strongly positive.
Claim 1. The semiflow is point dissipative, i.e. there exists M > 0, independent of
initial data, such that

limsup [|0(-, 1) || (o,y) < M.
t— 00

By the fact that fi(z,t,p,0) is uniformly bounded in L*°, Harnack inequality [19,
Theorem 2.5] applies, so that there is a uniform positive constant C’ > 0 such that

O(z,t) <C" inf 6(z,t) forallt>1.
OESEL (1) < 0<2<L (z.7) forallt >

By (3.24), it is possible to choose a small constant d, > 0 such that

82 L
(3.25) C’ max{ f1(z,t,0,0),0} dz + fi(z, 6, M1,0)dz <0 for0<t<T.
0 da

It suffices to show that limsup,_, . fOL 0 dz < max{My,C'"LM;/d>}. To this end, it is
enough to show the following claim.

Cram 3.12. The differential inequality
d [ L
—/ O(x,t)dx < —53/ O(x,t) dx
dt J, 0

holds whenever fOL O(z,t)dx > max{My,C'LM;/d>}.

Now, denote 0,(t) = inf,, §(x,t) and 6*(t) = sup,, 0(z, 1), then

P
C'L

L
My < /O 0(z,t) do < %e*u) < 520, (1).

This manuscript is for review purposes only.
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Integrating the equation of 6 over (0, L), we obtain

4t
a/o O(z,t)dx

L x
:/ fi (Cﬂ,t,/ 0(s,t) ds,O) 0(x,t)dx
0 0

L

g/ fi(z, t,20,(t),0)0(x, t) da
0
5

2 L
< fi(z,t,0,0)0(x,t) de + fi(z,t, M1,0)0(z,t) dzx
0 02
d2 L
< 0*(t) max{ f1(z,t,0,0),0} dx + fi(x,t, My,0) dz 0.()
0 02
o L
< (C” max{ f1(z,,0,0),0} de + fi(x, t, My,0) dx) 0.(t)
0

o2

L 1

L
fl(x,t,Ml,O)dx> C’L/O O(x,t)dx.

d2
< (C’ max{ fi(x,t,0,0),0} dz +
0 52

This proves the point dissipativity.
Claim 2. The Poincaré map is strongly subhomogeneous.
We will show that Qr is strongly subhomogeneous, i.e.

(3.26) Qr(Mo) >k, MQr(fy) forall 6y >p, 0 and X € (0,1).

Let 6(z,t) be solution to (3.21) with initial condition #y. For (x,t) € (0,L) x [0,T],
(M) = (D1(N0), — a1 (NF)): + fl(x,t,/ 0(s,t)ds,0)(\0)
0
< (D1(M\)y — a1 (D)), + fl(m,t,/ A0(s,t)ds,0)(N\).
0

i.e. A0 is a subsolution to the (3.21) with initial condition Afy. Since the above
inequality is strict, Af is not identically equal to the solution of (3.21) with initial
condition Afy. By Corollary 3.8 and evaluate at time ¢t = T', we deduce (3.26).
Claim 3. The Fréchet derivative DQ7(0) is compact and strongly positive.

This follows directly from the fact that DQ7(0) = Z(T'), where Z(t) is the analytic
semigroup generated by the linearized system of (3.21) at § = 0:

0y = (D10, — a10), + f1(2,t,0,0)0, 0<z <L, t>0,
(327) D10, — a160 =0, r=0,L, t>0,
0(x,0) =6y =,#£0, 0<z< L.

That Z(T) is strongly positive follows from standard parabolic maximum principle.
Moreover, by standard parabolic LP estimate, Z(T') is a bounded map from C([0, L])
to C2([0, L]). The map Z(T) is thus compact, by the Arzela-Ascoli Theorem.

If 1 > 0, then r(DQ7(0)) = exp(—u1T) < 1. By [37, Theorem 2.3.4(a)], every
solution of (3.21) converges to zero. If u; < 0, then r(DQr(0)) = exp(—uT) > 1.
By [37, Theorem 2.3.4(b)], the map Q7 has a unique positive fixed point ¥ such that
every positive orbit with non-negative, non-trivial, continuous initial data converges

This manuscript is for review purposes only.



