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Abstract. The asymptotic behavior of the principal eigenvalue for general

linear cooperative elliptic systems with small diffusion rates is determined. As
an application, we show that if a cooperative system of ordinary differential

equations has a unique positive equilibrium which is globally asymptotically

stable, then the corresponding reaction-diffusion system with either the Neu-
mann boundary condition or the Robin boundary condition also has a unique

positive steady state which is globally asymptotically stable, provided that the

diffusion coefficients are sufficiently small. Moreover, as the diffusion coeffi-
cients approach zero, the positive steady state of the reaction-diffusion system

converges uniformly to the equilibrium of the corresponding kinetic system.

1. Introduction

Let Ω be a bounded domain in the Euclidean space RN with smooth boundary,
denoted as ∂Ω. Given any scalar function q ∈ C(Ω̄), let λ1(d∆ + q) denote the
smallest eigenvalue of the linear problem

d∆φ+ q(x)φ+ λφ = 0 in Ω,

subject to the Dirichlet boundary condition

φ = 0 on ∂Ω

or the Neumann boundary condition

∂νφ = 0 on ∂Ω.

Here the diffusion coefficient d is assumed to be a positive constant, ∆ =
∑N
i=1

∂2

∂x2
i

is the Laplace operator in RN , ν denotes the unit outer normal vector on ∂Ω, and
∂νφ := ∇φ · ν. By standard variational argument, it follows readily that ([2])

(1.1) lim
d→0+

λ1(d∆ + q) = −max
x∈Ω̄

q(x).

It is natural to ask whether (1.1) can be extended to linear elliptic systems. This
question arises from the study of some reaction-diffusion systems in population
biology [11]. In general, the dynamics of a system of reaction-diffusion equations
is more complicated comparing to its corresponding kinetic system of ordinary
differential equations. This was illustrated in [16], where the following two species
Lotka-Volterra competition model was considered:

(1.2)

 ut = d1∆u+ u(m(x)− u− cv) in Ω× (0, T ),
vt = d2∆v + v(m(x)− bu− v) in Ω× (0, T ),
∂νu = ∂νv = 0 on ∂Ω× (0, T ).
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Here u and v denote the densities of two species competing for a common re-
source represented by m(x). The positive constants d1 and d2 are their diffusion
coefficients, while b and c account for the interspecific competition. In the weak
competition case, i.e. b, c ∈ (0, 1), the dynamics of the corresponding kinetic system

(1.3)

{
Ut = U(m(x)− U − cV ),
Vt = V (m(x)− bU − V )

is rather simple. Namely, for each x, there exists a unique positive equilibrium
(U∗, V ∗) := ( 1−c

1−bcm(x), 1−b
1−bcm(x)) which is globally asymptotically stable among

solutions of positive initial data. In contrast to the simple dynamics of system
(1.3), it is proved in [16] that for some ranges of b, c ∈ (0, 1) and d1, d2 > 0, system
(1.2) does not possess any positive steady state. Moreover, it is shown that for
any initial data that are non-negative and not identically zero, one of the species is
driven to extinction by its competitor. The assumption that m being non-constant
plays a crucial role in such “diffusion-driven extinction” phenomenon. We refer to
[1, 13, 18, 19] for related works and [6, 7, 8, 15] for recent development.

While the dynamics of (1.2) can be different from that of (1.3) for some ranges of
diffusion coefficients, it is demonstrated in [11] (see also [15]) that when d1 and d2

are sufficiently small, then again (1.2) has a unique positive steady state, denoted
by (u∗, v∗), which is globally asymptotically stable, and as d1, d2 → 0,

(1.4) (u∗, v∗)→ (U∗, V ∗) uniformly in Ω̄.

In general, we have the following question:

Question. If an ODE system has a unique equilibrium which is globally asymptot-
ically stable, does the corresponding parabolic problem, with small diffusion rates,
have a unique steady state which is globally asymptotically stable?

An affirmative answer to this question means that sometimes the dynamics of
the PDE, with small diffusion rates, is indeed fully determined by that of the
corresponding kinetic system. This general question was posed by V. Hutson [10].
In [11] this question was addressed for (1.2). The approach of [11] is as follows.
First, the existence and asymptotic profiles of positive steady states of (1.2), as
d1, d2 → 0, are determined. Then the authors proceed to show that any positive
steady state is linearly stable, and hence locally asymptotically stable (see, e.g.
Theorem 7.6.2 of [23]). Finally, the following result from the monotone dynamical
system theory is invoked to yield the uniqueness and global stability of positive
steady state of (1.2).

Theorem 1.1 ([9, 12, 23]). Let u and ū be strict sub/super solutions of a monotone
dynamical system preserving the order �, and that u � ū. If every steady state u
such that u � u � ū is locally asymptotically stable, then u is unique and globally
asymptotically stable in {v : u � v � ū}.

The crucial step in the proofs of [11] is to show that every positive steady state
is linearly stable. After suitable transformation, it amounts to show that, for d1, d2

sufficiently small, the principal eigenvalue of the cooperative elliptic system

(1.5)

 d1∆φ+ a11φ+ a12ψ + λφ = 0 in Ω,
d2∆ψ + a21φ+ a22ψ + λψ = 0 in Ω,
∂νφ = ∂νψ = 0 on ∂Ω



PRINCIPAL EIGENVALUE OF COOPERATIVE SYSTEM 3

is positive. By the convergence result stated in (1.4), we have(
a11 a12

a21 a22

)
=

(
m− 2u∗ − cv∗ cu∗

bv∗ m− bu∗ − 2v∗

)
→
(
−U∗ cU∗

bV ∗ −V ∗
)
,

as d1, d2 → 0. Since both eigenvalues of the latter matrix are negative at every
point x ∈ Ω̄, one expects that the principal eigenvalue of (1.5) will be positive
when d1, d2 are small. This is indeed the case, as shown in [11] via a rescaling
argument. However, the problem of determining the precise limit of the principal
eigenvalue of (1.5) as d1, d2 → 0 was left open in [11].

The first goal of this paper is to completely determine the asymptotic limit of
the principal eigenvalue for general linear cooperative elliptic systems, including
(1.5), when the diffusion coefficients approach zero. To this end, we consider the
following eigenvalue problem in vector notation:

(1.6)

{
DLφ+Aφ+ λφ = 0 in Ω,
Bφ = 0 on ∂Ω,

where D = diag(d1, ..., dn), di > 0 are positive constants; L = diag(L1, ..., Ln) with
Li being second-order elliptic operators of non-divergence form, i.e. for 1 ≤ i ≤ n
and 1 ≤ k, l ≤ N ,

(1.7) Liu := αikl∂
2
xkxl

u+ βik∂xku+ γiu,

where αikl ∈ C1(Ω̄), βik, γ
i ∈ C(Ω̄), and η0|ξ|2 < αikl(x)ξkξl < η1|ξ|2 for ξ ∈ RN ,

x ∈ Ω, and for some positive constants η0, η1; φ = (φ1, ..., φn)T ∈ [C2(Ω̄)]n; A =

(aij) ∈
(
C(Ω̄)

)n×n
satisfies aij(x) ≥ 0 in Ω when i 6= j; B = (B1, ..., Bn) are

boundary operators satisfying for each i either the Robin boundary condition

(1.8) Biφi := ∂νφi + pi(x)φi on ∂Ω,

where pi ≥ 0 and pi ∈ C(Ω̄), or the Dirichlet boundary condition

(1.9) Biφi := φi on ∂Ω.

