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Abstract

Abstract: The effects of weak and strong advection on the dynamics of reaction-
diffusion models have long been studied. In contrast, the role of intermediate advec-
tion remains poorly understood. For example, concentration phenomena can occur
when advection is strong, providing a mechanism for the coexistence of multiple
populations, in contrast with the situation of weak advection where coexistence
may not be possible. The transition of the dynamics from weak to strong advec-
tion is generally difficult to determine. In this work we consider a mathematical
model of two competing populations in a spatially varying but temporally constant
environment, where both species have the same population dynamics but differ-
ent dispersal strategies: one species adopts random dispersal, while the dispersal
strategy for the other species is a combination of random dispersal and advection
upward along the resource gradient. For any given diffusion rates we consider the
bifurcation diagram of positive steady states by using the advection rate as the bi-
furcation parameter. This approach enables us to capture the change of dynamics
from weak advection to strong advection. We will determine three different types
of bifurcation diagrams, depending on the difference of diffusion rates. Some exact
multiplicity results about bifurcation points will also be presented. Our results can
unify some previous work and, as a case study about the role of advection, also
contribute to our understanding of intermediate (relative to diffusion) advection in
reaction-diffusion models.

v





CHAPTER 1

Introduction: The role of advection

For the last several decades there has been extensive study of reaction-diffusion-
advection models of the form

(1.1) ut = d∆u+ αV · ∇u+ f(x, u),

where the function u(x, t) represents the density of a population or a substance in
biological and chemical models [12, 81, 85, 95]. The diffusion coefficient d and
and advection rate α are assumed to be positive constants. Concerning qualita-
tive behavior of solutions of (1.1), one important and challenging question is how
the advection affects the behavior of the solutions of (1.1). Such a question arises
naturally in the studies of (i) the speed of biological invasions and chemical flame
propagations [4, 37, 100]; (ii) the persistence of organisms in advective environ-
ments where individuals are exposed to unidirectional flow [66, 72, 80, 86]; (iii)
climate change and moving ranges of species [5, 88], among others.

There have been many studies on the effect of incompressible drifts (i.e. V
is divergence free) on reaction-diffusion equation (1.1) in bounded and unbounded
domains. A large body of this work illustrates that strong mixing by an incom-
pressible flow enhances diffusion in many contexts. Traveling front solutions of (1.1)
play an important role in understanding the large-time behavior of the biological
or chemical processes described by (1.1). Recent work shows that the front prop-
agation speed in the presence of a shear flow or periodic flow is an asymptotically
linear function of the amplitude of the flow [4, 7, 36, 42, 57, 93]. However, for
cellular flows in two spatial dimensions, the speed-up is shown to be of the order of
O(α1/4) [57, 93, 102]. Generally it is challenging to determine whether the mini-
mal speed of traveling front solutions of (1.1) is a monotone increasing function of
the advection rate; see [4, 6].

Another area of active research concerns the spatial population dynamics in ad-
vective environments such as streams, rivers, and lake water columns. For example,
most phytoplankton species are heavier than water, so they sink (advection). On
the other hand, phytoplankton all depend on light for their metabolism. How then
can sinking phytoplankton persist in water columns? To address such questions,
reaction-diffusion-advection models have been proposed to understand how persis-
tence of single or multiple phytoplankton species depend upon various parameters
including the sinking rate. It has been recently shown in [50] that critical sinking
velocities (i.e. advection rates) may or may not exist. For instance, if the death
rate of phytoplankton is small, phytoplankton can persist for any sinking velocity.
However, if a critical sinking velocity exists (which does occur when phytoplankton
death rate is suitably large), it must be unique. The effects of sinking rates on
multi-species phytoplankton dynamics remain largely unpursued [79]. We refer to
[32, 33, 34, 35, 48, 49, 55, 58, 96, 101] and references therein.

1



2 1. INTRODUCTION: THE ROLE OF ADVECTION

A different line of research in advective environments is the ‘drift paradox’ in
river ecosystems [98]. Organisms in rivers and streams are always at risk of being
washed out of the habitat by the advection. How can a population persist in a
river system? Reaction-advection-diffusion models have been introduced as well for
populations in rivers to study the persistence of single and multiple populations
[75, 76, 80, 82, 83, 84]. An interesting finding in [76] is that strong advection
can reverse the prediction regarding the outcome of the interaction of two com-
peting species when there is no advection. Numerical simulations further suggest
that intermediate advection can promote the coexistence of species. Nevertheless,
analytical studies on the transition of dynamics from weak to strong drift in river
systems are generally lacking.

In this article we will investigate the effect of active advection by considering
another type of advection in population dynamics models. Our main focus is on
the effect of intermediate advection, which seems to be poorly understood. This
line of research started with the work of Belgacem and Cosner [10], where they
considered the following reaction-diffusion-advection model for single species in a
spatially heterogenous environment:

(1.2)


ut = ∇ · (µ∇u− αu∇m) + λu(m− u) in Ω× (0,∞),

µ
∂u

∂n
− αu∂m

∂n
= 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x) in Ω.

Here u(x, t) represents the density of a population at time t and location x in a
bounded domain Ω with smooth boundary ∂Ω. The parameter α measures the
tendency to move upward along the resource gradient, where m(x) represents the
local growth rate of the population. We assume that there is no net flux across the
boundary, where ∂u

∂n := ∇u · n, and n is the outward unit normal vector on ∂Ω.
A fascinating question was raised by C. Cosner [10]: Is increasing α always

beneficial to the persistence of the population? It is shown [10] that if
∫

Ω
m ≥ 0,

then for any λ > 0 and α ≥ 0, the problem (1.2) has a unique positive steady state
which is globally asymptotically stable among all non-negative and non-trivial (i.e.
not identically zero) initial data u0. So the population persists, and increasing α
is irrelevant in this case. However, if

∫
Ω
m < 0, then there exists a unique positive

number, denoted as λ∗ = λ∗(α), such that the population can persist if and only
if λ > λ∗. Therefore, Cosner’s question can be rephrased as: Is λ∗(α) a monotone
decreasing function of α? It turns out that the answer to Cosner’s question depends
on the convexity of the domain: It is proved in [27] that for any convex Ω, λ∗(α) is
strictly decreasing for small positive α and is non-increasing for all α under suitable
assumption on function m. On the other hand, it is also shown in [27] that there
exist a (non-convex) domain Ω and function m such that λ∗(α) is strictly increasing
for small positive α; i.e., increasing advection can be detrimental to the persistence
of a single population for certain domains.

The above discussion suggests that increasing the advection upward along the
resource gradient can be advantageous to the persistence of a single population,
while the details may rely on the geometry of the underlying domain and the
resource distribution. Regarding the advection upward along the resource gradi-
ent as a strategy of the population, we assess the effectiveness of such strategy
by comparing it with other strategies. To this end, more recently the following
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reaction-diffusion-advection model has been proposed in [13]:

(1.3)


ut = ∇ · (µ∇u− αu∇m) + u(m− u− v) in Ω× (0,∞),
vt = ν∆v + v(m− u− v) in Ω× (0,∞),
µ ∂u∂n − αu

∂m
∂n = ∂v

∂n = 0 on ∂Ω× (0,∞),
u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω,

where u(x, t), v(x, t) denote the densities of two populations at location x and time
t, competing for the same resource in a spatially varying but temporally constant
environment. It is noteworthy that the two population have the same population
dynamics and they differ only in their dispersal strategies: the dispersal strategy for
the species with density u is a combination of random dispersal and biased move-
ment upward along the resource gradient, while the species with density v adopts
purely random movement. The main question for (1.3) is: While the competitive
ability of both populations are neutral/identical, can the advection convey some
competitive advantage for the species u?

Unless otherwise stated, we assume for the rest of this work that

(M) m ∈ C2(Ω̄), m > 0 in Ω̄, and m is non-constant.

We assume that m is non-constant to reflect the spatial heterogeneity of the envi-
ronment. Provided that (M) holds, it is well known that (1.3) has two semi-trivial
equilibria, denoted by (ũ, 0) and (0, ṽ), corresponding to the situations when ex-
actly one of the populations is present. When there is no biased movement, i.e.
α = 0, Hastings [43] showed that a species can invade when rare if only if it has
the smaller random dispersal rate. The following global result was established in
[31]:

Theorem 1.1. If α = 0 and µ < ν, then (ũ, 0) is globally asymptotically stable
among all non-negative and nontrivial initial data.

Theorem 1.1 shows that if both populations adopt random dispersal, then the
population with the slower dispersal rate has the advantage. By a simple pertur-
bation argument, one can extend Theorem 1.1 to weak advection as follows:

Theorem 1.2. If µ < ν, then there exists some positive small α∗ such that
for α ∈ [0, α∗], (ũ, 0) is globally asymptotically stable among all non-negative and
nontrivial initial data.

We caution the readers that α∗ above depends upon µ and ν. Due to the
symmetry, analogous result holds when µ > ν. The following result from [14]
addresses the case µ = ν, which turns out to be more subtle.

Theorem 1.3. Let Ω be convex. If µ = ν, then there exists some positive
small α∗ such that for α ∈ (0, α∗], (ũ, 0) is globally asymptotically stable among all
non-negative and nontrivial initial data.

Theorem 1.3 suggests that the advection upward along resource gradient can
indeed convey some advantage, at least for convex domains. On the other hand,
Theorem 1.3 fails for some non-convex domains [14].

What happens if the advection is strong? At the first thought one might expect
the species u with strong advection will prevail and may drive the other species to
extinction, in fashion similar to the case µ = ν and α being positive small. A bit
surprisingly, we have the following result (see also [14, 22]):
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Theorem 1.4. Suppose that assumption (M) holds and the set of critical points
of m has measure zero. Then for every µ > 0 and ν > 0, there exists some positive
constant α∗∗ such that for α > α∗∗, system (1.3) has at least one stable positive
steady state, and both semi-trivial steady states are unstable.

Theorem 1.4 implies that if species u has strong advection, then two species
will coexist. The result of Cantrell et al. [14] suggested that such coexistence is
possible because species u concentrates on the local maxima of m, leaving resources
elsewhere in the habitat for the species v to utilize. Chen and Lou [24] demon-
strated that for a resource function m with a unique local maxima, species u with
strong advection is indeed concentrated at this maximum as a Gaussian distribu-
tion. When m has multiple local maxima, Lam and Ni [69] and Lam [62, 63]
completely determined the profiles of all positive steady states of (1.3) and they
illustrated that species u is exactly concentrated at the set of local maximum of m
where m − ṽ is strictly positive. These works suggested a new mechanism for the
coexistence of two competing species with different dispersal strategies.

From these discussions the dynamics of (1.3) for weak and strong advection
can be briefly summarized as follows:

• When the advection is weak, two species cannot coexist: One semi-trivial
steady state is globally stable and the other semi-trivial steady state is
unstable.

• When the advection is strong, two species coexist for any dispersal rates,
and both semi-trivial steady states are unstable.

These results raise an immediate question about the role of advection: If we in-
crease the advection from weak to strong, how do the dynamics of (1.3) change
correspondingly? The goal of this paper is to address this issue, and in particular,
to understand the effect of intermediate advection on the dynamics of (1.3). We
consider, for any given diffusion rates, the bifurcation diagram of steady states using
the advection rate α as a parameter. We will show the existence of three different
types of bifurcation diagrams. Exact multiplicity results of bifurcation points will
also be presented. Our results unify some previous work and, as a case study about
the role of advection, also contribute to the understanding of intermediate (relative
to diffusion) advection in reaction-diffusion models.



CHAPTER 2

Summary of main results

The goal of this paper is to understand the dynamics of system (1.3) and
determine the structure of positive steady states by varying the parameters µ, ν and
α. Our approach is to divide the µ-ν plane into three separate regions according to
the stability changes of both semi-trivial steady states. By fixing (µ, ν) in each of
these three regions and then varying the parameter α from 0 to ∞, we determine
the bifurcation diagram of positive steady states of system (1.3) for each case,
respectively. By piecing these three bifurcation diagrams together we are able to
determine how the dynamics of system (1.3) change as we vary the parameters.

As it turns out, an important quantity is the ratio η := α/µ. Replacing α by
the new parameter η, (1.3) becomes

(2.1)


ut = µ∇ · (∇u− ηu∇m) + u(m− u− v) in Ω× (0,∞),
vt = ν∆v + v(m− u− v) in Ω× (0,∞),
∂u
∂n − ηu

∂m
∂n = ∂v

∂n = 0 on ∂Ω× (0,∞),
u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω

for non-negative, non-trivial initial data u0 and v0. From now on, we denote the
semi-trivial steady states of (2.1) by (ũ, 0) and (0, ṽ), where ũ = ũ(x;µ, η) is the
unique positive solution (see [10]) of

(2.2)

{
µ∇ · (∇ũ− ηũ∇m) + ũ(m− ũ) = 0 in Ω,
∂ũ
∂n − ηũ

∂m
∂n = 0 on ∂Ω,

and ṽ = ṽ(x; ν) is the unique positive solution (see, e.g. [12]) of

(2.3)

{
ν∆ṽ + ṽ(m− ṽ) = 0 in Ω,
∂ṽ
∂n = 0 on ∂Ω.

Lemma 2.1. Assume that (M) holds.

(i) For µ > 0 and η ≥ 0, (2.2) has a unique positive solution, denoted by ũ.
(ii) For ν > 0, (2.3) has a unique positive solution, denoted by ṽ.

The proof of (i) is due to [10]. The proof of (ii) is standard; See, e.g. [12].

2.1. Existence of positive steady states of (2.1)

Our first main result gives an explicit criterion for the existence of positive
steady states of (2.1). Unless otherwise stated, we assume (M) throughout this
work.

Theorem 2.2. If η ≥ 1
minΩ̄ m

, then for any µ > 0 and ν > 0, both semi-trivial

steady states of system (2.1) are unstable and system (2.1) has at least one stable
postive steady state.

5
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Remark 2.3. Previously, the existence of positive steady states of (2.1) has
been established in [14, 24] under the additional assumption that the set of critical
points of m is of measure zero, and that η is sufficiently large. Our contribution
here is to remove all assumptions on the set of critical points of m, and to give an
explicit estimate of the coexistence region in terms of parameter η.

Concerning the uniqueness of the positive steady state of system (2.1) we have
the following result for large µ, ν.

Theorem 2.4. For each Λ > 1
minΩ̄ m

, there exists M > 0 such that (2.1) has a

unique positive steady state for all µ, ν ≥M and η ∈ [ 1
minΩ̄ m

,Λ].

It is an open problem whether (2.1) has at most one positive steady state for
arbitrary diffusion coefficients and advection rates.

2.2. Local stability of semi-trivial steady states

First, we discuss, for different µ, ν > 0, the changes of stability of the semi-
trivial steady states as η varies from 0 to ∞. By Theorem 2.2, it is known that
(ũ, 0) and (0, ṽ) become unstable when η ≥ 1/minΩ̄m. Therefore, it suffices to
look at η ∈ [0, 1/minΩ̄m]. The stability of (ũ, 0) and (0, ṽ) determine a significant
part of the bifurcation diagram of positive steady states of (2.1) with η ≥ 0 as the
bifurcation parameter, since each change of stability corresponds to a bifurcation
of positive steady states from semi-trivial steady states. We will state the precise
bifurcation results at the end of this chapter.

We now decompose the µ-ν plane into three separate regions, according to the
number of stability changes of (ũ, 0) as η varies from 0 to ∞.

Theorem 2.5. Suppose that Ω is convex. For any µ > 0, there exists a unique
ν̄ = ν̄(µ) ∈ (0, µ) such that the following hold:

(i) If ν ∈ (0, ν̄), then (ũ, 0) is unstable for all η ≥ 0, while (0, ṽ) is stable for
small η and unstable for large η. In particular, (0, ṽ) changes stability at
least once as η varies from 0 to ∞;

(ii) If ν ∈ (ν̄, µ), then (ũ, 0) is unstable for both small and large η and it is
stable for some intermediate values of η, while (0, ṽ) is stable for small η
and unstable for large η. In particular, as η varies from 0 to ∞, (ũ, 0)
changes stability at least twice, while (0, ṽ) changes stability at least once;

(iii) If ν ∈ (µ,∞), then (ũ, 0) is stable for small η and unstable for large η. In
particular, as η varies from 0 to ∞, (ũ, 0) changes stability at least once.

For Case (iii) we expect that (0, ṽ) is unstable for any η, provided that Ω is
convex. For some non-convex domains it is possible that (0, ṽ) is stable for small
positive η; See Theorem 10.4.

Definition 2.6. Denote the regions on the µ-ν plane identified in Theorem
2.5 as follows:

R1 := {(µ, ν) : µ > 0, ν ∈ (0, ν̄(µ))};
R2 := {(µ, ν) : µ > 0, ν ∈ (ν̄(µ), µ)};
R3 := {(µ, ν) : µ > 0, ν ∈ (µ,∞)}.
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See Figure 1 for a graphical illustration of these three regions.
We also obtain more precise estimates of the curve ν = ν̄(µ), which divides the

region {(µ, ν) : µ > ν > 0} into regions R1 and R2.

Theorem 2.7. Suppose that Ω is convex and let ν̄(µ) be given by Theorem 2.5.

(iv) The limit lim
µ→0

ν̄(µ)

µ
exists and it belongs to (0, 1).

(v) The limit lim
µ→∞

ν̄(µ) exists, and it is positive and finite.

Theorem 2.7 implies that the curve ν = ν̄(µ) grows as a linear function for small µ
and it approaches a finite positive limit for sufficiently large µ.

Remark 2.8. For µ sufficiently small or sufficiently large, ν̄ ∈ (0, µ) exists
regardless of the convexity of Ω, and (i)-(v) of Theorems 2.5 and 2.7 hold. See
Corollary 4.11.

Figure 1. Decomposition of the µ-ν plane into three regions: R1

and R2 are separated by the curve ν = ν̄(µ), where ν̄(µ) is deter-
mined in Theorem 2.5 and some qualitative behaviors of ν̄(µ) are
given in Theorem 2.7. The regions R2 and R3 are separated by
the line ν = µ. For each (µ, ν) from these regions, as the advection
rate varies from 0 to ∞, the stability changes of both semi-trivial
steady states are given in Theorem 2.5.

Based on Theorem 2.5, we have the following conjecture:

Conjecture 2.9. Suppose that Ω is convex. Then, as η varies from 0 to ∞,

(a) if (µ, ν) ∈ R1, then (ũ, 0) is unstable for all η ≥ 0, while (0, ṽ) changes
stability exactly once, from stable to unstable;

(b) if (µ, ν) ∈ R2, then (ũ, 0) changes stability exactly twice, from unstable to
stable to unstable, while (0, ṽ) changes stability exactly once, from stable
to unstable;

(c) If (µ, ν) ∈ R3, then (ũ, 0) changes stability exactly once, from stable to
unstable, while (ṽ, 0) remains unstable for all η ≥ 0.

See Figure 2 for an illustration of the conjecture.
For each µ, ν > 0, if we denote by η∗ (resp. η∗), the value(s) where (ũ, 0) (resp.

(0, ṽ)) changes stability, then Conjecture 2.9 describes the exact multiplicities of η∗
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*
1η

*
2η

Figure 2. Illustration of Conjecture 2.9 and Theorem 2.14: Fig-
ures (2a), (2b), (2c) illustrate Conjecture 2.9(a), (b), (c), respec-
tively. Figure (2a) concerns the parameter region ν < ν̄(µ); Figure
(2b) concerns the region ν̄(µ) < ν < µ; Figure (2c) concerns the
region ν > µ. Under extra assumptions on diffusion rates, Ω and
m, Theorems 2.10, 2.11 and 2.12 confirm Conjecture 2.9(a), (b),
(c), respectively. Furthermore, Theorem 2.14 describes the global
bifurcation diagrams of positive steady states for (µ, ν) in each of
the three regions Ri, i = 1, 2, 3, as illustrated in Figures (2a), (2b),
(2c), respectively.

and η∗. Should the conjecture hold true, a precise description of the bifurcation
points from the semi-trivial branches {(ũ(µ, η), 0; η) : η ≥ 0} and {(0, ṽ(ν); η) : η ≥
0} follows immediately.

We give some biological interpretation of the conjecture:

• When ν < ν̄(µ), i.e. ν is small relative to µ, then when the directed
movement of species u is small, the slower disperser v excludes the species
u. However, as η passes some critical value η∗, the species u is able to
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invade when rare by concentrating its effort at the local maximum points
of the resource.

• We can similarly interpret the case when ν > µ. In this case, the slower
disperser u excludes the species v if the advection rate η is small. When
η increases beyond a critical value η∗, the species u concentrates on the
local maximum points of the resource, and the species v can invade when
rare by utilizing the resources elsewhere.

• It is a bit surprising that a third regime R2 (ν̄ < ν < µ) exists. Mathe-
matically, it connects the two different scenarios R1 and R3. Biologically,
it says the following: Even though species v is the slower disperser, if
the species u can adopt an appropriate advection rate η, then (ũ, 0) gains
stability and can somehow manage to exclude the species v. A crucial ob-
servation is that the species which is able to track the underlying resource
better will ultimately outcompete the other species.

We are able to show (a), (b), (c) of Conjecture 2.9 to different degrees. In the
following, we will state our results for regions Ri (i = 1, 2, 3) separately.

Theorem 2.10 (Results for R1). Let (µ, ν) ∈ R1. If one of the following
conditions holds:

(a) µ/ν is sufficiently large;
(b) Ω = (−1, 1), mxmxx 6= 0 in Ω̄,

then as η varies from 0 to ∞, (0, ṽ) changes stability exactly once, from stable to
unstable at some η∗.

Theorem 2.10 implies that under suitable assumptions, there exists a critical
advection rate η∗ such that the faster diffuser u can invade when rare if and only
if its advection rate is larger than η∗. This means that strong advection upward
along the resource gradient can offset the disadvantage of being a faster diffuser. It
is a bit surprising that for this region of parameters the slower random diffuser can
always invade when rare, irrespective of the advection rate of the faster diffuser.
We remark that Theorem 2.10 (a) holds for general smooth domains Ω that are not
necessarily convex, even though R1 may not be globally defined.

Theorem 2.11 (Results for R2). Let Ω be convex and (µ, ν) ∈ R2.

(a) If µ is sufficiently small, then as η varies from 0 to ∞, (ũ, 0) changes
stability exactly twice, from unstable to stable to unstable at some η∗1 and
η∗2 respectively.

(b) If one of the following conditions holds:
(i) µ/ν is sufficiently large;

(ii) Ω = (−1, 1), mxmxx 6= 0 in Ω̄;
(iii) µ, ν are sufficiently large,
then as η varies from 0 to ∞, (0, ṽ) changes stability exactly once, from
stable to unstable at some η∗.

Theorem 2.11 implies that the invasion of the species u when rare is the same
as in the previous case. However, the species v fails to invade when rare for some
intermediate interval of η. This suggests that a faster diffuser with proper degree
(but not too strong) of advection upward along the resource gradient can exclude the
slower diffuser. In particular, an intermediate advection rate (relative to diffusion
rate) can indeed convey some competitive advantage.
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Theorem 2.12 (Results for R3). Let Ω be convex and (µ, ν) ∈ R3.

(a) If µ is sufficiently small, then as η varies from 0 to ∞, (ũ, 0) changes
stability exactly once, from stable to unstable at some η∗.

(b) If one of the following conditions holds:
(i) µ/ν sufficiently small;

(ii) ν ≤ 4(minΩ̄m)3

|∇m|2L∞(Ω)

;

(iii) Ω = (−1, 1), mx 6= 0 in Ω̄;
(iv) µ, ν are sufficiently large,
then (0, ṽ) is unstable for all η ≥ 0.

One consequence of Theorem 2.12 is that under suitable assumptions, a rare
slower diffuser with or without advection can always invade the faster diffuser with
no advection. Theorem 2.12 also implies that there exists a critical advection rate
η∗ beyond which the slower diffuser becomes too concentrated at the locally most
favorable locations so that the faster random diffuser can invade when rare.

As a corollary of Theorems 2.10, 2.11 and 2.12 we have

Theorem 2.13. Suppose Ω = (−1, 1) and mxmxx 6= 0 in Ω̄, then there exists
δ0 > 0 such that Conjecture 2.9 holds true provided that 0 < min{µ, ν} < δ0.

2.3. Global bifurcation results

Theorems 2.10, 2.11 and 2.12 addressed how the stability of two semi-trivial
steady states depends on the diffusion coefficients and the advection rate. These
results suggest that as the advection rate varies from 0 to∞, one of the semi-trivial
steady states loses its stability and a branch of positive steady states bifurcates from
the branch of the semi-trivial steady states. The natural globally relevant question
is whether this branch of positive steady states can be extended to infinity in η or
whether it will be connected to the other branch of semi-trivial steady states. In
this section we discuss some global bifurcation results of positive steady states of
(2.1), which complement Theorems 2.10, 2.11 and 2.12.

Define S = S(µ, ν) by

S = {(η, u, v) : (u, v) is a positive steady state of (2.1)} .
Let C be a connected component of S. We define the projection of C onto the η
coordinate by

PC := {η ≥ 0 : (η, u, v) ∈ C}.
The main result of this section can be stated as follows.

Theorem 2.14. Let Ω be a convex domain.

(i) Let (µ, ν) ∈ R1. Suppose that hypothesis (a) or (b) of Theorem 2.10
holds. Then there exists a connected component C1 of S emanating from
(η∗, 0, ṽ), where η∗ is the unique value where (0, ṽ) changes its stability.
Moreover, C1 is unbounded and the projection PC1 contains (η∗,∞).

(ii) Let (µ, ν) ∈ R2. Suppose that hypotheses (a) and one of (b)(i)-(iii) of
Theorem 2.11 hold. There exist ε1 > 0 and a function δ1 : (0, ε1)→ (0, ε1)
such that if µ ≤ ε1 and ν ∈ (µ − δ1(µ), µ), then there exist two disjoint
connected components C2,1, C2,2 of S such that
(1) C2,1 connects (η∗, 0, ṽ) and (η∗1 , ũ, 0);
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(2) C2,2 is an unbounded component of S emanating from (η∗2 , ũ, 0), whose
projection PC2,2 contains (η∗2 ,∞);

(3) For some ε2 > 0, (min{η∗, η∗1},max{η∗, η∗1}) ⊂ PC2,1 ⊂ (0, ε2) and
PC2,2 ⊂ (ε2,∞).

Here η∗ is the unique value where (0, ṽ) changes stability and η∗1 < η∗2 are
precisely the two distinct values where (ũ, 0) changes stability.

(iii) Let (µ, ν) ∈ R3. Suppose that hypotheses (a) and one of the conditions
(b)(i)-(b)(iv) of Theorem 2.12 hold, then there exists a connected compo-
nent C3 of S emanating from (η∗, ũ, 0), where η∗ is the unique value where
(ũ, 0) changes stability. Moreover, C3 is unbounded in η and the projection
PC3 contains (η∗,∞).

See Figure 2 for an illustration of Theorem 2.14. Theorem 2.10 implies that (0, ṽ)
changes the stability exactly once at η = η∗. Part (i) of Theorem 2.14 further asserts
that an unbounded branch of positive steady states of (2.1) bifurcates from the
semi-trivial solution branch {(η, 0, ṽ)} at η = η∗ and the branch can be extended to
η =∞. Part (iii) of Theorem 2.14 complements Theorem 2.12 in a similar fashion.

Theorem 2.11 shows that when (µ, ν) ∈ R2, (0, ṽ) changes the stability exactly
once at η = η∗ and (ũ, 0) changes its stability exactly twice at η = η∗1 and η =
η∗2 , respectively. Part (ii) of Theorem 2.14 establishes that there are two disjoint
branches of positive steady states of (2.1), one of which connects two semi-trivial
steady state branches at η = η∗ and η = η∗1 , while the other branch bifurcates from
{(η, ũ, 0)} at η = η∗2 and it extends to infinity in η.

How do the qualitative transitions between Figures 2(a), 2(b) and 2(c) take
place? We shall fix µ > 0 and vary ν for our discussion. For ν < ν̄(µ), the branch
of positive steady states C1 in Figure 2(a) does not connect to the branch of semi-
trivial steady states {(η, ũ, 0)} for any η ≥ 0. As ν approaches ν̄(µ) from below,
the branch C1 is connected to the branch {(η, ũ, 0)} exactly at η = η∗ for some
η∗ > 0. As ν surpasses ν̄(µ), C1 is split into two disjoint branches C2,1 and C2,2
of positive steady states, where C2,1 is bounded and connected to both branches
of semi-trivial steady states, and C2,2 is unbounded and connected to {(η, ũ, 0)},
and it can be extended to infinity in η. This gives the transition from Figure 2(a)
to 2(b). As ν approaches µ from below, the bounded branch C2,1, together with
both end points, will approach {(η, u, v) = (0, sṽ(·;µ), (1 − s)ṽ(·;µ)) : 0 ≤ s ≤ 1}.
This bounded branch is removed from the picture after ν increases beyond µ, while
the unbounded branch connecting (η∗, ũ, 0) remains. This gives the transition from
Figure 2(b) to 2(c).

It is natural to inquire how the bifurcation points depend on the diffusion
coefficients. We refer to Chapter 8 for a summary of the asymptotic behaviors of
these bifurcation points for various limits of diffusion coefficients.

The rest of the paper is organized as follows: In Chapter 3 we summarize some
general statements regarding solutions of system (2.1), and give some asymptotic
properties of ũ(·; η, µ) and its derivatives for sufficiently small µ. Chapter 4 is
devoted to the proofs of existence of stable positive steady states (Theorem 2.2)
and concludes with the characterization of Ri (i = 1, 2, 3) (Theorems 2.5 and 2.7).
Chapters 5-7 are devoted to the proofs of Conjecture 2.9 (Theorems 2.10, 2.11
and 2.12), under various additional assumptions. In Chapter 8, a summary of
the asymptotic behavior of the bifurcation points η∗, η

∗ is given. We study the
structure of positive steady states of system (2.1) when η is positive small and ν
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is slightly less than µ in Chapter 9 (for convex domains) and Chapter 10 (for non-
convex domains). In Chapter 11 we complete the proof of global bifurcation results
(Theorem 2.14). Some technical details in our proofs are relegated to Appendices
A to C.



CHAPTER 3

Preliminaries

3.1. Abstract Theory of Monotone Dynamical Systems

We summarize some general statements regarding solutions of system (2.1)
and the stability of its steady states, which will be useful in subsequent chapters.
By the maximum principle for cooperative systems [90] and standard theory for
parabolic equations [38, 46], if the initial conditions of (2.1) are non-negative and
not identically zero, system (2.1) has a unique positive smooth solution which exists
for all time. This defines a smooth dynamical system on C(Ω̄)×C(Ω̄) [12, 47, 97].
The stability of steady states of (2.1) is understood with respect to the topology of
C(Ω̄)×C(Ω̄). The following result is a consequence of the maximum principle and
the structure of (2.1); See Theorem 3 in [16].

Theorem 3.1. System (2.1) is a strongly monotone dynamical system, i.e.,

a) u1(x, 0) ≥ u2(x, 0) and v1(x, 0) ≤ v2(x, 0) for all x ∈ Ω, and
b) (u1(x, 0), u2(x, 0)) 6≡ (u2(x, 0), v2(x, 0))

imply that u1(x, t) > u2(x, t) and v1(x, t) < v2(x, t) for all x ∈ Ω̄ and t > 0.

The following result is consequence of Theorem 3.1 and the theory of monotone
dynamical systems [47, 97]:

Theorem 3.2. The following results concerning system (2.1) hold.

(i) If system (2.1) has no positive steady state, and one of the two semi-
trivial steady states is linearly unstable, then the other one is globally
asymptotically stable [51, 68];

(ii) If both semi-trivial steady states are unstable, then (2.1) has at least one
stable positive steady state [30, 77]. In addition, if every positive steady
state is linearly stable, then (2.1) has a unique positive steady state. Fur-
thermore, the unique positive steady state is globally asymptotically stable
[47, 51]. Furthermore, the unique positive steady state is globally asymp-
totically stable [47, 51].