129
430
431
132
433
434
435

136
437
438
439
440
141
442
443
444

446

447
448
449
150
451
452

467

468
169
470

16 D. JIANG, K.-Y. LAM, Y. LOU AND Z. WANG

to ¥. This means that system (3.21) has a unique positive T-periodic solution 0,
determined by 6(-,0) = 6(-,T) = ¢, which attracts all non-negative and non-trivial
solutions of (3.21). |

Remark 3.13. Within the context of a single species, we improved previous results
in [28] by showing a strong maximum principle (which implies strong monotonicity of
the semiflow) for super- and subsolutions (which satisfies only differential inequalities),
and by allowing the coefficients to be space-time heterogeneous.

4. Global Dynamics for the Nonlocal Two-species Model. It is well
known that diffusion and advection rates have significant effects on the outcome of
competition. In this section, we apply Theorem 4.1 to analyze the global dynamics
of two-species competition system. To obtain qualitative results, we restrict ourselves
for the remainder of the paper to consider the autonomous case (1.1) - (1.3), when
D;, a;,d; are constants. In the introduction, the light intensity I(x,t) is given by
(1.4), where the shading coeflicients of the two species are given by ki, ko. However,
by transforming (@, ) = (kju, kav) and §;(Ip:) = gi(-), and by observing that ki, ko
do not affect the dynamics qualitatively, we may assume ky = ko = 1 and Iy = 1
without loss of generality, so that the light intensity (1.4) can be simplified to

(4.1) I(x,t) = exp ( — kox — /Ox[u(s,t) + v(&t)]ds).

We focus on the following three different cases:

(i) D1 = D3, aq < ag;

(ii) Dy < Da, a1 = ag > [g(1) — d]L > 0;

(111) D1 < D27 a1 = Qg S 0.

Due to the strongly monotonicity proved in Theorem 2.1, to a large extent, its
dynamics can be determined by the stability/instability of the semi-trivial solution
of the stationary problem [2,12,15,25,34,37]. For the convenience of the readers, we
state the precise abstract theorem here.

THEOREM 4.1 ( [15, Theorem B| and [25, Theorem 1.3]). If the system (1.1)-
(1.4) has no positive steady states, and the semi-trivial steady state (0,0) (resp. (@,0))
is linearly unstable, then (u,0) (resp. (0,0)) is globally asymptotically stable among
all non-negative, non-trivial solutions.

Remark 4.2. Our setting is slightly more general than that outlined in [15]. In
particular, the semiflow Q; generated by (3.1) is defined in Y+ = Y;" x Y;©, where
Y;" = C([0, L); R, ), but the semiflow only preserve the order generated by the weaker
cone K = K; x (—=K), with Y;* C K;. However, it is straightforward to observe
that [15, Propositions 2.1 and 2.4] are independent of the above assumption, and
that the proofs of [15, Theorem B] and [25, Theorem 1.3] both stand in our setting.
Therefore, we omit the proof of Theorem 4.1 here.

In preparation to apply Theorem 4.1, we will demonstrate that the equation
0, = Dyy — b, + [g(e For=Js 0t dsy _ gl =0, 0<a <L,

(4.2) DO, — ab =0, xz=0,L,
0(x,0) = Oy(x) > 0, 0<z<UL,

has a unique positive steady state 6, which is always linearly stable, and then char-

acterize the stability of the two semi-trivial steady states in terms of two standard
principal eigenvalue problems.

This manuscript is for review purposes only.
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4.1. An Eigenvalue Problem for the Single Species Model. For constants
D >0,aeRand h e C([0,L]), consider the following standard eigenvalue problem:

(4.3) { D¢y — ay +h(z)p+Ap =0, 0<z <L,

D¢, — ap =0, x=0,L.

By setting ¢ = e~ (®/P)%¢_ the problem (4.3) can be transformed into a self-adjoint
problem

(4.4) { —D(el@/P)zap ), — h(x)el/P)rgp = Nel@/ D)2y 0 <z < L,

¥2(0) = ¢ (L) = 0.

Therefore, all eigenvalues of (4.4) (and thus (4.3)) are real, and we can denote the
smallest eigenvalue by A1(D, «, h). Define

d. = =\ (D, o, —g(e *0%)).