Definition 1.2. An eigenvalue λ1 of (1.6) is called the principal eigenvalue if

λ1 ∈ R and for any eigenvalue λ̃ such that λ̃ 6= λ1, we have Re λ̃ > λ1.

Throughout this paper, λ1 denotes the principal eigenvalue of problem (1.6).
The existence of the principal eigenvalue of (1.6) is obtained by Sweers [24] via
the Krein-Rutman Theorem ([14]). Nagel [17] and deFigueiredo-Mitidieri [4] also
studied the principal eigenvalue problem, using semigroup theory and maximum
principle, respectively. By the Krein-Rutman Theorem for positive compact oper-
ators, (1.6) has a principal eigenvalue λ1 ∈ R and the corresponding eigenfunction
φ = (φ1, ..., φn)T can be chosen to satisfy φi ≥ 0 for all i. If in addition we assume
that aij > 0 in Ω for all i 6= j, then λ1 is simple and it is the unique eigenvalue
corresponding to a strictly positive eigenfunction, i.e. φi > 0 in Ω for all i. For
later purposes, we provide a proof of this fact in Section 3 (Proposition 3.1).

We recall the existence of the principal eigenvalue for any non-negative matrix,
as guaranteed by the Perron-Frobenius Theorem ([5]).

Theorem 1.3. Given a real-valued square matrix A = (aij), whose off-diagonal
terms are non-negative, (i.e. aij ≥ 0 if i 6= j), there exists a real eigenvalue λ̄(A),
corresponding to a non-negative eigenvector, with the greatest real part (for any
eigenvalue λ′ 6= λ̄(A), λ̄(A) > Reλ′). Moreover, if aij > 0 for any i 6= j, then
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λ̄(A) is simple with strictly positive eigenvector, and it can be characterized as the
unique eigenvalue corresponding to a non-negative vector.

The first main result of this paper is

Theorem 1.4. Let λ1 be the principal eigenvalue of (1.6) with boundary condition
(1.8) or (1.9). Then

(1.10) lim
max1≤i≤n{di}→0

λ1 = −max
x∈Ω̄

λ̄(A(x)).

Theorem 1.4 extends an earlier result of Dancer [3], where it is proved that if di
go to zero at the same rates, i.e. for each i, di = ε2d̄i for some constant d̄i > 0,
then (1.10) holds as ε → 0. The proof in [3] is based on solving some limiting
eigenvalue problem with constant coefficient in RN or in a half space, which is
derived by exploiting the same scale of the diffusion rates. Under our assumptions,
di can approach zero with different rates and hence there might be no limiting
eigenvalue problem. A critical ingredient in our proof is a boundary Lipschitz
estimate (Theorem 2.2), which seems to be of self interest.

As an application of Theorem 1.4, we consider

(1.11)

 ∂tw = DLw + F (x,w) in Ω× (0, T ),
Bw = 0 on ∂Ω× (0, T ),
w(x, 0) = w0(x) in Ω,

where D, L are defined as before, w = (w1, ..., wn)T and B = (B1, ..., Bn) where
Bi satisfies the Neumann or the Robin boundary conditions as given in (1.8). For
the reaction term F we assume that F (x, s1, ..., sn) = (F1, ..., Fn)(x, s1, ..., sn) ∈
C1(Ω̄× [0,∞)n;Rn) and satisfies the following assumptions:

(A1) (cooperativity) ∂siFj(x, s1, ..., sn) ≥ 0 if i 6= j.
(A2) (kinetic dynamics) For each x0 ∈ Ω̄, the ODE system

(1.12) Φ′(t) = F (x0,Φ(t)), Φ(0) ∈ (0,∞)n

has a unique, globally asymptotically stable equilibrium, denoted by

α(x0) = (α1(x0), ..., αn(x0)).

Moreover, α is continuous in Ω̄ and as an equilibrium of (1.12), α is linearly
stable for each x0 ∈ Ω̄, i.e.,

λ̄(DsF (x0, α(x0))) < 0.

(A3) (positivity of growth) There exists δ0 > 0 such that for all j = 1, ..., n,
Fj(x, s1, ..., sn)/sj > δ0 for all x ∈ Ω̄, and 0 < si ≤ δ0 for all i = 1, ..., n.

(A4) (dissipativity) There exist positive constants M, δ′0 > 0 such that for all
j = 1, ..., n, Fj(x, s1, ..., sn)/sj < −δ′0 if x ∈ Ω̄ and min1≤i≤n{si} ≥M .

Assumption (A1) means that the system is cooperative, i.e. the growth of any
species will help the increase of other species. (A2) says that the kinetic system has
a unique equilibrium which attracts all solutions with positive initial data. (A3)
ensures that at any location in the habitat the intrinsic growth rate is positive for
each species. (A4) guarantees that the solutions of (1.11) will remain uniformly
bounded for all time.

Our second main result is
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Theorem 1.5. Assume that (A1)-(A4) hold. If max1≤i≤n{di} is sufficiently small,
(1.11) has a unique positive steady state, denoted as w̃(x). The positive steady state
w̃(x) is globally asymptotically stable among solutions with non-negative, non-trivial
initial data. Moreover, w̃(x)→ α(x) uniformly as max1≤i≤n{di} → 0.

This paper is organized as follows: In Section 2 we establish a boundary Lipchitz
estimate. For later purposes, the existence of the principal eigenvalue is proved
in Section 3, together with some well-known eigenvalue comparison theorem for
cooperative elliptic systems. Theorems 1.4 and 1.5 are established in Sections 4
and 5, respectively.

2. A boundary Lipchitz estimate

In this section we establish a boundary Lipchitz estimate for solutions of some
linear inhomogeneous second order elliptic equations. To this end, let f ∈ C(Ω̄).
For each d > 0, let ud be the solution to the problem

(2.1)

{
−dL1u+ u = f in Ω,
u = 0 on ∂Ω,

where L1 is given in (1.7). It is well-known that ud exists for all d > 0 sufficiently
small, e.g. if d‖γ1‖L∞(Ω) < 1. We also state the following fact:

Lemma 2.1. For each compact subset K ⊂ Ω, ‖ud − f‖L∞(K) → 0 as d → 0. If
we assume in addition that f |∂Ω = 0, then ‖ud − f‖L∞(Ω) → 0 as d→ 0.

For later purposes, we shall prove a boundary Lipschitz estimate of ud, which
implies Lemma 2.1 for f ∈ C1(Ω̄).

Theorem 2.2. If f ∈ C1(Ω̄) and f |∂Ω = 0, then

sup
Ω

|ud − f |
dist(x, ∂Ω)

→ 0 as d→ 0.

The following result is a direct consequence of Theorem 2.2.

Corollary 2.3. If f ∈ C1(Ω̄) satisfies f > 0 in Ω, f |∂Ω = 0 and ∂νf |∂Ω < 0, then
for any ε > 0, we have

(1− ε)f(x) < ud(x) < (1 + ε)f(x) in Ω,

for all sufficiently small d > 0.

Assume in addition that f > 0 in Ω and ∂νf |∂Ω < 0. Theorem 2.2 follows from
the next two propositions.

