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THE SMITH CONJECTURE

CHAPTER Xl

A Survey of Results in Higher Dimensions

Michael W. Davis

Department of Mathematics
Ohio State University
Columbus, Ohio

The field of compact transformation groups deals with actions of compact
Lie groups on manifolds. Its origins can be traced back to the advent of the
study of groups of linear transformations in the nincteenth century. The
actions of such lincar groups on cuclidean spaces, disks, spheres, projective
spaces, etc., provide a rich and natural class of basic examples. The guiding
principle of the ficld has always been to compare arbitrary actions to linear
actions, that is, to determine the extent to which arbitrary actions resemble
the basic linear cxamples.

It is natural to begin by studying compact transformation groups of the
simplest manifolds: cuclidcan spaces, disks, and spheres. The only examples
that spring to mind are closed subgroups of the appropriate orthogonal
group. Naively, onc might conjecture that these linear actions are the only
possibilitics; that is, for M" = R", D", or §" and for G a compact Lic group
of homeomorphisms of M", onc might conjecture that G is conjugate by a
homeomorphism to a subgroup of O(n) (or of O(n + 1) when M" = S").
We shall hercafter refer to this as the naive conjecturc. Prior to 1950 it seems
that people felt this might Be true, although it was clearly regarded as an
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extremely difficult problem. The conjecture is true for n = 2. As stated, it is
false for n = 3: Bing [2] produced a nonlinear involution on S* in 1952,
However, Bing’s example was essentially a local pathology in that it resulted
from the nondifferentiability of the involution. There is mounting evidence
(much of it in this volume) that the naive conjecture holds for n = 3 provided
that we stick to groups of diffeomorphisms. For n > 4, the conjecture is
false in either category. Despite this, the determination of the exact extent
to which actions of compact Lie groups on euclidean spaces, disks, or
spheres resemble linear actions remains today onc of the central problems
in the field.

The purpose of this chapter is to survey somc of the work on this problem
and to describe some counterexamples to the naive conjecture in dimensions
greater than three. We shall be particularly concerned with the nature of
the fixed point set. For another discussion of this subject see Bredon [4].

The earliest work in this area focused on periodic transformations, that
is. on actions of finite cyclic groups. In the twenties Brouwer [5] and Kerek-
jarto [15] proved that any orientation-preserving periodic transformation
of the 2-disk or 2-sphere was conjugate Lo a rotation. A gap in the proof was
later filled by Eilenberg [10].

In dimension three there are substantial partial results. In the case for
which the group G is compact and connected, the three-dimensional naive
conjecture was proved by Montgomery and Zippen [20]. For smooth
actions of G = Z, it is due to Livesay [16, 17] and to Waldhausen [31].
For smooth, orientation-preserving, periodic transformations with non-
empty fixed point set the three-dimensional naive conjecture is equivalent
to the Smith conjecture solved in this volume. Rubenstein [25] has proved
it for free actions of certain finite groups on S>.

In order to attack the naive conjecture in higher dimensions, one wants
to find topological propertics of linear compact transformation groups
and determine the extent to which they are shared by arbitrary compact
groups of homcomorphisms of euclidean spaces, disks, and spheres. Smith
focused attention on one such property of linear actions: The fixed point
set of any group of linear transformations of R" is a linear subspace. Ob-
viously, such a subspace intersects D" in a linear subdisk and §"~ lin a linear
subsphere. Thus a necessary condition for a G-action on euclidean space
(respectively, disk or sphere) to be equivalent to a linear G-action is that the
fixed point set must be homeomorphic to a lower-dimensional euclidean
space (respectively, disk or sphere). Moreover, the embedding of the fixed
point set in the ambient space must be standard.

The first positive results toward establishing this necessary condition
were proved by Smith in a series of papers [26-28] published in the 1930s
and 1940s. He proved that the condition holds for cyclic groups of prime
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power order provided that we are concerned only with homology with
cocfficicnts in Z, (where p is the prime in question). For example, Smith
showed that if X is a reasonably nice (e.g., compact) space with the mod p
homology of a sphere, then the fixed point set of a pcriodic transformation
of period p™ also has the mod p homology of a sphere. An easy induction
can be used to extend this to actions of finite p-groups (p a prime). The results
were extended to actions of tori (using integral cocfficicnts) by Conner [6]
and Floyd [12] and they can casily be extended to the case in which G is a
p-group cxtended by a torus. Here is a precise statement.

THeoREM  (Smith).  Suppose that G is a p-group and that X is either a
Sinite dimensional or a compact G-space that has the mod p Cech cohomology

of an n-sphere. The fixed point set X% has the mod p Cech cohomology of an
r-sphere for some —1 <r < n.