It is easy to show that d, is positive. In fact, d, is the critical death rate.

THEOREM 4.3 ( [5, Theorem 2.1, [13, Theorem 3.1]). If0 < d < d., then (4.2)
has a unique positive steady state, denoted by 0(x). If d > d., then zero is the only
nonnegative steady state of (4.2).

We linearize (4.2) at 6 to obtain the following eigenvalue problem:

' Daﬁxfo«zﬁ:(), I—O,L,

where o = e—*oz=[§ 0(s) ds

Our result says that 6 is linearly stable. In fact, there is a real eigenvalue of (4.5)
which is strictly less than the real part of all other eigenvalues of (4.5).

THEOREM 4.4. Let 6 be the unique positive steady state of (4.2). The eigenvalue
problem (4.5) admits a real, simple eigenvalue 1 and an eigenfunction ¢ >, 0, such
that 1 < Re u for all eigenvalues p # 1. It is characterized as the unique eigenvalue
of (4.5) with the eigenfunction ¢ >i, 0. Furthermore, py > 0.

Proof. Assume 0(z) is a positive steady state of (4.2), and let 6y € C([0, L];R).
Then 6(-,t) = <I>t(A90) where &, denotes the continuous semiflow generated by (4.2).
Then z(x,t) = D®.(0)[0o](x) satisfies the linear equation

(4.6) zi+ Lz=10, z(0)= 0.

where the unbounded operator
£ = —Ddy, +ad, — [g(o) — d] + g/ (o) / )
0
is defined on the domain
Dom(L) = {z € C*((0, L)) N C*([0,L]) : Lz € C([0,L]), Dz, — az|I:O ; =0}

According to [30, Proposition 3.1.4], the linear equation (4.6) generates an analytic
semigroup e~ ** on C([0, L]). Thus Dd,(f) = e~
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For 6y € K1, € > 0, the monotonicity of d, with respect to cone K; implies

0(,t:0+ €bp) — (-, 1:0) (0 + ) — &4(0)

€ €

Zx, 0.

Upon taking the limit as € — 0, we get Dd,(0)[0o] >k, 0. In other words, e £t =
Dd,(0) is a positive operator with respect to the order generated by cone Ky in the
sense that Dfi)t(é)lCl C K1 holds for ¢ > 0.

Next, we show that the analytic semigroup e™*" = Dci)t(é) is strongly positive
with respect to the order generated by K;. To prove this, we only need to show that
Jy #(s,t)ds > 0 and 2(0,¢) > 0 for all ¢ > 0. Since e~~* = D&(f) is a positive opera-
tor with respect to cone K1, then f[; z(s,t) ds > 0. Therefore, if [ z(s,t) ds > 0 does
not hold, then there exists some (0, %) € (0, L] x (0, 00) such that [ z(s, o) ds = 0.

Let [; z(s,t)ds = Z(x,t). Using the relation

(9(0) — dJz — Gog'(0)Z = [(9(0) — D) Z)' + kg (0)0 Z,

we may integrate (4.6) over (0,x) to obtain the differential inequality

Lt

(4.7) Zy— DZyy + aZy — [g(0) —d|Z = ko/ g (0)oZds > 0.
0

Since 6y # 0 and Z(-,0) # 0, then the strong maximum principle implies Z(x, t) >
0 for all z € (0,L) and ¢t > 0, i.e., xg = L and Z(L,to) = 0. Then Z,(L,ty) < 0,
and by the boundary condition, we deduce DZ,,(L,to) — aZ,(L,ty) = Dz,(L,to) —
az(L,tg) = 0. It follows from (4.7) that

L
(4.8) 0> Zi(L,to) = ko / g (0)oZ ds.
0

Since kg > 0, 0 > 0, ¢'(0) > 0, then Z(x,t9) =0 for all = € [0, L]. Contradiction.

Hence, Z(z,t) = [y 2(s,t)ds > 0 for all t > 0 and = € (0,L]. Since Z(0,t) =0
and Z(ac,t) satlsﬁes (4.7) for all t > 0, then 2(0,t) = Z,(0,t) > 0 for all ¢ > 0 by the
Hopf boundary lemma.