Proposition 2.4. Suppose f > 0 in Ω and ∂νf |∂Ω < 0. Then for each ε ∈
(0, 1

3 inf∂Ω |∂νf |), we have

(2.2) ud < f + 3ε dist(x, ∂Ω) in Ω,

for all sufficiently small d > 0.

Proposition 2.5. Suppose f > 0 in Ω and ∂νf |∂Ω < 0. Then for each ε ∈
(0, 1

3 inf∂Ω |∂νf |), we have

(2.3) ud > f − 3ε dist(x, ∂Ω) in Ω,

for all sufficiently small d > 0.

Assume that Propositions 2.4 and 2.5 hold.
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Proof of Theorem 2.2. By Propositions 2.4 and 2.5, Theorem 2.2 is proved with
the extra assumptions f > 0 in Ω and ∂νf |∂Ω < 0. To remove these extra as-
sumptions, choose ϕ ∈ C1(Ω̄) such that ϕ|∂Ω = 0, ϕ > max{0,−f} in Ω and
∂νϕ < min{0,−∂νf} on ∂Ω. Let vd be the unique solution to

−dLv + v = ϕ > 0 in Ω, v|∂Ω = 0.

Then ud + vd is the unique solution to

−dLz + z = f + ϕ > 0 in Ω, z|∂Ω = 0.

As previous arguments are applicable, we have

0 ≤ |ud − f |
dist(x, ∂Ω)

≤ |vd − ϕ|
dist(x, ∂Ω)

+
|(ud + vd)− (f + ϕ)|

dist(x, ∂Ω)
→ 0

uniformly in Ω, as d→ 0. This proves Theorem 2.2. �

We now proceed to prove Propositions 2.4 and 2.5 via a careful argument via
barrier functions. Given ε > 0, choose R > 0 small such that

(B1) For all x0 ∈ ∂Ω, there exists BR ⊂ Ω such that ∂BR ∩ ∂Ω = {x0}.
(B2) For all x0 ∈ ∂Ω, there exists B̃R ⊂ RN \ Ω̄ such that ∂B̃R ∩ Ω̄ = {x0}.
(B3) |∇f(x1)−∇f(x2)| < ε/2 for all x1, x2 ∈ Ω̄ such that |x1 − x2| ≤ 2R.

By (B1), for all t ∈ (0, R], Γt : ∂Ω→ {x ∈ Ω : dist(x, ∂Ω) = R} defined by

Γt(x0) := x0 − tνx0 ,

where νx0 is the unit outer normal of ∂Ω at x0, is a diffeomorphism. By (B3),

(2.4) 0 < f(x) <
[
−∂νf(x0) +

ε

2

]
dist(x, ∂Ω) in {x ∈ Ω : dist(x, ∂Ω) ≤ R},

where x0 ∈ ∂Ω is the unique point on ∂Ω closest to x.
Define the barrier function ρ ∈ C2(B3R/2 \ {0}) by

ρ(x) :=
Rσ+1

σ

(
|x|−σ −R−σ

)
,

where the parameter σ > 1 is specified in the following result:

Lemma 2.6. If

σ =
Nη1

η0
+

3R|β1
k|L∞(Ω)

2η0
+

9R2|γ1|L∞(Ω)

4η0
,

then L1ρ ≥ 0 in B3R/2 \ {0}, where η0, η1, β
1
k, γ

1 are given after (1.7).

Proof. Let |x| = r.
σ

Rσ+1
L1ρ = r−σ−2

[
σ(σ + 2)α1

klxkxl/r
2 − α1

kkσ − σβ1
kxk + γ1r2

]
≥ r−σ−2

[
σ(σ + 2)η0 −Nη1σ − σ|β1

k|L∞(Ω)(3R/2)− |γ1|L∞(Ω)(3R/2)2
]

≥ 0.

This completes the proof. �

We start with a crude estimate on ud. Define

(2.5) δ1 := min

{
R

[(
c1 + 2ε

c1 + ε

) 1
σ+1

− 1

]
,

2ε

(σ + 1)(c1 + 2ε)
,
R

2

}
,

where c1 = max
∂Ω
|∂νf |.
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Lemma 2.7. There exists d̄1 > 0 such that for all d ∈ (0, d̄1],

ud(x) ≤ (−∂νf(yx) + ε/2)δ1 in {x ∈ Ω : dist(x, ∂Ω) ≤ δ1},
where yx is the unique point on ∂Ω closest to x.

Proof. By (2.4), there exists f̄ ∈ C2(Ω̄) such that f̄ > f in Ω̄, and

f̄(x) ≤ (−∂νf(yx) + ε/2)δ1 in {x ∈ Ω : dist(x, ∂Ω) ≤ δ1}.
Then for d > 0 sufficiently small,

−dLf̄ + f̄ > f in Ω, f̄ |∂Ω > 0.

By the maximum principle [20], ud ≤ f̄ . This proves the lemma. �

To prove Proposition 2.4, by Lemma 2.1 it suffices to establish (2.2) in a neigh-
borhood of ∂Ω. In fact, it suffices to show that there exists d1 > 0 such that for all
d ∈ (0, d1) and each x0 ∈ ∂Ω, (2.2) holds for x = x0 − tνx0

for all t ∈ (0, δ1], where
νx0

is the unit outward normal vector at x0 ∈ ∂Ω and δ1 is defined in (2.5). With-
out loss of generality, assume x0 = (0, ..., 0, R), νx0 = (0, ..., 0,−1) and the exterior
sphere at x0 guaranteed by (B2) is BR(0). We establish the following result:

Lemma 2.8. Define z ∈ C2(BR+δ1(0) \BR(0)) by

z(x) := (−∂νf(x0) + 2ε)(−ρ(x)).

Then

(i) z(x) > f(x) in Ω ∩BR+δ1(0);
(ii) z(0, ..., 0, R+ t) ≤ f(0, ..., 0, R+ t) + 3εt for all t ∈ [0, δ1].

Proof. To show (i), we note that for all t ∈ (0, δ1),

∂xN z(0, ..., 0, t+R) = (∂xN f(x0) + 2ε)

(
R

t+R

)σ+1

≥ ∂xN f(x0) + ε,

by our choice of δ1 in (2.5). Since

(2.6) z(0, ..., 0, R) = f(0, ..., 0, R) = 0,

we have

(2.7) z(0, ..., 0, t+R) > t(∂xN f(x0) + ε) for t ∈ (0, δ1].

For x ∈ Ω ∩ BR+δ1(0), if we write x = y − tνy (where y is the unique point of ∂Ω

closest to x), then necessarily 0 < t ≤ |x| − R ≤ δ1, since BR(0) ∩ Ω = ∅. Now
f |∂Ω = 0, and by (B3), |∇f(x)| < ∂xN f(x0) + ε/2 in B2R(x0) ∩ Ω. If we integrate
it from ∂Ω along the normal direction, then f(x) ≤ t(∂xN f(x0) + ε). Together with
(2.7), we obtain

f(x) ≤ t(∂xN f(x0) + ε) < z(0, ..., t+R) ≤ z(0, ..., 0, |x|) = z(x).