The following result concerns the linear stability of semi-trivial steady states of
(2.1); see, e.g., Lemma 5.5, [22]. Denote the principal eigenvalue of the following
problem by λu = λu(η, µ, ν).

(3.1)

{
ν∆ϕ+ (m− ũ)ϕ+ λϕ = 0 in Ω,
∂ϕ
∂n = 0 on ∂Ω.

Lemma 3.3. The steady state (ũ, 0) is linearly stable (resp. unstable) if and
only if λu is positive (resp. negative).

13
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Similarly, let λv = λv(η, µ, ν) be the principal eigenvalue of

(3.2)

{
µ∇ · (∇ϕ− ηϕ∇m) + (m− ṽ)ϕ+ λϕ = 0 in Ω,
∂ϕ
∂n − ηϕ

∂m
∂n = 0 on ∂Ω,

or equivalently, of (by the transformation ϕ = eηmψ)

(3.3)

{
µ∇ · (eηm∇ψ) + (m− ṽ)eηmψ + λeηmψ = 0 in Ω,
∂ψ
∂n = 0 on ∂Ω.

Lemma 3.4. The steady state (0, ṽ) is linearly stable (resp. unstable) if and
only if λv is positive (resp. negative).

When η = 0, the dynamics of (2.1) is completely understood.

Theorem 3.5. [31] Suppose η = 0 and µ < ν, then λu > 0 and λv < 0, i.e.
(ũ, 0) is linearly stable and (0, ṽ) is unstable. Moreover, (ũ, 0) is globally asymptot-
ically stable among all non-negative, non-trivial solutions of (2.1).

Remark 3.6. Actually, signλu(0, µ, ν) = −signλv(0, µ, ν) = sign (ν − µ) fol-
lows from standard eigenvalue comparison principles. See also [1].

The following observation follows from the proof of Theorem 3.5 in [14].

Lemma 3.7. For each µ > 0, ũ ⇀ 0 weakly in L2({x ∈ Ω : |∇m| > 0}) as
η →∞. Moreover, if the set {x ∈ Ω : |∇m| = 0} is of Lebesgue measure zero, then
ũ→ 0 strongly in L2(Ω).

Proof. Multiplying (2.2) by ϕ ∈ S, where S =
{
ϕ ∈ C2(Ω̄) : ∂ϕ

∂n

∣∣∣
∂Ω

= 0
}

,

and integrating in Ω, we have

−µ
∫

Ω

∇ũ · ∇ϕ+ µη

∫
Ω

ũ∇m · ∇ϕ =

∫
Ω

ϕũ(ũ−m).

By the boundary condition of ϕ,∫
Ω

∇ũ · ∇ϕ = −
∫

Ω

ũ∆ϕ.

Hence,

(3.4) µ

∫
Ω

ũ∆ϕ+ µη

∫
Ω

ũ(∇m · ∇ϕ) =

∫
Ω

ϕũ(ũ−m).

By integrating (2.2) over Ω, we have

(3.5)

∫
Ω

ũ(m− ũ) = 0

and hence

(3.6) ‖ũ‖L2(Ω) ≤ ‖m‖L2(Ω).

Therefore, by passing to a subsequence, we may assume that ũ ⇀ u∗ weakly in
L2(Ω), and u∗ ≥ 0 a.e. in Ω. Dividing (3.4) by µη and passing to the limit in (3.4)
we have

(3.7)

∫
Ω

u∗∇m · ∇ϕ = 0.
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Since (3.7) holds for any ϕ ∈ S and S is dense in W 1,2(Ω), we see that (3.7) holds
for every ϕ ∈W 1,2(Ω). In particular, we can choose ϕ = m in (3.7) so that∫

Ω

u∗|∇m|2 = 0.

Hence u∗|∇m|2 = 0 a.e. in Ω. Therefore we conclude that ũ ⇀ 0 weakly in L2(Ωr),
where Ωr = {x ∈ Ω : |∇m(x)| > 0}. Moreover, if the set of critical points of m is
of measure zero, then we see that u∗ = 0 a.e. in Ω. Therefore ũ ⇀ 0 weakly in
L2(Ω), which implies by (3.5) that, as η →∞,∫

Ω

ũ2 =

∫
Ω

ũm→ 0.

�

Remark 3.8. By the above argument, the conclusion actually holds under the
weaker assumption µη, η →∞. i.e. µ need not be fixed.

Next, we claim that

Claim 3.9.
∂

∂η
λu
∣∣
η=0,µ=ν

=
µ
∫

Ω
ũ(µ, 0)∇m · ∇ũ(µ, 0)∫

Ω
ũ(µ, 0)2

.

To see the claim, first differentiate (3.1) with respect to η, denoting ϕ′ = ∂
∂ηϕ,

λ′u = ∂
∂ηλu and ũ′ = ∂

∂η ũ:

(3.8)

{
ν∆ϕ′ + (m− ũ)ϕ′ + λuϕ

′ = (ũ′ − λ′u)ϕ in Ω,
∂ϕ′

∂n = 0 on ∂Ω.

Multiply (3.8) by ϕ and integrate by parts to get

(3.9) λ′u

∫
Ω

ϕ2 =

∫
Ω

ũ′ϕ2.

Set η = 0 and ν = µ, then ϕ = ũ and we have

(3.10) λ′u

∫
Ω

ũ(µ, 0)2 =

∫
Ω

ũ′(µ, 0)ũ(µ, 0)2.

Next, differentiate (2.2) with respect to η,

(3.11)

{
µ∇ · (∇ũ′ − ηũ′∇m) + (m− 2ũ)ũ′ = µ∇ · (ũ∇m) in Ω,
∂ũ′

∂n − ηũ
′ ∂m
∂n = ũ∂m∂n on ∂Ω.

Multiply (3.11) by −e−ηmũ and integrate by parts to get

(3.12)

∫
Ω

e−ηmũ2ũ′ = µ

∫
Ω

ũ∇m · ∇(e−ηmũ).

Finally, Claim 3.9 follows by setting η = 0 in (3.12) and substituting the result into
(3.10).

We will later need the following result, due to [14], in connection to convexity
of the underlying domain.

Theorem 3.10. Define, by Claim 3.9,

(3.13) α∗(µ) :=
∂

∂η
λu
∣∣
η=0,µ=ν

=
µ
∫

Ω
ũ(µ, 0)∇m · ∇ũ(µ, 0)∫

Ω
ũ(µ, 0)2

.
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(a) For general smooth domain Ω, α∗(µ) is positive for sufficiently small or
sufficiently large µ.

(b) Suppose in addition that Ω is convex, then α∗(µ) is positive for all µ > 0.
(c) Given any µ0 > 0, there exists a non-convex domain Ω and a smooth,

sign-changing function m(x) such that α∗(µ0) < 0 and α∗(µ) changes
sign at least once in (0, µ0).

Proof. Since (b) and (c) follow from [14], it suffices to show (a). By Theorem
3.12 (which is proved independently in Appendix A), when µ→ 0, ũ(µ, 0)→ m in
H1(Ω). In particular,

lim
µ→0

α∗(µ)

µ
= lim
µ→0

∫
Ω
ũ(µ, 0)∇m · ∇ũ(µ, 0)∫

Ω
ũ(µ, 0)2

=

∫
Ω
m|∇m|2∫
Ω
m2

> 0,

as m is non-constant. This shows (a) in case µ→ 0.
Next, for µ→∞, we have the following lemma:

Lemma 3.11. Let m̄ = 1
|Ω|
∫

Ω
m and w = µ(ũ(µ, 0)− m̄), then w − 1

|Ω|
∫

Ω
w =

w1 +O(µ−1), where w1 is the unique solution to

(3.14)

{
−∆w1 = m̄(m− m̄) in Ω,
∂w1

∂n = 0 on ∂Ω, and
∫

Ω
w1 = 0.

Proof of Lemma 3.11. It is easy to see that w satisfies the Neumann bound-
ary condition, as well as the equation

(3.15) −∆w = m̄(m− m̄) + ε(m− 2m̄)w − ε2w2.

Let (−∆)N be the operator from C
2,1/2
N (Ω) = {ψ ∈ C2,1/2(Ω) : ∂ψ

∂n

∣∣∣
∂Ω

=
∫

Ω
ψ = 0}

to C1/2(Ω) defined by ψ 7→ −∆ψ. It is well-known that the inverse (−∆)−1
N of

(−∆)N exists. Let ε = 1/µ. We take the inverse (−∆)−1
N on both sides of (3.15) to

obtain

w − 1

|Ω|

∫
Ω

w = (−∆)−1
N [m̄(m− m̄)] + ε(−∆)−1

N [(m− 2m̄)w]− ε2(−∆)−1
N [w2].

Hence, the Implicit Function Theorem implies that w − 1
|Ω|
∫

Ω
w = w1 +O(ε). �

By Lemma 3.11, we may compute α∗(µ) as follows:

α∗(µ) =
µ
∫

Ω
(m̄+ w/µ)∇m · ∇(m̄+ w/µ)∫

Ω
(m̄+ w/µ)2

=

∫
Ω

(m̄+ w/µ)∇m · ∇w∫
Ω

(m̄+ w/µ)2

=

∫
Ω

(m̄+ w/µ)∇m · ∇
(
w − 1

|Ω|
∫

Ω
w
)

∫
Ω

(m̄+ w/µ)2

=

∫
Ω

(m̄+ w/µ)∇m · ∇(w1 +O(1/µ))∫
Ω

(m̄+ w/µ)2
.

That is,

(3.16) α∗(µ) =
m̄
∫

Ω
∇m · ∇w1∫
Ω
m̄2

+O(µ−1).
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It suffices to show that
∫

Ω
∇m · ∇w1 > 0. This follows by multiplying (3.14) by m

and integrating by parts to get∫
Ω

∇m · ∇w1 = m̄

∫
Ω

m(m− m̄) = m̄

∫
Ω

(m− m̄)2 > 0.

This proves (a) and completes the proof of Theorem 3.10. �

3.2. Asymptotic behavior of ũ and ϕ as µ→ 0

In this section we state some properties of ũ, ṽ and the principal eigenvalue
λu(η, µ, ν). The proofs of these results will be presented in Appendix A.

3.2.1. Asymptotic behavior of ũ. In this section we state some properties
of ũ (and, by setting η = 0, of ṽ). We mainly focus on the asymptotic behaviors of
ũ and its derivatives as µ→ 0.

Theorem 3.12. Let Λ > 0 be given.

(i) There exists a positive constant c such that for all µ > 0 and η ∈ [0,Λ],

(3.17) c ≤ ũ(x) ≤ 1

c
in Ω.

Moreover, ũ→ m in L∞(Ω) as µ→ 0 uniformly for η ∈ [0,Λ].
(ii) There exists C > 0 such that∫

Ω

|∇ũ−∇m|2φ2 ≤ C‖ũ−m‖L∞(Ω)‖φ‖2H1(Ω),

for any µ > 0, η ∈ [0,Λ] and φ ∈ H1(Ω).
(iii) There exists C > 0 such that∫

Ω

|∇ũ−∇m|2φ1φ2

ũ2
≤ C‖ũ−m‖L∞(Ω)

(
‖φ1‖2H1(Ω) + ‖φ2‖2H1(Ω)

)
,

for all µ > 0, η ∈ [0,Λ] and φ1, φ2 ∈ H1(Ω).
(iv) ũ→ m in L∞(Ω) ∩H1(Ω) as µ→ 0.
(v) For all ε > 0, there exist C = C(ε,Λ) and δ = δ(ε,Λ) such that∣∣∣∣∫

Ω

(∇ũ− ηũ∇m) · ∇
(
φ2

ũ

)∣∣∣∣ ≤ ε∫
Ω

|∇φ|2 + C

∫
Ω

φ2

for all η ∈ [0,Λ], φ ∈ H1(Ω) and µ ∈ (0, δ).

As an application of the maximum principle, we actually have a more precise
result for ṽ.

Theorem 3.13. For each ν > 0, minΩ̄m < ṽ < maxΩ̄m holds in Ω̄.

Our next result concerns the limit of ∂ũ
∂η as µ→ 0.

Theorem 3.14. Suppose that µ = µk → 0 and φ = φk ⇀ φ̃ (weakly) in H1(Ω),
then for any Λ > 0 (denoting ũ = ũ(µk, η))

1

µ

∫
Ω

∂ũ

∂η
φ→

∫
Ω

m∇m · ∇

(
φ̃

m

)
,

as k →∞, uniformly for η ∈ [0,Λ].

Finally, we have the following result for ∂2ũ
∂η2 .
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Theorem 3.15. For each Λ > 0,∫
Ω

(
∂2ũ

∂η2

)2

+

= o(µ2)

as µ→ 0 uniformly for η ∈ [0,Λ], where f+ denotes the positive part of function f .

3.2.2. Asymptotic behavior of λu. Recall that λu is the principal eigen-
value of (3.1) with corresponding eigenfunction ϕ. By (2.2), we rewrite (3.1) as
follows.

(3.18)

{
ν
µ∆ϕ− ∇·(∇ũ−ηũ∇m)

ũ ϕ+ λ
µϕ = 0 in Ω,

∂ϕ
∂n = 0 on ∂Ω.

Denote the k-th eigenvalue of (3.18), counting multiplicity, by λu,k/µ and denote
the corresponding eigenfunction by ϕk. In particular, λu,1 = λu(η, µ, ν) and ϕ1 = ϕ.

We define the following limiting eigenvalue problem associated with (3.18):

(3.19)

{
d∆ϕ̃− ∇·[(1−ηm)∇m]

m ϕ̃+ σϕ̃ = 0 in Ω,

d∂ϕ̃∂n −
1−ηm
m

∂m
∂n ϕ̃ = 0 on ∂Ω.

Denote the k-th eigenvalue of (3.19), counting multiplicity, by σk(η; d). The con-
nection between σk(η; d) and λu,k as µ→ 0 and ν/µ→ d is given by

Theorem 3.16. For each d > 0, and Λ > 0,

lim
ν
µ→d,µ→0

λu,k
µ

= σk(η; d)

uniformly for η ∈ [0,Λ].

For k = 1 we establish some estimates on ∂λu
∂η .

Theorem 3.17. For each Λ > 0,

1

µ

∂λu
∂η

(·;µ, ν)→ ∂σ

∂η
(·; d)

as µ→ 0 and ν
µ → d > 0, uniformly for η ∈ [0,Λ]. Here σ(η; d) = σ1(η; d) is given

in (3.19).

As a consequence of Theorems 3.16 and 3.17, we have

Corollary 3.18. For each Λ > 0, as µ→ 0 and ν
µ → d > 0,

λu
µ

(·, µ, ν)→ σ(·; d)

in C1([0,Λ]). Here σ(η; d) = σ1(η; d) is given in (3.19).



CHAPTER 4

Coexistence and classification of µ-ν plane

In Section 4.1, we establish a sufficient condition for coexistence of two species
(Theorem 2.2) for general domains Ω. In Section 4.2, we classify the µ-ν plane into
three separate regions according to the local dynamics of the semi-trivial steady
states (Theorem 2.5) for convex domains Ω. We observe that the domain convexity
assumption is not needed to prove results in Section 4.2, if µ is sufficiently small or
sufficiently large (Corollary 4.11). In Section 4.3, we obtain addition results when
µ is sufficiently small or sufficiently large (Theorem 2.7).

4.1. Coexistence: Proof of Theorem 2.2

This section is devoted to the proof of Theorem 2.2. We first show the insta-
bilities of the semi-trivial steady states. The existence of a stable positive steady
state follows from the standard theory of monotone dynamical systems (Theorem
3.2(ii)). First, we prove the following lemma:

Lemma 4.1. If η ≥ 1/minΩ̄m, then
∫

Ω
ũ <

∫
Ω
m. Moreover,

(4.1) lim sup
µη→∞,η→∞

∫
Ω

(ũ−m) ≤ −
∫
{x∈Ω:|∇m|6=0}

m < 0.

Proof. Define f(y) = ye−ηy for η−1 ≤ y < ∞. Since f ′(y) < 0 for η−1 <
y <∞, f has an inverse function, denoted by g. Since f assumes its maximum at
y = η−1 and f(η−1) = (eη)−1, g is defined in (0, (eη)−1] and g′ < 0 in (0, (eη)−1).
Set

w = e−ηmũ.

Then w satisfies

(4.2)

{
µ∇ · [eηm∇w] + ũ(m− ũ) = 0 in Ω,
∂w
∂n = 0 on ∂Ω.

We first check that g(w) is well defined, i.e., w(x) ≤ (eη)−1 for every x ∈ Ω̄.
Let w(x0) = maxΩ̄ w for some x0 ∈ Ω̄. If x0 ∈ Ω, it is well known that ∆w(x0) ≤ 0.
We claim that if x0 ∈ ∂Ω, then ∆w(x0) ≤ 0. To see this, we argue by contradiction:
Suppose that ∆w(x0) > 0. Then there exists a small open ball B such that B ⊂
Ω and ∂B ∩ ∂Ω = {x0} and ∆w > 0 in B̄. This in particular implies, by the
strong maximum principle, that w(x) < w(x0) for all x ∈ B̄ and x 6= x0. By the
Hopf Boundary Lemma [90], ∂w

∂n (x0) > 0. However, this contradicts the boundary
condition of w on ∂Ω. This contradiction shows that ∆w(x0) ≤ 0 always holds.
Hence, by the equation of w we have ũ(x0) ≤ m(x0). Therefore,

max
Ω̄

w = w(x0) = e−ηm(x0)ũ(x0) ≤ e−ηm(x0)m(x0) ≤ (eη)−1,

19
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where the last inequality follows from ye−ηy ≤ (eη)−1 for any y > 0. Hence, g(w)
is well defined. Dividing (4.2) by g(w) and integrating in Ω,

(4.3) µ

∫
Ω

eηmg′(w)|∇w|2

g2(w)
+

∫
Ω

ũ

g(w)
(m− ũ) = 0,

which can be written as

(4.4)

∫
Ω

(ũ−m) = µ

∫
Ω

eηmg′(w)|∇w|2

g2(w)
+

∫
Ω

ũ− g(w)

g(w)
(m− ũ).

We claim that

(4.5) [ũ− g(w)] (m− ũ) ≤ 0 in Ω.

To establish this assertion, we consider two different cases:
(i) ũ(x) > m(x). For this case, we have f(ũ(x)) < w(x). As we assume that

minΩ̄m > η−1, we have ũ(x) ≥ minΩ̄m > η−1. Since g is monotone decreasing, by
f(ũ(x)) < w(x) we have ũ(x) > g(w(x)), i.e., (4.5) holds.

(ii) ũ(x) < m(x). Suppose ũ(x) ≥ 1/η, then f(ũ(x)) is defined, and f(ũ(x)) >
w(x). Then the monotone decreasing property of f implies that ũ(x) > g(w(x)).
Suppose instead that ũ(x) < 1/η, then ũ(x) > g(w(x)) follows from the fact that
g(w(x)) lies within the domain of f , Dom(f) = [1/η,∞).

By g′ < 0, (4.4) and (4.5) we have
∫

Ω
ũ <

∫
Ω
m. This proves the first part of

the lemma.
For the second part, we fix δ ∈ (0,min {1, 1/minΩ̄m}), and consider η suffi-

ciently large so that η > 1/δ. Eventually, we will let η ↗∞ and then δ ↘ 0.

Claim 4.2.
ũ− g(e−ηmũ)

g(e−ηmũ)
< δ− 1 for x ∈

{
x ∈ Ω : m(x) > δ and ũ(x) < δ2

}
.

Let A =
{
x ∈ Ω : m(x) > δ and ũ(x) < δ2

}
. To see the claim, we note first

that for x ∈ A, ũ < m and hence ũ ≤ g(e−ηmũ) by (4.5). Then, g(e−ηmũ)−ũ
g(e−ηmũ) is

positive in A, and

g(e−ηmũ)− ũ
g(e−ηmũ)

≥ infA g(e−ηmũ)− supA ũ

infA g(e−ηmũ)

=
g(supA(e−ηmũ))− δ2

g(supA(e−ηmũ))

≥ g(e−ηδδ2)− δ2

g(e−ηδδ2)

≥ g(e−ηδδ)− δ2

g(e−ηδδ)

=
δ − δ2

δ
= 1− δ
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for all x ∈ A. Hence∫
Ω

(ũ−m) ≤
∫

Ω

ũ− g(e−ηmũ)

g(e−ηmũ)
(m− ũ)

≤
∫
{x∈Ω:m>δ,ũ<δ2}

ũ− g(e−ηmũ)

g(e−ηmũ)
(m− ũ) (by (4.5))

≤ (δ − 1)

∫
{x∈Ω:m>δ,ũ<δ2}

(m− ũ)

≤ (δ − 1)

∫
{x∈Ω:m>δ,ũ<δ2}

(m− δ2).

Since, as η → ∞, ũ → 0 a.e. in the set of regular points of m (Lemma 3.7), we
deduce that

lim sup
η→∞

∫
Ω

(ũ−m) ≤ (δ − 1)

∫
{x∈Ω:m>δ,|∇m|>0}

(m− δ2).

Letting δ ↘ 0, we have

lim sup
η→∞

∫
Ω

(ũ−m) ≤ −
∫
{x∈Ω:m>0,|∇m|>0}

m.

This completes the proof. �

Remark 4.3. By a similar argument, we can show that if η ≤ 1/maxΩ̄m, then∫
Ω
m <

∫
Ω
ũ.

Remark 4.4. (4.1) holds for non-negative m as well: Suppose m ∈ C2(Ω̄) is
non-negative and non-constant, then for all δ > 0, m+δ satisfies (M). Now consider
the unique positive solution ũδ of (2.2) with m being replaced by m + δ. By the
maximum principle, we have ũδ ≥ ũ. By applying the previous argument, we have

lim sup
µη,η→∞

∫
Ω

(ũ−m) ≤ lim sup
µη,η→∞

∫
Ω

[ũδ − (m+ δ) + δ] ≤ −
∫
{x∈Ω:|∇m|>0}

(m+ δ) + δ|Ω|.

Letting δ → 0, we have (4.1).

Next, we consider the stability of (ũ, 0), which is determined by the sign of the
principal eigenvalue λu = λu(η, µ, ν) of (3.1). Recall that (ũ, 0) is linearly stable
(resp. unstable) if λu is positive (resp. negative) (Lemma 3.3).

Lemma 4.5. If η ≥ 1
minΩ̄ m

, then (ũ, 0) is unstable.

Proof. Let ϕ be a positive eigenfunction corresponding to λu. Dividing (3.1)
by ϕ, (recalling that λ = λu there), and integrating the result in Ω, we have

ν

∫
Ω

|∇ϕ|2

ϕ2
+

∫
Ω

(m− ũ) = −λu|Ω|.

By Lemma 4.1, we see that λu < 0. �

Next, we discuss the stability of (0, ṽ) for η ≥ 1
minΩ̄ m

. Similar as before,

the steady state (0, ṽ) is linearly stable (resp. unstable) if the principal eigenvalue
λv = λv(η, µ, ν) is positive (resp. negative).

Lemma 4.6. If η ≥ 1
minΩ̄ m

, then (0, ṽ) is unstable.
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Proof. Dividing (3.3) by ψ and integrating by parts in Ω, we have

(4.6) µ

∫
Ω

eηm|∇ψ|2

ψ2
+

∫
Ω

eηm(m− ṽ) = −λv
∫

Ω

eηm.

Note that ṽ satisfies {
ν∆ṽ + ṽ(m− ṽ) = 0 in Ω,
∂ṽ
∂n = 0 on ∂Ω.

Dividing the equation for ṽ by ṽe−ηṽ, integrating the resulting equation in Ω, we
have

0 = ν

∫
Ω

∆ṽ
eηṽ

ṽ
+

∫
Ω

eηṽ(m− ṽ)

= −ν
∫

Ω

∇ṽ · ∇
(
eηṽ

ṽ

)
+

∫
Ω

eηṽ(m− ṽ)

= −ν
∫

Ω

|∇ṽ|2 e
ηṽ(ηṽ − 1)

ṽ2
+

∫
Ω

eηṽ(m− ṽ).

Taking (4.6) into account, we obtain
(4.7)

−λv
∫

Ω

eηm = µ

∫
Ω

eηm|∇ψ|2

ψ2
+ ν

∫
Ω

|∇ṽ|2 e
ηṽ(ηṽ − 1)

ṽ2
+

∫
Ω

(
eηm − eηṽ

)
(m− ṽ).

As the first and third terms on the right-hand side of (4.7) are positive, we have

−λv
∫

Ω

eηm > ν

∫
Ω

|∇ṽ|2 e
ηṽ(ηṽ − 1)

ṽ2
.

By the maximum principle, min
Ω̄
ṽ ≥ min

Ω̄
m (Theorem 3.13). Hence,

−λv
∫

Ω

eηm > ν

∫
Ω

|∇ṽ|2 e
ηṽ(ηminΩ̄m− 1)

ṽ2
≥ 0,

provided that η ≥ 1
minΩ̄ m

. Therefore, if η ≥ 1
minΩ̄ m

, then λv < 0, i.e. the semi-

trivial steady state (0, ṽ) is unstable. �

Finally, Theorem 2.2 follows from the instabilities of the semi-trivial steady
states (ũ, 0) and (0, ṽ) (established in Lemmas 4.5 and 4.6) and the standard theory
of monotone dynamical systems (Theorem 3.2(ii)).

4.2. Classification of µ-ν plane: Proof of Theorem 2.5

Lemma 4.7. For each µ > 0,

lim sup
η→∞

λu(η, µ, ν) ≤ − 1

|Ω|

∫
{x∈Ω:|∇m|>0}

m < 0

uniformly in ν > 0.

Proof. Let ϕ denote a positive eigenfunction of λu(η, µ, ν), i.e.

−ν∆ϕ+ (ũ−m)ϕ = λuϕ in Ω,
∂ϕ

∂n
|∂Ω = 0.

Dividing the above equation by ϕ and integrating by parts,

λu|Ω| = −ν
∫

Ω
|∇ϕ|2∫
Ω
ϕ2

+

∫
Ω

(ũ−m).



4.2. CLASSIFICATION OF µ-ν PLANE: PROOF OF THEOREM 2.5 23

The claim follows from Lemma 4.1 by taking lim sup as η →∞. �

Next, for each µ > 0 and ν > 0, define F (µ, ν) := sup0≤η<∞ λu(η, µ, ν).

Lemma 4.8. For each µ > 0, F (µ, ν) < 0 for all ν sufficiently small.

Proof. Fix µ > 0. Suppose to the contrary that there exists νi → 0+, and
ηi ∈ [0,∞) such that λu,i := λu(ηi, µ, νi) ≥ −1/i. By Lemma 4.7, ηi must be
uniformly bounded. Thus we may assume without loss of generality that ηi → η0 ∈
[0,∞). Set ũi := ũ(µ, ηi). By standard elliptic regularity, ũi → ũ0 := ũ(µ, η0) in
C(Ω̄). By the definition of λu,i, there exists ϕi > 0 such that{

−νi∆ϕi + (ũi −m)ϕi = λu,iϕi in Ω,
∂ϕi
∂n = 0 on ∂Ω.

On the other hand, for a given ε > 0, denote by λi the principal eigenvalue of{
−νi∆ϕ+ (ũ0 + ε−m)ϕ = λϕ in Ω,
∂ϕ
∂n = 0 on ∂Ω.

It is well-known that (see, e.g., [53]), as νi → 0,

lim
i→∞

λi = min
Ω̄

(ũ0 + ε−m).

Since ũi → ũ0 in C(Ω̄), there exists i0 such that ũi ≤ ũ0 + ε for all i ≥ i0. By
the comparison principle of eigenvalues (see, e.g. [81]), λi ≥ λu,i for i ≥ i0. This
implies that for each ε > 0,

min
Ω̄

(ũ0 + ε−m) = lim
i→∞

λi ≥ lim sup
i→∞

λu,i ≥ lim sup
i→∞

−1

i
= 0.

Letting ε→ 0, we see that ũ0−m ≥ 0 in Ω̄. By the integral identity
∫

Ω
ũ0(m−ũ0) =

0 obtained by integrating the equation of ũ0 = ũ(µ, η0), we deduce that ũ0 = m,
which is a contradiction, as m does not satisfy the equation of ũ0 = ũ(µ, η0) for
any η0 ≥ 0. �

Lemma 4.9. Suppose that Ω is convex, then for each µ > 0, there exists ν̄ =
ν̄(µ) ∈ (0, µ) such that F (µ, ν) < 0 for ν ∈ (0, ν̄) and F (µ, ν) > 0 for ν ∈ (ν̄,∞).

Proof. By (3.13) and Theorem 3.10 (b), we deduce that for a convex domain
Ω, ∂

∂ηλu(0, µ, µ) > 0 for all µ > 0.

On the other hand, it is easy to see that λu(0, µ, µ) = 0 for all µ > 0. In
particular λu(η, µ, µ) > 0 when η is small and positive. Hence F (µ, µ) > 0. Hence
for each µ > 0, we may define

ν̄ = ν̄(µ) = sup{ν′ > 0 : F (µ, ν) < 0 for all 0 < ν < ν′}.

By the definition of ν̄, we see that ν̄ < µ and λu(η, µ, ν) ≤ F (µ, ν) < 0 for all
ν ∈ (0, ν̄). Next, from Lemma 4.7 we conclude that there exists η0 ≥ 0 such that
λu(η0, µ, ν̄) = 0, i.e. F (µ, ν̄) is attained by some η0. Moreover, by the strict mono-
tonicity of λu in ν (since m−ũ(µ, η) is non-constant), λu(η0, µ, ν) > λu(η0, µ, ν̄) = 0
for all ν > ν̄. This implies that F (µ, ν) > 0 for all ν > ν̄. �

For general smooth domain (not necessarily convex), the conclusion of Lemma
4.9 still holds provided that µ is sufficiently small or sufficiently large.
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Corollary 4.10. For general smooth domain Ω, there exists ε0 ∈ (0, 1) such
that for µ ∈ (0, ε0) ∪ (1/ε0,∞), there exists ν̄ ∈ (0, µ) such that F (µ, ν) < 0 for
ν ∈ (0, ν̄) and F (µ, ν) > 0 for ν ∈ (ν̄,∞).

Proof. The proof is analogous to the proof of Lemma 4.9, with Theorem
3.10(a) in place of Theorem 3.10(b). �

Proof of Theorem 2.5. We first consider the stability of (ũ, 0). Fix µ > 0.
It follows from Lemma 4.9 that if ν ∈ (0, ν̄), then λu(η, µ, ν) < 0 for all η ≥ 0; i.e.,
if ν < ν̄, then (ũ, 0) is unstable for any η ≥ 0. For every ν > ν̄, we recall from the
proof of Lemma 4.9 that there exists some η0 ≥ 0 such that λu(η0, µ, ν) > 0. We
also have λu(0, µ, ν) = sign(ν − µ) by Theorem 3.5, and that λu(η, µ, ν) < 0 for
η > 1

minΩ̄ m
(Lemma 4.7). Hence, depending on ν ∈ (ν̄, µ) or ν ∈ (µ,∞), λu(η, µ, ν)

changes sign at least twice or once as η ranges from 0 to ∞.
For the stability of (0, ṽ), by Theorem 3.5 we have λv(0, µ, ν) = sign(µ − ν).

Hence if ν < µ, (0, ṽ) is stable for small positive η. Lemma 4.7 implies that if
η > 1

minΩ̄ m
, then (0, ṽ) is unstable. Therefore, if ν < µ, (0, ṽ) changes stability at

least once as η varies from zero to infinity. �

Corollary 4.11. For general smooth domain Ω, there exists ε0 ∈ (0, 1) such
that for µ ∈ (0, ε0) ∪ (1/ε0,∞), there exists a unique ν̄ = ν̄(µ) ∈ (0, µ) such that
the conclusions (i)-(iii) of Theorem 2.5 hold.