Therefore, for each ¢ > 0, the operator e™~" is compact and strongly positive on
C([0, L]) with respect to the order generated by K;. It follows by standard arguments
in [34, Ch. 7] that the elliptic eigenvalue problem (4.5) has a principal eigenvalue
pn1 € R with all the stated properties, except for g > 0.

To show p; > 0, we suppose to the contrary that pq < 0 and use ¢; >, 0 to get

Lt

éag’(o)/ $1(s)ds >0 for x € (0,L].
0
Then (4.5) yields that

D¢1,wm - a¢l7w + [g(O’) - d]¢1 + M1¢1 >0 for0 <z < L.

Next, we use the facts fo ¢1(s)ds > 0 and § > 0 for = € [0, L], to obtain the constant
¢ > 0 such that min O,L](CQ ¢1) = 0. Then ¢ = cf — ¢, satisfies

Dy — apy + [g(0) — dp + pr1p < e <0 for 0 <z < L,

Dy, = ap forz =0,L,
minj, ) =0.
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By the strict differential inequality and non-negativity of ¢ we must have ¢ > 0 in
(0, L) and that () = 0 for some xg € {0, L}. But the Hopf boundary lemma says
¢z (x0) # 0, which contradicts the boundary condition ¢, (x¢) = F(xo) = 0. ad

4.2. Eigenvalue Problems for the Two-species Model. In this subsection,
we study the linear eigenvalue problem of the two-species model associated with the
stability of semi-trivial steady states.

We assume the parameters are chosen so that system (1.1)-(1.4) has two semi-
trivial steady states (@, 0) and (0,9) (e.g. if the death rates d; are not too large). The
associated linearized eigenvalue problem at (@, 0) is

(4.9)
Di¢oe — a1¢e + [91(01) — di]d — TG0 ) (01)[ [ ¢(s)ds + [ @(s) ds] + A =0,
0<x <L,
D3y — 2s + [g2(01) — da] + Ap = 0, O<z<L,
D1y — a1¢p = Doy — 2o = 0, z=0,L,

where o1 (x) = e—kor— [ a(s)ds
We shall exploit the fact that the second equation is decoupled from the first.

Consider the following eigenvalue problem:

{ Dopry — a2ps + [g2(01) —da]o +Ap =0, 0<z<L,

(4.10) Doy — g = 0, r=0,L.

As already discussed, (4.10) admits a real principal eigenvalue, denoted by A\, =
A1 (D2, ag, go(01) — dg), which is simple, and its corresponding eigenfunction ¢; does
not change sign, and A, < A for all A # \,. The stability properties of (@,0) are
determined by the sign of \,, as the next result shows.

PROPOSITION 4.5. The problem (4.9) has a principal eigenvalue A; € R, in the
sense that Ay < Re A for all eigenvalues A of (4.9) and that the corresponding eigen-
function can be chosen in K\ {(0,0)}. Furthermore, (denote Y;% = C([0, L];Ry))

(a) If the principal eigenvalue X\, of (4.10) is positive, then Ay > 0.

(b) If the principal eigenvalue A, of (4.10) is non-positive, then Ay = A, < 0

and the corresponding eigenfunction can be chosen in Int ICq x (—Int Yfr),

Proof. By Theorem 2.1, the semiflow {Q;}+>0, generated by the system (1.1)-
(1.4) is strongly monotone with respect to the cone K. As a result, the linear problem
at any steady state generates a semigroup that is monotone with respect to the cone
K. Therefore, by standard arguments in [34, Ch. 7], we deduce that the elliptic
problem (4.9), obtained by linearizing (1.1)-(1.4) at the steady state (u,0), has a
principal eigenvalue A1 with the stated properties. In particular, we can choose the
eigenfunction corresponding to A; from within X\ {(0,0)}.

Now, consider the case when the principal eigenvalue A, of (4.10) is positive. Let
Ay € R be the principal eigenvalue of (4.9) with eigenfunction (¢1, 1) € £\ {(0,0)}.
We claim that Ay > 0. There are two cases to consider: (i) @1 # 0; (ii) 1 = 0.