This proves (i). Part (ii) follows from (2.6), (B3) and

∂xN z(0, ..., t+R) = (∂xN f(x0) + 2ε)

(
R

t+R

)σ+1

≤ ∂xN f(x0) + 2ε

< ∂xN f(0, ..., t+R) + 3ε

for t ∈ [0, δ1]. �
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Proof of Proposition 2.4. It suffices to show that

(2.8) ud ≤ z in Ω′ := BR+δ1(0) ∩ Ω for all d ∈ (0, d̄1).

We will proceed by comparison. Firstly, by Lemma 2.8(i),

(2.9) −dL1z + z ≥ z ≥ f in Ω′.

Secondly,

(2.10) ud = 0 ≤ z on ∂Ω′ ∩ ∂Ω.

Thirdly, for each x ∈ ∂Ω′ ∩ Ω, and all d ∈ (0, d1),

(2.11) ud(x) ≤
(
−∂νf(yx) +

ε

2

)
δ1 ≤ (−∂νf(x0) + ε) δ1,

where the first and second inequalities follow from Lemma 2.7 and (B3), respec-
tively.

Next, we claim that

(2.12) (−∂νf(x0) + ε) δ1 ≤ z(x) on ∂Ω′ ∩ Ω.

To show (2.12), we note that by (2.5),

1− σ δ1
R

+
σ(σ + 1)

2

(
δ1
R

)2

≤ 1− σ
(
−∂νf(x0) + ε

−∂νf(x0) + 2ε

)
δ1
R
.

In view of the inequality (1 + s)−σ ≤ 1− σs+ σ(σ+1)
2 s2 for s ≥ 0, we have(

1

1 + δ1
R

)σ
≤ 1− σ

(
−∂νf(x0) + ε

−∂νf(x0) + 2ε

)
δ1
R
,

which is equivalent to (2.12). Combining (2.10), (2.11) and (2.12), we have

(2.13) ud ≤ z on ∂Ω′ for all d ∈ (0, d̄1).

By (2.9) and (2.13), we can conclude (2.8) by the comparison principle. �

We now proceed to establish Proposition 2.5. To this end, define

(2.14) δ2 := min

{
R

[
1−

(
c2 − 2ε

c2 − ε

) 1
σ+1

]
, δ1,

R

2

}
, with c2 = inf

∂Ω
|∂νf |.

As before, by Lemma 2.1 it suffices to show that there exists d2 > 0 such that for
all d ∈ (0, d2) and for each x0 ∈ ∂Ω, (2.3) holds for x = x0 − tνx0

for all t ∈ (0, δ2].
Without loss of generality, assume x0 = (0, ..., 0,−R), νx0 = (0, ..., 0,−1) and the
interior sphere at x0 is BR(0).

Lemma 2.9. Define w ∈ C2(BR(0) \BR−δ2(0)) by

w(x) := (−∂νf(x0)− 2ε)ρ(x).

Then

(i) w(x) < f(x) in BR(0) \BR−δ2(0);
(ii) w(0, ..., 0,−R+ t) ≥ f(0, ..., 0,−R+ t)− 3εt for all t ∈ [0, δ2].
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Proof. Part (ii) follows from w(0, ..., 0,−R) = f(0, ..., 0,−R) = 0, and

∂xNw(0, ..., 0,−R+ t) ≥ ∂xNw(0, ..., 0,−R)

= ∂xN f(0, ..., 0,−R)− 2ε

> ∂xN f(0, ..., 0,−R+ t)− 3ε,

where the last inequality follows from (B3).
Part (i) follows from w = 0 ≤ f on ∂BR(0), and

∂xNw(x) = (∂xN f(x0)− 2ε)

(
R

|x|

)σ+1 −xN
|x|

≤ (∂xN f(x0)− 2ε)

(
R

R− δ2

)σ+1

≤ ∂xN f(x0)− ε

< ∂xN f(x)− ε

2

in BR(0) \ BR−δ2(0). The second last inequality follows from (2.14) and the last
inequality is a consequence of (B3). �

Proof of Proposition 2.5. By the proof of Lemma 2.9(i), we have actually shown

(2.15) f(x)− w(x) ≥ δ2ε

2
in {x ∈ BR(0) : dist(x, ∂Ω) = δ2} .

Let Ω′′ = {x ∈ BR(0) : dist(x, ∂Ω) < δ2}. By Lemma 2.9(ii), it suffices to show
that for some d̄2 = d̄2(δ2, ε,Ω, f),

(2.16) ud ≥ w in Ω′′ for all d ∈ (0, d̄2).

We proceed by comparison method. Firstly, by Lemma 2.9(i) and L1w ≥ 0,

(2.17) −dL1w + w ≤ w < f in Ω′′.

Secondly,

(2.18) w = 0 ≤ ud on ∂Ω′′ ∩ ∂BR(0).

Thirdly, by Lemma 2.1, there exists d2 = d2(δ2, ε,Ω, f) such that for all d ∈ (0, d2),

(2.19) w ≤ f − δ2ε

2
< ud in {x ∈ Ω : dist(x, ∂Ω) = δ2}.

In particular, w < ud on ∂Ω′′ ∩ BR(0) for all d ∈ (0, d̄2). Hence by (2.17), (2.18)
and (2.19), we deduce (2.16) by the comparison principle. Hence (2.3) holds for
x = x0 − tνx0

and all t ∈ (0, δ2]. This completes the proof of Proposition 2.5. �

3. Existence and comparison theorems for principle eigenvalues

In this section, following the approach in [24], we demonstrate the existence
of the principal eigenvalue for (1.6) via the Krein-Rutman Theorem and establish
some comparison theorems for the principle eigenvalues.

Proposition 3.1. There exists a principal eigenvalue λ1 ∈ R for (1.6), with either
boundary condition (1.8) or (1.9).
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By replacing λ by λ−C for some large constant C, we may assume that aij ≥ 0
in Ω for all i, j. Choose any β > 0 large such that (−diLi + β)−1 exists for
the respective boundary conditions and is positive. Let λ ∈ [−β,∞). Define
Kλ,β : [C(Ω̄)]n → [C(Ω̄)]n by

(3.1) Kλ,βu = (−DL+ βI)−1[Au+ (λ+ β)u].

As Kλ,β is a positive compact operator, by the Krein-Rutman theorem, Kλ,β has
a principal eigenvalue r(Kλ,β) > 0 given by

r(Kλ,β) = lim
m→∞

m

√
‖(Kλ,β)m‖.

The following result is a consequence of the monotonicity of r(Kλ,β) in λ ∈
[−β,∞), for each β > 0. Clearly, Proposition 3.1 follows from Lemma 3.2.

Lemma 3.2. The principal eigenvalue λ1 of (1.6) exists. Furthermore, let β > 0
and λ ∈ [−β,∞) be given.

(i) If r(Kλ,β) = 1, then λ = λ1;
(ii) If r(Kλ,β) < 1, then λ < λ1;
(iii) If r(Kλ,β) > 1, then λ > λ1.

Proof. Without loss of generality, assume D = I, i.e. di ≡ 1 for all i. Firstly, part
(i) can be verified in a straightforward manner. Secondly, suppose that r(Kλ0,β) < 1
for some β > 0 and λ0 ∈ [−β,∞). Define Z : [C(Ω̄)]n → [C(Ω̄)]n by

(Zu)i := (−Li + β)−1ui.