Proof. The proof is analogous to the proof of Theorem 2.5, with Corollary
4.10 in place of Lemma 4.9. �

4.3. Limiting behavior of ν̄

By Corollary 4.11, we have seen that domain convexity is not needed for The-
orem 2.5(i) - (iii) to hold when µ is sufficiently small or sufficiently large. In this
section we shall prove Theorem 2.7, which concerns the limiting behavior of ν̄ for
small and large µ. Some technical proofs are postponed to Appendix B.

Recall that ν̄ = ν̄(µ) > 0 can be characterized as

ν̄(µ) = sup {ν′ > 0 : λu(η, µ, ν) < 0 for all η ≥ 0 and 0 < ν < ν′} .
We first prove Theorem 2.7(iv).

Proof of Theorem 2.7(iv). By Theorem 2.2, λu < 0 whenever η ≥ 1
minΩ̄ m

.

Thus, it suffices to keep track of the sign changes of λu for η ∈ [0, 1
minΩ̄ m

]. Let

a∗ ∈ (0, 1) be given in Theorem B.2(iv). Suppose to the contrary that for some
µk → 0,

ν̄(µk)

µk
→ d, for some d 6= a∗.

Case (i): ν̄(µk)/µk → d, for some 0 ≤ d < a∗.
By the definition of ν̄ and monotonicity of λu in ν, we may choose νk, ηk such

that (µk, νk) ∈ R2,

ηk ∈
[
0,

1

minΩ̄m

]
, and ν̄(µk) < νk < µk

and
νk
µk
→ d+ a∗

2
∈ (0, a∗), λu(ηk, µk, νk) ≥ 0.
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Passing to a subsequence, we may assume that ηk → η0 ≥ 0. On the other hand,
by Corollary 3.18 and Theorem B.4(i),

λu(ηk, µk, νk)

µk
→ σ1

(
η0;

d+ a∗
2

)
< 0,

where σ1(η; d) is the principal eigenvalue of (3.19). This is a contradiction to the
fact that λu(ηk, µk, νk) ≥ 0.
Case (ii): ν̄(µk)/µk → d, for some d ∈ (a∗, 1].
By definition of ν̄, for each k, λu(η, µk, ν̄(µk)) ≤ 0 for all η ≥ 0. But then Corollary
3.18 implies that

λu(η, µk, ν̄(µk))

µk
→ σ1(η; d).

But the latter changes sign exactly twice as η varies from 0 to∞ (Theorem B.4(ii)).
We obtain a contradiction again. In conclusion, ν̄(µ)/µ→ a∗, as µ→ 0. �

Next, define τ = τ(η; ν) to be the principal eigenvalue of

(4.8)

{
ν∆ϕ+

(
m−

∫
Ω
meηm∫

Ω
e2ηm

eηm
)
ϕ+ τϕ = 0 in Ω,

∂ϕ
∂n = 0 on ∂Ω.

Lemma 4.12. As µ → ∞, λu(η, µ, ν) → τ(η; ν) uniformly in η ∈ [0, 1
minΩ̄ m

]

and uniformly for ν in any compact subset of (0,∞).

Proof. This follows from the continuous dependence of the principal eigen-
value on coefficients. More precisely, suppose that ν = νi → ν0 ∈ (0,∞), µi → ∞
and ηi → η0 ∈ [0, 1

minΩ̄ m
]. Let ϕi be the principal eigenfunction corresponding to

λu,i = λu(ηi, µi, νi) normalized by ‖ϕi‖L∞(Ω) = 1, which satisfies

(4.9) νi∆ϕi + (m− ũ(µi, ηi))ϕi + λu,iϕi = 0 in Ω,
∂ϕi
∂n
|∂Ω = 0.

We first prove that λu,i is bounded, which follows from the eigenvalue comparison

min
Ω̄

(ũ(µi, ηi)−m) ≤ λu,i ≤ max
Ω̄

(ũ(µi, ηi)−m)

and the L∞ boundedness of ũ(µi, ηi) (Lemma A.1). Therefore, by elliptic regularity
theory, passing to a subsequence, we may assume that ϕi ⇀ ϕ0 in W 2,p(Ω) and
λu,i → λ0. Passing to the limit in (4.9) (using Lemma A.1), we deduce that ϕ0 is
a non-trivial, non-negative eigenfunction of

ν0∆ϕ0 +

(
m−

∫
Ω
meη0m∫

Ω
e2η0m

eη0m

)
ϕ0 + λ0ϕ0 = 0 in Ω,

∂ϕ0

∂n
= 0 on ∂Ω.

This implies that λ0 = τ(η0; ν0) and ϕ0 is the corresponding normalized principal
eigenfunction. By the uniqueness of the limit, the original full sequence also con-
verges. This proves that λu → τ as µ → ∞ uniformly in η ∈ [0, 1

minΩ̄ m
] and ν in

compact subsets of (0,∞). �

Proposition 4.13. There exists a unique ν+ > 0 such that

(i) if ν ∈ (0, ν+), then τ < 0 for all η ∈ [0,∞);
(ii) if ν ∈ (ν+,∞), then τ changes sign at least twice as η varies from 0 to ∞

(from negative to positive, back to negative).

Here τ = τ(η; ν) is the principal eigenvalue of (4.8).
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Proposition 4.13 is proved independently in Appendix C, along with results
concerning other limiting eigenvalue problems. We note that the convexity of Ω is
not needed for Proposition 4.13 to hold.

Proof of Theorem 2.7(v). First, we show that

(4.10) lim inf
µ→∞

ν̄ ≥ ν+.

Fix ν < ν+, then by Theorem 2.2, (regardless of µ, ν > 0)

(4.11) λu < 0 for η ≥ 1

minΩ̄m
.

It suffices to show that λu < 0 for η ∈ [0, 1
minΩ̄ m

] when µ is sufficiently large. By

Proposition 4.13(i), there exists ε0 such that τ(η; ν) < −ε0 for all η ∈ [0, 1
minΩ̄ m

].

Hence by Lemma 4.12, there exists µ2 > 0 such that for all µ ≥ µ2,

λ1(η, µ, ν) < τ(η; ν) + ε0 < 0

for all η ∈ [0, 1
minΩ̄ m

]. This implies lim inf
µ→∞

ν̄ ≥ ν. Letting ν ↗ ν+ proves (4.10).

Similarly, we show

(4.12) lim sup
µ→∞

ν̄ ≤ ν+.

Given ν ∈ (ν+,∞), then by Proposition 4.13(ii), τ(η; ν) changes sign as η ranges
from 0 to 1

minΩ̄ m
. The same holds true for λu(η, µ, ν) for µ sufficiently large, by

Lemma 4.12. Hence lim sup
µ→∞

ν̄ ≤ ν. Letting ν ↘ ν+ proves (4.12). �



CHAPTER 5

Results in R1: Proof of Theorem 2.10

By Theorem 2.5, the semi-trivial steady state (ũ, 0) is unstable for all η ≥ 0
whenever (µ, ν) ∈ R1; i.e. the part of Conjecture 2.9(a) concerning stability of (ũ, 0)
holds true. The main question is whether the stability of (0, ṽ) changes exactly once
as η varies from 0 to ∞. In this chapter we will address this question and establish
Theorem 2.10. Part (a) of Theorem 2.10 is proved in Section 5.1, while the proof
of part (b) is given in Section 5.2.

We first observe that (0, ṽ) changes stability at least once whenever (µ, ν) ∈ R1.

Lemma 5.1. If µ > ν, then

λv(η, µ, ν) =

{
> 0 when η = 0,
< 0 when η ≥ 1

minΩ̄ m
.

In particular, (0, ṽ) changes stability at least once as η varies from 0 to ∞.

Proof. On the one hand, one can deduce by variational characterization that
λv(0, µ, ν) is strictly increasing in µ. Hence

λv(0, µ, ν) > λv(0, ν, ν) = 0.

On the other hand, Lemma 4.6 guarantees that λv(η, µ, ν) < 0 for all η ≥ 1/minΩ̄m.
Hence λv(η, µ, ν) changes sign at least once. �

Let us denote by η∗ = η∗(µ, ν) any point(s) where λv(·, µ, ν) = 0, and let ψ be
the positive eigenfunction corresponding to λv(η∗, µ, ν) = 0.

Lemma 5.2.
∂λv
∂η

(η∗, µ, ν) = −µ
∫

Ω
eη∗mψ∇m · ∇ψ∫

Ω
eη∗mψ2

.

Proof. We shall prove the formula for any η ≥ 0. Rewrite (3.3) equivalently
as

(5.1)

{
µ∆ψ + µη∇m · ∇ψ + (m− ṽ)ψ + λvψ = 0 in Ω,
∂ψ
∂n = 0 on ∂Ω.

Differentiating (5.1) with respect to η and denoting this differentiation as ′ for ease
of notation, we have
(5.2){

µ∆ψ′ + µη∇m · ∇ψ′ + (m− ṽ)ψ′ + λvψ
′ = −µ∇m · ∇ψ − λ′vψ in Ω,

∂ψ′

∂n = 0 on ∂Ω.

Rewriting (5.2), we have

(5.3) e−ηmµ∇ · (eηm∇ψ′) + (m− ṽ)ψ′ + λvψ
′ = −µ∇m · ∇ψ − λ′vψ.

27
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Multiply (5.3) by eηmψ and integrate by parts,

(5.4)
−µ
∫

Ω
eηm∇ψ′ · ∇ψ +

∫
Ω
eηm(m− ṽ)ψ′ψ + λv

∫
Ω
ψ′ψeηm

= −µ
∫

Ω
eηmψ∇m · ∇ψ − λ′v

∫
Ω
eηmψ2.

Next, we multiply (5.1) by ψ′ and integrate by parts, we have

−µ
∫

Ω

eηm∇ψ · ∇ψ′ +
∫

Ω

eηm(m− ṽ)ψψ′ + λv

∫
Ω

ψψ′eηm = 0.

Hence the left hand side of (5.4) is zero and we have

−µ
∫

Ω

eηmψ∇m · ∇ψ − λ′v
∫

Ω

eηmψ2 = 0.

This proves Lemma 5.2. �

5.1. The case when (µ, ν) ∈ R1 and µ
ν is sufficiently large

In this section we prove Theorem 2.10(a).

Remark 5.3. For a general smooth domain Ω, ν̄(µ) and hence R1 may not
be well-defined. Nonetheless, by Theorem 2.7, ν̄(µ) is defined for µ sufficiently
small, or sufficiently large. In fact, the convexity of domain Ω is used only to define
ν̄(µ) for intermediate µ (and hence the region R1). And Theorem 2.10(a) holds,
provided that we rephrase the statement carefully.

By the fact that the ν̄(µ) satisfies, by Theorem 2.7,

lim
µ→0

ν̄(µ)

µ
= a∗, and lim

µ→∞
ν̄(µ) = ν+ for some 0 < a∗ < 1 and ν+ > 0,

since R1 = {(µ, ν) : µ > 0, 0 < ν < ν̄(µ)}, it suffices to consider two cases: (i)
ν 6→ 0,∞, µ→∞; (ii) ν, ν/µ→ 0.

5.1.1. Case (i): ν 6→ 0,∞, and µ→∞.

Proposition 5.4. For each fixed ε ∈ (0, 1), there exists µ such that if ν ∈
[ε, 1/ε] and µ > µ, then there exists a unique positive number η∗ such that λv(η, µ, ν) >
0 for η ∈ [0, η∗) and λv(η, µ, ν) < 0 for η ∈ (η∗,∞). Moreover,

lim
ν→ν0,µ→∞

η∗ = η2,

where η2 = η2(ν0) is the unique positive root of (denoting ṽ = ṽ(ν0))

F2(η) =

∫
Ω

eηm(m− ṽ).

Lemma 5.5. For each ν, dF2

dη > 0 for any η > 0.
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Proof.
dF2

dη
=

∫
Ω

eηmm(m− ṽ)

=

∫
Ω

[eηmm− eηṽ ṽ](m− ṽ) +

∫
Ω

eηṽ ṽ(m− ṽ)

>

∫
Ω

eηṽ ṽ(m− ṽ)

= −ν
∫

Ω

eηṽ∆ṽ

= νη

∫
Ω

eηṽ|∇ṽ|2

> 0,

where the strict inequalities follow from m and hence ṽ being non-constant. �

Lemma 5.6. For each ν, there exists a unique η2 > 0 such that F2(η) < 0 for
η ∈ [0, η2) and F2(η) > 0 for η ∈ (η2,∞). Moreover, η2 ∈ (0, 1

minΩ̄ m
).

Proof. Note that

F2(0) =

∫
Ω

(m− ṽ) = −ν
∫

Ω

∆ṽ

ṽ
= −ν

∫
Ω

|∇ṽ|2

ṽ2
< 0,

and

F2(η) =

∫
Ω

[eηm − eηṽ](m− ṽ) +

∫
Ω

eηṽ(m− ṽ)

>

∫
Ω

eηṽ(m− ṽ)

= −ν
∫

Ω

eηṽ

ṽ
∆ṽ

= ν

∫
Ω

eηṽ|∇ṽ|2

ṽ2
(ηṽ − 1).

As ṽ(x) ≥ minΩ̄m in Ω (Theorem 3.13), if we have η ≥ 1
minΩ̄ m

, then

F2(η) > ν

∫
Ω

eηṽ|∇ṽ|2

ṽ2
(ηmin

Ω̄
m− 1) > 0.

Since F2 is strictly monotonically increasing, we see that there exists η2 ∈ (0, 1
minΩ̄ m

)

such that F2(η) < 0 for η < η2 and F2(η) > 0 for η > η2. �

Next, we prove the main result of the subsection.

Proof of Proposition 5.4. Recall that the principal eigenvalue of (3.3), de-
noted by λv = λv(η, µ, ν), determines the local stability of (0, ṽ). We normalize the
associated positive eigenfunction ψ = ψ(η, µ, ν) by

∫
Ω
ψ2 = |Ω|.

Firstly, if µ > ν, then λv(0, µ, ν) > 0 (Theorem 3.5). Secondly, given any µ, ν,
if η ≥ 1

minΩ̄ m
, then λv(η, µ, ν) < 0 (Theorem 2.5). These two results imply that

if µ > ν, then η 7→ λv has at least one positive root. To establish the theorem,
it suffices to show that for sufficiently large µ, λv(η, µ, ν), as a function of η, has
at most one positive root. To this end, we argue by contradiction: Suppose that
there exist {µi, νi}∞i=1 with µi → ∞ and νi → ν0 > 0, as well as 0 < η̂i < η̃i such
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that λv(η̂i, µi, νi) = λv(η̃i, µi, νi) = 0. Note that η̂i, η̃i ≤ 1
minΩ̄ m

. Passing to a

subsequence if necessary, we may assume that η̂i → η̂, η̃i → η̃ as i→∞.
We first show that η̂ = η̃ = η2 = η2(ν0), i.e. limi→∞ η̂i = limi→∞ η̃i = η2. Set

ψi = ψ(η̂i, µi, νi). Then ψi satisfies, with ṽ = ṽ(νi),

µi∇ · [eη̂im∇ψi] + (m− ṽ)eη̂imψi = 0 in Ω,
∂ψi
∂n

∣∣∣∣
∂Ω

= 0.

Since ψi is uniformly bounded in L2(Ω), by elliptic regularity we deduce the uniform
boundedness of ‖ψi‖W 2,2(Ω). By the Sobolev embedding theorem, passing to a

subsequence if necessary, ψi → ψ̂ weakly in W 2,2(Ω) and strongly in W 1,2(Ω) for

some ψ̂ ∈W 2,2(Ω), which is a weak solution of

∇ · [eη̂m∇ψ̂] = 0 in Ω,
∂ψ̂

∂n

∣∣∣∣∣
∂Ω

= 0.

Hence, ψ̂ is equal to some constant, denoted as C1. Since
∫

Ω
ψ̂2 = |Ω|, we see that

C1 = 1. Now integrating the equation of ψi in Ω, we have (denoting ṽ = ṽ(νi))∫
Ω

(m− ṽ)eη̂imψi = 0.

Passing to the limit, we find that (here ṽ = ṽ(ν0))∫
Ω

(m− ṽ)eη̂m = 0.

Lemma 5.5 implies that η̂ = η2. Hence, this shows that η̂i → η2 as i → ∞.
Similarly, η̃i → η2 as i→∞.

Since η̂i < η̃i and λv(η̂i, µi, νi) = λv(η̃i, µi, νi) = 0, there exists some η̄i ∈
(η̂i, η̃i) such that ∂λv

∂η (η̄i, µi, νi) = 0. Since η̂i, η̃i → η2, we have η̄i → η2. Therefore,

setting ψ̄i = ψ(η̄i, µi, νi), one can show in much of the same manner as before that
ψ̄1 → 1 weakly in W 2,2, and

λv(η̄i, µi, νi)

∫
Ω

ψ̄ie
η̄im =

∫
Ω

(m− ṽ)eη̄imψ̄i →
∫

Ω

(m− ṽ)eη2m = 0

and hence λv(η̄i, µi, νi) → 0 as i → ∞. Set ψ̄i,η = ∂ψ̄i
∂η (η̄i, µi, νi). Then, as

∂λv
∂η (η̄i, µi, νi) = 0, ψ̄i,η satisfies{
µi[∆ψ̄i,η +∇m · ∇ψ̄i + η̄i∇m · ∇ψ̄i,η] + (m− ṽ)ψ̄i,η = −λv(η̄i, µi, νi)ψ̄i,η in Ω,
∂ψ̄i,η
∂n = 0 on ∂Ω.

Define the operator Li : W 2,2
N (Ω) ≡ {φ ∈W 2,2(Ω), ∂φ∂n

∣∣∣
∂Ω

= 0} → L2(Ω) by

Liφ = ∆φ+ η̄i∇m · ∇φ+
1

µi
φ(m− ṽ) +

1

µi
λv(η̄i, µi, νi)φ.

It is easy to see that all eigenvalues of Li are real, zero is the smallest eigenvalue
and ψ̄i is an eigenfunction of zero. This implies, by the Fredholm alternative,
that if we restrict the domain of Li to W 2,2

N (Ω) ∩ {φ :
∫

Ω
φψ̄i = 0}, then L−1

i

defined on the range of L1 exists, and is uniformly bounded for all i. Differentiating
the constraint

∫
Ω
ψi(η, µ, ν)2 = |Ω| with respect to η and evaluating the result

at (η, µ, ν) = (η̄i, µi, νi), we have
∫

Ω
ψ̄iψ̄i,η = 0. Since ‖ψ̄i‖W 2,2(Ω) is bounded,

ψ̄i,η = L−1
i (∇m · ∇ψ̄i) is uniformly bounded in W 2,2(Ω). Passing to a subsequence
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if necessary, we may assume that ψ̄i,η → ψ̄η weakly in W 2,2(Ω) and strongly in
W 1,2(Ω), where ψ̄η satisfies (note that µi → ∞, νi → ν0, η̄i → η2 = ηv(ν0) and
ψ̄i → 1) {

∆ψ̄η + η2∇m · ∇ψ̄η = 0 in Ω,
∂ψ̄η
∂n = 0 on ∂Ω,

∫
Ω
ψ̄η = 0.

Therefore ψ̄η = 0. This implies that ψ̄i,η → 0 in W 1,2(Ω).
Integrating (3.3) in Ω, we have∫

Ω

eηm(m− ṽ)ψ(η, µ, ν) = −λv(η, µ, ν)

∫
Ω

eηmψ(η, µ, ν).

Differentiating the above equation with respect to η, and evaluating the result at
(η, µ, ν) = (η̄i, µi, νi) while using ∂λv

∂η (η̄i, µi, νi) = 0, we have∫
Ω

meη̄im(m− ṽ)ψ̄i +

∫
Ω

eη̄im(m− ṽ)ψ̄i,η = −λv(η̄i, µi, νi)
∫

Ω

eη̄im[ψ̄i,η +mψ̄i].

Since η̄i → η2, ψ̄i → 1, ψ̄i,η → 0 in W 1,2(Ω) and λv(η̄i, µi, νi) → 0 as i → ∞,
passing to the limit in the above equation we have∫

Ω

meη2m(m− ṽ) = 0,

which is equivalent to dF2

dη (η2) = 0, a contradiction to Lemma 5.5. This shows

that if µ is sufficiently large, (0, ṽ) changes stability exactly once in (0, 1
minΩ̄ m

) as

η varies from zero to ∞. �

5.1.2. Case (ii): ν, ν/µ → 0. In this subsection, we take up the case
ν, ν/µ→ 0. The main result of this section is

Proposition 5.7. There exists ε1 > 0 such that if max
{
ν, νµ

}
< ε1, then

there exists a unique positive number η∗ such that λv(η, µ, ν) > 0 for η ∈ [0, η∗) and
λv(η, µ, ν) < 0 for η ∈ (η∗,∞). Moreover,

lim
ν, ν/µ→0

η∗ = η3,

where η3 is the unique positive root of

(5.5) F3(η) =

∫
Ω

|∇m|2

m2
eηm(ηm− 1).

We shall prove Proposition 5.7 in a series of lemmas.

Lemma 5.8. For any p ≥ 1, there exists C > 0 such that whenever η = η∗(µ, ν),∫
Ω

|∇ψp|2 ≤ C ν
µ

∫
Ω

ψ2p

for all µ
ν >

4p2

2p−1 . In particular, if we take p = 2 and normalize
∫

Ω
ψ4 = |Ω|, then

as µ
ν →∞, ψ → 1 in L4(Ω), and ψ∇ψ,∇ψ → 0 in L2(Ω).

Proof. Multiply (3.3) by ψ2p−1 and integrate by parts, we have

(2p− 1)

∫
Ω

eη∗mψ2p−2|∇ψ|2 =
ν

µ

∫
Ω

m− ṽ
ν

ψ2peη∗m.
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Then we estimate in the following manner, making use of |∇ψp|2 = p2ψ2p−2|∇ψ|2
and (2.3).

2p− 1

p2

∫
Ω

eη∗m|∇ψp|2

=
ν

µ

∫
Ω

−∆ṽ

ṽ
ψ2peη∗m

=
ν

µ

∫
Ω

∇ṽ · ∇
(
ψ2peη∗m

ṽ

)
=
ν

µ

∫
Ω

eη∗m
[
−|∇ṽ|

2

ṽ2
ψ2p +

2pψ2p−1

ṽ
∇ṽ · ∇ψ + η∗

ψ2p

ṽ
∇ṽ · ∇m

]
≤ ν

µ

∫
Ω

eη∗m
[
−|∇ṽ|

2

ṽ2
ψ2p +

(
1

2

|∇ṽ|2

ṽ2
ψ2p + 2p2ψ2p−2|∇ψ|2

)
+

(
1

2

|∇ṽ|2

ṽ2
ψ2p +

1

2
ψ2pη2

∗|∇m|2
)]

=
ν

µ

∫
Ω

eη∗m
[
2|∇ψp|2 +

1

2
η2
∗|∇m|2ψ2p

]
.

If µ
ν >

4p2

2p−1 , then subtracting both sides by 2 νµ
∫

Ω
eη∗m|∇ψp|2, we have

2p− 1

2p2

∫
Ω

eη∗m|∇ψp|2 ≤ η2
∗
2
|∇m|2L∞(Ω)

ν

µ

∫
Ω

eη∗mψ2p.

Since η∗ ∈ [0, 1
minΩ̄ m

] (Lemma 4.6), it follows that∫
Ω

|∇ψp|2 ≤ C
(
ν

µ

)∫
Ω

|ψ|2p.

Take p = 2 and normalize by
∫

Ω
ψ4 = |Ω|, then we see that

∫
Ω
|∇ψ2|2 → 0 as

µ
ν → ∞. Hence ψ2 → 1 in H1(Ω), which implies that ψ∇ψ → 0 in L2(Ω) and

ψ → 1 in L4(Ω) (as (ψ− 1)4 ≤ (ψ2− 1)2). Taking p = 1, we get ∇ψ → 0 in L2(Ω).
This proves the lemma. �

By Lemma 5.1, λv(·, µ, ν) has at least one root. Denote any such root by η∗,
we have the following asymptotic result.

Lemma 5.9. lim
ν, νµ→0

η∗ = η3, where η3 is the unique positive root of (5.5).

Proof. Dividing (3.3) by ν and integrating over Ω,∫
Ω

m− ṽ
ν

eη∗mψ = 0.

Substituting (2.3), we have ∫
Ω

−∆ṽ

ṽ
eη∗mψ = 0.

Integrate by parts over Ω, then∫
Ω

eη∗m
(
−|∇ṽ|

2

ṽ2
ψ + η∗

∇ṽ · ∇m
ṽ

ψ +
∇ṽ · ∇ψ

ṽ

)
= 0.
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Using the identity −|∇ṽ|2 = −|∇ṽ −∇m|2 + |∇m|2 − 2∇ṽ · ∇m, we have
(5.6)∫

Ω

eη∗m
[
ψ

ṽ2

(
−|∇ṽ −∇m|2 + |∇m|2 − 2∇ṽ · ∇m

)
+ η∗

∇ṽ · ∇m
ṽ

ψ +
∇ṽ · ∇ψ

ṽ

]
= 0.

By Theorem 3.12(iii), and the fact that ṽ ≥ minΩ̄m,∫
Ω

eη∗mψ

ṽ2
|∇ṽ −∇m|2 ≤ C‖ṽ −m‖L∞(Ω)

(
‖eη∗m‖2H1(Ω) + ‖ψ‖2H1(Ω)

)
.

Using ṽ → m in L∞(Ω) ∩ H1(Ω) (Theorem 3.12(iv)) and that ψ → 1 in H1(Ω)
(Lemma 5.8), we deduce that

lim
ν, νµ→0

∫
Ω

eη∗mψ

ṽ2
|∇ṽ −∇m|2 = 0.

Take any convergent subsequence so that η∗ → η̂, we may pass to the limit in (5.6).∫
Ω

eη̂m
[
−|∇m|

2

m2
+ η̂
|∇m|2

m

]
= 0.

i.e. F3(η̂) = 0. Thus η̂ = η3, the unique positive root of F3. Since this is true for
all convergent subsequences, we have proved the lemma. �

Lemma 5.10. lim
ν, νµ→0

µ

ν

∫
Ω

eη∗m|∇ψ|2 = 0.

Proof. Multiply (3.3) by ψ/ν and integrate by parts, we have

µ

ν

∫
Ω

eη∗m|∇ψ|2 =

∫
Ω

eη∗m
m− ṽ
ν

ψ2.

By (2.3), we deduce

µ

ν

∫
Ω

eη∗m|∇ψ|2 = −
∫

Ω

eη∗m
∆ṽ

ṽ
ψ2.

Integrating by parts, we have

µ

ν

∫
Ω

eη∗m|∇ψ|2

=

∫
Ω

eη∗m
[
−|∇ṽ|

2

ṽ2
ψ2 + η∗

ψ2

ṽ
∇ṽ · ∇m+

2ψ

ṽ
∇ṽ · ∇ψ

]
=

∫
Ω

eη∗m
[
ψ2

ṽ2

(
−|∇ṽ −∇m|2 + |∇m|2 − 2∇ṽ · ∇m

)
+
ψ

ṽ
∇ṽ · (η∗ψ∇m+ 2∇ψ)

]
.

Arguing in the same way as before, by ṽ → m in L∞(Ω) ∩ H1(Ω) (Lemma 5.8)
and that ψ,ψ2 → 1 in H1(Ω), ψ∇ψ → 0 in L2(Ω) (Lemma 5.8), and the previous
lemma, we pass to the limit and deduce that

lim sup
ν, νµ→0

µ

ν

∫
Ω

eη∗m|ψ|2 =

∫
Ω

eη3m

[
−|∇m|

2

m2
+ η3

|∇m|2

m

]
= 0.

Note that the last equality follows from the definition of η3 being the unique positive
root of F3. �
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Remark 5.11. In the proof of Lemma 5.10, we have actually proved the fol-
lowing identity that will be useful later.

(5.7) lim
ν, νµ→0

∫
Ω

eη∗m
|∇ṽ|2

ṽ2
ψ2 =

∫
Ω

eη3m
|∇m|2

m2
.

Lemma 5.12. lim
ν, νµ→0

∫
Ω

m− ṽ
ν

eη∗mmψ2 =

∫
Ω

eη3m|∇m|2η3 > 0, where η3 is

the unique positive root of

F3(η) =

∫
Ω

|∇m|2

m2
eηm(ηm− 1).

Proof. By (2.3),∫
Ω

m− ṽ
ν

eη∗mmψ2

= −
∫

Ω

∆ṽ

ṽ
eη∗mmψ2

=

∫
Ω

∇ṽ · ∇
(
eη∗mmψ2

ṽ

)
=

∫
Ω

eη∗m
(
−|∇ṽ|

2

ṽ2
mψ2 +∇ṽ · ∇mψ2

ṽ
+ η∗∇ṽ · ∇m

mψ2

ṽ
+ 2

mψ

ṽ
∇ṽ · ∇ψ

)
.

By (5.7) and the generalized version of Lebesgue’s Dominated Convergence Theo-
rem [92],

lim
ν, νµ→0

∫
Ω

eη∗m
|∇ṽ|2

ṽ2
mψ2 =

∫
Ω

eη3m
|∇m|2

m
.

Hence, by applying the convergence results (Theorem 3.12(iv) and Lemma 5.8) as
before,

lim
ν, νµ→0

∫
Ω

m− ṽ
ν

eη∗mψ2 =

∫
Ω

eη3m

(
−|∇m|

2

m
+
|∇m|2

m
+ η3|∇m|2

)
= η3

∫
Ω

eη3m|∇m|2 > 0.

This completes the proof of Lemma 5.12. �

Now we prove Proposition 5.7.

Proof of Proposition 5.7. By Lemma 5.1, λv(·, µ, ν) has at least one pos-
itive root. To show that λv(·, µ, ν) has in fact a unique positive root, it suffices to
show that

(5.8)
∂

∂η
λv(η∗, µ, ν) < 0 for any root η∗ of λv(·, µ, ν).

Now multiply (3.3) by mψ and integrate by parts to obtain

µ

ν

∫
Ω

eη∗mm|∇ψ|2 +
µ

ν

∫
Ω

eη∗mψ∇m · ∇ψ =

∫
Ω

m− ṽ
ν

eη∗mmψ2.

By Lemma 5.10,

0 ≤ µ

ν

∫
Ω

eη∗mm|∇ψ|2 ≤ µ

ν
‖m‖L∞(Ω)

∫
eη∗m|∇ψ|2 → 0,
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as ν, ν/µ→ 0. Also, by Lemma 5.12,∫
Ω

m− ṽ
ν

eη∗mmψ2 →
∫

Ω

eη3m|∇m|2η3 > 0.

Hence,
µ

ν

∫
Ω

eη∗mψ∇m · ∇ψ →
∫

Ω

eη3m|∇m|2η3 > 0.

And (5.8) follows from Lemma 5.2. �

5.1.3. Proof of Theorem 2.10(a). Here we show Theorem 2.10(a) by com-
bining Propositions 5.4 and 5.7.

Proof of Theorem 2.10(a). Suppose Ω is convex, then R1 (Theorem 2.5) is
defined by

R1 = {(µ, ν) : µ > 0, 0 < ν < ν̄(µ)} ,
with ν̄(µ) defined for all µ > 0, satisfying (by Theorem 2.7)

0 < ν̄(µ) < µ, lim
µ→0

ν̄(µ)

µ
= a∗, lim

µ→∞
ν̄(µ) = ν+,

for some 0 < a∗ < 1 and ν+ > 0. By Theorem 2.5(i), for each (µ, ν) ∈ R1, (ũ, 0)
remains unstable for all η ≥ 0. It suffices to show that (0, ṽ) changes stability
exactly once, as η varies from 0 to ∞. Suppose not, then there exists (µi, νi) ∈ R1

such that µi/νi →∞ and λv(·, µi, νi) changes sign more than once in [0,∞). Now,
νi 6→ 0 by Proposition 5.7.