In Case (i), (A1, 1) furnishes an eigenpair of problem (4.10), the latter of which
as smallest eigenvalue A, > 0. Thus, A; > A, > 0.

In Case (ii), (A1, ¢1) furnishes an eigenpair of

(4.11) |
{ Di¢ue — a1¢s + [91(01) — di]d — G019 (0n) [y ¢(s)ds + Ap =0, 0 <z <L,
Di¢y — a1 =0, x=0,L.

By Theorem 4.4, (4.11) has a positive principal eigenvalue p1, and py is always posi-
tive. Hence, we must have A; > puy > 0. This finishes the proof in case A\, > 0.
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Next, let A, < 0 and let ¢; € (~IntY;") C (—IntK;) be the corresponding
principal eigenfunction of (4.10). It remains to construct ¢; € Int Xy such that A,
is an eigenvalue of (4.9) with eigenfunction (¢1, 1) € Int Ky x (—=Int Y;"). To that
end, define the operator £1 = —D10z; + @10, — [g1(01) — d1] + ﬁ0191(01)(f0x -). By
Theorem 4.4, the spectrum o(£1) C {z € C: Rez > 0}. And hence for A, <0, 0 is
not an eigenvalue of £; — \,Z, and the problem

L1¢ — My = —to1g](01) foac p1(s)ds, 0 <z < L,
D1¢J;_a1¢207 .I:O,L,

has a unique solution ¢;. In fact, let f = —to1g}(01) foz ©1(s)ds, then f > 0 and

b1 = (L1 —Aa) 1 f = /C>O et S, f dt,
0

where S; = e~%1t is the analytic semigroup generated by £; (see, e.g. [9, Theorem 3,

Sect. 7.4]). From the proof of Theorem 4.4, S; is strongly positive with respect to
the order generated by cone KC;. Therefore, S;f >k, 0 for all ¢ > 0, and

b1 =K, / eMtS, f dt >k, 0.
1

561 By construction, we conclude that A\, < 0 is an eigenvalue of (4.9) with eigenfunction
562 (¢1,1) € Int Ky x (~Int Y;"). Hence Ay < A, < 0. On the other hand, let (¢, )

563 be the eigenfunction of Aj, then ¢ # 0, since otherwise (A, ¢) is an eigenpair of
564 (4.11), whence A > py > 0, contradictions. Therefore, ¢ # 0 and (Aq, ¢) furnishes an

565 eigenpair of (4.10). Thus A; > A, as well. This completes the proof. a
566 The linearized eigenvalue problem at semi-trivial steady state (0, ) is
(4.12) ]

D1¢zz — a1¢e + [91(02) — di]¢ + Ap =0, 0<z<L,
Dapus — 02y + [92(02) — dalg + A = Toagi(02)[ [ ¢(s) ds + [ ¢(s) ds],

567 0<z <L,
Di¢py — 19 =0, x=0,L,
Doy — agp =0, r=0,L,

568 where o9(z) = e~ kor—[g O(s)ds et )\, = A1 (D1, a1, g1(02) — dy1) denote the principal
569 eigenvalue of the eigenvalue problem

0 (4.13) Di¢pe — 10, + [g1(02) —di]op +Ap =0, 0<z <L,
a ' D1¢r — a1 =0, x=0,L.

571 It follows analogously that the stability properties of (0,9) are determined by A,.

2 PROPOSITION 4.6. The problem (4.12) has a principal eigenvalue Ay € R, in
3 the sense that Ay < Re A for all eigenvalues A of (4.12) and that the corresponding
4 eigenfunction can be chosen in K\ {(0,0)}. Furthermore, (denote Y, = C([0, L];R,))
5 (a) If the principal eigenvalue \, of (4.13) is positive, then A > 0.

6 (b) If the principal eigenvalue N, of (4.13) is non-positive, then Ay =)\, <0 and
7 the corresponding eigenfunction can be chosen in Int Y;" x (—Int Ky ).