Since for any λ ≥ λ0,

(Kλ,βu)i ≥ λ[(−Li + β)−1ui] = (Zu)i

holds, where (−Li + β)−1 is the inverse of (−Li + β) (with boundary conditions),
we have r(Kλ,β) ≥ λr(Z) for all λ ≥ λ0. Since r(Z) > 0 by the positivity of

Z, by the continuity of r(Kλ,β) in λ, r(Kλ̂,β) = 1 for some λ̂ > λ0. Therefore

by part (i), λ0 < λ̂ = λ1, where λ1 is the principal eigenvalue of (1.6). Finally,
suppose that r(Kλ0,β) > 1 for some β > 0 and λ0 ∈ [−β,∞). Then for λ > λ0,
(Kλ,βu)i > (Kλ0,βu)i for all i and ui ≥ 0. So r(Kλ,β) ≥ r(Kλ0,β) > 1 for all
λ ≥ λ0. If the principal eigenvalue λ1 of (1.6) exists, then we must have λ1 < λ0.
Thus it remains to show the existence of λ1. For that purpose, we observe that
r(K−β′,β′) < 1 for some β′ > 0, as ‖(−Li + β′)−1‖ → 0 when β′ → ∞, via the
maximum principle. By the previous part of the proof, there exists λ′ ∈ (−β′,∞)
such that r(Kλ′,β′) = 1, i.e., λ1 exists and equals λ′. �

Next, we present a well-known comparison theorem for principle eigenvalues of
cooperative systems.

Definition 3.3. (i) Let λ∗1 be the principal eigenvalue of

(3.2)

{
DLφ∗ +A∗φ∗ + λ∗φ∗ = 0 in Ω,
B∗φ∗ = 0 on ∂Ω,

where A∗(x) = (a∗ij(x)) ∈
(
C(Ω̄)

)n×n
satisfies a∗ij ≥ 0 in Ω when i 6= j;

B∗ = (B∗1 , ..., B
∗
n) with B∗i = ∂ν + p∗i , where p∗i ≥ 0, p∗i ∈ C(Ω̄).

(ii) Let λD1 be the principal eigenvalue of (1.6) with Dirichlet boundary condi-
tion (1.9).
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(iii) For each smooth subdomain Ω0 ⊂ Ω, let λD1 (Ω0) be the principal eigenvalue
of (1.6) with Ω replaced by Ω0, and Dirichlet boundary condition on ∂Ω0.

Proposition 3.4. Suppose that a∗ij ≥ aij in Ω̄ for 1 ≤ i, j ≤ n, and p∗i ≤ pi in Ω̄
for 1 ≤ i ≤ n if Bi satisfies (1.8). Let λ1 be the principal eigenvalue of (1.6) with
boundary condition (1.8). Then λ∗1 ≤ λ1 ≤ λD1 ≤ λD1 (Ω0).

Proof. Define (−DL+ βI)−1, (−DL+ βI)−1
D and [(−DL+ βI)∗]−1 as the inverse

operator of (−DL + βI) on Ω with boundary conditions B[·] = 0, D[·] = 0 and
B∗[·] = 0, respectively. (Here Dφ = φ|∂Ω.) Let (−DL+ βI)−1

0,D denote the inverse

operator of (−DL + βI) on Ω0 with Dirichlet boundary condition on ∂Ω0. As
before, by replacing λ with λ− C for some large constant C > 0, and take a large
positive β, we may assume that a∗ij ≥ aij ≥ 0 in Ω for all i, j, and that for any

β > 0, (−DL+βI)−1, (−DL+βI)−1
D , [(−DL+ βI)∗]−1 and (−DL+ βI)−1

0,D exist
and are positive.

First we show λ∗1 ≤ λ1. Let K∗ : [C(Ω̄)]n → [C(Ω̄)]n be defined by

K∗u := [(−DL+ |λ∗1|+ 1)∗]−1(A∗u+ (λ∗1 + |λ∗1|+ 1)u).

Then r(K∗) = 1 by Lemma 3.2. It follows from the maximum principle that for all
f ∈ C(Ω̄) and f ≥ 0,

[(−DL+ (|λ∗1|+ 1)I)∗]−1f ≥ (−DL+ (|λ∗1|+ 1)I)−1f.

So Kλ∗1 ,|λ∗1 |+1f ≤ K∗f holds for all f = (f1, ..., fn)T ∈ [C(Ω̄)]n such that fi ≥ 0 in
Ω. Therefore,

r(Kλ∗1 ,|λ∗1 |+1) ≤ r(K∗) = 1.

Hence, by Lemma 3.2, λ1 ≥ λ∗1. The proof for λ1 ≤ λD1 is similar and is omitted.
Next, we show λD1 ≤ λD1 (Ω0). Define KD : [C(Ω̄)]n → [C(Ω̄)]n and KD

0 :
[C(Ω̄)]n → [C(Ω̄0)]n by

KDf : = (−DL+ (|λD1 (Ω0)|+ 1)I)−1
D (Af + (λD1 (Ω0) + |λD1 (Ω0)|+ 1)f),

KD
0 f : = (−DL+ (|λD1 (Ω0)|+ 1)I)−1

0,D

[
(Af + (λD1 (Ω0) + |λD1 (Ω0)|+ 1)f)|Ω0

]
.

Applying the maximum principle to Ω0, one can show that for any f ≥ 0, f ∈ C(Ω̄),

(−DL+ (|λD1 (Ω0)|+ 1)I)−1
D [f ] ≥ (−DL+ (|λD1 (Ω0)|+ 1)I)−1

0,D [f |Ω0
]

holds in Ω0. Hence, for all f = (f1, ..., fn) ∈ [C(Ω̄)]n such that fi ≥ 0 in Ω0 and
fi = 0 in Ω \ Ω0, we have KDf |Ω0

≥ KD
0 f in Ω0. So r(KD) ≥ r(KD

0 ) = 1. By
Lemma 3.2, we obtain λD1 ≤ λD1 (Ω0). �

4. Proof of Theorem 1.4

In this section we establish Theorem 1.4. For the sake of clarity we divide the
proofs into several lemmas. It is clear that Theorem 1.4 follows immediately from
Lemmas 4.1 and 4.3.

First we consider the lower bound of the principle eigenvalue of (1.6).

Lemma 4.1. The following estimate holds:

(4.1) lim inf
max1≤i≤n{di}→0

λ1 ≥ −max
x∈Ω̄

λ̄(A(x)).



12 KING-YEUNG LAM AND YUAN LOU

Proof. We only need to treat the Neumann boundary condition (i.e. (1.8) with
pi ≡ 0), since by Proposition 3.4, replacing the Neumann boundary condition by
the Dirichlet boundary condition or the Robin boundary condition only increases
λ1. By Lemma 3.2, it suffices to show that given ε > 0, if λ < −max

x∈Ω̄
λ̄(A(x))− ε,

then r(Kλ,|λ|+1) < 1 for max1≤i≤n{di} sufficiently small.
Replacing λ by λ−C for some large constant C > 0, we may assume aij ≥ 0 for

all i, j. For the meanwhile, we make the additional assumption that

(4.2) aij(x) > 0 in Ω̄ for all i, j.