A similar result holds for pair (X, 4) with the mod p Cech cohomology of
(D", S*~ ). For further information see [3, Chapter 111].

Initially, Smith believed that it was merely a defect in his methods that
forced him to restrict to p-groups and to homology with Z ,-coefficients.
He clearly believed that these results should cxtend to coefficients in Z,
and at lcast to all finite cyclic groups. We shall give a simple countercxample
to this conjecture in Section 2.

It has now become clear that Smith’s results, together with some conditions
on the Euler characteristic, are essentially the only homological conditions
that must be satisfied by fixed point sets of group actions on euclidcan
spaces, disks, and spheres. As an illustration of this principle, we shall now
statec some results that precisely give the homotopy types that can occur as
fixed point sets of smooth G-actions on disks. Let us first remark that it follows
from the differentiable slice theorem that any such fixed point set is a smooth
submanifold and hence has the homotopy type of a finite complex. For
finite groups there is the following result.

THEOREM. Let F be a finite complex. (1) If G is a finite group of p-
power order, p a prime, then F is homotopy equivalent to the fixed point set
of a smooth G-action on some disk if and only if F is Z -acyclic.

(2) If G is a finite group not of prime power order, then there is an integer
ng such that F is homotopy equivalent to the fixed point set of some smooth
G-action on a disk if and only if y(F) = 1 (mod ng).

The integer ng can be explicitly computed (see Section 7). The answer is
also known when G is a compact Lic group of positive dimension. If the
identity component G, is not a torus, then there is no condition on F: Any
finite complex (including the empty set) can occur. If G, is a torus, then F
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must satisfy either condition (1) or (2) of the above theorem, depending on
whether G/G,, has prime power order. Statement (1) in this theorem is essen-
tially due to Jones [14]. In all other cases it is the work of Oliver [21].

Onc consequence of this result is that most groups can act smoothly on a
disk with empty fixed point set. The existence of such actions runs contrary
to one’s intuition. It becomes even more counterintuitive when we combine
this fact with Mostow’s embedding thcorem. This theorem states that we
can embed any compact, smooth G-manifold in some linear action on some
large dimensional euclidean space. Thus we can embed a G-action on a disk
in a linear action and take an invariant regular neighborhood to obtain a
smooth G-action on another disk (of larger dimension) with homotopy
equivalent fixed point set. Therefore, for any sufficiently complicated G, we
can find a linear action of G on R" and a smoothly embedded G-invariant
disk DY < R such that G fixes no points of D".

1. The Montgomery-Samelson Example'

Suppose that B™ is a compact, contractible m-manifold with boundary.
The boundary of B is, of course, a homology (im — 1)-sphere. However, it is
well known that for m > 4, dB can be nonsimply connected. Let us suppose
this. Let G be a closed subgroup of Q(n) such that G fixes only the origin of
R". Consider the manifold M"*™ = D" x B™ with G-action defined by
g(x, b) = (gx. b). If m + n = 6. then by the h-cobordism theorem, dM is a
sphere. The G-action on dM is nonlinear since its fixed point set 0B is not
simply connected, hence not a spherce. The point of this cxample is that at
most we can expect to prove results about the homology of the fixed point
set: We cannot hope to control its fundamental group.

2. G-Complexes

A G-complex is a G-space built by successively adjoining “equivariant
cells” of the form G/H x D" The following gencral principle is important
in the construction of examples: every finite contractible G-complex X gives
rise to a smooth G-action on a disk with fixed point sct homotopy equivalent
to X% Similarly, cvery finite dimensional contractible G-complex gives
rise to a smooth G-action on some euclidean space. The point is that provided
we are willing to be gencrous about dimensions, we may replace our equi-
variant cclls by cquivariant handles of the form (G x ,; D(V)) x D", where

! See [19].
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D(V) is the unit disk in some lincar H-space V (see [21]). Alternatively, in
the case in which G is finite and X is a simplicial complex, we can embed X
in some triangulation of a linear action on R¥, N large, and then take a regular
neighborhood. (See p. 57 in [3].)

3. The Brieskorn Examples?

Consider the polynomial f/: C"*! — C defined by
S(2) =) (z)"
i=0

where the a;s are integers greater than one. The hypersurface f ™ '(0) has an
isolated singularity at the origin. Its link £*"~ (ay, ..., a,) is defined as the
intersection of the hypersurface with a sufficiently small sphere centered at
the origin. Each such link is an (n — 2)-connected smooth manifold. Form-
ulas for computing H,_ ,(Z*""!(aq, ..., a,)) in terms of the exponents can
be found in Milnor [18]. If this group is trivial (and il 2n — 1 > 3), then
the link is homeomorphic to $2"~ !, (This happens quite [requently.)