8 4.3. Auxilliary Eigenvalue Lemmas. In this subsection, we prove several
9 useful lemmas concerning the principal eigenvalue A1 (D, «, h) of (4.3) with positive
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eigenfunction ¢;. It can be shown that A\; and ¢; are smooth functions of o and D
(see, e.g., [1, Lemma 1.2]).
We will assume additionally the following:

(A) h(x) € C([0, L]) such that h/(x) < 0 in [0, L].
Set ¢ = e~ (@/D)2¢,  Then v, satisfies

(4.14) { Dip1 o + oth1z + h(2)r + My =0, 0<az <L,
. Y1,£(0) = Y12(L) = 0.

LEMMA 4.7. If h(zx) satisfies (A), then 1, < 0 in (0, L).
Proof. Multiplying (4.14) by el@/D)z e rewrite the resulting equation as

{ D(e(a/D)le,z)z + e(a/D)I’(/Jl [h(x) + )\1] = 07 << L,
V1,2(0) = 1,.(L) = 0.

Integrating (4.15) over (0, L), we have

(4.15)

L
/ el D)2y [h(x) + M de = 0,
0

which implies that h(x) + A changes sign in (0, L). Since h(z) is strictly decreasing
in (0, L), then there exists a unique g € (0, L) such that A(z)+A; > 0 for 0 < x < x¢
and h(z) + Ay < 0 for xgp < 2 < L. Hence, by (4.15) we see that (e(®/P)%4; ), < 0
for 0 < x < g and (e(O‘/D)wwl’I)m > 0 for xg < x < L. That is, e(o‘/D)"”wl’m is strictly
decreasing in (0, zp), and strictly increasing in (zo, L). Since ¢1,4(0) = 1 ,(L) = 0,

we have 97 , < 01in (0, L). o
LEMMA 4.8. If h(x) satisfies (A), then
O\
8—(D,a,h) >0 forany D >0 and a € R.
o

The proof of Lemma 4.8 is similar to [13, Lemma 5.2], and we omit it here. The
proof of the following Lemma 4.9 is similar to [13, Lemma 7.1] with some modifica-
tions. For the sake of completeness, we give the proof here in detail.

LEMMA 4.9. If h(x) satisfies (A), then the following hold:

(a) %(D,a,h) >0 for D >0 and o < 0.

(b) If « > h(0)L and A1 (D*,a,h) =0 for some D* > 0, then %(D*,a,h) < 0.

Proof. Recall that \; and 1, are smooth functions of D. For simplicity of nota-
tion, we denote % by ¢}, etc., where 1 satisfies (4.14). Differentiating (4.14) with
respect to D, we have

(4.16) { Dy ao + Y100 + ot o + W)Y + N1 + Mih; =0, 0<z <L,
’ P .(0) = ¢ (L) =0.

Multiplying (4.16) by e(®/P)%¢; and integrating the resulting equation in (0, L), we
have

L L L
-D / DIy apy pda + / e/ DIy oty da + / e @/ PIT R ()t apy da:
0 0 0

L L
+A] / e/ DIz y2 g 4 / e/ DIz ylapy da = 0.
0 0

(4.17)
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Similarly, multiplying (4.14) by e(®/P)®4 and integrating it in (0, L), we have
(4.18)

L L L
- D/ e DITYt by, d + / e/ PIE ()t apy da 4+ Ay / el @/ P)zyt iy da = 0.
0 0 0

It follows from (4.17) and (4.18) that

_ fOL e(a/D)wwl,wwwl dx
= 7 .
Jy e/ Pzt da

(4.19) A
By Lemma 4.7, we have 91 , < 0 in (0, L). Hence, if o < 0, then
L L
/ e(a/D)x’L/)l)g;w’(/Jld.T — _/ wl,x(e(a/D)xwl)z dr
0 0

L
(4.20) = —/ ele/D)zqpy, [m,x + (a/D)wl} dz < 0.

0

Thus A} > 0 for any o < 0 and D > 0. This proves (a).
On the other hand, if A\ (D*, a, h) = 0 for some D* > 0, then the corresponding
eigenfunction 1, satisfies

{ D*Y1 20 + 0th12 + h(z)1 =0, 0<z <L,
0.