For each x ∈ Ω̄, A(x) is a cooperative matrix. By the Perron-Frobenius Theorem,
for each x ∈ Ω̄ there exists a unique eigenvalue λ̄(A(x)) ∈ R with a corresponding
non-negative eigenvector Φ(x) = (Φ1(x), ...,Φn(x)), Φi(x) ≥ 0 for all i. That is,
A(x)Φ(x) = λ̄(A(x))Φ(x) for all x ∈ Ω̄, where we normalize Φ(x) by

∑
i Φ2

i (x) = 1.
Moreover, by (4.2), λ̄(A(x)) is simple and Φi > 0 in Ω̄ for all i.

Claim 4.2. Φ ∈ [C(Ω̄)]n.

To establish our assertion, given any x0 ∈ Ω̄, let xk be a sequence in Ω̄ such
that xk → x0, and A(xk)Φ(xk) = λ̄(A(xk))Φ(xk). By passing to a subsequence, we
may assume that for some Φ′ ∈ Rn, λ′ ∈ R, Φ(xk) → Φ′ and λ̄(A(xk)) → λ′ as
k → ∞, with Φ′i ≥ 0 for all i,

∑
i(Φ
′
i)

2 = 1, and A(x0)Φ′ = λ′Φ′. Since Φ′ is a
non-negative eigenvector of A(x0), by the simplicity of the principle eigenvalue we
must have Φ′ = Φ(x0) and λ′ = λ̄(A(x0)). Since the limits λ′, Φ′ are independent
of subsequences, the full sequence converges and the claim is proved.

Next, we claim that for each i, if f ∈ C(Ω̄), then as di → 0,

(4.3) (−diLi + |λ|+ 1)−1f → f

|λ|+ 1
in L∞(Ω).

To show (4.3), we observe that for any ε > 0, there exists f̃ ∈ C2(Ω̄) such that

f − ε

2
≤ f̃ ≤ f +

ε

2
in Ω̄ and ∂ν f̃ = 0 on ∂Ω.

Then for di small,

(−diLi + |λ|+ 1)

(
f̃

|λ|+ 1
+ ε

)
= −diLi

(
f̃

|λ|+ 1
+ ε

)
+ f̃ + ε(|λ|+ 1) ≥ f

in Ω. As (−diLi + |λ|+ 1)−1 (with the Neumann boundary condition) is a positive
operator for di small, we can conclude by the comparison principle that for di small,

(−diLi + |λ|+ 1)−1f ≤ f̃

|λ|+ 1
+ ε ≤ f

|λ|+ 1
+

(
1

|λ|+ 1
+ 1

)
ε.

Similarly, for di small we have

(−diLi + |λ|+ 1)−1f ≥ f̃

|λ|+ 1
− ε ≥ f

|λ|+ 1
−
(

1

|λ|+ 1
+ 1

)
ε.

Hence (4.3) is proved.
Next, we observe that

A(x)Φ(x) + (λ+ |λ|+ 1)Φ(x) = [λ̄(A(x)) + λ+ |λ|+ 1]Φ(x).
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Hence, as max1≤i≤n{di} → 0,

Kλ,|λ|+1Φ(x)→ λ̄(A(x)) + λ+ |λ|+ 1

|λ|+ 1
Φ(x)

in L∞(Ω). Since we chose λ < −max
Ω̄

λ̄(A(x))− ε, so for di small,

Kλ,|λ|+1Φ <
|λ|+ 1− ε/2
|λ|+ 1

Φ.

Hence, r(Kλ,|λ|+1) < 1. This proves (4.1) under assumption (4.2).
We now remove the extra assumption (4.2). Let δ > 0 be any small constant.

Consider (1.6) with the Neumann boundary condition, with A(x) = (aij(x)) re-

placed by Ã(x) = (ãij(x)) := (aij(x) + δ). Denote the corresponding principle

eigenvalue by λ̃1. Previous arguments apply and we have

lim inf
max1≤i≤n{di}→0

λ̃1 ≥ −max
x∈Ω̄

λ̄(Ã(x)).

By Proposition 3.4, λ1 ≥ λ̃1. Hence, lim inf
maxi{di}→0

λ1 ≥ −max
Ω̄

λ̄(Ã(x)). On the other

hand, λ̄(Ã(x))→ λ̄(A(x)) uniformly in Ω̄ as δ → 0. This proves (4.1). �

Next, we consider the upper bound of the principle eigenvalue of (1.6).

Lemma 4.3. The following estimate holds:

(4.4) lim sup
max1≤i≤n{di}→0

λ1 ≤ −max
x∈Ω̄

λ̄(A(x)).

Here the boundary condition of (1.6) can be either (1.8) or (1.9).

Proof. Given any δ′ > 0, choose B = Br(x0) with r > 0 and x0 ∈ Ω so that B ⊂ Ω
and λ̄(A′) > maxΩ̄ λ̄(A(x))− δ′, where A′ = (a′ij) is a constant n× n matrix given

by a′ij = min
x∈B̄

aij(x). Let λ′1 be the principal eigenvalue of the problem{
DLφ+A′φ+ λφ = 0 in B,
φ = 0 on ∂B.

By Proposition 3.4, λ′1 ≥ λ1.

Claim 4.4. lim sup
max1≤i≤n{di}→0

λ′1 ≤ −λ̄(A′).

To establish this assertion, choose ϕ ∈ C1(B̄) so that ϕ > 0 in B, ϕ|∂B = 0, and
∂νϕ|∂B < 0. Similar as before, given η > 0, set λ = −λ̄(A′) + η and

A′λu := (−DL+ |λ|+ 1)−1[A′u+ (λ+ |λ|+ 1)u].

Set ui := aiϕ, where ai ≥ 0 are constants, not all equal to zero, which satisfy
A′ijaj = λ̄(A′)ai. Choose ε > 0 such that

η + |λ|+ 1

|λ|+ 1
(1− ε) > 1.

Then for max1≤i≤n{di} small, Corollary 2.3 implies

(A′λu)i = [λ̄(A′) + λ+ |λ|+ 1](−diLi + |λ|+ 1)−1aiϕ

≥ (η + |λ|+ 1)(1− ε) aiϕ

|λ|+ 1
.
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Hence, there exists some constant c > 1 such that

(A′λu)i ≥ cui if ai > 0;

(A′λu)i = 0 = cui if ai = 0.

Therefore, r(A′λ,|λ|+1) > 1 for max1≤i≤n{di} small. By Lemma 3.2, given any

η > 0, for max1≤i≤n{di} small, we have λ′1 < λ = −λ̄(A′) + η. Hence,

lim sup
max1≤i≤n{di}→0

λ′1 ≤ −λ̄(A′) + η.

Our claim follows by letting η → 0.
To finish the proof of (4.4), we notice that λ1 ≤ λ′1, so

lim sup
maxi{di}→0

λ1 ≤ −λ̄(A′) < −max
Ω̄

λ̄(A(x)) + δ′.

Finally, (4.4) follows by letting δ′ → 0. �

5. Global stability in nonlinear cooperative systems

Theorem 1.5 will be proved in this section, with (A1) - (A4) being assumed
throughout the whole section. We outline the main steps in the proof here. First,
it is shown that (1.11) has at least one positive steady state (Lemma 5.1). Next, it is
proved in Proposition 5.2 that any positive steady state of system (1.11) converges
uniformly to the unique positive equilibrium of the corresponding kinetic system as
max1≤i≤n{di} → 0. Finally, we prove (Proposition 5.9) that every positive state
is linearly stable and thus asymptotically stable; this step makes use of the linear
theory introduced earlier in the paper. Theorem 1.5 follows immediately from the
monotonicity of system (1.11).