These links have many interesting symmetries. For example, for cach
0<i<n T* Ya,,....a,) admits a periodic diffeomorphism of period
a; defined by

W(Zgs -y Ziy ooy Zy) =20y vvs WZjy oo vy Z,),

where w 1s a primitive a;th root of unity. The fixed point set is clearly
2 Yay, ..., 4;,...,a,). More spccifically, consider X33, 2, 2,2). This
manifold is well known to bc diffecomorphic to S°. It admits an action of
Z, =7Z,® Z, defined as above by acting on the first coordinatc by a
third root of unity and on the sccond coordinate by a second root of unity.
The fixed point scts of Z;, Z, , and Z arc, respectively, 32, 2,2),233,2,2),
and £'(2, 2). These manifolds are, respectively, real projective 3-space,
the lens space L(3, 1), and the disjoint union of two circles. Thus S* admits
a smooth action of Z such that (1) the fixed point set of Z is not a homology
sphere with any coefficients and (2) the fixed point sets of the subgroups of
order two and three are not homology spheres with integer coefficients.
(Note, however, that RP3 is a mod 3 homology sphere and that L3, 1)isa
mod 2 homology sphere.) A similar example was constructed carlier by
Floyd [11] on the 41-sphere. Such examples provide rather convincing
evidence that Smith’s results cannot be improved.

2 See [13).
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By slight modifications of the above example one can construct similar
examples in cvery odd dimension 2n — 1, with n > 3. It is also ecasy to modify
these examples to obtain, in higher dimensions, periodic transformations
of the sphere such that the fixed point set is a knotted sphere of codimension
two. For example, an involution on X277 !(p, q, 2, ..., 2) will do the job for
suitably chosen p and g.

4. Oliver’s Example’

In this section we shall discuss Oliver’s beautiful construction of a smooth
SO(3)-action on the 8-disk with no fixed points.

Let G = SO(3). As a first step we shall construct a contractible finite
G-complex X with no fixed points. Let X be any G-complex with orbit
space as pictured in Fig. 1. Thus X is made up of five cquivariant cells of the

G

0 0(2)
0, Figure 1

form G/H x D", withn < 2. In Fig. | we havce labeled cach cell by its isotropy
group H. Here D, denotes the dihedral group of order 2n, O(2) is the orthog-
onal group, and O is the octahedral group. It is easy to sec that there is a
G-complex with this orbit space. By construction there are no fixed points.

We next want to show that X is contractible. Divide the orbit space into
three pieces A’, B, C' as shown in Fig. 2. Let A = n~'(4"), B = =~ '(B’),

Figure 2

and C = n~ Y(C’) be their inverse images in X. The proof that X is contract-
ible is a straightforward exercisc using van Kampen’s theorem and the
Mayer-Victoris sequence for X = A4 U B. We shall sketch the details.

If H is a finite subgroup of G = SO(3), denote its inversc image in S* by
f, so that n,(G/H) = H. Since A deformation retracts to G/O and B de-
formation retracts to G/O(2) = RP?, we have that ,(4) = O and n,(B) = Z,.

* See [23].
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Also, n,(C) = D, 5, D,. The kernel of z,(C) — n,(B) is clearly Zg %, Z.
Since the binary octahedral group O is generated by the cyclic groups of

order eight and six, this kernel maps onto n,(A). Hence, X is simply connec-
ted.

The computation of the homology of X runs as follows:

( Zz, i= l,
H(A) = H(G/0) = 7 Z, i =3,

0, otherwise.

Zz. i= l,

H(B) = H(RP?) = |

L 0, otherwise.

(2, ® Z,, i=1,
H(CO)=147Z, i=3,

L 0, otherwisc.

The Mayer-Victoris sequence shows that X is acyclic and hence contract-
ible.

Next we want to “thicken” X to be an 8-disk. The ideca is to thicken 4
and B to 8-manifolds with boundary M, and M, and to thicken C by a
7-manifold with boundary M in such a way that M. is embedded in both
0M , and oM. The 8-disk will then be formed by gluing M, and Mg along
M¢c. The manifolds M, and M, will cach be unit disk bundles associated
to certain G-vector bundles of the form G x , Vand G x g, W, respectively,
where Vand W are linear representations of O and O(2) respectively. Let
V, be the two-dimensional representation of O defined by O — D3 < O(2).
Note that V, contains points with isotropy subgroups D, < O. Let ¥, be
the three-dimensional representation of O defined by regarding O as the
full group of symmetries of the tetrahedron. Then V; has points with isotropy
group D;. Let V=V, @ V,.