Hence we may assume, by passing to a subsequence, that νi → ν∞ ∈ (0, v+].
But this contradicts Proposition 5.4. This proves Theorem 2.10(a) for convex do-
mains.

For a general domain Ω, by Corollary 4.11, there exists ε0 > 0 such that
ν̄(µ) ∈ (0, µ) is defined for µ ∈ (0, ε0] ∪ [1/ε,∞), and Theorem 2.5, when restricted
to µ ∈ (0, ε0] ∪ [1/ε0,∞), holds. Moreover, by Lemma 4.8, for all µ ∈ [ε0, 1/ε0],
there exists ν1 > 0 such that (ũ, 0) is unstable (i.e. λu < 0) whenever ν ∈ (0, ν1).
Hence, if we take

ν

µ
< min

{
inf

µ∈(0,ε)

ν̄(µ)

µ
, ε0ν1, ε0ν̄

(
1

ε0

)}
,

then the statement of Theorem 2.10(a) makes sense, provided R1 is being under-
stood as the set of (µ, ν) such that λu(µ, ν, η) < 0 for all η ≥ 0. And the argument
above applies to the case of general domains to show that Conjecture 2.9 holds for
ν/µ sufficiently small, and ν

µ ∈ R1. �

5.2. The one-dimensional case

Next, we prove part (b) of Theorem 2.10. For the rest of this section, we assume
that Ω = (0, 1). The following lemma is a direct consequence of Theorem 3.13.

Lemma 5.13. Suppose that mx > 0 in [0, 1]. Then m(0) < ṽ(0) and m(1) >
ṽ(1). Similarly, if mx < 0 in [0, 1], then m(0) > ṽ(0) and m(1) < ṽ(1).

Lemma 5.14. Suppose that mxmxx 6= 0 in [0, 1]. Then m(x) − ṽ(x) changes
sign exactly once in [0, 1].
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Proof. Consider the case mx > 0 and mxx > 0 in [0, 1]. Assume that g :=
m − ṽ changes sign at least twice. By Lemma 5.13, g(0) < 0 < g(1). Then there
must be a local maximum point, xM , between two roots of g, where g(xM ) > 0,
g′(xM ) = 0 and g′′(xM ) ≤ 0. Hence at xM ,

mxx(xM ) ≤ ṽxx(xM ) = ṽ(xM )(ṽ(xM )−m(xM ))/ν = ṽ(xM )(−g(xM ))/ν < 0.

This contradicts the assumption that mxx > 0 in Ω̄. Thus g changes sign exactly
once in [0, 1]. The proofs of the other cases are similar. �

Lemma 5.15. Suppose that ϕ > 0 satisfies

(5.9)

{
ϕxx + p(x)ϕx + q(x)ϕ = 0 in (0, 1),
ϕx(0) = ϕx(1) = 0.

If q(x) has a single sign change in (0, 1), then ϕ is strictly monotone in (0, 1).
Specifically, if the sign change is from (i) negative to positive, then ϕx > 0; (ii)
positive to negative, then ϕx < 0.

Proof. Beginning with (i), we assume the q(x) sign change is that of negative
to positive. Rewrite (5.9) as

(5.10)

{ (
e
∫ x
0
pϕx

)
x

+ e
∫ x
0
pqϕ = 0 in (0, 1),

ϕx(0) = ϕx(1) = 0.

Integrating (5.10) in (0, 1) we have∫ 1

0

e
∫ x
0
pqϕ = 0.

While q changes sign once, it may be zero in some interval. That is, it may be that
q(x) = 0 in [x∗, x

∗] for some 0 < x∗ ≤ x∗ < 1, q < 0 in [0, x∗) and q > 0 in (x∗, 1].
Fix any x0 ∈ (0, x∗]. Then we integrate (5.10) on [0, x0) and apply the boundary

conditions on ϕx to obtain

e
∫ x0
0 pϕx(x0) =

∫ x0

0

(
e
∫ x0
0 pϕx

)
x
dx = −

∫ x0

0

e
∫ x0
0 pqϕ dx > 0.

We may argue similarly for x0 ∈ [x∗, 1) over (x0, 1]:

−e
∫ x0
0 pϕx(x0) =

∫ 1

x0

(
e
∫ x
0
pϕx

)
x
dx = −

∫ 1

x0

e
∫ x
0
pqϕ dx < 0.

Therefore, ϕx > 0 in (0, 1). A similar argument beginning with the opposite sign
change on q(x) shows that ϕx < 0 in (0, 1) under that assumption. �

Lemma 5.16. Suppose that mxmxx 6= 0 in [0, 1]. If λv(η∗, µ, ν) = 0 for some
η∗, then ∂

∂ηλv(η∗, µ, ν) < 0.

Proof. We consider the case mx > 0 in [0, 1]. Fix µ, ν > 0. Recall that λv
is the smallest eigenvalue of (3.3). Set ψ∗ := ψ(x; η∗), where ψ(x; η∗) is a positive
eigenfunction of λv(η∗, µ, ν). Since λv(η∗, µ, ν) = 0, ψ∗ satisfies{

µ(ψ∗)xx + µη∗mx(ψ∗)x + (m− ṽ)ψ∗ = 0 in Ω,
(ψ∗)x(0) = (ψ∗)x(1) = 0.
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By Lemmas 5.13 and 5.14, m− ṽ changes sign exactly once and is negative at x = 0.
By Lemma 5.15, (ψ∗)x > 0 in (0, 1). By Lemma 5.2,

∂λv
∂η

(η∗, µ, ν) = −µ
∫ 1

0
eη∗mψ∗mx(ψ∗)x∫ 1

0
eη∗mψ2

∗
< 0.

The proofs of the remaining cases are similar and are omitted. �

We are going to show the following theorem, which implies Theorem 2.10(b).

Theorem 5.17. Suppose that mxmxx 6= 0 in [0, 1]. If µ > ν, then λv changes
sign exactly once as η varies from 0 to ∞.

Proof. We consider the case mx > 0 in [0, 1]. For the case µ > ν, by Theorem
2.5 we see that λv changes sign at least once as η varies from 0 to ∞. Let η∗ =
η∗(µ, ν) denote any positive root of η 7→ λv(η, µ, ν). We show that η 7→ λv(η, µ, ν)
has exactly one root. To see that, suppose η∗∗ is another positive root of η 7→ λv
and, without loss of generality, assume that η∗∗ > η∗ and λv(η, µ, ν) < 0 for all
η ∈ (η∗, η∗∗). This implies that ∂

∂ηλv(η∗∗, µ, ν) ≥ 0, which contradicts Lemma 5.16.

This proves part (b) of Theorem 2.10. �

5.3. Open problems

Here we state some open questions concerning the dynamics of (2.1) when
(µ, ν) ∈ R1.

Conjecture 5.18. For any smooth domain Ω ⊆ RN , there exists δ0 > 0 such
that for any (µ, ν) ∈ R1 with 0 < ν < δ0, then (0, ṽ) changes stability exactly once
as η varies from zero to ∞, i.e. Conjecture 2.9(a) is true provided ν is sufficiently
small, regardless of the convexity of Ω.

Conjecture 5.19. For any ε > 0, there exists µ > 0 such that for all µ ≥ µ

and ν ∈ (ε, ν+− ε), any positive steady state of (2.1), if it exists, is globally asymp-
totically stable. In particular, the branch C1 of positive steady states emanating
from (η∗, 0, ṽ) does not possess any secondary bifurcation points.





CHAPTER 6

Results in R2: Proof of Theorem 2.11

By Theorem 2.5, if (µ, ν) ∈ R2, as η varies from zero to infinity, the semi-trivial
steady state (ũ, 0) changes stability at least twice and (0, ṽ) changes stability at least
once. The main question is whether the stability of (ũ, 0) and (0, ṽ) change exactly
twice and once, respectively. The goal of this chapter is to establish Theorem 2.11
which determines the stability changes of both semi-trivial steady states.

Proof of Theorem 2.11(a). By Theorem 2.5(ii), η 7→ λu(η, µ, ν) changes
sign at least twice if (µ, ν) ∈ R2. Hence, it suffices to show that for (µ, ν) ∈ R2, if
µ is sufficiently small, then η 7→ λu has at most two roots. Suppose to the contrary
that there exists (µk, νk) ∈ R2 such that µk → 0 and that η 7→ λu(η, µk, νk) has at
least three roots. By the estimate in Theorem 2.7 (iv), and the definition of R2,
we have for all k,

a∗ ≤ lim inf
k→∞

νk
µk
≤ lim sup

k→∞

νk
µk
≤ 1.

Here a∗ is given in Theorem B.2(iv). Hence we may pass to a subsequence and
assume that

lim
k→∞

νk
µk

= d ∈ [a∗, 1].

Then, by Corollary 3.18,

(6.1) lim
k→∞

λu(·, µk, νk)

µk
= σ(·; d) in C1

([
0,

1

minΩ̄m

])
.

If limk→∞
νk
µk

= d > a∗, then by Theorem B.4(ii), σ(·; d) has exactly two roots

η̄1, η̄2. Moreover, by the concavity of σ(·; d) (Theorem B.1(iv)), the two roots
are necessarily non-degenerate, i.e. ∂

∂ησ(η̄i; d) 6= 0 (i = 1, 2). Hence by (6.1),

λu(·, µk, νk) has exactly two roots for k sufficiently large. This is a contradiction.
Therefore, it must be the case that limk→∞

νk
µk

= a∗. The following is an easy

consequence of (6.1):

Lemma 6.1. Suppose that ηk is a root of λu(·, µk, νk), then ηk → η̃, where η̃ is
the unique root of σ(·; a∗).

We claim that λu(·, µk, νk) is strictly concave in [0, 1
minΩ̄ m

] for all large k.

Proposition 6.2. ∂2

∂η2λu(η, µk, νk) < 0 in [0, 1
minΩ̄ m

] for all large k.

Proof. We denote as before the derivative with respect to η by ′. Differenti-
ating (A.19), the equation of λ′u, with respect to η, we have

λ′′u
µ

∫
Ω

ϕ2 +
λ′u
µ

∫
Ω

ϕϕ′ =
1

µ

∫
Ω

[
ũ′′ϕ2 + 2ũ′ϕϕ′

]
.

39
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By the normalization
∫

Ω
ϕ2 = |Ω|, we have

∫
Ω
ϕϕ′ = 0 and hence

λ′′u
µ

∫
Ω

ϕ2 =
1

µ

∫
Ω

[
ũ′′ϕ2 + 2ũ′ϕϕ′

]
≤ 1

µ

∫
Ω

[
ũ′′+ϕ

2 + 2ũ′ϕϕ′
]
,

where ũ′′+ = max{∂
2ũ
∂η2 , 0}. Taking lim sup on both sides, by the normalization∫

Ω
ϕ2 = |Ω|, we may apply Lemma A.8 to get

(6.2) lim sup
k→∞

λ′′u
µ
≤ lim sup

k→∞

2

µ|Ω|

∫
Ω

ũ′ϕϕ′,

with the understanding that µ = µk, ν = νk, ũ = ũ(x; η, µk), ϕ = ϕ(x;µk, νk), etc.

Lemma 6.3. lim sup
k→∞

1

µ

∫
Ω

ũ′ϕϕ′ < 0.

Proof of Lemma 6.3. Suppose Lemma 6.3 is false, then by Proposition A.9,

0 ≤ lim sup
k→∞

1

µ

∫
Ω

ũ′ϕϕ′ ≤ lim sup
k→∞

−ε0
∫

Ω

|ϕ′|2 ≤ 0,

for some positive constant ε0. Hence by passing to a subsequence, we may assume
that

(6.3)
1

µ

∫
Ω

ũ′ϕϕ′ → 0 and

∫
Ω

|ϕ′|2 → 0.

Now by (2.2), we may rewrite (A.18) as

(6.4)

{
ν∆ϕ′ − µ∇·(∇ũ−ηũ∇m)

ũ ϕ′ + λuϕ
′ = (ũ′ − λ′u)ϕ in Ω,

∂ϕ′

∂n = 0 on ∂Ω.

Multiply (6.4) by ϕ′/µ and integrate by parts, then (using again
∫

Ω
ϕϕ′ = 0)∫

Ω

{
ν

µ
|∇ϕ′|2 − (∇ũ− ηũ∇m) · ∇

[
(ϕ′)2

ũ

]
− λu

µ
(ϕ′)2

}
=
−1

µ

∫
Ω

ũ′ϕϕ′ = o(1).

By Theorem 3.12(v) and the boundedness of λu/µ, there is a constant C > 0 such
that

a∗
2

∫
Ω

|∇ϕ′|2 ≤ C
∫

Ω

|ϕ′|2 + o(1) = o(1) by (6.3),

where a∗ is given in Theorem B.2(iv). Hence

(6.5) ϕ′ → 0 strongly in H1(Ω).

Multiply (6.4) by a test function ρ ∈ C1(Ω̄), divide by µ and integrate by parts, so
that

(6.6)

∫
Ω

[
−ν
µ
∇ϕ′ · ∇ρ+ (∇ũ− ηũ∇m) · ∇

(
ϕ′ρ

ũ

)
+
λu
µ
ϕ′ρ

]
=

1

µ

∫
Ω

(ũ′−λ′u)ϕρ.

Note that all terms except the second one can be easily seen to converge. More
precisely, the first and third terms on the left converge to zero, and the right hand
side converges to

(6.7)

∫
Ω

m∇m · ∇
(
ϕ̃ρ

m

)
− σ′

∫
Ω

ϕ̃ρ

by Theorem 3.14 and Theorem 3.17, where σ′ = ∂σ
∂η (η̃; a∗) and σ = σ(η; d) is the

principal eigenvalue of (B.1), and ϕ̃ = limϕ.
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Claim 6.4.

∫
Ω

(∇ũ− ηũ∇m) · ∇
(
ϕ′ρ

ũ

)
→ 0.

To see the claim, we compute

lim
k→∞

∫
Ω

(∇ũ− ηũ∇m) · ∇
(
ϕ′ρ

ũ

)
= lim
k→∞

∫
Ω

(∇ũ− ηũ∇m) ·
[
∇(ϕ′ρ)

ũ
− ϕ′ρ∇ũ

ũ2

]
= − lim

k→∞

∫
Ω

ϕ′ρ

ũ2
|∇ũ|2,

as ϕ′ → 0 in H1. Since ϕ′ is not necessarily bounded in L∞, we rewrite using
parallelogram identity

lim
k→∞

∫
Ω

(∇ũ− ηũ∇m) · ∇
(
ϕ′ρ

ũ

)
= − lim

k→∞

∫
Ω

ϕ′ρ

ũ2

[
|∇ũ−∇m|2 + |∇m|2 + 2∇m · (∇ũ−∇m)

]
= 0

by Theorem 3.12(iii). By Claim 6.4, we deduce that every term of the left hand
side of (6.6) tends to zero, while those on the right tend to the limit given in (6.7).
Hence

0 =

∫
Ω

m∇m · ∇
(
ϕ̃ρ

m

)
− σ′

∫
Ω

ϕ̃ρ for all ρ ∈ C1(Ω̄).

Now if σ′ ≤ 0, choose ρ ∈ C1(Ω̄) such that ρ→ m2/ϕ̃ in H1(Ω), then

0 =

∫
Ω

m|∇m|2 − σ′
∫

Ω

m2 > 0

and we have a contradiction. If σ′ > 0, then we can take ρ ∈ C1(Ω) such that ρ→
1/ϕ̃ in H1(Ω) and similarly obtain a contradiction. Hence Lemma 6.3 holds. �

Finally, Proposition 6.2 follows from (6.2) and Lemma 6.3. �

Therefore for all k sufficiently large, λu(·, µk, νk) must be strictly concave in
[0, 1

minΩ̄ m
] and can have at most two roots in [0, 1

minΩ̄ m
] and hence in [0,∞) (Theo-

rem 2.2). This is a contradiction to the assumption that it has at least three roots.
This proves Theorem 2.11(a). �

Remark 6.5. It can be observed from the proof of Theorem 2.11(a) that for
(µ, ν) ∈ R2 (i.e. ν̄(µ) < ν < µ), if µ is sufficiently small, then λu(·, µ, ν) has two
distinct positive roots η∗1 < η∗2 . Moreover,

(i) if µ → 0 and ν/µ → d ∈ (a∗, 1], then both η∗i (i = 1, 2) converge re-
spectively to the two non-negative roots of σ(·; d). Here a∗ is given by
Theorem B.2(iv) and σ(η; d) is the principal eigenvalue of (3.19).

(ii) if µ → 0 and ν/µ → a∗, then both η∗i (i = 1, 2) converge to the unique
positive root of σ(·; a∗).
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6.1. Proof of Theorem 2.11(b)

Proposition 6.6. There exists M > 0 such that if µ > ν ≥ M , then there
exists a unique positive number η∗ such that λv(η, µ, ν) > 0 for η ∈ [0, η∗) and
λv(η, µ, ν) < 0 for η ∈ (η∗,∞). Moreover, limν, µ/ν→∞ η∗ = 0.

Proof. By Lemma 5.1, for µ > ν, λv(·, µ, ν) has at least one positive root. We
proceed to show the uniqueness. Now, on the one hand, by Corollary A.14 there
exist of positive constants ε0 (small) and M1 (large) such that

(6.8)
∂

∂η
λv(η, µ, ν) < 0 for 0 ≤ η ≤ ε0, and µ, ν ≥M1.

On the other hand, by Corollary A.15, (letting ε = ε0 and M1 possibly larger)

λv(η, µ, ν) < 0 for η ≥ ε0, and µ, ν ≥M1.

Hence, for µ, ν ≥ M1, any positive root η∗ of λv(·, µ, ν) must lie in [0, ε0], which
must be unique in view of (6.8). Since ε0 > 0 is arbitrarily small, limν,µ/ν→∞ η∗ = 0
and the proof of Proposition 6.6 is completed. �

Now, we are in position to show a result that combines Propositions 5.4, 5.7
and 6.6 and contains Theorem 2.11(b)(i) as a corollary.

Theorem 6.7. There exists M > 1 such that if µ/ν ≥ M , then there exists a
unique positive number η∗ such that

(6.9) λv(η, µ, ν) =

 > 0 when 0 ≤ η < η∗,
= 0 when η = η∗,
< 0 when η > η∗.

Proof. By Proposition 5.7, there exists M1 > 1 such that for ν ≤ 1/M1 and
µ/ν ≥ M1, there exists η∗ > 0 such that (6.9) holds. By Proposition 6.6, there
exists M2 > 1 such that for µ > ν ≥ M2, there exists η∗ > 0 such that (6.9) holds
as well. By Proposition 5.4, there exists M3 = M3(M1,M2) > 1 such that for
1/M1 ≤ ν ≤M2 and µ ≥M3, there exists η∗ > 0 such that (6.9) holds. Now, take
M > max{M1, 1,M1M3}. For µ/ν ≥M , either

(i) ν ≤ 1/M1 and µ/ν ≥M ≥M1;
(ii) ν ≥M2 and µ ≥Mν > ν;
(iii) 1/M1 ≤ ν ≤M2 and µ ≥Mν ≥ (M1M3) · 1

M1
= M3,

so that one of Propositions 5.4, 5.7 or 6.6 gives the desired result. �

Proof of Theorem 2.11(b)(ii) and (iii). Theorem 2.11(b)(ii) and Theorem
2.11(b)(iii) follow from Theorem 5.17 and Proposition 6.6 respectively. �

6.2. Open problems

Conjecture 6.8. Suppose Ω is convex, then there exists δ0 > 0 such that for
any (µ, ν) satisfying ν < µ and 0 < µ, ν < δ0, then (0, ṽ) changes stability exactly
once.



CHAPTER 7

Results in R3: Proof of Theorem 2.12

By Theorem 2.5, if (µ, ν) ∈ R3, the semi-trivial steady state (ũ, 0) changes
stability at least once as η varies from zero to infinity. The main question is whether
(ũ, 0) changes stability exactly once and (0, ṽ) is always unstable as η varies from 0
to ∞. In this chapter we will address these questions and establish Theorem 2.12.
Part (a) of Theorem 2.12 is proved in Section 7.1, and the proof of Theorem 2.12(b)
is given in Section 7.2.

7.1. Stability result of (ũ, 0) for small µ

In this section, we prove Theorem 2.12(a). First we consider the case ν
µ → ∞

separately.

Proposition 7.1. Assume µ→ 0 and ν/µ→∞, then

λu
µ

(η, µ, ν)→ 1

|Ω|

∫
Ω

(1− ηm)
|∇m|2

m2
in C1([0,

1

minΩ̄m
]).

In particular, the asymptotic behavior of η∗ is determined.

Corollary 7.2. There exists δ > 0 such that if µ
ν < δ and µ < δ, then

λu(·, µ, ν) has a unique root η∗. Moreover,

lim
µ→0, νµ→∞

η∗ =

∫
Ω
|∇m|2/m2∫

Ω
|∇m|2/m

.

Proof of Proposition 7.1. Substituting (2.2) into (3.1), we have

ν∆ϕ− µ∇ · (∇ũ− ηũ∇m)

ũ
ϕ+ λuϕ = 0 and

∂ϕ

∂n

∣∣∣∣
∂Ω

= 0.

Divide by µ and integrate by parts to obtain

(7.1)

∫
Ω

(∇ũ− ηũ∇m) · ∇
(ϕ
ũ

)
+
λu
µ

∫
Ω

ϕ = 0.

If we normalize
∫

Ω
ϕ2 = |Ω|, then by Lemma A.3 and Corollary A.4, ϕ,ϕ2 → 1 in

H1(Ω) as µ, µ/ν → 0. Using also Theorem 3.12(ii),∫
Ω

(∇ũ− ηũ∇m) · ∇
(ϕ
ũ

)
→
∫

Ω

(1− ηm)∇m · ∇
(

1

m

)
.

Hence by passing to the limit in (7.1), λu(η, µ, ν)/µ → 1
|Ω|
∫

Ω
(1 − ηm) |∇m|

2

m2 uni-

formly in [0, 1
minΩ̄ m

]. Next, recall that by (A.19), we have

λ′u
µ

=

∫
Ω
ũ′ϕ2

µ
∫

Ω
ϕ2
, where ũ′ =

∂ũ

∂η
.
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Passing to the limit, using Theorem 3.14, we have

λ′u
µ
→ 1

|Ω|

∫
Ω

m∇m · ∇
(

1

m

)
=

∂

∂η

[
1

|Ω|

∫
Ω

(1− ηm)
|∇m|2

m2

]
.

This proves Proposition 7.1. �

Now we prove the remaining cases of Theorem 2.12(a).

Proposition 7.3. For each 0 < δ < 1, if µ/ν ∈ (δ, 1), then for µ, ν sufficiently
small,

λu(η, µ, ν) =

 > 0 when 0 ≤ η < η∗,
= 0 when η = η∗,
< 0 when η > η∗,

for some positive number η∗.

Proof. By Theorem 2.5(iii), λu(·, µ, ν) changes sign at least once in (0, 1/minΩ̄m).
Suppose to the contrary that for some sequence (µk, νk) such that µk → 0 and
µk/νk ∈ (δ, 1), λu(·, µk, νk) has at least two roots ηk, η̂k ∈ (0, 1/minΩ̄m).

Claim 7.4. There exists ε0 > 0 such that

ηk, η̂k ∈ (ε0, 1/min
Ω̄
m)

for all k large.

To see the claim, we begin with the following lemma.

Lemma 7.5. There exists ε0 > 0 such that for all µ sufficiently small,

∂

∂η
λu(η, µ, µ) > µε0η for all η ∈ [0, ε0].

Proof. By Corollary 3.18, as µ→ 0, λu(·, µ, µ)/µ→ σ(·; 1) in C1([0, 1/minΩ̄m]).
The result follows from σ′(0; 1) > 0 (Corollary A.7). �

Now, if we observe that λu(0, µ, µ) = 0 for all µ > 0 with positive eigenfunction
ϕ = ṽ, we deduce from Lemma 7.5 that λu(η, µ, µ) ≥ 0 for all η ∈ [0, ε0] and hence
λu(η, µ, ν) > λu(η, µ, µ) ≥ 0 for all η ∈ [0, ε0]. Hence any positive root of λu(·, µ, ν)
is greater than ε0 and also less than 1

minΩ̄ m
(Theorem 2.2), and Claim 7.4 follows.

Passing to a subsequence, we may assume that νk/µk → d ∈ [1, 1/δ], then
by Corollary 3.18, λu(·, µk, νk)/µk → σ(·; d) in C1([ε0, 1/minΩ̄m]). By Theorem
B.4(iii) and Remark B.5, σ(·; d) has exactly one root in [ε0, 1/minΩ̄m], which is
also non-degenerate. This contradicts the existence of two distinct roots ηk, η̂k of
λ(·, µk, νk) in (ε0, 1/minΩ̄m). �

Remark 7.6. It can be observed from the above arguments that, for any d ∈
[1,∞), the unique positive root η∗ of λu(·, µ, ν) converges, as ν/µ→ d and µ→ 0,
to the unique positive root of σ(·; d). In fact, as d→∞, the unique positive root of

σ(·; d) tends to
∫
Ω
|∇m|2/m2∫

Ω
|∇m|2/m (see, e.g. Claim B.3 and Theorem B.4). This provides

the connection to the asymptotic results proved separately in Corollary 7.2.

Theorem 2.12(a) follows from Corollary 7.2 and Proposition 7.3.
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7.2. Stability result of (0, ṽ)

We first prove the following lemma for convex domains.

Lemma 7.7. Suppose that Ω is convex, then for any η, µ, ν, the unique positive
solution ṽ of (2.3) satisfies∫

Ω

ṽeηm∇m · ∇ṽ ≥
∫

Ω

eηm|∇ṽ|2
(
ṽ − η2ν

4
|∇m|2

)
.

Proof. Differentiate (2.3) with respect to xi, we have

mxi ṽ = −ν∆ṽxi − (m− 2ṽ)ṽxi .

Multiply the equation by eηmṽxi and integrate by parts,∫
Ω

eηmṽmxi ṽxi

= −ν
∫

Ω

eηmṽxi∆ṽxi −
∫

Ω

(m− 2ṽ)eηmṽ2
xi

= ν

∫
Ω

∇(eηmṽxi) · ∇ṽxi −
∫

Ω

(m− 2ṽ)eηmṽ2
xi − ν

∫
∂Ω

eηmṽxi
∂ṽxi
∂n

= ν

∫
Ω

eηm
[
|∇ṽxi |2 + ηṽxi∇ṽxi · ∇m

]
−
∫

Ω

(m− 2ṽ)eηmṽ2
xi − ν

∫
∂Ω

eηmṽxi
∂ṽxi
∂n

= ν

∫
Ω

eηm
∣∣∣∇ṽxi +

η

2
ṽxi∇m

∣∣∣2 − η2ν

4

∫
Ω

eηmṽ2
xi |∇m|

2 −
∫

Ω

(m− 2ṽ)eηmṽ2
xi

− ν

2

∫
∂Ω

eηm
∂

∂n

(
ṽ2
xi

)
=

∫
Ω

[
ν|∇(eηm/2ṽxi)|2 − (m− 2ṽ)(eηm/2ṽxi)

2
]
− η2ν

4

∫
Ω

eηmṽ2
xi |∇m|

2

− ν

2

∫
∂Ω

eηm
∂

∂n

(
ṽ2
xi

)
≥
∫

Ω

ṽ(eηm/2ṽxi)
2 − η2ν

4

∫
Ω

eηmṽ2
xi |∇m|

2 − ν

2

∫
∂Ω

eηm
∂

∂n

(
ṽ2
xi

)
=

∫
Ω

eηmṽ2
xi

(
ṽ − η2ν

4
|∇m|2

)
− ν

2

∫
∂Ω

eηm
∂

∂n

(
ṽ2
xi

)
.

The inequality on the second last line is due to the following lemma.

Lemma 7.8. For all φ ∈ H1(Ω),

(7.2)

∫
Ω

[
ν|∇φ|2 + (ṽ −m)φ2

]
≥ 0.

Proof. By (2.3), we see that 0 is the principal eigenvalue of the following
problem with eigenfunction ṽ.{

ν∆φ+ (m− ṽ)φ+ γφ = 0 in Ω,
∂φ
∂n = 0 on ∂Ω.

Hence (7.2) follows from the variational characterization of the principal eigenvalue.
�
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By the above argument, for any i = 1, ..., n, we have∫
Ω

eηmṽmxi ṽxi ≥
∫

Ω

eηmṽ2
xi

(
ṽ − η2ν

4
|∇m|2

)
− ν

2

∫
∂Ω

eηm
∂

∂n

(
ṽ2
xi

)
.

Summing i = 1, ..., n, we have∫
Ω

eηmṽ∇m · ∇ṽ ≥
∫

Ω

eηm|∇ṽ|2
(
ṽ − η2ν

4
|∇m|2

)
− ν

2

∫
∂Ω

eηm
∂

∂n

(
|∇ṽ|2

)
.

Lemma 7.7 thus follows from the following well-known lemma for convex domains
due to [20, 77].

Lemma 7.9. If Ω is convex, and ∂ṽ
∂n

∣∣
∂Ω

= 0, then ∂
∂n |∇ṽ|

2
∣∣
∂Ω
≤ 0.

This proves Lemma 7.7. �

7.2.1. Proof of Theorem 2.12(b)(ii).

Theorem 7.10. If µ < ν ≤ 4(minΩ̄ m)3

‖∇m‖2
L∞(Ω)

, then (0, ṽ) is unstable for all η ∈
[0,∞).

Proof. By Lemma 4.6, (0, ṽ) is unstable whenever η ≥ 1
minΩ̄ m

. Therefore it

suffices to show the instability of (0, ṽ) for all η ∈ [0, 1
minΩ̄ m

].

Claim 7.11. Under the assumption of Theorem 7.10,

η2ν

4
|∇m|2 < ṽ in Ω̄

for all η ∈ [0, 1
minΩ̄ m

].

To see the claim, we calculate

1

4
η2ν|∇m|2 ≤ 1

4

(
1

minΩ̄m

)2
[

4(minΩ̄m)3

‖∇m‖2L∞(Ω)

]
|∇m|2 ≤ min

Ω̄
m < ṽ,

where the last strict inequality follows from the maximum principle (Theorem 3.13).
This proves the claim.

Taking ṽ as the test function in the variational characterization

λv = inf
φ∈H1(Ω), φ 6=0

{∫
Ω
eηm[µ|∇φ|2 + (ṽ −m)φ2]∫

Ω
eηmφ2

}
,

we deduce that

(7.3) λv

∫
Ω

eηmṽ2 ≤
∫

Ω

eηm[µ|∇ṽ|2 + (ṽ −m)ṽ2].

Now by (2.3), ∫
Ω

eηm(ṽ −m)ṽ2 = ν

∫
Ω

eηm
∆ṽ

ṽ
ṽ2

= ν

∫
Ω

eηmṽ∆ṽ

= −ν
∫

Ω

∇(eηmṽ) · ∇ṽ

= −ν
∫

Ω

eηm
(
|∇ṽ|2 + ηṽ∇m · ∇ṽ

)
.
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Substituting into (7.3),

λv

∫
Ω

eηmṽ2 ≤ (µ− ν)

∫
Ω

eηm|∇ṽ|2 − νη
∫

Ω

eηmṽ∇m · ∇ṽ.

By Lemma 7.7 and Claim 7.11, (and that µ < ν)

λv

∫
Ω

eηmṽ2 ≤ (µ− ν)

∫
Ω

eηm|∇ṽ|2 − νη
∫

Ω

eηm|∇ṽ|2
(
ṽ − η2ν

4
|∇m|2

)
< 0.

This proves Theorem 7.10. �

Remark 7.12. If µ = ν ≤ 4(minΩ̄ m)3

‖∇m‖2
L∞(Ω)

, then (0, ṽ) is unstable for all η > 0.