Lemma 5.1. System (1.11) has at least one positive steady state. Furthermore, if
max1≤i≤n{di} is sufficiently small, then any positive steady state u = (u1, ..., un)
must satisfy δ0 < uj < M in Ω, where δ0 and M are given in (A3) and (A4),
respectively.

Proof. Define w̄0 = (w̄0
1, ..., w̄

0
n) and w0 = (w0

1, ..., w
0
n) by w̄0

j (x) ≡M and w0
j (x) ≡

δ0 in Ω̄, j = 1, ..., n. Since for max1≤i≤n{di} sufficiently small, w̄0 and w0 are upper
and lower solutions of (1.11), respectively, and w̄0

j ≥ w0
j in Ω̄ for all j, (1.11) has

at least one positive steady state w = (w1, ..., wn) such that w0
j ≤ wj ≤ w̄0

j .
On the other hand, by (A1) and (A4), there exists δ > 0 such that

(5.1) diLiM
′+F (x,M ′, ...,M ′) < 0 for all i, if max

1≤i≤n
{di} ≤ δ and M ′ ≥M.

Assume that max1≤i≤n{di} ≤ δ and w = (w1, ..., wn) is a positive steady state of
(1.11) such that ‖wj‖L∞(Ω) = max

1≤i≤n
‖wi‖L∞(Ω) = M ′ ≥ M for some j, then by

(5.1) and (A1),

djLjM
′ + Fj(x,w1, ..., wj−1,M

′, wj+1, ..., wn) < 0.

So wj 6≡M ′, and z := ‖wj‖L∞(Ω)−wj is a non-negative function in Ω̄ that satisfies

z(x0) = 0 for some x0 ∈ Ω̄, and

djLjz + pz < 0 in Ω, Bjz ≥ 0 on ∂Ω,

where p(x) =
∫ 1

0
∂sjFj(x,w1, ..., wj−1, wj+t(‖wj‖L∞(Ω)−wj), wj+1, ..., wn) dt. This

contradicts the strong maximum principle if x0 ∈ Ω, and the Hopf Boundary Lemma
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if x0 ∈ ∂Ω. Hence, wi(x) < M in Ω̄ for all i. Similarly one can show that wi > δ0
in Ω̄ for all i. �

Proposition 5.2. For any positive steady state w of (1.11), w → α uniformly in
Ω as maxi{di} → 0. Here α is given in (A2).

We adopt a monotone iteration procedure as in [24]. Let w̄0 and w0 be as
defined in the proof of Lemma 5.1. Let K > 0 be chosen so large that for all
i, K + ∂siFi(x, s1, ..., sn) > 0 for all x ∈ Ω̄ and 0 ≤ s1, ..., sn ≤ M . For any

(u1, ..., un) ∈
[
C(Ω̄)

]n
, define v = (v1, ..., vn) = T u as the unique solution to{
−DLv +Kv = Ku+ F (x, u) in Ω,
Bv = 0 on ∂Ω.

Now for k ∈ N, define w̄k = (w̄ki )ni=1 := T w̄k−1 and wk = (wki )ni=1 := T wk−1.

Lemma 5.3. For every k ∈ N, wk < wk−1 < w̄k−1 < w̄k holds in Ω̄.

Proof. We proceed by induction. For k = 1 and i = 1, ..., n,{
−DL(w̄1 − w̄0) +K(w̄1 − w̄0) = DLw̄0 + F (x, w̄0) < 0 in Ω,
B(w̄1 − w̄0) = 0 on ∂Ω.

By the strong maximum principle (applied to each component), w̄1 < w̄0 in Ω̄.
Assume for induction that for some k ≥ 1, w̄k < w̄k−1 in Ω̄. Then, as Ksi +
Fi(x, s1, ..., sn) is increasing in s1, ..., sn and strictly increasing in si, we have −DL(w̄k+1 − w̄k) +K(w̄k+1 − w̄k)

= K(w̄k − w̄k−1) + F (x, w̄k)− F (x, w̄k−1) < 0 in Ω,
B(w̄k+1 − w̄k)|∂Ω = 0.

By the maximum principle we obtain w̄k+1 < w̄k in Ω̄. By induction, w̄0 > w̄1 >
w̄2 > ... Similarly, we have w0 < w1 < w2 < ... It remains to show that for any
k ∈ N ∪ {0},

(5.2) wk < w̄k.

The statement obviously holds for k = 0. Assume (5.2) holds for some k ≥ 0, then
−DL(w̄k+1 − wk+1) +K(w̄k+1 − wk+1)

= K(w̄k − wk) + F (x, w̄k)− F (x,wk) > 0 in Ω,
B(w̄k+1 − wk+1)

∣∣
∂Ω

= 0.

Hence, w̄k+1 > wk+1 in Ω̄. By induction on k, (5.2) holds for all k ∈ N ∪ {0}. �

Lemma 5.4. If w = (w1, ..., wn) is a positive steady state of (1.11), then for all k,

(5.3) wk ≤ w ≤ w̄k in Ω̄.

Proof. By Lemma 5.1, (5.3) holds for k = 0. Suppose that (5.3) holds for some
k ≥ 0. Then

−DL(w̄k+1 − w) +K(w̄k+1 − w) = K(w̄k − w) + F (x, w̄k)− F (x,w) ≥ 0

holds in Ω, and B(w̄k+1 − w) = 0 on ∂Ω. By the comparison principle we have
w̄k+1 − w ≥ 0. Similarly, wk+1 − w ≤ 0. This completes the proof. �
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Next, for each fixed k we investigate the convergence of w̄k, wk as max1≤i≤n{di} →
0. Define W̄ 0(x) ≡ (M, ...,M) and W 0(x) ≡ (δ0, ..., δ0). For k ∈ N and x ∈ Ω̄,
define successively

W̄ k
i (x) := W̄ k−1

i (x) +
1

K
Fi(x, W̄

k−1
i (x)),

W k
i (x) := W k−1

i (x) +
1

K
Fi(x,W

k−1
i (x)).

Lemma 5.5. For each k ∈ N∪ {0}, i = 1, ..., n, as max1≤i≤n{di} → 0, w̄ki → W̄ k
i

and wki →W k
i uniformly in Ω̄.

Proof. We only show w̄ki → W̄ k
i , as wki → W k

i follows in a similar fashion. Given
ε > 0, it suffices to find, for each k, i, some positive constant δ such that |w̄ki −
W̄ k
i |L∞(Ω) < ε if max1≤i≤n{di} < δ. We proceed by induction on k. For k = 0 and

any i = 1, ..., n, the claim is trivially true as w̄0
i = W̄ 0

i . Suppose that w̄ki → W̄ k
i for

some k ≥ 0 and all i = 1, ..., n. Choose smooth functions ρi, i = 1, ..., n, satisfying
ρi < W̄ k

i in Ω̄. By the monotonicity of Fi,

ρi +
1

K
Fi(x, ρ) < W̄ k

i +
1

K
Fi(x, W̄

k
i ) = W̄ k+1

i .