(421) r.2(0) = 1 o (L) =

Multiplying (4.21) by e(®/P")% and integrating over (0, L), we have

L
/ ()i (2)e /P dy = 0.
0

Thus the decreasing function h must change sign, i.e. h'(z) < 0,h(0) > 0. Combining
with 9 ; < 0, we have

/ " h(s)(s) ds < / " h(O)1(s) ds < h(0) / " 41(0) ds < h(0)1 (0)L.
0 0 0

Next, we integrate (4.21) in (0, z), to get

D*1 »(x) + apr(z) = ap1(0) — /j h(s)i1(s)ds > [a — h(0)L]y1(0) > 0,

provided that a > h(0)L. By virtue of (4.20), we obtain

L L
. 1 *
/ e PITY ptpy d = _7*/ e /Py o (D*y o + athy) dz > 0.
o D*

It follows then from (4.19) that %(D*, a, h) < 0. This proves (b). |

4.4. The Case D = Dy, a1 < as. To investigate whether stronger or weaker
advection is more beneficial for species to win the competition in the two-species
phytoplankton model, we assume the only phenotypic difference between them is the
advection rate. To be more precise, we assume D; = Dy = D > 0, a; < ap. For the
rest of this paper, we assume two phytoplankton species have the same growth rates
and death rates, i.e., g1(-) = g2(:) = ¢(*) and d; = dy = d.
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Proof of Theorem 2.2. By Theorem 4.1, it suffices to establish, for system (1.1)-
(1.4) (and that k; = ko = Iy = 1), the linear instability of (0, ), and the non-existence
of postive steady states.

Step 1. (0,9) is linearly unstable.
Recall that v is the unique positive solution to

Dvgy — a2y + [9(0'2) - d]f) =0, 0<
Df}f — OLQ’T} = 0, xr =

where oy (x) = e ko#=Jy 7(s)ds  Since & > 0 is a positive eigenfunction of (4.3) with
a = ag and h(z) = g(o2) — d, we have A\ (D, asz,g(o2) —d) = 0.

It follows from Proposition 4.6 that the stability of (0,?) is determined by the
sign of the principal eigenvalue A1 (D, a1, g(o2) — d). Since a3 < ag, we may apply
Lemma 4.8 to yield

Al(Daahg(GQ) - d) < )\1(D,O{2,g(0'2) - d) =0.

Thus (0, ?) is linearly unstable.
Step 2. The system (1.1)-(1.4) has no co-existence steady states.

Suppose to the contrary that (u*,v*) be a co-existence steady state of (1.1)-(1.4),
then we have

Duk, — aqul + [g(o*(x)) — dju* =0, 0<z<L,
Duk, — aovi + [g(c*(z)) — djv* =0, 0<z<L,
Du} — aju* =0, and Dv} —agv* =0, =0, L,

where o*(z) = exp(—kox — [ [u*(s) + v*(s)]ds). Let h(z) = g(c*(x)) — d so that
R (xz) < 0. Since u*(z) > 0,v*(z) > 0, then

/\1(D,0¢1,h) = /\1(D,0¢2,h) =0.

This is in contradiction with Lemma 4.8, which says that A; is strictly monotone
increasing in «. Therefore, the system (1.1)-(1.4) has no co-existence steady state. O

4.5. The Case Dy < Da, a1 = a2 > [g(1)—d]L. In this and the next subsection,
we explore the effect of diffusion on the outcome of competition. According to Lemma
4.9, the monotonicity of the principal eigenvalue A\1(D, «, h) with respect to D also
depends on the advection rate a. Here, we first consider that both species have large
sinking rates, i.e., a1 = as = a > [g(1) — d]L > 0. (Note that g(-) satisfies (1.5) and
as we assume that the semi-trivial steady states exist, so we always have g(1)—d > 0.)

Proof of Theorem 2.3. By Theorem 4.1, it suffices to establish, for system (1.1)-
(1.4), the linear instability of (@, 0), and the non-existence of positive steady states.
Step 1. (@,0) is linearly unstable.

First, we observe as before from the equation satisfied by @ that A1 (D1, a, g(o1) —
d) = 0, where o (z) = e For=J5 @(s)ds,

Since Dy < Dy and « > [g(1) — d]L, we may apply Lemma 4.9(b) to yield

)\1(D2,0é,g(0'1) — d) < /\1(D1,0é,g(0'1) — d) =0.