Note also that we have actually proved the following result, which will be useful
in the proof of our next result.

Remark 7.13. If µ ≤ ν and 0 ≤ η ≤
√

4 minΩ̄ m
ν‖∇m‖2

L∞(Ω)

, and either η > 0 or µ < ν,

then (0, ṽ) is unstable.

7.2.2. Proof of Theorem 2.12(b)(i).

Theorem 7.14. Let Ω be convex. If µ/ν is sufficiently small, then (0, ṽ) is
unstable for all η ∈ [0,∞).

Theorem 7.14 follows from the following slightly stronger result.

Proposition 7.15. Let Ω be convex. There exists ε0 > 0 such that if (µ, ν) ∈
R3 and either

(i) ν <
4(minΩ̄m)3

4‖∇m‖L∞(Ω)
, (ii) ν > 1/ε0, or (iii) ν ∈ [ε0, 1/ε0] and µ < ε0,

then (0, ṽ) is unstable for all η ∈ [0,∞).

Proof. By Lemma 4.6, it suffices to show the instability of (0, ṽ) for all η ∈
[0, 1

minΩ̄ m
]. We consider the following cases.

(A) ν → ν0 > 0 and µ→ 0;
(B) ν →∞ and η ≥ c0 for some constant c0 > 0;
(C) ν →∞, η → 0 and η ≥

√
c0
ν for some constant c0 > 0;

(D) µ ≤ ν and η ≤
√

4 minΩ̄ m
ν‖∇m‖2

L∞(Ω)

.

Note that (A)-(D) covers all possibilities: If (i) holds, then√
4 minΩ̄m

ν‖∇m‖2L∞(Ω)

≥ 1

minΩ̄m
,

then (D) suffices. Secondly, the case (ii) is covered by (B), (C) and (D). Finally,
the case (iii) is covered by (A).

First we consider Case (A). We use the variational characterization of λv.

(7.4) λv = inf
φ∈H1(Ω),φ6=0

{∫
Ω
eηm[µ|∇φ|2 + (ṽ −m)φ2]∫

Ω
eηmφ2

}
.

Therefore, letting ṽ0 = ṽ
∣∣
ν=ν0

, we have

(7.5) lim inf
µ→0,ν→ν0

λv ≥ min
Ω̄

(ṽ0 −m).
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Given ε > 0, choose a positive test function φ ∈ C1(Ω̄) such that

suppφ ⊂ {x ∈ Ω : ṽ0(x)−m(x) < min
Ω̄

(ṽ0 −m) + ε/2}.

Then for all ν close to ν0 such that ‖ṽ − ṽ0‖L∞(Ω) < ε/2, it is easy to see that

λv ≤
∫

Ω
eηm[µ|∇φ|2 + (ṽ −m)φ2]∫

Ω
eηmφ2

≤ µ
∫

Ω
eηm|∇φ|2∫
Ω
eηmφ2

+ sup
suppφ

(ṽ −m)

≤ µ
∫

Ω
eηm|∇φ|2∫
Ω
eηmφ2

+ sup
suppφ

(ṽ0 −m) + ε/2

≤ µ
∫

Ω
eηm|∇φ|2∫
Ω
eηmφ2

+ min
Ω̄

(ṽ0 −m) + ε.

Passing to the limit µ→ 0, we deduce that lim supµ→0,ν→ν0
λv ≤ minΩ̄(ṽ0−m)+ε.

Here ṽ0 is the unique positive solution of (2.3) with ν = ν0. Letting ε → 0, we
obtain

lim sup
µ→0,ν→ν0

λv ≤ min
Ω̄

(ṽ0 −m).

This, together with (7.5) gives

lim
µ→0,ν→ν0

λv = min
Ω̄

(ṽ0 −m).

Since ṽ0 6≡ m and that
∫

Ω
ṽ0(m− ṽ0) = 0 by integrating (2.3), we have minΩ̄(ṽ0 −

m) < 0. This proves the instability of (0, ṽ) in Case (A).
For Case (B), assume to the contrary that for some sequence ν → ∞ and

η ∈ (0, 1
minΩ̄ m

] bounded away from 0, we have λv ≥ 0. Without loss of generality,

assume that η → η̃ ∈ (0, 1
minΩ̄ m

]. Setting φ = 1 in (7.4), we have

(7.6) 0 ≤ λv ≤
∫

Ω
eηm(ṽ −m)∫

Ω
eηm

.

Passing to the limit, then

0 ≤ lim sup
ν→∞

λv ≤
∫

Ω
eη̃m(m̄−m)∫

Ω
eη̃m

= −
∫

Ω
eη̃(m−m̄)(m− m̄)∫

Ω
eη̃(m−m̄)

,

where m̄ = 1
|Ω|
∫

Ω
m. Since the last weighted average of m− m̄ is strictly negative,

this gives the contradiction.
Next, we take up Case (C). Assume that for some positive constant c0 we have

η2ν ≥ c0. First we begin with an asymptotic expansion of ṽ due to X. Chen [21].

Lemma 7.16. There exists ṽi ∈W 2,p(Ω), i = 1, 2, independent of ν, such that

ṽ ≤ m̄+
ṽ1

ν
+
ṽ2

ν2

for all ν sufficiently large.

Proof. Define

v̄ = m̄+
1

ν

(
v∗1 +

∫
Ω
v∗1m∫

Ω
m

)
+

1

ν2
v∗2 +

1

ν

(
1 +

Q

ν

)
,
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where v∗1 is the unique solution to

∆v∗1 + m̄(m− m̄) = 0,
∂v∗1
∂n

∣∣∣∣
∂Ω

= 0, and

∫
Ω

v∗1 = 0;

v∗2 is the unique solution to

∆v∗2 + (m− 2m̄)

(
v∗1 +

∫
Ω
v∗1m∫

Ω
m

)
= 0,

∂v∗2
∂n

∣∣∣∣
∂Ω

= 0 and

∫
Ω

v∗2 = 0;

and Q is the unique solution to

∆Q = m̄−m, ∂Q

∂n

∣∣∣∣
∂Ω

= 0, and

∫
Ω

Q = 0.

Then one may compute that

ν∆v̄ + v̄(m− v̄) = ν∆

(
Q

ν2

)
+
m− 2m̄

ν
+O

(
1

ν2

)
= −m̄

ν
+O

(
1

ν2

)
< 0

for ν sufficiently large. Hence v̄ is a strict upper solution of (2.3), hence the result
follows by the comparison principle and ṽ being the unique positive solution of
(2.3). �

As before, we take the test function φ = 1 in (7.4), we have

λv

∫
Ω

eηm ≤
∫

Ω

eηm(ṽ −m)

≤
∫

Ω

(
1 + ηm+

1

2
(ηm)2 + ...

)(
m̄−m+

1

ν
ṽ1 +

1

ν2
ṽ2

)
≤
∫

Ω

(
1 + ηm+

1

2
(ηm)2 + ...

)(
m̄−m+ η2 ‖ṽ1‖L∞

c0
+ η4 ‖ṽ2‖L∞

c0

)
= η

∫
Ω

m(m̄−m) +O(η2),

where the last line is negative for all η sufficiently small. This proves Case (C).
Finally, (D) follows from Remark 7.13. �

7.2.3. Proof of Theorem 2.12(b)(iii).

Theorem 7.17. Let Ω = (0, 1), then (0, ṽ) is unstable when

(7.7)
ν

µ
− 1 > −η

∫
Ω
eηmṽ2ν/µ−1ṽxmx∫
Ω
eηmṽ2ν/µ−2ṽ2

x

.

Corollary 7.18. Let Ω = (0, 1) and mx 6= 0 in [0, 1]. If µ < ν, then (0, ṽ) is
unstable for all η ∈ [0,∞).

Remark 7.19. For µ < ν, i.e. (µ, ν) ∈ R3, then Theorem 7.17 improves
Lemma 5.16 by removing the assumption mxx 6= 0 in [0, 1].

Proof of Corollary 7.18. Assuming Theorem 7.17 for the moment, we
start with a claim.

Claim 7.20. If mx 6= 0 in [0, 1], then ṽxmx > 0 in (0, 1).
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Consider the case mx > 0 in [0, 1]. Differentiate (2.3) with respect to x, then
we have {

ν(ṽx)xx + (m− 2ṽ)ṽx = −mxṽ < 0 in (0, 1),
ṽx(0) = ṽx(1) = 0.

Now since the operator [−ν d2

dx2 +(2ṽ−m)]−1
N with Neumann boundary conditions is

invertible and positive, by the eigenvalue comparison principle, the same holds true

for [−ν d2

dx2 + (2ṽ −m)]−1
D , the operator under zero Dirichlet boundary conditions.

Hence

vx =

[
−ν d

2

dx2
+ (2ṽ −m)

]−1

D
[mxṽ] > 0 in (0, 1).

Hence, ṽxmx > 0 in (0, 1). Therefore, for (µ, ν) ∈ R3,

µ

ν
− 1 > 0 > −η

∫
Ω
eηmṽ2ν/µ−1ṽxmx∫
Ω
eηmṽ2ν/µ−2ṽ2

x

,

i.e. (7.7) holds. The corollary thus follows from Theorem 7.17. �

Proof of Theorem 7.17. Let ψ be a positive eigenfunction of (3.3), then
upon substituting (2.3),

(7.8)

{
µψxx + µηmxψx − νṽxx

ṽ ψ + λvψ = 0 in (0, 1),
ψx(0) = ψx(1) = 0.

Write ψ = ṽ`ω, where ` = ν
µ , we compute the first and second derivatives of ψ.

(7.9) ψx = `ṽ`−1ṽxω + ṽ`ωx.

(7.10) ψxx = `(`− 1)ṽ`−2ṽ2
xω + `ṽ`−1ṽxxω + 2`ṽ`−1ṽxωx + ṽ`ωxx.

Substituting (7.9) and (7.10) into (7.8), we have (using wx(0) = wx(1) = 0)

−λv ṽ`ω = µ`(`− 1)ṽ`−2ṽ2
xω + µ`ṽ`−1ṽxxω + 2µ`ṽ`−1ṽxωx + µṽ`ωxx

+ µηmx`ṽ
`−1ṽxω + µηmxṽ

`ωx −
νṽxx
ṽ

ṽ`ω.

The two terms involving second derivative of ṽ cancel. Divide the equation by ṽ`

to obtain

−λvω = µωxx + µ

(
2`
ṽx
ṽ

+ ηmx

)
ωx + µ

[
`(`− 1)

ṽ2
x

ṽ2
+ ηmx`

ṽx
ṽ

]
ω.

Multiplying the equation by eηmṽ2`, we can write the equation in the variational
form

−λveηmṽ2`ω = µ
(
eηmṽ2`ωx

)
x

+ µ

[
`(`− 1)

ṽ2
x

ṽ2
+ ηmx`

ṽx
ṽ

]
eηmṽ2`ω.

Divide by −ω and integrate by parts. We have (using wx(0) = wx(1) = 0)

−λv
∫

Ω

eηmṽ2` = µ

∫
Ω

eηmṽ2`ω2
x

ω2
+ µ

∫
Ω

eηmṽ2``

[
(`− 1)

ṽ2
x

ṽ2
+ ηmx

ṽx
ṽ

]
≥ ν

∫
Ω

eηmṽ2ν/µ−2ṽ2
x

[(
ν

µ
− 1

)
+ η

∫
Ω
eηmṽ2ν/µ−1ṽxmx∫
Ω
eηmṽ2ν/µ−2ṽ2

x

]
.

Since the last line is positive, by (7.7), we have λv < 0 and Theorem 7.17 follows. �
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7.2.4. Proof of Theorem 2.12(b)(iv).

Proof of Theorem 2.12(b)(iv). It suffices to show

Claim 7.21. There exists M > 0 such that if ν > µ > M , then λv(η, µ, ν) < 0
for all η ≥ 0.

This follows from λv(0, µ, ν) < 0 and Corollaries A.14 and A.15. �

7.3. Open problems

Conjecture 7.22. Suppose Ω is convex. If µ < ν, then (0, ṽ) is unstable for
all η ∈ [0,∞).





CHAPTER 8

Summary of asymptotic behaviors of η∗ and η∗

Let η∗ = η∗(µ, ν) and η∗ = η∗(µ, ν) denote values of η at which the semi-trivial
steady states (ũ, 0) and (0, ṽ) change their stability, respectively. In this chapter,
we summarize our results concerning the uniqueness and asymptotic limits of η∗
and η∗ as the diffusion rates or their ratio tend to zero or infinity.

8.1. Asymptotic behavior of η∗

We consider the asymptotic behavior of η∗ for three different cases: (i) suffi-
ciently small µ and µ/ν; (ii) sufficiently small µ, with µ/ν bounded away from 0;
(iii) sufficently large ν.

If µ/ν and µ are sufficiently small, we have the following result for the unique-
ness of η∗ and its limit.

Proposition 8.1. For (µ, ν) ∈ R3 (i.e. µ < ν), if 0 < µ� 1, then λu(·, µ, ν)
has a unique positive root η∗. Moreover, for d ∈ [1,∞], as µ → 0 and ν/µ → d,
then η∗ converges to the unique positive root of σ(·; d), where σ(η; d) is the principal
eigenvalue of (3.19). In particular, taking d =∞, we obtain

lim
µ→0, νµ→∞

η∗ =

∫
Ω
|∇m|2/m2∫

Ω
|∇m|2/m

,

Proof. The case when µ → 0 and ν/µ → ∞ is contained in Corollary 7.2,
while the remaining case is mentioned in Remark 7.6. �

Proposition 8.2. For (µ, ν) ∈ R2, if 0 < µ � 1, then λu(·, µ, ν) has exactly
two positive roots η∗1 < η∗2 . Moreover,

(i) if µ→ 0 and ν/µ→ d ∈ (a∗, 1], then η∗i (i = 1, 2) converge respectively to
the two different non-negative roots of σ(·; d). Here a∗ is given by Theorem
B.2(iv) and σ(η; d) is the principal eigenvalue of (3.19).

(ii) if µ → 0 and ν/µ → a∗, then both η∗i (i = 1, 2) converge to the unique
positive root of σ(·; a∗).

Proof. By Remark 6.5, Proposition 8.2 follows from the proof of Theorem
2.11(a). �

For fixed µ > 0 and sufficiently large ν, we do not expect the uniqueness for
η∗. Nonetheless, its limit can be characterized as follows by considering (3.1):

Proposition 8.3. Let η∗ be a positive root of λu(·, µ, ν), then as ν →∞, pass-
ing to a sequence, η∗ converges to a positive root of η 7→

∫
Ω

(m− ũ(η)).

For any fixed ν > 0 and sufficiently large µ, we can determine the asymptotic
behavior of η∗.

53
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Proposition 8.4. For each ν > ν+, passing to a sequence if necessary, lim
µ→∞

η∗ =

η1, where ν+ = limµ→∞ ν̄(µ) is given by Theorem 2.7(v) and η1 is a positive number
such that the following problem has a solution:

(8.1)


ν∆ϕ+

(
m−

∫
Ω
meη1m∫

Ω
e2η1m

eη1m
)
ϕ = 0 in Ω,

ϕ > 0 in Ω,
∂ϕ
∂n = 0 on ∂Ω.

We do not know whether such η1 is unique. We refer to Lemma 4.12 for the proof
of Proposition 8.4.

8.2. Asymptotic behavior of η∗

If ν/µ is sufficiently small, the following result establishes the uniqueness of η∗
and determines its limit.

Proposition 8.5. If ν/µ is sufficiently small, λv(·, µ, ν) has a unique positive
root η∗. Moreover,

(i) if ν → 0 and ν/µ→ 0, then η∗ tends to the unique positive root of

η 7→
∫

Ω

|∇m|2

m2
eηm(ηm− 1), η > 0;

(ii) if ν → ν0 and µ → ∞, for some ν0 > 0, then η∗ tends to the unique
positive root of

η 7→
∫

Ω

eηm
(
m− ṽ|ν=ν0

)
, η > 0;

(iii) if ν →∞ and ν/µ→ 0, then η∗ tends to 0.

Proof. The uniqueness of η∗, when µ/ν is sufficiently large, is proved in Theo-
rem 6.7, and the limiting results (i), (ii) and (iii) of η∗ are contained in Propositions
5.7, 5.4 and 6.6 respectively. �



CHAPTER 9

Structure of positive steady states via
Lyapunov-Schmidt procedure

In this chapter we investigate the structure of positive steady states of system
(2.1) when 0 < η � 1 and ν is close to µ. Let θµ denote the unique positive solution
of the scalar equation

(9.1) µ∆θ + θ(m− θ) = 0 in Ω,
∂θ

∂n
= 0 on ∂Ω.

The main result of this chapter can be stated as follows.

Theorem 9.1. Suppose that Ω ⊆ R or Ω ⊆ RN is convex. Fix µ > 0. There
exist δ1 > 0, δ2 > 0 and functions

η̃ = η̃(ν, s) : (µ− δ2, µ+ δ2)× (0, 1)→ (−δ1, δ1),

ỹ = ỹ(·; ν, s), z̃ = z̃(·; ν, s) : (µ− δ2, µ+ δ2)× (0, 1)→ C2(Ω̄),

such that system (2.1) has a positive steady state, denoted by (u, v), for η ∈ (−δ1, δ1)
and ν ∈ (µ− δ2, µ+ δ2) if and only if for some 0 < s < 1,

η = η̃(ν, s),
u = seη̃(ν,s)m[θµ + ỹ],
v = (1− s)[θµ + z̃].

Moreover, when ν = µ, ỹ(x;µ, s) = z̃(x;µ, s) ≡ 0, η̃(µ, s) ≡ 0 and

lim
ν→µ

η̃(ν, s)

µ− ν
=

∫
Ω
|∇θµ|2∫

Ω
θµ∇θµ · ∇m

> 0.

Remark 9.2. If ν = µ, η̃(µ, s) ≡ 0 and (u, v) = (sθµ, (1 − s)θµ). That is, if
ν = µ, a positive steady state of system (2.1) exists for η close to zero if and only
if η = 0.

Remark 9.3. Under the assumption of Theorem 9.1, and making use of Theo-
rem 3.10(b) (which gives the sign of

∫
Ω
θµ∇θµ·∇m), the following are two immediate

consequences:

(i) If ν ∈ (µ, µ + δ2), then system (2.1) has no positive steady state for
η ∈ [0, δ1). It can be further shown that the semi-trivial steady state
(ũ, 0) is globally asymptotically stable among all positive initial data.

(ii) If ν ∈ (µ − δ2, µ), then for η ∈ (0, δ1), system (2.1) has a positive steady
state if and only if

inf
0<s<1

η̃(ν, s) < η < sup
0<s<1

η̃(ν, s),
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and

lim
ν→µ

inf0<s<1 η̃(ν, s)

µ− ν
= lim
ν→µ

sup0<s<1 η̃(ν, s)

µ− ν
=

∫
Ω
|∇θµ|2∫

Ω
θµ∇θ̃µ · ∇m

> 0.

In particular, it implies that for ν ∈ (µ − δ2, µ), the range of (small)
η in which system (2.1) has a positive steady state is at most of order
µ − ν. It can be further shown that (ũ, 0) is unstable for η ∈ [0, η̃(ν, 0))
and stable for η ∈ (η̃(ν, 0), δ1). It is an open problem whether system
(2.1) has exactly one positive steady state when inf0<s<1 η̃(ν, s) < η <
sup0<s<1 η̃(ν, s).

We use a Lyapunov-Schmidt procedure to classify positive steady states of
system (2.1) for small positive η and ν = µ − ε for ε small. First, we have the
following system satisfied by steady states of (2.1):

(9.2)


µ∇ · (∇u− ηu∇m) + u(m− u− v) = 0 in Ω,
(µ− ε)∆v + v(m− u− v) = 0 in Ω,
∂u
∂n − ηu

∂m
∂n = ∂v

∂n = 0 on ∂Ω.

Set w = e−ηmu. Then w and v satisfy

(9.3)


µ∆w + µη∇m · ∇w + w(m− eηmw − v) = 0 in Ω,
(µ− ε)∆v + v(m− eηmw − v) = 0 in Ω,
∂w
∂n = ∂v

∂n = 0 on ∂Ω.

When η = ε = 0, the set of positive solutions of (9.2) is given by

Σ = {(sθµ, (1− s)θµ) : s ∈ (0, 1)}.

We first show that the set of positive solutions of (9.2) is close to Σ for sufficiently
small η > 0 and ε.

Lemma 9.4. Let (W,V ) denote any positive solution of (9.3). Then, after
passing to some subsequence if necessary, we have (W,V ) → (sθµ, (1 − s)θµ) in
C2(Ω̄) for some s ∈ [0, 1] as (η, ε)→ (0, 0).

Proof. By the maximum principle [90] it is easy to show that

‖W‖L∞(Ω) ≤ ‖me−ηm‖L∞(Ω) and ‖V ‖L∞(Ω) ≤ ‖m‖L∞(Ω).

This implies that both W and V are uniformly bounded for small η and ε. By
elliptic regularity and Sobolev embedding theorems [40] we see that both W and
V are uniformly bounded in C2,τ (Ω̄) for some τ ∈ (0, 1) and for all small η and ε.
Hence, passing to some subsequence if necessary, we may assume that W → W ∗

and V → V ∗ in C2(Ω̄), and W ∗, V ∗ satisfy

(9.4)


µ∆W ∗ +W ∗(m−W ∗ − V ∗) = 0 in Ω,
µ∆V ∗ + V ∗(m−W ∗ − V ∗) = 0 in Ω,
∂W∗

∂n = ∂V ∗

∂n = 0 on ∂Ω.

Since W,V are positive, we have W ∗ ≥ 0 and V ∗ ≥ 0. We claim that (W ∗, V ∗) 6=
(0, 0). Suppose to the contrary that W → 0 and V → 0 in L∞(Ω) as η, ε → 0.
Integrate the equation of V , we have∫

Ω

V (m− eηmW − V ) = 0.
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Sincem > 0 in Ω̄ andW,V → 0 uniformly in Ω as η, ε→ 0, we havem−eηmW−V >
0 in Ω for sufficiently small η, ε, which is a contradiction. Therefore, we have either
W ∗ 6= 0 or V ∗ 6= 0; i.e. W ∗ + V ∗ ≥ 0 and W ∗ + V ∗ 6= 0. Adding the equations of
W ∗ and V ∗ we see that W ∗ + V ∗ is a non-negative, non-trivial solution of (9.1).
By the uniqueness of θµ, we have W ∗ + V ∗ = θµ. Hence, W ∗ and V ∗ satisfy

(9.5)


µ∆W ∗ +W ∗(m− θµ) = 0 in Ω,
µ∆V ∗ + V ∗(m− θµ) = 0 in Ω,
∂W∗

∂n = ∂V ∗

∂n = 0 on ∂Ω.

By (9.1), we see that zero is the principal eigenvalue of the operator µ∆ + (m −
θµ) with zero Neumann boundary condition. As a consequence, the kernel of the
eigenfunction space corresponding to zero is one dimensional, spanned by θµ. Hence,
W ∗ and V ∗ must be scalar multiples of θµ, i.e., W ∗ = sθµ and V ∗ = s̃θµ for
some s, s̃ ≥ 0. As W ∗ + V ∗ = θµ, we see that s + s̃ = 1. This implies that
(W ∗, V ∗) = (sθµ, (1− s)θµ) for some s ∈ [0, 1]. �

Proof of Theorem 9.1. From here on we fix µ > 0 and write θ = θµ. By
Lemma 9.4, all positive solutions of system (9.3) are close to Σ = {(sθ, (1 − s)θ) :
s ∈ (0, 1)} for sufficiently small η and ε. Hence, it suffices to determine the structure
of the set of positive solutions of system (9.3) near Σ for 0 < η, |ε| � 1. To this

end, we apply the Lyapunov-Schmidt procedure. Set X = W 2,p
N (Ω)×W 2,p

N (Ω) with

p > N , Y = Lp(Ω) × Lp(Ω), where W 2,p
N (Ω) = {u ∈ W 2,p(Ω) : ∂u

∂n

∣∣
∂Ω

= 0}. We

rewrite solutions (w, v) of (9.3) as (w, v) = (s(θ + y), (1 − s)(θ + z)), where s ∈ R
and

(y, z) ∈ X1 :=

{
(y, z) ∈ X :

∫
Ω

(y − z)θ = 0

}
.

For δ > 0, define the mapping F : X1 × (−δ, δ)× (−δ, δ)× (−δ, 1 + δ)→ Y by

F (y, z, η, ε, s) = Ls

(
y
z

)
+

(
f
g

)
,

where

Ls

(
y
z

)
=

(
µ∆y + θ[−sy − (1− s)z] + y(m− θ)
µ∆z + θ[−sy − (1− s)z] + z(m− θ)

)
,

and
f = µη∇m · ∇(θ + y) + [1− eηm]s(θ + y)2 + y[−sy − (1− s)z],
g = −ε∆(θ + z) + [1− eηm]s(θ + y)(θ + z) + z[−sy − (1− s)z].

Also, define the operator Ps by

Ps(y, z) =

∫
Ω

(y − z)θ∫
Ω
θ2

(
(1− s)θ
−sθ

)
.

The operator Ps satisfies P 2
s = Ps and PsLs = 0, and the range of Ps is spanned

by ((1− s)θ,−sθ).
Following the Lyapunov-Schmidt procedure, it remains to solve

(9.6) PsF (y, z, η, ε, s) = 0

together with

(9.7) (I − Ps)F (y, z, η, ε, s) = 0.

SinceD(y,z)F (0, 0, 0, 0, s) = Ls and PsLs = 0, we haveD(y,z)(I−Ps)F (0, 0, 0, 0, s) =
(I − Ps)Ls = Ls.
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Claim 9.5. The kernel of Ls is spanned by ((1− s)θ,−sθ).

This can be seen by showing that y− z ∈ span{θ}, and that sy+ (1− s)z = 0.
By the above claim, we have

Ker(Ls) ∩X1 = {(0, 0)}.

By the property of Fredholm operators of index zero, D(y,z)(I−Ps)F (0, 0, 0, 0, s) is
invertible from X1 to Y . By the implicit function theorem, there exist some neigh-
borhood V0 of (0, 0) in X1, δ1 > 0, and scalar functions y1(η, ε, s), z1(η, ε, s) with
(y1(0, 0, s), z1(0, 0, s)) = (0, 0) such that (I−Ps)F (y, z, η, ε, s) = 0 for (y, z, η, ε, s) ∈
V0×(−δ1, δ1)×(−δ1, δ1)×(−δ1, 1+δ1) if and only if (y, z) = (y1(η, ε, s), z1(η, ε, s)).
That is, F (y, z, η, ε, s) = 0 for (y, z, η, ε, s) ∈ V0×(−δ1, δ1)×(−δ1, δ1)×(−δ1, 1+δ1)
if and only if (y, z) = (y1(η, ε, s), z1(η, ε, s)) solves (9.6).

Define χ(η, ε, s) by

PsF (y1(η, ε, s), z1(η, ε, s), η, ε, s) =
χ(η, ε, s)∫

Ω
θ2

(
(1− s)θ
−sθ

)
,

where χ(η, ε, s) is given by
(9.8)
χ(η, ε, s) =

∫
Ω
θ{µη∇m · ∇(θ + y1) + ε∆(θ + z1) + s[1− eηm](θ + y1)(y1 − z1)

+(y1 − z1)[−sy1 − (1− s)z1]},

and (y1, z1) = (y1(η, ε, s), z1(η, ε, s)). Since y1(0, 0, s) = z1(0, 0, s) = 0,

(9.9)
∂χ

∂η
(0, 0, s) = µ

∫
Ω

θ∇m · ∇θ.

Now, by Theorem 3.10(b), the last quantity in (9.9) is positive. As χ(0, 0, s) = 0,
by the implicit function theorem, there exist some δ ∈ (0, δ1) and s0 > 0 such that
all solutions of χ(η, ε, s) = 0 in (−δ, δ)× (−δ, δ)× (−s0, 1 + s0) can be represented
by some function η = η1(ε, s), i.e., χ(η, ε, s) = 0 if and only if η = η1(ε, s). It is
easy to see that

η1(ε, s) =
1

µ
∫

Ω
θ∇m · ∇(θ + y1)

{
−ε
∫

Ω

θ∆(θ + z1)− s
∫

Ω

[1− eηm]θ(θ + y1)(y1 − z1)

−
∫

Ω

θ(y1 − z1)[−sy1 − (1− s)z1]

}
,

where (y1, z1) = (y1(η1(ε, s), ε, s), z1(η1(ε, s), ε, s)). Since y1(η, ε, s), z1(η, ε, s) =
O(η + |ε|) = O(|ε|) for sufficiently small η and ε, we have

(9.10) η1(ε, s) = ε

[ ∫
Ω
|∇θ|2

µ
∫

Ω
θ∇m · ∇θ

+O(|η|+ |ε|)
]
.

Set  η̃(ν, s) := η1(µ− ν, s),
ỹ(x; ν, s) := y1(x; η1(µ− ν, s), µ− ν, s),
z̃(x; ν, s) := z1(x; η1(µ− ν, s), µ− ν, s),

where ν ∈ (µ−δ, µ+δ) and s ∈ (−s0, 1+s0). Then we see that for ν ∈ (µ−δ, µ+δ),
system (9.3) has a positive steady state, denoted by (w, v), for η ∈ (−δ1, δ1) if and
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only if for some s ∈ (0, 1),  η = η̃(ν, s),
w = s[θµ(x) + ỹ],
v = (1− s)[θµ(x) + z̃].

Since η1(0, s) = 0 and y1(x; 0, 0, s) = z1(x; 0, 0, s) ≡ 0, it is easy to check that
ỹ(x;µ, s) = z̃(x;µ, s) ≡ 0 and η̃(µ, s) ≡ 0. By (9.10), we see that

lim
ν→µ

η̃(ν, s)

1− ν/µ
=

∫
Ω
|∇θµ|2∫

Ω
θµ∇m · ∇θµ

> 0.

This completes the proof. �





CHAPTER 10

Non-convex domains

The geometry of domain seems to play an important role in determining the
dynamics of system (2.1). In this chapter we show that the convexity assumption
is necessary in many of our preceding results and in particular in the Conjecture
2.9. We first recall the following result from [14]:

Theorem 10.1. There exist a non-convex smooth domain Ω and m ∈ C2(Ω̄)
such that for some µ > 0,

∫
Ω
θµ∇θµ · ∇m < 0.

The main result of this chapter can be stated as follows.

Theorem 10.2. There exist some non-convex smooth domain Ω and some m ∈
C2(Ω̄) such that for some µ > 0, there exist δ1 > 0, δ2 > 0 and functions

η̃ = η̃(ν, s) : (µ− δ2, µ+ δ2)× (0, 1)→ (−δ1, δ1),

ỹ = ỹ(·; ν, s), z̃ = z̃(·; ν, s) : (µ− δ2, µ+ δ2)× (0, 1)→ C1(Ω̄)

such that system (2.1) has a positive steady state, denoted by (u, v) for η ∈ (−δ1, δ1)
and ν ∈ (µ− δ2, µ+ δ2) if only if for some 0 < s < 1,

η = η̃(ν, s),
u = seη̃(ν,s)m[θµ + ỹ],
v = (1− s)[θµ + z̃],

where when ν = µ, ỹ(x;µ, s) = z̃(x;µ, s) ≡ 0, η̃(µ, s) ≡ 0 and

lim
ν→µ

η̃(ν, s)

µ− ν
=

∫
Ω
|∇θµ|2∫

Ω
θµ∇θµ · ∇m

< 0.

Note that Theorem 10.2 follows from the proof of Theorem 9.1 by using The-
orem 10.1 instead of Theorem 3.10. (Note that the only place in the proof of
Theorem 9.1 that uses the convexity of Ω is the application of Theorem 3.10.)