Therefore, for each ε > 0 sufficiently small, there exist smooth functions ρ̃ =
(ρ̃1, ..., ρ̃n) such that for each i,

(5.4) ρ̃i −
ε

2
≤ ρi +

1

K
Fi(x, ρ) ≤ ρ̃i ≤ W̄ k+1

i in Ω, Biρ̃i ≤ 0 on ∂Ω.

Then Pi = w̄k+1 − ρ̃i + ε satisfies

− diLiPi +KPi

= Kw̄ki + Fi(x, w̄
k)−Kρ̃i + diLi(ρ̃i − ε) +Kε

= Kw̄ki + Fi(x, w̄
k)−Kρi − Fi(x, ρ)−Kε/2 + diLi(ρ̃i − ε) +Kε

≥ K(w̄ki − W̄ k
i ) + Fi(x, w̄

k)− Fi(x, W̄ k) + diLi(ρ̃i − ε) +Kε/2

≥ Kε/2− diC1 − C2‖w̄ki − W̄ k
i ‖L∞(Ω)

≥ 0,

provided that max1≤i≤n{di} is sufficiently small. Therefore, for any ε > 0 and

ρi < W̄ k
i , we have w̄k+1

i ≥ ρ̃i − ε for sufficiently small di. Hence,

lim inf
max1≤i≤n{di}→0

w̄k+1
i ≥ ρ̃i

uniformly in Ω̄. By choosing ρi → W̄ k
i for all i, we see by (5.4) that ρ̃i → W̄ k+1

i

for all i. Hence,

lim inf
max1≤i≤n{di}→0

w̄k+1
i ≥ W̄ k+1

i

uniformly in Ω̄. Similarly, we can show that for all i,

lim sup
max1≤i≤n{di}→0

w̄k+1
i ≤ W̄ k+1

i

uniformly in Ω̄. Therefore for all i, w̄k+1
i → W̄ k+1

i uniformly in Ω̄ as max1≤i≤n{di} →
0. This completes the proof. �
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Lemma 5.6. For all x ∈ Ω̄, i = 1, ..., n, and k ∈ N ∪ {0},

(5.5) W k
i (x) ≤W k+1

i (x) ≤ W̄ k+1
i (x) ≤ W̄ k

i (x) in Ω̄.

Proof. We proceed by induction. Consider k = 0. For all x ∈ Ω̄ and all i,

W̄ 1
i (x) = W̄ 0

i (x) + 1
KFi(x,M, ...,M) < W̄ 0

i (x),
W 1

i (x) = W 0
i (x) + 1

KFi(x, δ0, ..., δ0) > W 0
i (x),

W̄ 1
i (x)−W 1

i (x) = M + 1
KFi(x,M, ...,M)− [δ0 + 1

KFi(x, δ0, ..., δ0)] > 0.

The last line holds as for all i, Ksi + Fi(x, s1, ..., sn) is increasing in s1, ..., sn and
strictly increasing in si. Now assume (5.5) is true for some k ≥ 0, then

W̄ k+2
i (x)− W̄ k+1

i (x) = W̄ k+1
i (x)− W̄ k

i (x) + 1
K [Fi(x, W̄

k+1)− Fi(x, W̄ k)] < 0,

W k+2
i (x)−W k+1

i (x) = W k+1
i (x)−W k

i (x) + 1
K [Fi(x,W

k+1)− Fi(x,W k)] > 0,

W̄ k+2
i (x)−W k+2

i (x) = W̄ k+1
i (x)−W k+1

i (x) + 1
K [Fi(x, W̄

k+1)− Fi(x,W k+1)] > 0.

Thus (5.5) is true for k + 1. The proof is complete. �

Lemma 5.7. W̄ k → α and W k → α uniformly in Ω̄ as k →∞.

Proof. Notice that for each x0 ∈ Ω̄ and each i = 1, ..., n, W̄ k
i (x0) is decreasing

in k and W̄ k
i (x0) ≥ W 0

i (x0) > 0 is bounded from below. Hence, W̄∞i (x0) :=

lim
k→∞

W̄ k
i (x0) > 0 exists for all i = 1, ..., n. In addition,

W̄∞i (x0) = W̄∞i (x0) +
1

K
Fi(x, W̄

∞(x0)),

and thus Fi(x, W̄
∞(x0)) = 0 for all i. By (A2), W̄∞i (x0) = αi(x0) for all i.

Now for each i, {W̄ k
i }k≥0 is a sequence of continuous function decreasing in

k and converges pointwise to αi ∈ C(Ω̄). By the following well-known calculus
lemma (see, e.g. Theorem 7.13 in [21]), we see that as k →∞, W̄ k converges to α
uniformly in Ω̄.

Theorem 5.8. Suppose that K is a compact set in RN and

(a) {fk}∞k=0 is a sequence of continuous functions on K,
(b) {fk} converges pointwise to a continuous function f on K,
(c) fk(x) ≥ fk+1 for all x ∈ K, k = 0, 1, 2, ...

Then fk → f uniformly in K.

Similarly, W k → α uniformly in Ω̄ as k → ∞. The proof of Lemma 5.5 is
complete. �

Proposition 5.2 follows from Lemmas 5.4, 5.5 and 5.7.

Proposition 5.9. There exists some positive constant δ such that every posi-
tive steady state of (1.11) is linearly stable (hence locally asymptotically stable)
if maxi{di} ≤ δ.

Proof. To consider the linear stability of a positive steady state w = (w1, ..., wn), it
suffices to show that the principal eigenvalue λ1 of the following problem is positive:{

DLφ+ ∂sF (x,w)φ+ λφ = 0 in Ω,
Bφ = 0 on ∂Ω.
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By (A2), we have λ̄(DsF (x, α(x))) < 0 for all x ∈ Ω̄. Therefore, for any η > 0

small, F̂ij(x) := ∂sjFi(x, α(x)) + η satisfies

(5.6) λ̄(F̂ij(x)) < 0 for all x ∈ Ω̄.

Let λ̂1 be the principal eigenvalue of{
DLφ+ F̂ φ+ λφ = 0 in Ω,
Bφ = 0 on ∂Ω.

By Proposition 5.2, there exists δ > 0 such that for any positive steady state w of
(1.11),

∂sjFi(x,w(x)) ≤ ∂sjFi(x, α(x)) + η = F̂ij(x) in Ω̄,

whenever max1≤i≤n{di} ≤ δ. Therefore, λ1 ≥ λ̂1 by Proposition 3.4. While by
Theorem 1.4 and (5.6), we have

lim inf
max1≤i≤n{di}→0

λ1 ≥ lim
max1≤i≤n{di}→0

λ̂1 = −max
x∈Ω̄

λ̄(F̂ij(x)) > 0.

Hence, there exists δ > 0 such that whenever max1≤i≤n{di} ≤ δ, λ1 > 0 for any
positive steady state w of (1.11). �

Proof of Theorem 1.5. By Lemma 5.1, (1.11) has at least one positive steady state.
By Proposition 5.9, any positive steady state of (1.11) is linearly stable. Since
(1.11) is an order-preserving system, it follows that (by Theorem 1.1) (1.11) has a
unique positive steady state w̃, and w̃ is globally asymptotically stable. Moreover,
by Proposition 5.2, this unique positive steady state w̃ converges to α uniformly in
Ω as max1≤i≤n{di} → 0. �
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