It follows from Proposition 4.5 that (@,0) is linearly unstable.
Step 2. The system (1.1)-(1.4) has no co-existence steady states.
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Suppose to the contrary that (u*,v*) is a co-existence steady state of (1.1)-(1.4),
then we deduce as before,

M(D1,a,9(c*) —d) = A\ (D2,a,9(c*) —d) =0,

where o*(z) = exp(—kox — [ [u*(s) + v*(s)]ds). But this is in contradiction with
Lemma 4.9(b), which says that D — A1(D,a, g(c*) — d) has at most one positive
root. Therefore, the system (1.1)-(1.4) has no co-existence steady state. |

4.6. The Case D; < D3, a1 = as < 0. This subsection is devoted to studying
whether stronger or weaker diffusion is more beneficial when both species have buoyant
rates. Precisely, we assume that Dy < Do, a1 = as = a < 0.

Proof of Theorem 2.J. By Theorem 4.1, it suffices to establish, for system (1.1)-
(1.4), the linear instability of (0,7), and the non-existence of positive steady states.
Step 1. (0, ) is linearly unstable.

First, we observe as before from the equation satisfied by © that A1 (Da, o, g(o2) —
d) = 0, where gy(z) = e For=Jg ?(s)ds,

Since D7 < D9 and «a < 0, we may apply Lemma 4.9(a) to yield

)\1(D17O[7g(0'2) 7d) < )\1(D2,0[,g(0'2) 7d) =0.

It follows from Proposition 4.6 that (0,?) is linearly unstable.
Step 2. The system (1.1)-(1.4) has no co-existence steady states.

We omit the details here as this is similar to Step 2 of the proofs of Theorems 2.3,
where we use part (a) of Lemma 4.9 instead of part (b). This completes the proof. O

5. Discussion and Numerical Results. We investigate a nonlocal reaction-
diffusion-advection system modeling the growth of two competing phytoplankton
species in a eutrophic environment, where nutrients are in abundance and the species
are limited by light only for their metabolism. We first demonstrate that the system
does not preserve the competitive order in the pointwise sense (Remark 3.10). We
introduce a special cone K involving cumulative distributions of the population den-
sities, and a generalized notion of super- and subsolutions of (1.1)-(1.4), where the
differential inequalities hold in the sense of the cone K. A comparison principle is
then established for the super- and subsolutions, which implies the monotonicity of
the semiflow of (1.1)-(1.4) with respect to the cone K (Theorem 2.1). From a theo-
retical point of view, this paper introduces a new class of reaction-diffusion models
with order-preserving property, which may be of independent interest [35].

A first application of the monotonicity result yields a simple proof of the existence
and global attractivity of the unique positive steady state (or time-periodic solution)
to the single species problem (Proposition 3.11). A second application concerns the
dynamics of two competing phytoplankton species, as modeled by (1.1)-(1.4), in which
sufficient conditions for local (Propositions 4.5 and 4.6) and global stability of semi-
trivial steady states (Theorems 2.2-2.4) are obtained.

Consider system (1.1)-(1.4) and fix D1 < Dy and a3 = as = a. Theorems
2.3 and 2.4 say that (a,0) is globally asymptotically stable for o = 0, and (0,9) is
globally asymptotically stable for o = [g(1) — d]L, which means there is an exchange
of stability between the semi-trivial steady states as « varies from 0 to [g(1) — d]L.
In this particular case, we conjecture that there exist two constants a,,;, and quax
such that the following statements hold.

e When a < aunin, the semi-trivial steady state (@, 0) is globally asymptotically
stable.
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e When ayin < & < Qunaz, there exists a unique positive steady state (u*,v*)
which is globally asymptotically stable.
e When a > aynaq, the semi-trivial steady state (0, ) is globally asymptotically
stable.
In the following, we present some numerical result in support of this conjecture. See
Figure 2.
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Fi1G. 2. A bifurcation diagram for steady states of (1.1)-(1.4). The blue curve shows the ratio
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(u*,v*) is the stable steady state, and (@,0) and (0,0) are the two semi-trivial steady states. The
parameters are chosen as D1 = 1,Dy =5, di = d2 = 0.001, g1(J) = g2({) = m=1, a =10,
Ip =1, ko = k1 = k2 = 0.001, L = 100.
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