Remark 10.3. Under the assumption of Theorem 10.2, for ν ∈ (µ − δ2, µ),
(2.1) has no positive steady states for η ∈ [0, δ1). It can be further shown that the
semi-trivial steady state (0, ṽ) is globally asymptotically stable. On the other hand,
if ν ∈ (µ, µ + δ2), then for η ∈ (0, δ2), η̃(ν, s) > 0 and system (2.1) has a positive
steady state for some η ∈ [0, δ1) if and only if

inf
0<s<1

η̃(ν, s) < η < sup
0<s<1

η̃(ν, s),

and

lim
ν→µ

inf0<s<1 η̃(ν, s)

µ− ν
= lim
ν→µ

sup0<s<1 η̃(ν, s)

µ− ν
=

∫
Ω
|∇θµ|2∫

Ω
θµ∇θµ · ∇m

< 0.

In contrast with the case when Ω is convex, we have the following result for
some non-convex domains.
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62 10. NON-CONVEX DOMAINS

Theorem 10.4. There exist some non-convex smooth domain Ω, some m ∈
C2(Ω̄) and µ < ν such that (0, ṽ) changes its stability at least twice as η varies
from zero to infinity.

Proof. Let µ > 0, Ω and m be chosen as in Theorem 10.1. By the eigenvalue
comparison principle, λv(0, µ, ν) < 0 for all ν > µ. Next, by Lemma 5.2, we have

∂λv
∂η

(η, µ, ν) = −µ
∫

Ω
eηmψ∇m · ∇ψ∫

Ω
eηmψ2

.

Setting η = 0 and ν = µ, we have ψ = θµ and

∂λv
∂η

(0, µ, µ) = −µ
∫

Ω
θµ∇m · θµ∫

Ω
θ2
µ

> 0.

Together with λv(0, µ, µ) = 0, we deduce by implicit function theorem that there
exist constants δ1, δ2 > 0 and a function η̃ : (µ − δ1, µ + δ1) → (−δ2, δ2) such
that λv(η, µ, ν) = 0 for some η ∈ (−δ2, δ2) and ν ∈ (µ − δ1, µ + δ1) if and only if
η = η̃(ν). Moreover, for each ν ∈ (µ, µ + δ1), λv(η, µ, ν) < 0 for all η ∈ (0, η̃) and
λv(η, µ, ν) > 0 for all η ∈ (η̃, δ2). This, and the fact that lim supη→∞ λv < 0 (in
Theorem 2.2, m is allowed to change sign), yields the theorem. �



CHAPTER 11

Global bifurcation results

The main goal of this chapter is to prove Theorems 2.14 and 2.4. Sections 11.1-
11.4 is devoted the proof of Theorem 2.14. Theorem 2.4 is established in Section
11.5.

11.1. General bifurcation theorems

By the substitution u = eηmw, we rewrite the steady state system of (2.1) as

(11.1)


µ∆w + µη∇m · ∇w + w(m− eηmw − v) = 0 in Ω,
ν∆v + v(m− eηmw − v) = 0 in Ω,
∂w
∂n = ∂v

∂n = 0 on ∂Ω.

The global version of the Crandall-Rabinowitz bifurcation theorem from a sim-
ple eigenvalue is ubiquitous in applications. See, e.g. [25, 71, 91]. We shall apply
the global bifurcation theory for a C1 Fredholm mapping initially developed by
[87]. First we state the condition of simple bifurcation due to [25].

Let X and Y be Banach spaces, V be an open connected subset of R×X and
(η0, u0) ∈ V , and let F be a continuously differentiable mapping from V into Y .

(H1) F (η, u0) = 0 for (η, u0) ∈ V ,
(H2) DuF,DηF,DηuF exist and are continuous in V ,
(H3) DuF (η0, u0) is a Fredholm operator with index 0, and for some w0 ∈ X,

Null(DuF (η0, u0)) = span{w0},
(H4) DηuF (λ0, u0)[w0] 6∈ Range(DuF (η0, u0)).

Theorem 11.1. [87] Suppose (H1)-(H4) are satisfied. Let Z be any complement
of Null(DuF (η0, u0)) in X. Then there exist an open interval I1 = (−ε, ε) and
continuous functions η : I1 → R, φ : I1 → Z, such that η(0) = η0, φ(0) = 0, and,
if u(s) = u0 + sw0 + sφ(s) for s ∈ I1, then F (η(s), u(s)) = 0. Moreover, F−1({0})
near (η0, u0) consists precisely of the curves u = u0 and Γ = {(η(s), u(s)) : s ∈ I1}.
If in addition, DuF (η, u) is a Fredholm operator for all (η, u) ∈ V , then the curve
Γ is contained in C, which is a connected component of S̄ where S = {(η, u) ∈ V :
F (η, u) = 0, u 6= u0}; and either C is not compact in V , or C contains a point
(η′, u0) with η′ 6= η0.

The unilateral version below, that is suitable for dealing with positive solutions,
is due to Shi and Wang (see also Chapter 6 of [71]).

Theorem 11.2. [94] Suppose (H1)-(H4) are satisfied. Let C be defined as in
Theorem 11.1. We define Γ+ = {(η(s), u(s)) : s ∈ (0, ε)} and Γ− = {(η(s), u(s)) :
s ∈ (−ε, 0)}. In addition we assume that

(H5) the norm function u 7→ ‖u‖ in X is continuously differentiable for any
u 6= 0;
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64 11. GLOBAL BIFURCATION RESULTS

(H6) for k ∈ (0, 1), if (η, u0) and (η, u) are both in V , then (1−k)DuF (η, u0)+
kDuF (η, u) is a Fredholm operator.

Let C+ (resp. C−) be the connected component of C \ Γ− which contains Γ+ (resp.
the connected component of C \ Γ+ which contains Γ−). Then each of the sets C+

and C− satisfies one of the following: (i) it is not compact; (ii) it contains a point
(η′, u0) with η′ 6= η0; or (iii) it contains a point (η, u0 + z), where z ∈ Z \ {0}.

11.2. Bifurcation result in R1

Define S to be the set of positive solutions of (11.1), i.e.

S = {(u, v) ∈ X : (u, v) is a solution of (11.1) and u > 0, v > 0 in Ω̄}.
Let us first look at the bifurcation at (η∗, (0, ṽ)) for (11.1).

Proof of Theorem 2.14(i). First, we check the conditions (H1)-(H4). Fix

p > N and let X = W 2,p
N (Ω)×W 2,p

N (Ω) and Y = Lp(Ω)× Lp(Ω), where

W 2,p
N (Ω) = {φ ∈W 2,p(Ω) :

∂φ

∂n
= 0 on ∂Ω}.

Define V = (0,∞)×X and define F : V → Y by

F (η, (w, v)) =

[
µ∆w + µη∇m · ∇w + w(m− eηmw − v)

ν∆v + v(m− eηmw − v)

]
.

Then F (η, (0, ṽ)) = 0 for all η > 0. It is easy to see that F is smooth in η and
(w, v) with D(w,v)F given by

D(w,v)F (η, (w, v))

(
φ1

φ2

)
=

[
µ∆φ1 + µη∇m · ∇φ1 + (m− 2eηmw − v)φ1 − wφ2

ν∆φ2 + (m− eηmw − 2v)φ2 − eηmvφ1

]
.

By writing

(11.2) D(w,v)F (η, (w, v))

(
φ1

φ2

)
= L

(
φ1

φ2

)
+K

(
φ1

φ2

)
,

where

L

(
φ1

φ2

)
=

(
µ∆φ1 − φ1

ν∆φ2 − φ2

)
and

K

(
φ1

φ2

)
=

(
(m− 2eηmw − v + 1)φ1 − wφ2

(m− eηmw − 2v + 1)φ2 − eηmvφ1

)
,

we see that for all (η, (w, v)) ∈ V , D(w,v)F is a sum of an isomorphism and a
compact operator. Hence it is Fredholm with index zero. Moreover, let w0 =
(ψ,−M [ψ]), with ψ being the principal eigenfunction of (3.3) and ψ̃ = M [ψ] being
the unique positive solution to{

−ν∆ψ̃ − (m− 2ṽ)ψ̃ = eηmṽψ in Ω,
∂ψ̃
∂n = 0 on Ω.

Then

Null(D(w,v)F )(η∗, (0, ṽ)) = span {w0} .
This verifies (H1)-(H3). Define

(11.3) Z =

{
(y, z) ∈ X :

∫
Ω

(yψ − zM [ψ]) = 0

}
,
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then Z + span{w0} = X.

Lemma 11.3. If
∫

Ω
eηmψ∇m · ∇ψ 6= 0, then

Dη,(w,v)F (η∗, (0, ṽ))[w0] 6∈ Range(D(w,v)F (η∗, (0, ṽ)).

Proof. Suppose

Dη,(w,v)F (η∗, (0, ṽ))[w0] =

(
µ∇m · ∇ψ
−eηmmṽψ

)
∈ Range

(
D(w,v)F (η∗, (0, ṽ))

)
then for some φ ∈W 2,p(Ω),{

µ∇ · (eηm∇φ) + (m− ṽ)eηmφ = µeηm∇m · ∇ψ in Ω,
∂φ
∂n = 0 on ∂Ω.

Multiply the above by ψ and integrate by parts, then

µ

∫
Ω

eηmψ∇m · ∇ψ = 0.

This proves Lemma 11.3. �

Remark 11.4. (H4) is equivalent to (by Lemma 5.2) to ∂
∂ηλv(η∗, µ, ν) 6= 0.

(H5) in Theorem 11.2 is satisfied for ‖ · ‖X . For (H6), it suffices to realize that
for any (η, u0) and (η, u) in V , (1− k)DuF (η, u0) + kDuF (η, u) has a similar form
as in (11.2) and hence it is also Fredholm of index 0.

Therefore (µ∗, (0, ṽ)) is a bifurcation point and Theorems 11.1 and 11.2 are
applicable. We are interested in the branch of positive solutions C+, i.e. the branch
containing

{(η(s), (0, ṽ) + s(ψ,−M [ψ]) + (y(s), z(s))) : s ∈ (0, ε)},
where (y(s), z(s)) ∈ Z. We claim that C+ is unbounded. Suppose to the contrary,
then the first alternative of Theorem 11.2 saying C+ contains (η′, (0, ṽ)) for some
η′ 6= η∗ is impossible, since (η∗, (0, ṽ)) is the unique bifurcation point for positive
solutions of (11.3) lying on {(η, (0, ṽ)) : η ∈ (0,∞)}. Hence the last alternative
must happen, i.e. C+ contains a point (η, (0, ṽ) + (y, z)) for some (y, z) ∈ Z.

Claim 11.5. Let P = {(u, v) ∈ X : u > 0 and v > 0 in Ω̄}. Then C+ contains
a point (η1, (u1, v1)) ∈ [(0,∞)× ∂P ].

By the maximum principle, z < 0. And hence y < 0 somewhere by the def-
inition of Z (i.e. (11.3)) and the positivity of ψ,M [ψ]. Therefore, Claim 11.5
follows by continuity. Hence by the strong maximum principle, (η1, (u1, v1)) =
(η1, (0, ṽ)), (η1, (ũ, 0)) or (η1, (0, 0)). If (η1, (u1, v1)) = (η1, (0, ṽ)), then η1 = η∗ by
uniqueness and (η∗, (0, ṽ)) ∈ C+, which is impossible by the proof of the abstract
result in [94]. (See also Theorem 6.4.3 in [71].) Hence, (η1, (u1, v1)) = (η1, (ũ, 0))
or (η1, (0, 0)), which implies that one of them is linearly neutrally stable. This is
a contradiction to the linear instability of (η, (ũ, 0)) and (η, (0, 0)) for all η ≥ 0
(Theorem 2.10).

Claim 11.6. C+ is (i) unbounded; (ii) bounded away from {(η, (ũ, 0)) : η ≥ 0};
and (iii) bounded away from {(0, (u, v)) : (u, v) ∈ X}.

(i) and (ii) are already derived by the above arguments. (iii) follows from the
non-existence of positive steady states when η = 0 and µ 6= ν [31]. By Claim 11.6,
Theorem 2.14(i) is proved. �
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11.3. Bifurcation result in R3

One can prove the existence of an unbounded connected component of S ema-
nating from (η∗, (ũ, 0)) in a similar fashion.

Proof of Theorem 2.14(iii). Since (ũ, 0) depends on η, we consider instead

F̃ : (0,∞)×X → Y defined as

F̃ (η, z, v) = F (η, ũ− z, v).

Now all the hypotheses of Theorems 11.1 and 11.2 are satisfied at the bifurcation
point (η, (z, v)) = (η∗, (0, 0)), and we can repeat the proof of Theorem 2.14(i) to
obtain the desired conclusion. �

11.4. Bifurcation result in R2

Proof of Theorem 2.14(ii). Suppose Ω is convex and choose δ0 > 0 so small
such that Theorem 2.11(a) holds. That is, for all (µ, ν) ∈ R2 satisfying 0 < ν <
µ ≤ δ0, there exist 0 < η∗1 < η∗2 such that

λu(η, µ, ν) =

 − for η ∈ [0, η∗1),
+ for η ∈ (η∗1 , η

∗
2),

− for η ∈ (η∗2 ,∞).

Moreover, by (A.19) and the proof of Theorem 2.11,

(11.4)
∂λu
∂η

=

∫
Ω
∂ũ
∂ηϕ

2∫
Ω
ϕ2

> 0

at η = η∗1 . And at η = η∗2 ,

(11.5)
∂λu
∂η

=

∫
Ω
∂ũ
∂ηϕ

2∫
Ω
ϕ2

< 0.

On the other hand, by Lemma 5.2, at any root η∗ of λv(·, µ, ν),

∂

∂η
λv(η∗, µ, ν) = −µ

∫
Ω
eη∗mψ∇m · ∇ψ∫

Ω
eη∗mψ2

,

where ψ is the principal eigenfunction corresponding to λv(η∗, µ, ν) = 0. Let ν = µ
and η∗ = 0, then ψ = θµ and by Theorem 3.10,

(11.6)
∂λv
∂η

(0, µ, µ) = −µ
∫

Ω
θµ∇m · ∇θµ∫

Ω
θ2
µ

< 0.

This and λv(0, µ, µ) = 0 imply, by the Implicit Funtion Theorem, that there are
δ3, δ4 > 0 and a function η∗ = η∗(ν), so that λv(η, µ, ν) = 0 for some η ∈ (−δ3, δ3) if
and only if η = η∗(ν) for some ν ∈ (µ− δ4, µ+ δ4). Moreover, η∗(µ) = 0. Therefore
by (11.6) and continuity,

∂λv
∂η

(η∗, µ, ν) < 0.

Now, choose δ0 possibly smaller so that

δ0 ∈

(
0,

4(minΩ̄m)3

|∇m|2L∞(Ω)

)
.
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Then by Theorem 2.12(b)(ii) (see Remark 7.12), λv(η, µ, µ) < 0 for all η > 0. Hence
there exists some ε such that ε = ε(µ) < min1≤i≤4{δi}, and

λv(η, µ, ν) < 0 for all η ∈
[
δ3,

1

minΩ̄m

]
and ν ∈ (µ− ε(µ), µ].

Combining with Theorem 2.2,

(11.7) λv(η, µ, ν) < 0 for all η ∈ [δ3,∞] and ν ∈ (µ− ε(µ), µ].

And we have proved the following.

Lemma 11.7. There exists a function ε : (0, δ0) → (0, δ0) such that for all
(µ, ν) ∈ R2 satisfying µ ∈ (0, δ0) and ν ∈ (µ − ε(µ), µ), then η 7→ λu(η, µ, ν)
changes sign at exactly two values η = η∗1 , η

∗
2 , at which

∂λu
∂η

=

∫
Ω
∂ũ
∂ηϕ

2∫
Ω
ϕ2

6= 0

and η 7→ λv(η, µ, ν) changes sign exactly once at η = η∗, at which

∂λv
∂η

(η∗, µ, ν) = −µ
∫

Ω
eη∗mψ∇m · ∇ψ∫

Ω
eη∗mψ2

< 0.

By Lemma 11.7, one can check the assumptions of Theorems 11.1 and 11.2,
which implies that (η∗i , (ũ, 0)) (i = 1, 2) and (η∗, (0, ṽ)) are simple bifurcation points,
with a half branch of positive solutions of (11.1) emanating from each of them.

Next, we are going to see that there exists a branch of positive solutions of
(11.1) connecting (η∗, (0, ṽ)) and (η∗1 , (ũ, 0)). By the result in Chapter 9, for each
µ > 0, there exist δi = δi(µ) ∈ (0, µ) (i = 1, 2) and some functions

η̃ = η̃(ν, s) : (µ− δ2, µ+ δ2)× (0, 1)→ (−δ1, δ1),

ỹ = ỹ(·; ν, s), z̃ = z̃(·; ν, s) : (µ− δ2, µ+ δ2)× (0, 1)→ C2(Ω̄),

such that for ν ∈ (µ − δ2, µ + δ2), system (11.1) has a positive solution (u, v), for
η ∈ (−δ1, δ1) if and only if for some s ∈ (0, 1),

(η, u, v) =
(
η̃(ν, s), seη̃(ν,s)m[θµ + ũ], (1− s)[θµ + z̃]

)
.

Moreover, when ν = µ, then ỹ(x;µ, s) = z̃(x;µ, s) ≡ 0, η̃(µ, s) ≡ 0 and

lim
ν→µ

η̃(ν, s)

µ− ν
=

∫
Ω
|∇θµ|2∫

Ω
θµ∇θµ · ∇m

> 0.

This shows that

Lemma 11.8. For each µ ∈ (0, δ0) and ν ∈ (µ − δ2(µ), µ), the following hold
true.

(i) (11.1) has a unique branch C2,1 of positive solutions connecting (η∗, (0, ṽ))
and (η∗1 , (ũ, 0)).

(ii) η∗, η
∗
1 ∈ (0, δ1).

(iii) C2,1 undergoes no secondary bifurcations.
(iv) For some δ1 > 0, S∩[{δ1}×X] = ∅, where S denotes the set of all positive

solutions of (2.1).
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For each µ ∈ (0, δ0) and ν ∈ (µ− δ2(µ), µ), consider the bifurcation space

{(η, (u, v)) : η ≥ δ1, (u, v) ∈ X} .
Then there is a unique bifurcation point (η∗2 , (ũ, 0)). Hence we can repeat the
arguments in the proof of Theorem 2.14(i) to obtain the desired conclusion. �

11.5. Uniqueness result for large µ, ν

In the following we assume without loss of generality that |Ω| = 1 by rescaling.
Theorem 2.4 is a consequence of the following result and the monotone dynamical
system theory.

Theorem 11.9. For each ε > 0, there exists M > 0 such that for η ∈ [ε, ε−1]
and µ, ν ≥M , every positive solution (w, v) of (11.1), if it exists, is linearly stable.
Moreover, there exists c = c(ε) > 0 independent of µ, ν such that u ≥ c.

Proof. Assume to the contrary that for some sequences µk → ∞, νk → ∞,
ηk → η > 0, (2.1) has a positive steady state solution (uk, vk) which is not linearly
stable. i.e. the principal eigenvalue λk of the following problem is non-positive.

(11.8)


µ∇ · [eηm∇ϕ] + (m− 2u− v)eηmϕ− uψ + λeηmϕ = 0 in Ω,
ν∆ψ − veηmϕ+ (m− u− 2v)ψ + λψ = 0 in Ω,
∂ϕ
∂n = ∂ψ

∂n = 0 on ∂Ω,

where µ = µk, ν = νk, η = ηk, u = uk, v = vk, ϕ = ϕk, ψ = ψk.

Claim 11.10. System (11.8) has a principal eigenvalue λk ∈ R, such that (i)
λk is simple, with an eigenfunction (ϕ,ψ) satisfying ϕ < 0 < ψ in Ω̄; (ii) any other

eigenvalue λ̃ must satisfy Re λ̃ > λk.

To see the claim, it suffices to observe that (ϕ̂, ψ̂) = (−ϕ,ψ) satsifies a cooper-
ative system, and Claim 11.10 follows from standard theory [99]. For the sake of
notational simplicity we drop the index k except for λk.

By the proof of Lemma A.1, passing to a subsequence, there are non-negative
constants Cu and Cv such that

ũ→
∫

Ω
meηm∫

Ω
e2ηm

eηm, u = uk → Cue
ηm, v = vk → Cv in C2,α(Ω̄).

By integrating equations of u and v over Ω, we have

(11.9)

∫
Ω

u(m− u− v) = 0 and

∫
Ω

v(m− u− v) = 0.

Lemma 11.11. For each η, as µ, ν →∞,
u

‖u‖L∞(Ω)
→ eη(m−maxΩ̄ m),

v

‖v‖L∞(Ω)
→ 1

uniformly in Ω.

Proof. We show v
‖v‖L∞(Ω)

→ 1. Let v̂ = v/‖v‖L∞(Ω), then v̂ satisfies

∆v̂ + (ω/ν)v̂ = 0 in Ω,
∂v̂

∂n

∣∣∣∣
∂Ω

= 0, ‖v̂‖L∞(Ω) = 1,

where ω → m − Cueηm − Cv in L∞(Ω). In particular, w/ν → 0 is bounded in
L∞(Ω) for all ν large. By elliptic regularity theory, (a subsequence of) v̂ converges
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to some v̂0 ∈ W 2,p(Ω) (for some p > N , N being the dimension of the domain Ω),
weakly in W 2,p(Ω) and strongly in C1(Ω̄). Now, v̂0, being the unique solution of

∆v̂0 = 0 in Ω,
∂v̂0

∂n

∣∣∣∣
∂Ω

= 0, ‖v̂0‖L∞(Ω) = 1,

must satisfy v̂0 ≡ 1 in Ω. This proves the convergence of v̂ → 1. The other half of
the lemma is analogous, and is omitted. �

Hence we may divide the above equations by ‖u‖L∞(Ω) and ‖v‖L∞(Ω) respec-
tively and passing to the limit in (11.9) to get

(11.10)

( ∫
Ω
e2ηm

∫
Ω
eηm∫

Ω
eηm 1

)(
Cu
Cv

)
=

( ∫
Ω
meηm∫
Ω
m

)
.

Since

det

( ∫
Ω
e2ηm

∫
Ω
eηm∫

Ω
eηm 1

)
=

∫
Ω

e2ηm − (

∫
Ω

eηm)2 > 0,

we can invert in (11.10) and obtain

(11.11)

(
Cu
Cv

)
=

1∫
Ω
e2ηm − (

∫
Ω
eηm)2

( ∫
Ω
meηm −

∫
Ω
eηm

∫
Ω
m∫

Ω
e2ηm

∫
Ω
m−

∫
Ω
meηm

∫
Ω
eηm

)
.

Remark 11.12. Before we proceed, it is important to observe that the above
argument does not assume apriori that Cu and/or Cv is strictly positive. Instead,
the argument asserts that any non-negative (subsequential) limit (Cu, Cv) neces-
sarily satisfies (11.10) and hence (11.11).

Although we will be able to rule out Cu = 0 solely by formula (11.11), we will
need to deal with the possibility of Cv = 0 carefully.

From (11.11) we can deduce the following corollary.

Corollary 11.13. Recall that η = lim
k→∞

ηk.

(i) There exists δ5 > 0, independent of k, such that η ≥ δ5.
(ii) There exists δ6 = δ6(ε) > 0, such that Cu ≥ δ6. In particular, for µ, ν

large enough, there is no bifurcation from {(η, (0, ṽ)) : ε ≤ η ≤ ε−1}.
Proof. To prove (i), in view of (11.11), it is enough to show that there exists

δ5 > 0 such that f(η) :=
∫

Ω
e2ηm

∫
Ω
m−

∫
Ω
meηm

∫
Ω
eηm < 0 for all η ∈ (0, δ5]. This

follows from f(0) =
∫

Ω
m−

∫
Ω
m = 0 (|Ω| = 1) and that (by Hölder’s inequality)

f ′(0) =

(∫
Ω

m

)2

−
∫

Ω

m2 < 0.

To prove (ii), we let g(η) =
∫

Ω
meηm −

∫
Ω
eηm

∫
Ω
m.

Claim 11.14. For each η > 0,
∫

Ω
meηm −

∫
Ω
eηm

∫
Ω
m > 0 and hence by

continuity, inf [ε,ε−1] g(η) > 0.

The claim follows easily from (here m̄ =
∫

Ω
m as |Ω| = 1)

g(η) =

∫
Ω

(m− m̄)
(
eηm − eηm̄

)
> 0.

Hence,

Cu ≥ inf
[ε,ε−1]

g(η)∫
Ω
e2ηm − (

∫
Ω
eηm)2

> 0.

This proves (ii). �
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Next, we study (11.8).

Lemma 11.15. There exists C = C(ε) > 0 independent of µ, ν and η ∈ [0, ε−1]
such that the principal eigenvalue λ of (11.8) satisfies λ ≥ −C for any positive
steady states of (2.1).

Proof. Multiply the second equation of (11.8) by ψ and integrate by parts,
we have

(11.12) −ν
∫

Ω

|∇ψ|2 +

∫
Ω

(m− u− v)ψ2 = −λ
∫

Ω

ψ2 +

∫
Ω

vψ2 +

∫
Ω

veηmϕψ.

By a variational argument similar to Lemma 7.8, the left hand side of (11.12) is
negative, hence

(11.13) λ

∫
Ω

ψ2 ≥
∫

Ω

vψ2 +

∫
Ω

veηmϕψ.

Similarly, one can show

(11.14) λ

∫
Ω

eηmϕ2 ≥
∫

Ω

ueηmϕ2 +

∫
Ω

uϕψ.

(Note that the integral involving ϕψ is negative.) Adding (11.13) and (11.14), we
have by Hölder’s inequality,

λ

∫
Ω

(
eηmϕ2 + ψ2

)
≥ −C(η, ‖u‖L∞(Ω), ‖v‖L∞(Ω))

∫
Ω

(
eηmϕ2 + ψ2

)
.

Since by comparison, for any positive steady states (u, v) of (2.1), u ≤ ũ and v ≤ ṽ,
the desired conclusion follows from the L∞ boundedness of ũ and ṽ on compact
subsets of η in Theorems 3.12 and 3.13. �

By Lemma 11.15 and λk ≤ 0 for all k, we see that {λk} is a bounded sequence.
Hence we may assume without loss of generality that λk → λ0 ≤ 0. Integrate
(11.8) and pass to the limit, provided we normalize ‖ϕ‖L∞(Ω) + ‖ψ‖L∞(Ω) = 1 and
ϕ < 0 < ψ, we have (passing to a subsequence) ϕ → Cϕ and ψ → Cψ for some
constants Cϕ and Cψ satisfying

(11.15) Cϕ ≤ 0 ≤ Cψ and |Cϕ|+ |Cψ| = 1.( ∫
Ω
eηm(m− 2Cue

ηm − Cv) −Cu
∫

Ω
eηm

−Cv
∫

Ω
eηm

∫
Ω

(m− eηmCu − 2Cv)

)(
Cϕ
Cψ

)
=− λ0

(
Cϕ
∫

Ω
eηm

Cψ

)
.

And upon substituting (11.10),
(11.16)

λ0

(
Cϕ
∫

Ω
eηm

Cψ

)
=

(
Cu
∫

Ω
e2ηm/

∫
Ω
eηm Cu

∫
Ω
eηm

Cv Cv

)(
Cϕ
∫

Ω
eηm

Cψ

)
.

So λ0 is the eigenvalue of (11.16) with an eigenvector with entries of opposite sign.
Hence,
(11.17)

λ0 =
1

2

(Cu ∫Ω e2ηm∫
Ω
eηm

+ Cv

)
−

√(
Cu

∫
Ω
e2ηm∫

Ω
eηm

+ Cv

)2

− 4CuCv

(∫
Ω
e2ηm∫

Ω
eηm

−
∫

Ω

eηm
) .

And λ0 > 0 if the product CuCv > 0. So we have a contradiction when CuCv > 0.
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Therefore by Corollary 11.13, we must have Cv = 0. In this case, it is easy to
see that then Cu =

∫
Ω
meηm/

∫
Ω
e2ηm and that by (11.17), λ0 = 0. Hence by the

first equation of (11.16),

(11.18) Cϕ

∫
Ω

e2ηm + Cψ

∫
Ω

eηm = 0

and hence (11.15) can be sharpened

(11.19) Cϕ < 0 < Cψ, |Cϕ|+ |Cψ| = 1,

and by (
∫

Ω
eηm)2 ≤

∫
Ω
e2ηm,

(11.20) |Cϕ|
∫

Ω

eηm < |Cψ|.

Lemma 11.16.
v

‖v‖L∞(Ω)
→ 1 and z :=

ũ− u
‖v‖L∞(Ω)

e−ηm → −Cϕ
Cψ
≥ 0.

Proof. The first part of the lemma follows readily by standard elliptic esti-
mates. Next, observe that z defined above satisfies

(11.21) µ∇ · (eηm∇z) + eηmz(m− u− ũ) = − uv

‖v‖L∞(Ω)
in Ω,

∂z

∂n

∣∣∣∣
∂Ω

= 0.

We estimate z. Multiply (11.21) by z and integrate by parts to get∫
Ω

eηmuz2 ≤
∫

Ω

eηm
[
µ|∇z|2 + (u+ ũ−m)z2

]
=

∫
Ω

zuv

‖v‖L∞(Ω)

≤
(∫

Ω

uz2

) 1
2

(∫
Ω

uv2

‖v‖2L∞(Ω)

) 1
2

,

where the first inequality follows from a variational argument similar to Lemma 7.8.
Since u→ (

∫
Ω
meηm/

∫
Ω
e2ηm)eηm, this implies that ‖z‖L2(Ω) is uniformly bounded.

By elliptic estimates, ‖z‖W 2,2(Ω) is uniformly bounded and we may assume that

z → z0 weakly in W 2,2(Ω), with z0 satisfying (since µ→∞)

∇ · (eηm∇z0) = 0 in Ω,
∂z0

∂n

∣∣∣∣
∂Ω

= 0.

Hence z0 = Cz for some constant Cz. Now integrate (11.21), we have∫
Ω

eηmz(m− u− ũ) = −
∫

Ω

u
v

‖v‖L∞(Ω)
.

Then pass to the limit,∫
Ω

eηmCz

(
m− 2

∫
Ω
meηm∫

Ω
e2ηm

eηm
)

= −
∫

Ω
meηm

∫
eηm∫

Ω
e2ηm

.

By cancelling on the left hand side, we have

−Cz
∫

Ω

meηm = −
∫

Ω
meηm

∫
Ω
eηm∫

Ω
e2ηm

.

This and (11.18) implies Cz = −Cϕ/Cψ. And we have proved Lemma 11.16. �
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Now we continue the proof of Theorem 11.9. Multiply the second equation of
(11.8) by v and integrate by parts. We have∫

Ω

v(−λψ + vψ + veηmϕ) =

∫
Ω

v[ν∆ψ + (m− u− v)ψ]

=

∫
Ω

ψ[ν∆v + (m− u− v)v]

= 0.

Dividing by ‖v‖2L∞(Ω) and rearranging, we have

(11.22)

λ

‖v‖L∞(Ω)

∫
Ω

v

‖v‖L∞(Ω)
ψ =

∫
Ω

[(
v

‖v‖L∞(Ω)

)2

ψ +

(
v

‖v‖L∞(Ω)

)2

eηmϕ

]
.

By Lemma 11.11, v/‖v‖L∞(Ω) → 1 uniformly, hence if we pass to the limit, we
see that the right hand side, and as a consequence, the left hand side of (11.22)
converges.

(11.23)

(
lim
k→∞

λ

‖v‖L∞(Ω)

)
Cψ = Cψ + Cϕ

∫
Ω

eηm.

Since |Cϕ|+ |Cψ| = 1, (11.23) implies Cψ 6= 0. Divide by Cψ, we have

lim
k→∞

λ

‖v‖L∞(Ω)
= 1 +

Cϕ
Cψ

∫
Ω

eηm,

where the last expression is positive, by (11.20). Hence limk λ/‖v‖L∞(Ω) > 0. This
is again a contradiction to the assumption that λ = λk ≤ 0 for all k. �

The following is a consequence of Corollary 11.13.

Corollary 11.17. There exists δ0 > 0 such that for each fixed η ∈ (0, δ0),
(11.1) has no positive solutions for all µ, ν sufficiently large.

Proof. Suppose to the contrary that for some fixed η > 0 and sequences
µk, νk →∞, (2.1) has a positive steady state (uk, vk), then by the proof of Theorem
11.9, there exist non-negative constants Cu, Cv so that uk → Cue

ηm and v → Cv.
Moreover, Cu, Cv satisfies (11.11). Then, by Corollary 11.13(i), necessarily η ≥
δ0. �



CHAPTER 12

Discussion and future directions

We consider a two species reaction-diffusion-advection model, where both species
compete for the same resource, which is distributed unevenly in the habitat. We
assume that both species have the same population dynamics but different disper-
sal strategies: One species diffuses randomly and the other adopts a combination
of random diffusion and advection upward along the resource gradient. When the
advection is weak, the species with the smaller random diffusion rate will drive the
other species to extinction. If the advection is strong, two species are able to coexist
as the species with strong advection will concentrate at some of the locally most
favorable places and the random diffusing species will utilize resources elsewhere.
In this paper we aim to understand the dynamics of the system for intermediate
advection.

We first determine, for each pair of diffusion rates µ, ν, the number of stability
changes for each of the two semi-trivial steady states, as η →∞. In general, finding
these numbers depends on verifying certain non-dengeneracy conditions, in the form
of integrals involving the semi-trivial steady states at the bifurcation points and the
coefficients of the system. These tasks can be accomplished, for instance, (i) when
the underlying spatial domain is one-dimensional and the resource function m(x)
is convex or concave, (ii) when the diffusion rates are both small, or (iii) when
the ratio of the diffusion rates are small or large. In the course of doing so, new
asymptotic estimates of the positive solution to the single semi-linear reaction-
diffusion-advection equation are developed. (See Appendix A.)

Based on the number of stability changes of the semi-trivial steady states, we
find that the plane of two random diffusion rates µ and ν can be partitioned into
three separate regions.

Furthermore, by fixing the random diffusion rates in each of these three regions
and varying the advection rate η from small to large, a distinct bifurcation diagram
of positive steady states of system (2.1) is discovered for each of the three regions.
By piecing these three bifurcation diagrams together we obtain a global picture on
the dynamics of system (2.1) as we vary the parameters µ, ν and η in the model.

A challenging open problem is whether system (2.1) has at most one positive
steady state, which has only been partially resolved in this work. A complete,
affirmative answer will yield much clearer bifurcation diagrams of system (2.1).
The same question can be asked for more general competition models, such as

(12.1)

 ut = ∇ · (µ∇u− αu∇m1) + u(m1(x)− u− bv) in Ω× (0,∞),
vt = ν∆v + v(m2(x)− cu− v) in Ω× (0,∞),
(µ∇u− αu∇m1) · n = ∇v · n = 0 on ∂Ω× (0,∞).

For recent progress on (12.1), we refer to [19] for the case m1 ≡ m2, 0 < b, c < 1
and [44, 45] for the case α = 0.
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Another open problem is Conjecture 2.9, i.e., the changes of stability of both
semi-trivial steady states.

For spatially and temporally varying environments, i.e. m = m(x, t), very little
is known about (2.1). We refer to [54] for the case µ 6= ν, α = 0. We are not aware
of any work on system (2.1) with m = m(x, t), α > 0.

Recently, system (2.1) with sign-changing environment function m(x) was stud-
ied in [70]. It was shown that, under strong advection, the species with density
u with directed advection may competitively exclude the random disperser with
density v and a sharp coexistence criterion on the environment function is given.
This stands in contrast to the case of positive environment treated here, where
strong advection always mediates coexistence, and we expect yet different kinds of
bifurcation structure of positive steady states.

It will be of interest to assume that species with density v also adopts a com-
bination of random diffusion and advection upward along resource gradient, i.e. to
consider

(12.2)

 ut = ∇ · (µ∇u− αu∇m) + u(m− u− v) in Ω× (0,∞),
vt = ∇ · (ν∇v − βv∇m) + v(m− u− v) in Ω× (0,∞),
(µ∇u− αu∇m) · n = (ν∇v − βv∇m) · n = 0 on ∂Ω.

System (12.2) has been considered in [22, 23, 41, 64, 65], and the stability of two
semi-trivial steady states is understood to some extent. But the global bifurcation
diagram and the structure of steady states of (12.2) remain largely unpursued. Two
special but interesting cases are (i) µ = ν, α 6= β, and (ii) µ 6= ν, α = β. The global
bifurcation diagrams for these two special cases are yet to be determined.

Active movement of organisms may also be biased in other directions, e.g. mov-
ing up a fitness gradient, instead of moving up the resource gradient as considered
in this work. We refer to [17, 18, 26, 28, 29, 39, 59, 60, 61, 67, 89, 74] for
some recent development on the effect of directed movement of organisms along the
fitness gradient on population dynamics.



APPENDIX A

Asymptotic behavior of ũ and λu

In this chapter, we examine the asymptotic behavior of ũ and λu. In particular,
we supply here the complete proof of the various results summarized in Chaper
3.2. We note that the results in this chapter are independent of convexity of the
underlying domain Ω.

A.1. Asymptotic behavior of ũ when µ→∞

The following lemma is used in the proofs of Lemma 4.12 and Theorem 11.9.

Lemma A.1. As µ→∞,

ũ→
∫

Ω
meηm∫

Ω
e2ηm

eηm in C2(Ω̄),

uniformly for η ∈ [0, 1
minΩ̄ m

].

Proof. Consider the transformation w = e−ηmũ, which satisfies

(A.1)

{
µ∇ · (eηm∇w) + eηmw(m− eηmw) = 0 in Ω,
∂w
∂n = 0 on ∂Ω.

Maximum principle gives L∞ boundedness of w independent of µ. Divide by µ and
let µ → ∞, we see (from the limiting equation ∇ · (eηm∇w) = 0 with Neumann
boundary condition) that, passing to a subsequence, w converges to C in C2(Ω̄)
for some non-negative constant C. We first show C > 0. If not, i.e. C = 0, then
ũ → 0 uniformly. In particular, ũ < minΩ̄m eventually. But this contradicts the
following equation obtained by integrating (2.2) over Ω, namely

(A.2)

∫
Ω

ũ(m− ũ) = 0.

Hence C > 0. Taking the limit of (A.2), we obtain∫
Ω

Ceηm(m− Ceηm) = 0.

Hence we find that

C =

∫
Ω
meηm∫

Ω
e2ηm

.

This proves the lemma. �
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A.2. Asymptotic behavior of ũ and its derivatives as µ→ 0

In this section we prove the results in Section 3.2. We first prove Theorem 3.13.

Proof of Theorem 3.13. We would like to show that minΩ̄m < ṽ(x) <
maxΩ̄m in Ω̄. Suppose first by way of contradiction that infΩ ṽ ∈ (0,minΩ̄m], then
w := ṽ − infΩ ṽ is non-negative, and satisfies{

ν∆w + w(m− ṽ − infΩ ṽ) = −(m− infΩ ṽ)(infΩ ṽ) ≤ 0 in Ω,
∂w
∂n = 0 on ∂Ω.

As m is non-constant, −(m− infΩ ṽ)(infΩ ṽ) is not identically zero. Therefore, w is
a non-negative, strict upper solution. By strong maximum principle, w > 0 in Ω.
Since infΩ w = 0 (by definition), there exists x0 ∈ ∂Ω such that w(x0) = 0 = infΩ w.
Hence ∂w

∂n (x0) < 0 by the Hopf Boundary Point Lemma. This is in contradiction
with the boundary condition of w. The proof for supΩ ṽ < maxΩ̄m is similar. �

Next, we prove Theorem 3.12.

Proof Theorem 3.12(i). Set w = e−ηmũ, then w satisfies (A.1). By the
maximum principle, if w(x1) = maxΩ̄ w, then

w(x) ≤ e−ηm(x1)m(x1) ≤ max
Ω̄

m for all x ∈ Ω.

Similarly, w(x) ≥ minΩ̄ (e−ηmm) for all x ∈ Ω. Therefore, if we take

c = min

{
min

Ω̄

(
e−Λmm

)
,min

Ω̄
(m−1)

}
,

then (3.17) holds.
Lastly, ‖ũ−m‖L∞(Ω) → 0 as µ → 0 follows by applying the arguments in the

Appendix of [52] to (A.1). �

Proof of Theorem 3.12(ii). Write (2.2) as

−µ∇ · {eηm∇[e−ηm(m− ũ)]}+ ũ(m− ũ) = −µ∇ · [eηm∇(e−ηmm)].

Multiplying the above by e−ηm(m − ũ)φ2, where φ is a given function in H1(Ω),
and integrating by parts (applying the boundary conditions of ũ), we deduce

µ

∫
eηm|∇[e−ηm(m− ũ)]|2φ2 + 2µ

∫
φ(m− ũ)∇[e−ηm(m− ũ)] · ∇φ

≤ µ
∫
∂Ω

∂

∂n
[e−ηmm](m− ũ)φ2 − µ

∫
∇ · [eηm∇(e−ηmm)]e−ηm(m− ũ)φ2.

And hence by Hölder’s inequality and the Trace theorem for Sobolev spaces (see,
e.g. [40]), and also the boundedness of ‖m− ũ‖L∞(Ω),∫

eηm|∇[e−ηm(m− ũ)]|2φ2

≤ C
[∫

e−ηm|∇φ|2(m− ũ)2 +

∫
φ2|m− ũ|+

∫
∂Ω

φ2|m− ũ|
]

≤ C‖m− ũ‖L∞(Ω)‖φ‖2H1(Ω).

This completes the proof. �
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Proof of Theorem 3.12(iii) and (iv). First we prove (iii). Let Λ > 0 be
given, then by (i), there exists cΛ such that ũ ≥ cΛ for all µ and all η ∈ [0,Λ]. By
this and Young’s inequality,∫

Ω

|∇ũ−∇m|2φ1φ2

ũ2
≤ 1

c2Λ

∫
Ω

|∇ũ−∇m|2|φ1φ2|

≤ 1

2c2Λ

∫
Ω

|∇ũ−∇m|2(|φ1|2 + |φ2|2).

Hence the result follows from (ii). (iv) is a direct consequence of (i) and (ii). �

Proof of Theorem 3.12(v). Rewrite∫
Ω

(∇ũ− ηũ∇m) · ∇
(
φ2

ũ

)
=

∫
Ω

(∇ũ− ηũ∇m) ·
(

2φ∇φ
ũ
− φ2∇ũ

ũ2

)
=

∫
Ω

(∇ũ− ηũ∇m) · 2φ∇φ
ũ

+

∫
Ω

η
φ2

ũ
∇m · ∇ũ−

∫
Ω

φ2

ũ2
|∇ũ|2

:= I1 + I2 + I3.

We shall estimate Ii, i = 1, 2, 3 separately using Theorem 3.12(ii). C below repre-
sents some generic constant independent of ε and µ small.

I1 =
∫

Ω
(1− ηũ)∇m · 2φ∇φ

ũ +
∫

Ω
(∇ũ−∇m) · 2φ∇φ

ũ

≤
(
ε
9

∫
Ω
|∇φ|2 + 9

ε

∫
Ω

(1− ηm)2|∇m|2 φ
2

ũ

)
+
(
ε
9

∫
Ω
|∇φ|2 + 9

ε

∫
Ω
|∇ũ−∇m|2φ2

)
≤ 2ε

9

∫
Ω
|∇φ|2 + C

ε

∫
Ω
φ2 + C

ε ‖ũ−m‖L∞(Ω)‖φ‖2H1(Ω)

≤ ε
3

∫
Ω
|∇φ|2 + C

ε

∫
Ω
φ2.

I2 =
∫

Ω
η φ

2

ũ |∇m|
2 +

∫
Ω
η φ

2

ũ ∇m · (∇ũ−∇m)
≤ C

[∫
Ω
φ2 +

∫
Ω
|∇ũ−∇m|φ2

]
≤ C

[∫
Ω
φ2 + ‖ũ−m‖L∞(Ω)‖φ‖2H1(Ω)

]
≤ ε

3

∫
Ω
|∇φ|2 + C

∫
Ω
φ2 since ‖ũ−m‖L∞ → 0 as µ→ 0.

I3 ≤ C
∫

Ω
φ2|∇ũ|2

= C
∫

Ω
φ2
[
|∇ũ−∇m|2 + |∇m|2 + 2∇m · (∇ũ−∇m)

]
≤ 2C

∫
Ω
|∇ũ−∇m|φ2 + C

∫
Ω
φ2

≤ C‖ũ−m‖L∞(Ω)‖φ‖2H1(Ω) + C
∫

Ω
φ2

≤ ε
3

∫
Ω
|∇φ|2 + C

∫
Ω
φ2 since ‖ũ−m‖L∞ → 0 as µ→ 0.

Combining the above, we obtain the lemma. �

Next, we prove Theorem 3.14 concerning ∂ũ
∂η .

Proof of Theorem 3.14. Denote ũ′ = ∂ũ
∂η . Then ũ′ satisfies

(A.3)

{
µ∇ · (∇ũ′ − ηũ′∇m) + (m− 2ũ)ũ′ = µ∇ · (ũ∇m) in Ω,
∂ũ′

∂n − ηũ
′ ∂m
∂n = ũ∂m∂n on ∂Ω.

We may rewrite the equation as

(A.4) µ∇ · [eηm∇(e−ηmũ′)] + (m− 2ũ)ũ′ = µ∇ · (ũ∇m).
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Multiplying by −e−ηmũ′ and integrating by parts, then by the boundary condition,
the boundary integrals cancel out and we obtain

(A.5) µ

∫
Ω

eηm|∇(e−ηmũ′)|2 +

∫
Ω

(2ũ−m)e−ηm(ũ′)2 = µ

∫
Ω

ũ∇m · ∇(e−ηmũ′).

Applying Hölder’s inequality to the right hand side, we have

µ

∫
Ω

eηm|∇(e−ηmũ′)|2 +

∫
Ω

(2ũ−m)e−ηm(ũ′)2

≤ µ

2

∫
Ω

eηm|∇(e−ηmũ′)|2 +
µ

2

∫
Ω

e−ηmũ2|∇m|2,

and hence

µ

2

∫
Ω

eηm|∇(e−ηmũ′)|2 +

∫
Ω

(2ũ−m)e−ηm(ũ′)2 ≤ µ

2

∫
Ω

e−ηmũ2|∇m|2.

Since 2ũ−m→ m uniformly by Theorem 3.12(i), both terms on the left are positive,
and

‖∇(e−ηmũ′)‖L2(Ω) = O(1) and ‖e−ηmũ′‖L2(Ω) = O(µ).

Therefore, e−ηmũ′ → 0 weakly in H1(Ω) and strongly in L2(Ω). Applying this to
(A.5), we deduce that e−ηmũ′ → 0 strongly in H1(Ω). This can be seen from the
fact that (by Theorem 3.12(i) and weak convergence of e−ηmũ′ in H1) the left hand
side of (A.5) is of order o(µ), which implies that

(A.6) µ

∫
Ω

eηm|∇(e−ηmũ′)|2 +

∫
Ω

(2ũ−m)e−ηm(ũ′)2 = o(µ).

And we see that ‖e−ηmũ′‖H1(Ω) → 0 and
∫

Ω
(ũ′)2 = o(µ) as µ → 0 uniformly for

η ∈ [0,Λ]. In particular, given any φ∗ = φ∗(µ) such that φ∗ ⇀ φ̃∗ weakly in H1,

(A.7)

∫
Ω

(∇ũ′ − ηũ′∇m) · ∇φ∗ =

∫
Ω

eηm∇(e−ηmũ′) · ∇φ∗ → 0.

Next, suppose φ ⇀ φ̃ weakly in H1 as µ→ 0, we claim that

(A.8)
φ

m− 2ũ
⇀ − φ̃

m
weakly in H1 as µ→ 0.

To prove (A.8), firstly we observe that φ
m−2ũ → −

φ̃
m in L2. Secondly,

∇
(

φ

m− 2ũ

)
=

∇φ
m− 2ũ

− φ

(m− 2ũ)2
(∇m− 2∇ũ)

=

[
∇φ

m− 2ũ
+

φ∇m
(m− 2ũ)2

]
+

2φ

(m− 2ũ)2
(∇ũ−∇m)

⇀

[
−∇φ̃
m

+
φ̃∇m
m2

]
+ 0 weakly in L2,

where the convergence in the square bracket follows from Theorem 3.12(i) and the

assumption that φ ⇀ φ̃ weakly in H1, whereas the last term converges strongly to
0 in L2 by Theorem 3.12(i) and (ii).

Now, multiplying (A.4) by φ
µ(m−2ũ) , and integrating, we have∫

Ω

φ

(m− 2ũ)
∇ · [eηm∇(e−ηmũ′)] +

1

µ

∫
Ω

ũ′φ =

∫
Ω

φ

(m− 2ũ)
∇ · (ũ∇m).
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Integrating by parts, noting again that the boundary terms cancel exactly by the
boundary conditions of ũ′,

−
∫

Ω

eηm∇(e−ηmũ′) · ∇
(

φ

(m− 2ũ)

)
+

1

µ

∫
Ω

ũ′φ = −
∫

Ω

ũ∇m · ∇
(

φ

(m− 2ũ)

)
.

Passing to the limit, we have by (A.7),

lim
µ→0

1

µ

∫
Ω

ũ′φ =

∫
Ω

m∇m · ∇

(
φ̃

m

)
uniformly for η ∈ [0,Λ]. �

Next, we prove Theorem 3.15 concerning ∂2ũ
∂η2 .

Proof of Theorem 3.15. Denote ∂ũ
∂η = ũ′, ∂2ũ

∂η2 = ũ′′ and(
∂2ũ

∂η2

)
+

= max

{
0,
∂2ũ

∂η2

}
= ũ′′+.

Differentiate the equation of ũ′, namely (A.3), with respect to η to obtain
(A.9){

µ∇ · (∇ũ′′ − ηũ′′∇m) + (m− 2ũ)ũ′′ = 2µ∇ · (ũ′∇m) + 2(ũ′)2 in Ω,
∂ũ′′

∂n − ηũ
′′ ∂m
∂n = 2ũ′ ∂m∂n on ∂Ω.

Rewriting (A.9) in variational form, we have

(A.10) µ∇ · [eηm∇(e−ηmũ′′)] + (m− 2ũ)ũ′′ = 2µ∇ · (ũ′∇m) + 2(ũ′)2.

Multiply (A.10) by e−ηmũ′′+ ∈ H1(Ω). Using the boundary condition satisfied by
ũ′′, we may integrate by parts to obtain

µ

∫
Ω

eηm|∇(e−ηmũ′′+)|2 +

∫
Ω

(2ũ−m)e−ηm(ũ′′+)2

= 2µ

∫
Ω

ũ′∇m · ∇[e−ηmũ′′+]− 2

∫
Ω

(ũ′)2ũ′′+e
−ηm

≤ 2µ

∫
Ω

ũ′∇m · ∇[e−ηmũ′′+].

By Hölder’s inequality,

µ

∫
Ω

eηm|∇(e−ηmũ′′+)|2 +

∫
Ω

(2ũ−m)e−ηm(ũ′′+)2

≤ µ

2

∫
Ω

eηm|∇(e−ηmũ′′+)|2 + 2µ

∫
Ω

(ũ′)2|∇m|2e−ηm.

Hence

µ

2

∫
Ω

eηm|∇(e−ηmũ′′+)|2 +

∫
Ω

(2ũ−m)e−ηm(ũ′′+)2 ≤ Cµ
∫

Ω

(ũ′)2 = o(µ2).

The last estimate follows from (A.6). Since 2ũ − m → m in L∞(Ω) (Theorem
3.12(iv)), the result is proved. �
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A.2.1. Asymptotic behavior of λu as µ → 0. To prepare for the proof of
Theorem 3.16, we first prove a series of lemmas.

Lemma A.2. For each k ≥ 1, d > 0 and Λ > 0,

lim sup
ν
µ→d,µ→0

λu,k
µ
≤ σk(η; d)

uniformly in η ∈ [0,Λ]. In particular, for each k,
λu,k
µ is uniformly bounded for all

small µ.

Proof. Define

Jµ(φ) =

∫
ν
µ |∇φ|

2 −
∫

(∇ũ− ηũ∇m) · ∇
(
φ2

ũ

)
∫
φ2

=
1∫
φ2

{∫
Ω

ν

µ
|∇φ|2 −

∫
Ω

[
(∇ũ− ηũ∇m) · ∇(φ2)

ũ
+ η

φ2∇ũ · ∇m
ũ

−φ
2

ũ2

(
|∇ũ−∇m|2 − |∇m|2 + 2∇m · ∇ũ

)]}
.

Then by variational characterization,

(A.11)
λu,k
µ

= inf max Jµ(φ),

where the maximum is taken over a given k−dimensional subspace of C1(Ω̄) with
the infimum being taken over all such subspaces. Similarly, let

J0(φ) =

∫
d|∇φ|2 −

∫
(1− ηm)∇m · ∇

(
φ2

m

)
∫
φ2

=

∫
d|∇φ|2 −

∫ [
(1− ηm)∇m·∇(φ2)

m + η φ
2|∇m|2
m − φ2

m2 |∇m|2
]

∫
φ2

.

Then the kth eigenvalue σk = σk(η; d) of (3.19) satisfies the variational characteri-
zation

(A.12) σk = inf max J0(φ),

where the maximum is taken over a given k−dimensional subspace of C1(Ω̄) with
the infimum being taken over all such subspaces. Note that the principal eigenvalue
σ = σ1 is simple, hence

(A.13) σ2 > σ1 for all d, η.

Further properties of σ = σ1 will be proved in Appendix B.
For any (fixed) φ ∈ C1(Ω̄), one can show by Theorem 3.12(i) and (ii) that

Jµ(φ) → J0(φ) uniformly for η ∈ [0,Λ] as µ → 0 and ν/µ → d. Hence fix any k,
and for each k-dimensional subspace Y of C1(Ω̄),

lim sup
ν
µ→d,µ→0

λu,k
µ
≤ lim

ν
µ→d,µ→0

max
φ∈Y

Jµ(φ) = max
φ∈Y

J0(φ).

Taking infimum over all k-dimensional subspaces Y of C1(Ω̄), we deduce

(A.14) lim sup
ν
µ→d,µ→0

λu,k
µ
≤ σk(η; d),
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uniformly for η ∈ [0,Λ]. �

Next, we prove an estimate of ϕk in a space slightly stronger than H1(Ω).

Lemma A.3. For any p ≥ 1, Λ > 0 and ε0 > 0, there exists C > 0 such that

lim sup
µ→0, νµ≥ε0,0≤η≤Λ

∫
Ω
|∇ϕpk|2∫

Ω
|ϕpk|2

≤ C

ε20

for all η ∈ [0,Λ].

Proof. Multiplying both sides of (3.18) by ϕ2p−1
k and integrating,

ν

µ

2p− 1

p2

∫
|∇ϕpk|

2

=−
∫
ϕ2p
k

ũ
∇ · (∇ũ− ηũ∇m) +

λu,k
µ

∫
ϕ2p
k

=

∫
(∇ũ− ηũ∇m) · ∇

(
ϕ2p
k

ũ

)
+
λu,k
µ

∫
ϕ2p
k

=

∫
(∇ũ− ηũ∇m) ·

(
2ϕpk∇ϕ

p
k

ũ
−
ϕ2p
k ∇ũ
ũ2

)
+
λu,k
µ

∫
ϕ2p
k

=2

∫
ϕpk∇ϕ

p
k · ∇ũ
ũ

−
∫
ϕ2p
k |∇ũ|2

ũ2
− 2η

∫
ϕpk∇m · ∇ϕ

p
k + η

∫
∇m · ∇ũ

ũ
ϕ2p
k

+
λu,k
µ

∫
ϕ2p
k

≤

(
δ

∫
|∇ϕpk|

2 +
1

δ

∫
ϕ2p
k |∇ũ|2

ũ2

)
−
∫
ϕ2p
k |∇ũ|2

ũ2
+

(
δ

∫
|∇ϕpk|

2 +
η2

δ

∫
ϕ2p
k |∇m|

2

)

+

(∫
ϕ2p
k |∇ũ|2

ũ2
+
η2

4

∫
ϕ2p
k |∇m|

2

)
+ C

∫
ϕ2p
k .

Lemma A.2 is used in the last inequality for boundedness of λu,k/µk. Hence, if we

take 0 < δ < ε0
3 ·

2p−1
p2 , then

2p− 1

3p2

ν

µ

∫
Ω

|∇ϕpk|
2 ≤

(
2p− 1

p2

ν

µ
− 2δ

)∫
|∇ϕpk|

2 ≤ C
(∫

ϕ2p
k |∇ũ|

2 +

∫
ϕ2p
k

)
/ε.

Apply Theorem 3.12(ii), with φ = ϕpk. Then we have√
2p− 1

3p2
ε0‖∇ϕpk‖L2(Ω)

≤
√

2p− 1

3p2

ν

µ
‖∇ϕpk‖L2(Ω)

≤ C
(
‖ϕpk∇ũ‖L2(Ω) + ‖ϕpk‖L2(Ω)

)
/
√
ε0

≤ C
(
‖ϕpk∇(ũ−m)‖L2(Ω) + ‖ϕpk∇m‖L2(Ω) + ‖ϕpk‖L2(Ω)

)
/
√
ε0

≤ C
[
‖m− ũ‖L∞(Ω)

(
‖ϕpk‖L2(Ω) + ‖∇ϕpk‖L2(Ω)

)
+ ‖ϕpk‖L2(Ω)

]
/
√
ε0.

The lemma thus follows from Theorem 3.12(i). �
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An immediate consequence is the following: For each k ≥ 1, normalize
∫

Ω
ϕ4
k =

|Ω|. By passing to a subsequence, we may assume that

ϕk → ϕ̃k, ϕ2
k → ϕ̃2

k weakly in H1(Ω),

for some non-zero ϕ̃k. In particular, the precompactness of {ϕ2
k} in L2(Ω) ensures

that
∫

Ω
ϕ4
k/(
∫

Ω
ϕ2
k)2 remains bounded. Hence, it is sufficient to normalize either∫

Ω
ϕ2
k or

∫
Ω
ϕ4
k to conclude the convergence of ϕk and ϕ2

k in H1(Ω), and we have
the following result.

Corollary A.4. For each k ≥ 1, normalize ϕk such that
∫

Ω
ϕ2
k = |Ω|. By

passing to a subsequence, we may assume that ϕk and ϕ2
k converge weakly in H1(Ω)

to some nonzero limits ϕ̃k and ϕ̃2
k locally uniformly in η ≥ 0.

Proof. Let ϕk be normalized by
∫

Ω
ϕ2
k = |Ω|. By taking p = 1 in Lemma A.3,

it is clear that ϕk is bounded in H1(Ω). It remains to show that ϕ2
k is also bounded

in H1(Ω). We first claim that

(A.15) sup
k

∫
Ω

ϕ4
k < +∞.

Suppose not, then passing to a subsequence, we may assume that
∫

Ω
ϕ4
k → ∞.

Then

ψk :=

(
|Ω|∫
Ω
ϕ4
k

)1/4

ϕk

satisfies
∫

Ω
ψ4
k = |Ω|, and

(A.16)

∫
Ω

ψ2
k =

(
|Ω|∫
Ω
ϕ4
k

)1/2 ∫
Ω

ϕ2
k =

|Ω|3/2

(
∫

Ω
ϕ4
k)1/2

→ 0.

However, by Lemma A.3 (taking p = 2), ψ2
k is bounded in H1(Ω) and hence for

some ψ2
0 ∈ H1(Ω), ψ2

k → ψ2
0 weakly in H1(Ω) and strongly in L2(Ω). Moreover,∫

Ω
ψ4

0 = |Ω| so ψ2
0 6≡ 0. So,

∫
Ω
ψ2
k →

∫
Ω
ψ2

0 > 0. This contradicts (A.16). This

establishes (A.15). By (A.15) and Lemma A.3 (taking p = 2), we deduce that ϕ2
k

is bounded in H1(Ω). This completes the proof. �

For later convenience, we show the following application of Theorem 3.12(ii).

Lemma A.5. For all Λ > 0 and ρ ∈ C1(Ω̄), and φ ⇀ φ̃ in H1(Ω),∫
Ω

φρ

ũ2
|∇ũ|2 →

∫
Ω

φ̃ρ

m2
|∇m|2 as µ→ 0,

uniformly for η ∈ [0,Λ].

Proof. Write∫
Ω

φρ

ũ2
|∇ũ|2 =

∫
Ω

φρ

ũ2

(
|∇ũ−∇m|2 − |∇m|2 + 2∇m · ∇ũ

)
.

And the result follows from Theorem 3.12(ii), (iv) and Corollary A.4. �

Now we are in position to prove Theorem 3.16.
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Proof of Theorem 3.16. We shall pass to a the limit (via a subsequence)
in (3.1) using the weak formulation. Let ρ ∈ C1(Ω̄) be a test function and consider
a subsequence (µk, νk) satisfying

λu,k
µ
→ lim inf

µ→0,ν/µ→d

λu,k
µ

.

Multiplying (3.1) by ρ/µ and integrating over Ω, we have∫
Ω

ρ

µ

[
ν∆ϕk −

µ∇ · (∇ũ− ηũ∇m)

ũ
ϕk + λu,kϕk

]
= 0.

Integrating by parts,

(A.17) −ν
µ

∫
Ω

∇ϕk · ∇ρ+

∫
Ω

(∇ũ− ηũ∇m) · ∇
(ϕkρ
ũ

)
+
λu,k
µ

∫
Ω

ϕkρ = 0.

Passing to the limit as µ→ 0, νµ → d > 0 (via the normalization given in Corollary

A.4), the first term obviously converges, with

−ν
µ

∫
Ω

∇ϕk · ∇ρ→ −d
∫

Ω

∇ϕ̃k · ∇ρ.

We claim that the second term also converges, as it can be rewritten as∫
Ω

[
(∇ũ− ηũ∇m) ·

(
ρ∇ϕk + ϕk∇ρ

ũ

)
+ η

ϕkρ

ũ
∇m · ∇ũ− ϕkρ

ũ2
|∇ũ|2

]
,

which converges to (making use of Lemma A.5)∫
Ω

[
(1− ηm)∇m ·

(
ρ∇ϕ̃k + ϕ̃k∇ρ

m

)
+ η

ϕ̃kρ

m
|∇m|2 − ϕ̃kρ

m2
|∇m|2

]
=

∫
Ω

(1− ηm)∇m · ∇
(
ϕ̃kρ

m

)
.

Hence the remaining term of (A.17) also converges. Then for all ρ ∈ C1(Ω̄),

−d
∫

Ω

∇ϕ̃k · ∇ρ+

∫
Ω

(1− ηm)∇m · ∇
(
ϕ̃kρ

m

)
+

(
lim inf

µ→0,ν/µ→d

λu,k
µ

)∫
Ω

(ϕ̃kρ) = 0.

For k = 1, ϕ̃1 is a non-trivial non-negative solution of{
d∆ϕ̃1 − ∇·[(1−ηm)∇m]

m ϕ̃1 +
(

lim infµ→0,ν/µ→d
λu,1
µ

)
ϕ̃1 = 0 in Ω,

d∂ϕ̃1

∂n −
1−ηm
m

∂m
∂n ϕ̃1 = 0 on ∂Ω.

This implies that

lim inf
µ→0,ν/µ→d

λu,1(η, µ, ν)

µ
= σ1(η; d)

uniformly in η ∈ [0,Λ]. Here σ1 is the principal eigenvalue of (3.19). This and
Lemma A.2 proves the lemma for k = 1. Next, for k = 2, we observe similarly that

ϕ̃2 is an eigenfunction of (3.19) with eigenvalue given by lim infµ→0,ν/µ→d
λu,2
µ ,

satisfying
∫

Ω
ϕ̃2ϕ̃1 = 0. So by variational characterization, lim infµ→0,ν/µ→d

λu,2
µ ≥

σ2. Upon combining with Lemma A.2, we have

lim
µ→0,ν/µ→d

λu,2
µ

= σ2(·; d)

locally uniformly in η. The remaining cases (k ≥ 3) can be treated inductively. �



84 A. ASYMPTOTIC BEHAVIOR OF ũ AND λu

Proof of Theorem 3.17. Similar to the proof of Lemma A.6, differentiating
(3.18) with respect to η, denoting ϕ′ = ∂ϕ

∂η and λ′u = ∂λu
∂η , we have

(A.18)

{
ν∆ϕ′ + (m− ũ)ϕ′ + λuϕ

′ = ∂ũ
∂ηϕ− λ

′
uϕ in Ω,

∂ϕ′

∂n = 0 on ∂Ω.

Multiplying by the principal eigenfunction ϕ of (3.1) and integrating by parts, we
have

0 =

∫
Ω

ϕ′ [ν∆ϕ+ (m− ũ)ϕ+ λuϕ] =

∫
Ω

∂ũ

∂η
ϕ2 − λ′u

∫
Ω

ϕ2.

And hence we obtain

(A.19)
λ′u
µ

=

∫
Ω
∂ũ
∂ηϕ

2

µ
∫

Ω
ϕ2

.

By Theorem 3.14, we can deduce that as µ→ 0,

(A.20)
λ′u
µ
→

∫
Ω
m∇m · ∇

(
ϕ̃2

m

)
∫

Ω
ϕ̃2

,

uniformly for η ∈ [0,Λ]. Here ϕ̃ is the weak limit of ϕ in H1(Ω) and is a positive
eigenfunction of (3.19). Consequently, the result follows from the following rep-
resentation formula of ∂σ

∂η : (Here we denote the principal eigenvalue of (3.19) by

σ = σ(η; d) with principal eigenfunction ϕ̃.)

Lemma A.6.
∂σ

∂η

∫
Ω

ϕ̃2 =

∫
Ω

m∇m · ∇
(
ϕ̃2

m

)
.

Proof. Differentiating (3.19) with respect to η, denoting σ′ = ∂σ
∂η and ϕ̃′ = ∂ϕ̃

∂η ,

we have

(A.21)

{
d∆ϕ̃′ − ∇·[(1−ηm)∇m]

m ϕ̃′ + σϕ̃′ = −∇·(m∇m)
m ϕ̃− σ′ϕ̃ in Ω,

d∂ϕ̃
′

∂n −
1−ηm
m

∂m
∂n ϕ̃

′ = −∂m∂n ϕ̃ on ∂Ω.

Multiplying (A.21) by the principal eigenfunction ϕ̃ of (3.19) and integrating by
parts, we obtain∫

Ω

[
−d∇ϕ̃′ · ∇ϕ̃+ (1− ηm)∇m · ∇

(
ϕ̃′ϕ̃

m

)
+ σϕ̃′ϕ̃

]
=

∫
Ω

[
m∇m · ∇

(
ϕ̃2

m

)
− σ′ϕ̃2

]
.

Integrating by parts again on the left, we see that the left hand side is zero. This
proves the lemma. �

This finishes the proof of Theorem 3.17. �

We also prove the following corollary of Lemma A.6:

Corollary A.7.
∂σ

∂η
(0; 1) =

∂σ

∂η

∣∣∣∣
d=1,η=0

> 0.
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Proof. When d = 1 and η = 0, it is easy to see that ϕ̃ = m|Ω|1/2/
√∫

Ω
m2

corresponding to σ = 0. Hence by Lemma A.6,

∂σ

∂η
(0; 1) =

∫
Ω
m|∇m|2∫
Ω
m2

> 0.

This proves Corollary A.7. �

Finally, we prove the following two results used in the proof of Proposition 6.2
and Lemma 6.3.

Lemma A.8. With the principal eigenfunction ϕ of (3.1) normalized as in
Corollary A.4, we have as µ→ 0,

1

µ

∫
Ω

ũ′′+ϕ
2 → 0.

Proof. By Hölder’s inequality,

1

µ

∫
Ω

ũ′′+ϕ
2 ≤

(
1

µ2

∫
Ω

(ũ′′+)2

) 1
2
(∫

Ω

ϕ4

) 1
2

≤ C
(

1

µ2

∫
Ω

(ũ′′+)2

) 1
2

→ 0,

by Theorem 3.15. �

Proposition A.9. Given a compact subset K ⊂⊂ (0,∞), there exists ε0 > 0
such that if µ, ν are sufficiently small and ν

µ ∈ K, then

− 1

µ

∫
Ω

ũ′ϕϕ′ ≥ ε0
∫

Ω

(ϕ′)2

for all η ∈ [0, 1
minΩ̄ m

].

Proof. Multiplying (A.18) by ϕ′ = ∂ϕ
∂η and integrating by parts, we have

(A.22)

− 1

µ

∫
Ω

(ũ′ − λ′u)ϕϕ′ =

∫
Ω

[
ν

µ
|∇ϕ′|2 +

ũ−m
µ

(ϕ′)2 − λu
µ

(ϕ′)2

]
= Jµ(ϕ′)− λu

µ

∫
Ω

(ϕ′)2,

recalling the definition of Jµ given in the proof of Lemma A.2, and the equivalence
of (3.1) and (3.18). By the normalization

∫
Ω
ϕ2 = |Ω|, we deduce that

(A.23)

∫
Ω

ϕϕ′ = 0.

As a result, the term involving λ′u in (A.22) vanishes, and by Poincaré’s inequality,

Jµ(ϕ′) ≥ λu,2
µ

∫
Ω

(ϕ′)2.

Hence

− 1

µ

∫
Ω

ũ′ϕϕ′ ≥ λu,2 − λu
µ

∫
Ω

(ϕ′)2.

By Lemma A.2 and equation (A.13),

λu,2 − λu
µ

→ σ2 − σ1 > 0,

where the last inequality follows from (A.13). This proves the proposition. �
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A.3. Asymptotic behavior of λv as µ, ν →∞

Lemma A.10. Suppose that ψ is the principal eigenfunction of (3.3) normalized
by
∫

Ω
eηmψ2 =

∫
Ω
eηm, then for each Λ > 0, ψ → 1 in H1(Ω) as µ, ν → ∞

uniformly for η ∈ [0,Λ].

Proof. We first establish the following assertion:

Claim A.11. λv ≤ maxΩ̄(ṽ−m). In particular by Theorem 3.13, λv ≤ maxΩ̄m.

The claim follows by setting the test function φ ≡ 1 in the variational charac-
terization

λv = inf
φ∈H1(Ω)

∫
Ω
eηm[µ|∇φ|2 + (ṽ −m)φ2]∫

Ω
eηmφ2

.

Since we have the normalization
∫

Ω
eηmψ2 =

∫
Ω
eηm, it suffices to show that

µ
∫

Ω
eηm|∇ψ|2 = O(1) uniformly for η ∈ [0,Λ]. We now multiply (3.3) by ψ and

integrate by parts,

µ

∫
Ω

eηm|∇ψ|2 =

∫
Ω

eηm(m− ṽ)ψ2 + λv

∫
Ω

eηmψ2

≤ [max
Ω̄

(m− ṽ) + λv]

∫
Ω

eηmψ2

= [max
Ω̄

(m− ṽ) + λv]

∫
Ω

eηm

≤ 2(max
Ω̄

m)

∫
Ω

eηm

≤ 2(max
Ω̄

m)

∫
Ω

eΛm.

This proves Lemma A.10. �

Theorem A.12. For each Λ > 0,

λv →
∫

Ω
eηm(m̄−m)∫

Ω
eηm

in C1([0,Λ]) as µ, ν →∞.

Proof. Integrating (3.3), we have

(A.24)

∫
Ω

eηm(m− ṽ)ψ + λv

∫
Ω

eηmψ = 0.

By passing to the limit in (A.24),

(A.25) λv →
∫

Ω
eηm(m̄−m)∫

Ω
eηm

in L∞(Ω).

Claim A.13. µ
∫

Ω
eηm|∇ψ|2 → 0 as µ, ν →∞ uniformly for η ∈ [0,Λ].

To see the claim, multiply (3.3) by ψ, and integrate by parts, to obtain

µ

∫
Ω

eηm|∇ψ|2 =

∫
Ω

eηm(m− ṽ)ψ2 + λv

∫
Ω

eηmψ2.
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Passing to the limit and using Lemma A.10, we have

lim
µ,ν→∞

µ

∫
Ω

eηm|∇ψ|2 =

∫
Ω

eηm(m− m̄) +

(
lim

µ,ν→∞
λv

)∫
Ω

eηm = 0.

The last equality follows from (A.25). This proves the claim.
Now, multiplying (3.3) by mψ and integrating by parts,

µ

∫
Ω

eηmm|∇ψ|2 + µ

∫
Ω

eηmψ∇m · ∇ψ =

∫
Ω

eηmm(m− ṽ)ψ2 + λv

∫
Ω

eηmmψ2.

Passing to the limit, we see that the first term goes to zero by Claim A.13, and

lim
µ,ν→∞

µ

∫
Ω

eηmψ∇m · ∇ψ =

∫
Ω

eηmm(m− m̄) +

(
lim

µ,ν→∞
λv

)∫
Ω

eηmm

=

∫
Ω

eηmm(m− m̄)−
∫

Ω
eηm(m− m̄)∫

Ω
eηm

∫
Ω

eηmm.

Therefore, by Lemma 5.2 and Lemma A.10,

lim
µ,ν→∞

∂λv
∂η

= − 1∫
Ω
eηm

[∫
Ω

eηmm(m− m̄)−
∫

Ω
eηm(m− m̄)∫

Ω
eηm

∫
Ω

eηmm

]
=

∂

∂η

[∫
Ω
eηm(m̄−m)∫

Ω
eηm

]
,

as µ, ν →∞ uniformly for η ∈ [0,Λ]. This proves Theorem A.12. �

Corollary A.14. There exists ε0 > 0 such that for all µ, ν sufficiently large,

∂λv
∂η

< 0 for η ∈ [0, ε0].

Proof. It suffices to show that limµ,ν→∞
∂λv
∂η (0, µ, ν) < 0 as follows.

lim
µ,ν→∞

∂λv
∂η

(0, µ, ν) = − 1

|Ω|

∫
Ω

m(m− m̄) = − 1

|Ω|

∫
Ω

(m− m̄)2 < 0.

This proves Corollary A.14. �

Corollary A.15. For each ε > 0, λv(η, µ, ν) < 0 in [ε,∞) for all µ, ν suf-
ficiently large. In particular, suppose η∗ is a root of λv(η, µ, ν), then η∗ → 0 as
µ, ν →∞.

Proof. By Theorem 2.2, λv(η, µ, ν) < 0 for all η ≥ 1
minΩ̄ m

and µ, ν > 0.

Therefore the result follows from Theorem A.12, since

λv →
∫

Ω
eηm(m̄−m)∫

Ω
eηm

= −
∫

Ω
(eηm − eηm̄)(m− m̄)∫

Ω
eηm

=

{
< 0 if η > 0,
0 if η = 0.

This proves Corollary A.15. �





APPENDIX B

Limit eigenvalue problems as µ, ν → 0

This chapter studies two related limiting eigenvalue problems that have arisen
in our analysis. Again, domain convexity is not assumed in the results contained
here.

For d > 0, let σ = σ(η; d) be the principal eigenvalue of

(B.1)

{
d∆ϕ̃− ∇·[(1−ηm)∇m]

m ϕ̃+ σϕ̃ = 0 in Ω,

d∂ϕ̃∂n −
1−ηm
m

∂m
∂n ϕ̃ = 0 on ∂Ω.

Theorem B.1. (i) σ can be characterized as

(B.2) σ(η; d) = inf
C1(Ω̄)

∫
Ω

[d|∇ψ|2 − (1− ηm)∇m · ∇
(
ψ2

m

)
∫

Ω
ψ2

:= inf
C1(Ω̄)

J0(ψ).

(ii) σ depends smoothly in d and η.
(iii) σ is increasing in d.

(iv) σ is strictly concave in η, i.e. ∂2

∂η2σ < 0.

Proof. It follows from the boundary condition that problem (B.1) is actually
variational. This proves (i). (ii) is standard (see, e.g. Theorem 3.1 in [10]).
(iii) follows from the variational characterization in (i). For the strict concavity,
normalize ϕ̃ by

∫
Ω
ϕ̃2 = |Ω| and differentiate (B.1) with respect to η to obtain

(denoting the derivative with respect to η by ′)

(B.3)

{
d∆ϕ̃′ − ∇·[(1−ηm)∇m]

m ϕ̃′ + σϕ̃′ = −∇·(m∇m)
m ϕ̃− σ′ϕ̃ in Ω,

d∂ϕ̃
′

∂n −
1−ηm
m

∂m
∂n ϕ̃

′ = −∂m∂n ϕ̃ on ∂Ω,
∫

Ω
ϕ̃ϕ̃′ = 0.

Differentiating again, we have
(B.4){

d∆ϕ̃′′ − ∇·[(1−ηm)∇m]
m ϕ̃′′ + σϕ̃′′ = −2∇·(m∇m)

m ϕ̃′ − 2σ′ϕ̃′ − σ′′ϕ̃ in Ω,

d∂ϕ̃
′′

∂n −
1−ηm
m

∂m
∂n ϕ̃

′′ = −2∂m∂n ϕ̃
′ on ∂Ω.

Multiplying (B.4) by ϕ̃ and integrating by parts, we have∫
Ω

[
−d∇ϕ̃′′ · ∇ϕ̃+ (1− ηm)∇m · ∇

(
ϕ̃′′ϕ̃

m

)
+ σϕ̃′′ϕ̃

]
= 2

∫
Ω

m∇m · ∇
(
ϕ̃′ϕ̃

m

)
− 2σ′

∫
Ω

ϕ̃′ϕ̃− σ′′
∫

Ω

ϕ̃2.

Integrating by parts again, we see that the left hand side vanishes. Hence,

σ′′|Ω| = σ′′
∫

Ω

ϕ̃2 = 2

∫
Ω

m∇m · ∇
(
ϕ̃′ϕ̃

m

)
− 2σ′

∫
Ω

ϕ̃′ϕ̃ = 2

∫
Ω

m∇m · ∇
(
ϕ̃′ϕ̃

m

)
.
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The first and last equalities follow from the normalization
∫

Ω
ϕ̃2 = |Ω| and, upon

differentiating,
∫

Ω
ϕ̃ϕ̃′ = 0. It remains to show that∫

Ω

m∇m · ∇
(
ϕ̃′ϕ̃

m

)
< 0.

This follows by multiplying (B.3) by ϕ̃′ and integrating by parts,∫
Ω

[
−d|∇ϕ̃′|2 + (1− ηm)∇m · ∇

(
(ϕ̃′)2

m

)
+ σ(ϕ̃′)2

]
=

∫
Ω

m∇m · ∇
(
ϕ̃ϕ̃′

m

)
.

The term involving σ′ vanishes since
∫

Ω
ϕ̃′ϕ̃ = 0, which follows from the normal-

ization of ϕ̃. Recalling the functional J0 introduced in the proof of Lemma A.2, we
have

(B.5) −
∫

Ω

m∇m · ∇
(
ϕ̃ϕ̃′

m

)
= J0(ϕ̃′)− σ

∫
Ω

(ϕ̃′)2 ≥ (σ2 − σ)

∫
Ω

(ϕ̃′)2 > 0.

The second last inequality follows from the fact that ϕ̃′ ⊥ ϕ̃ in L2(Ω) and the varia-
tional characterization of the second eigenvalue σ2 > σ, whereas the last inequality
of (B.5) follows from the fact that ϕ̃′ satisfying (B.3) is necessarily non-zero and
(A.13). �

Next, we define

(B.6) a(η) = sup
S

{∫
Ω

(1− ηm)∇m · ∇ψ2

m∫
Ω
|∇ψ|2

}
,

where the supremum is taken over the set

S =

{
ψ ∈ C1(Ω̄) :

∫
Ω

(1− ηm)∇m · ∇ψ
2

m
> 0

}
.

Theorem B.2. (i) a(η) > 0 for all η ≥ 0.
(ii) a(η) is convex and depends smoothly in η (where it is finite).
(iii) There exists η1 ∈ ( 1

maxΩ̄ m
, 1

minΩ̄ m
) such that 0 < a(η) <∞ in [0, η1) and

a(η) =∞ in [η1,∞).
(iv) a∗ := minη≥0 a ∈ (0, 1) and is attained in (0, η1).

Proof. To show (i), it suffices to show that e−ηm/2m ∈ S, i.e. S is non-empty.
This can be verified by computing the following integral.∫

Ω

(1− ηm)∇m · ∇
(

(e−ηm/2m)2

m

)
=

∫
Ω

(1− ηm)∇m · ∇
(
e−ηmm

)
=

∫
Ω

(1− ηm)2|∇m|2e−ηm > 0.

For (ii), the convexity follows from the definition of a(η) as the supremum of a

family of affine functions of η. For the smoothness, we notice that λ̃ := 1/a is the
principal eigenvalue of{

∆φ− λ̃∇·[(1−ηm)∇m]
m φ = 0 in Ω,

∂φ
∂n − λ̃

(1−ηm)
m

∂m
∂n φ = 0 on ∂Ω,

which depends smoothly on η. We make the following claim which implies (iii).
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Claim B.3. a = a(η) satisfies

a = a(η) =

{
< +∞ when η ∈ [0, η1),
= +∞ when η ∈ [η1,∞),

where

η1 =

(∫
Ω

|∇m|2

m2

)
/

(∫
Ω

|∇m|2

m

)
∈
(

1

maxΩ̄m
,

1

minΩ̄m

)
.

To see the claim, we first note that∫
Ω

(1− ηm)∇m · ∇
(

1

m

)
=

 < 0 if η < η1,
= 0 if η = η1,
> 0 if η > η1.

Now, if η ∈ (η1,∞), then 1 ∈ S and it is clear that a =∞.
Next, if η = η1, then a = ∞ as well, by convexity of a with respect to η (by

part (ii) proved above).
Now, if η ∈ [0, η1), then we claim that a < ∞. For, suppose a = ∞ for some

fixed η ∈ (0, η1), then there exists a sequence ψi ∈ C1(Ω̄), and εi → 0 such that∫
Ω

(ψi)
2 = |Ω|, and ∫

Ω

|∇ψi|2 ≤ εi
∫

Ω

(1− ηm)∇m · ∇
(
ψ2
i

m

)
,

from which one can deduce by Young’s inequality, that (for some constant C de-
pending on ‖m‖C1 and η)∫

Ω

|∇ψi|2 ≤ Cεi
∫

Ω

ψ2
i ≤ Cεi|Ω|.

Hence ψi → 1 in H1(Ω). Since ψi ∈ S, we have

(B.7)

∫
Ω

(1− ηm)∇m · ∇
(
ψ2
i

m

)
> 0.

By taking i → ∞ in (B.7), we have
∫

Ω
(1 − ηm)∇m · ∇

(
1
m

)
≥ 0. That is, η ≥ η1,

which is a contradiction. Hence, if η ∈ [0, η1), then a <∞. This proves Claim B.3,
from which (iii) follows.

Finally, to show (iv), it suffices to show that a(0) = 1 and a′(0) = ∂
∂ηa(0) < 0,

then the rest follows from the convexity and (iii). Now a = 1/λ̃ satisfies the
following equation for some positive eigenfunction ϕ:{

a∆ϕ− ∇·[(1−ηm)∇m]
m ϕ = 0 in Ω,

a∂ϕ∂n −
1−ηm
m

∂m
∂n ϕ = 0 on ∂Ω.

Differentiating with respect to η, we obtain{
a∆ϕ′ − ∇·[(1−ηm)∇m]

m ϕ′ = −a′∆ϕ− ∇·(m∇m)
m ϕ in Ω,

a∂ϕ
′

∂n −
1−ηm
m

∂m
∂n ϕ

′ = −∂m∂n ϕ− a
′ ∂ϕ
∂n on ∂Ω.

Multiplying by ϕ and integrating by parts, we can argue similarly as before to
deduce that

a′
∫

Ω

|∇ϕ|2 = −
∫

Ω

m∇m · ∇
(
ϕ2

m

)
.
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Setting η = 0, then by inspection a(0) = 1 and ϕ = m and hence

a′(0) = −
∫

Ω
m|∇m|2∫

Ω
|∇m|2

< 0.

�

Figure 1. Graph of a(η).

Recall that a∗ = minη≥0 a. The following is the main theorem of this section.

Theorem B.4. (i) If d ∈ (0, a∗), then σ(η; d) < 0 for all η ≥ 0.
(ii) If d ∈ (a∗, 1), then σ(η; d) changes sign exactly twice as η varies from 0

to ∞.
(iii) If d ∈ (1,∞), then σ(η; d) changes sign exactly once as η varies from 0 to

∞.
Moreover, as long as d 6= a∗, all the (non-negative) roots of σ(η; d) are non-

degenerate. i.e.

d 6= a∗, 1 and σ(η; d) = 0 ⇒ ∂σ

∂η
(η; d) 6= 0.

Remark B.5. In fact, it follows from the proof of Theorem B.2 that a(η) =∞
for η ≥ 1

minΩ̄ m
, so that σ(d, η) < 0 for all d > 0 and η ≥ 1

minΩ̄ m
. As a result, all

the sign changes occur in the interval [0, 1
minΩ̄ m

).

Proof. Suppose d ∈ (0, a∗), then if a(η) <∞ (i.e. η ∈ [0, η1)), then

σ(η; d) < σ(η; a∗) ≤ σ(η; a(η)) = 0.

On the other hand, if a(η) = ∞ (i.e. η ∈ [η1,∞)), then taking ψ = 1 in Theorem
B.1(i), we have

(B.8) σ(η; d) ≤ − 1

|Ω|

∫
Ω

(1− ηm)∇m · ∇
(

1

m

)
≤ 0.

The last inequality is a consequence of the fact that a(η) =∞ (Claim B.3). In fact,
the first inequality in (B.8) is strict, which follows from the fact that 1 is not an
eigenfunction corresponding to σ(η; d). This proves (i).
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Now suppose d ∈ (a∗, 1), then by Theorem B.2 (ii) and (iv), there exist exactly
two distinct non-negative numbers η′ < η′′ such that

a(η) =

 = d if η = η′ or η′′;
> d if η ∈ [0, η′) ∪ (η′′,∞);
< d if η ∈ (η′, η′′).

In fact, by the comparison principle of eigenvalues, we have

σ(η; d) < σ(η; a(η)) ≤ 0 for η ∈ [0, η′) ∪ (η′′,∞),
σ(η; d) > σ(η; a(η)) = 0 for η ∈ (η′, η′′).

.

This proves (ii). (iii) can be established in a similar fashion. Finally, the non-
degeneracy claim follows from the strict concavity of a in η. �

Remark B.6. We note here that η 7→ σ(η, a∗) has a unique root. This provides
a transition from no roots (when a < a∗) to double roots (when a ∈ (a∗, 1)). See
Figure 1 in Appendix B.





APPENDIX C

Limiting eigenvalue problem as µ→∞

This section is devoted to the proof of Proposition 4.13 concerning the principal
eigenvalue of (4.8), which we display below as (C.1) for convenience. The main steps
of the proof resemble those of Theorem 2.5.

(C.1)

{
ν∆ϕ+

(
m−

∫
Ω
meηm∫

Ω
e2ηm

eηm
)
ϕ+ τϕ = 0 in Ω,

∂ϕ
∂n = 0 on ∂Ω.

Set

G(η, x) := m(x)−
∫

Ω
meηm∫

Ω
e2ηm

eηm(x).

Lemma C.1. There exists some 0 < η∗ < η∗ such that

(i)
∫

Ω
G(η, x) dx < 0 for 0 < η < η∗;

(ii)
∫

Ω
G(η, x) dx > 1

2

∫
{x∈Ω:m(x)<maxΩ̄ m}

m > 0 for η > η∗.

Proof. Define g(η) =
∫

Ω
G(η, x) dx. Then g(0) = 0 and

g′(0) =
1

|Ω|

(∫
Ω

m

)2

−
∫

Ω

m2 < 0,

where the last inequality follows from the Hölder inequality and m being non-
constant. Hence, there exists some η∗ > 0 such that g < 0 for 0 < η < η∗. Let
m∗ := maxΩ̄m > 0. We claim that

Claim C.2.

(∫
Ω
mηm

) (∫
Ω
eηm

)∫
Ω
e2ηm

→ m∗|{x ∈ Ω : m(x) = m∗}| ≥ 0 as η →∞.

On one hand, if |{x ∈ Ω : m(x) = maxΩ̄m}| > 0, then it follows by Bounded
Convergence Theorem that

(
∫

Ω
meηm)(

∫
Ω
eηm)∫

Ω
e2ηm

=
(
∫

Ω
meη(m−m∗))(

∫
Ω
eη(m−m∗))∫

Ω
e2η(m−m∗)

→ m∗|{x ∈ Ω : m(x) = m∗}|.

Hence as η →∞,

g(η)→
∫

Ω

m−m∗|{x ∈ Ω : m(x) = m∗}| =
∫
{x∈Ω:m(x)<m∗}

m > 0.

On the other hand, assume |{x ∈ Ω : m(x) = m∗}| = 0. Given ε > 0, let δ > 0 be
chosen such that

m∗|{x ∈ Ω : m(x) > m∗ − δ}| < ε

2
.
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Then we estimate in the following way:

(
∫

Ω
meηm)(

∫
Ω
eηm)∫

Ω
e2ηm

≤
m∗
[∫

Ω
eηm

]2∫
Ω
e2ηm

=
m∗
[∫
{x∈Ω:m(x)≤m∗−δ} e

ηm +
∫
{x∈Ω:m(x)>m∗−δ} e

ηm
]2∫

Ω
e2ηm

≤
2m∗

[(∫
{x∈Ω:m(x)≤m∗−δ} e

ηm
)2

+
(∫
{x∈Ω:m(x)>m∗−δ} e

ηm
)2
]

∫
Ω
e2ηm

≤ 2m∗


(∫
{x∈Ω:m(x)≤m∗−δ} e

ηm
)2∫

{x∈Ω:m(x)>m∗−δ/2} e
2ηm

+

(∫
{x∈Ω:m(x)>m∗−δ} e

ηm
)2∫

{x∈Ω:m(x)>m∗−δ} e
2ηm


≤ 2m∗

[
|{x ∈ Ω : m(x) ≤ m∗ − δ}|
|{x ∈ Ω : m(x) > m∗ − δ/2}|

e−δη + |{x ∈ Ω : m(x) > m∗ − δ}|
]

< ε

for η sufficiently large. This proves Claim C.2. Applying Claim C.2, we have

lim
η→∞

g(η) =

∫
Ω

m−m∗ |{x ∈ Ω : m(x) = m∗}| =
∫
{x∈Ω:m<m∗}

m > 0.

This completes the proof. �

Corollary C.3. Let η∗ be as given in the previous lemma, then τ in (C.1)
satisfies

τ ≤ −1

2

∫
{x∈Ω:m(x)<maxΩ̄ m}

m < 0

for every ν > 0 and η ≥ η∗.

Proof. Divide (C.1) by ϕ and integrate by parts. Then by Lemma C.1,

τ |Ω| = −ν
∫

Ω

|∇ϕ|2

ϕ2
−
∫

Ω

G ≤ −
∫

Ω

G ≤ −1

2

∫
{x∈Ω:m<m∗}

m.

This proves Corollary C.3. �

Lemma C.4. There exists some small positive constant C∗ such that

sup
0≤η<∞

τ < 0

for every ν ∈ (0, C∗).

Proof. We argue by contradiction. If not, we may assume that there exists
some sequence νi → 0+ such that sup

0≤η<∞
τ(η; νi) ≥ 0 for every i. For each such νi,

by Corollary C.3 we see that τ(η, νi) ≤ − 1
2

∫
{x∈Ω:m<m∗}m < 0 for η > η∗. Hence
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for every i, there exists some ηi ∈ [0, η∗] such that τ(ηi, νi) = sup0≤η<∞ τ(η, νi) ≥ 0.
Passing to a subsequence if necessary, we may assume that ηi → η̂ as i→∞. Hence,

lim
i→∞

τ(ηi, νi) = min
Ω̄

(
m−

∫
Ω
meη̂m∫

Ω
e2η̂m

eη̂m

)
.

We claim that

min
Ω̄

(
m−

∫
Ω
meη̂m∫

Ω
e2η̂m

eη̂m

)
< 0.

To establish this assertion, we argue by contradiction. Suppose that

min
Ω̄

(
m−

∫
Ω
meη̂m∫

Ω
e2η̂m

eη̂m

)
≥ 0,

or equivalently

min
Ω̄

(
m(x)e−η̂m(x)

)
≥
∫

Ω
meη̂m∫

Ω
e2η̂m

.

But this contradicts∫
Ω
meη̂m∫

Ω
e2η̂m

=

∫
Ω
me−η̂m · e2η̂m∫

Ω
e2η̂m

> min
Ω̄

(
m(x)e−η̂m(x)

)
.

Note that the last inequality is strict because m is non-constant. This proves our
assertion. Hence,

lim
i→∞

τ(νi, ηi) = min
Ω̄

(
m−

∫
Ω
meη̂m∫

Ω
e2η̂m

eη̂m

)
< 0,

which is a contradiction to our assumption τ(ηi; νi) ≥ 0 for all i. �

Lemma C.5. There exists some (large) positive constant C∗ such that

sup
0≤η<∞

τ > 0

for every ν ∈ [C∗,∞).

Proof. We argue by contradiction. Suppose that there exists some sequence
νi such that νi →∞ and sup0≤η<∞ τ(η; νi) ≤ 0, i.e., τ(η; νi) ≤ 0 for all η ≥ 0 and
i. For each fixed η, we claim that

(C.2) lim
νi→∞

τ(η; νi) = − 1

|Ω|

∫
Ω

G(η, x) dx.

To show (C.2), first we realize that τ ≤ −minx∈Ω̄G(η, x) is bounded independent
of νi large. Next, normalize

∫
Ω
ϕ2 = |Ω|. Then by multiplying (C.1) by ϕ/νi and

integrating by parts, we get∫
Ω

|∇ϕ|2 =
1

νi

[∫
Ω

G(η, x)ϕ2 + τ

∫
Ω

ϕ2

]
→ 0.

Hence ∇ϕ→ 0 in L2(Ω) and ϕ→ 1 in H1(Ω). Finally, (C.2) follows by integrating
(C.1) and letting νi →∞.

By (C.2) and the fact that τ(η, νi) ≤ 0,
∫

Ω
G(η, x) dx ≥ 0 for every η, which is

a contradiction to Lemma C.1. �
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Proof of Proposition 4.13. Define

ν+ := sup{ν̃ > 0 : sup
0≤η<∞

τ(η; ν) < 0, for all 0 < ν < ν̃}.

By Lemmas C.4 and C.5, we see that 0 < ν+ < ∞. From the definition of ν+

we see that τ(η; ν) < 0 for all ν ∈ (0, ν+) and η > 0. By definition of ν+,
sup0≤η<∞ τ(η; ν+) = 0. Now, Corollary C.3 implies that τ(η0; ν+) = 0 for some
η0 > 0. Hence, by the fact that τ is strictly monotone increasing in ν, we deduce
that sup0≤η<∞ τ(η; ν) > 0 for all ν > ν+. Note that for each ν > 0, τ(0, ν) < 0
(divide (C.1) by ϕ and integrate by parts) and τ(η; ν) < 0 for every η ≥ η∗ (Corol-
lary C.3). We see that for ν ∈ (ν+,∞), τ(η; ν) must change sign at least twice as
η varies from 0 to ∞. �
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