For meZ,, lct W, be the two-dimensional representation of O(2) with
kernel the cyclic group of order m. Set W= W, ® W, @ W,, where k =
+2(12). Then W has points with isotropy subgroup D; < O(2) and D, <
O(2), since W, and W, do.

Next we want to find a copy of C in both M, and dMg. This is easy.
For example to find it in dM ,, pick points x and y in M ,/G corresponding
to orbits of type G/D, and G/D,, respectively. Join x and y by an arc of orbits
of type G/D. This gives a copy of C’' in M ,/G and hence an embedding of
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C in ‘M ; similarly for dMp. Let Y, and Yy be closed invariant regular
neighborhoods of C in dM  and éM, respectively. We want to show that
Y, is cquivariantly diffeomorphic to Y. It clearly suffices to check this in a
neighborhood of the G/D; and G/D, orbits. And this is just a matter of check-
ing whether the tangential representations of the isotropy groups D5 and
D, in Y, agrec with those of Y. The condition that k = +2(12) precisely
guarantees this. Thus, weset M = Y, = Yyand M = M juy My Misa
compact contractible 8-manifold since it is homotopy equivalent to X.
Since M is the union of two sphere bundles along M., the calculation of
n,(dM) is the same as for n,(X). Hence dM is simply connected and M is
thereforc an 8-disk. Thus SO(3) can act smoothly on D® without fixed points.

Let I <« SO(3) be the icosahedral group. Since no isotropy group of M
contains I, Oliver’s example gives a bonus: There is a smooth action of 1
on D® without fixed points.

Actually, Floyd and Richardson had earlier constructed a fixed point
free action of I on a disk. Their construction starts with the action of I on
the Poincaré homology sphere G/I. This action has one fixed point. Removing
a neighborhood gives an action of I on a compact acyclic 3-manifold Q.
The diagonal action of I on the join I * Q gives a finite contractible I-complex
with no fixed points. This can be thickened to a disk. For further details
see [3. p. 55]

5. Local Properties: Groups of Homeomorphisms versus Groups of
Diffeomorphisms

The differentiable slice theorem asserts that any orbit of a smooth G-
manifold M has an equivariant tubular neighborhood, i.c., an orbit has an
invariant neighborhood in M that is G-diffeomorphic to a G-vector bundle
over it. In particular, a fixed point has an invariant neighborhood on which
the action is linear. It follows that the fixed point sct is a smoothly embedded
submanifold. Therefore, fixed point sets of smooth actions are locally in-
distinguishable from thosc of lincar actions.

If the action is not smooth, we can have local pathologies. Fixed point
sets need not be manifolds and even if they are manifolds, they need not be
cmbedded in a locally flat fashion. The first example of this type was Bing’s
[2] involution of the 3-sphere with fixed point sct an Alexander’s horned
sphere. Examples of actions on spheres where the fixed point set is not a
manifold can be obtained by suspending any of the examples in Sections
| or 3. (There is. however. a local version of Smith’s theorem which asserts
that if G is a p-group acting on a manifold, then the fixed point set is a mod p
homology manifold.)
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6. Work of Lowell Jones*

In this section we shall discuss some of the work of Jones [14] on fixed
point sets of certain periodic transformation of disks.

A G-action on a space X is said to be semifi-ee if for each x € X the isotropy
group G, is equal to either the trivial group or to G. If G is cyclic of order n
and acts semifrcely on a disk, then it follows Smith’s theorem that the fixed
point set is Z,-acyclic for every prime p dividing n. Hence, the fixed point
set is actually Z,-acyclic. Conversely, Jones [ 14] proved the following result.

THrorREM  (Jones).  Let G be the cyclic group of order n. A finite complex
F is homotopy equivalent to the fixed point set of a smooth G-action on some
disk if and only if F is Z,-acyclic.

As we pointed out in Section 2, this theorem is equivalent to the statement
that any such F occurs as the fixed point sct of a semifrec G-action on some
finite contractible G-complex. Thus we want to start with F and successively
adjoin a finite number of cells of free orbits to kill its fundamental group and
its homology, in this way obtaining a finite contractible G-complex X with
X¢ = F. If we have succeeded in building an (m — 1)-connected G-complex
X, then there 1s no problem in equivariantly attaching cells to kill H,(X).
Simply choose a set of generators for H,(X) as a Z[G]-module, represent
these generators by spheres, and attach a free orbit of cells for each generator.
The trouble is that we will introduce new homology in dimensionm + |. For
an arbitrary F there is no guarantee that this process will terminate after a
finite number of steps. Jones’s key observation is that the hypothesis that
F is Z -acyclic ensurcs that the “extra™ homology we have introduced in
dimension m + 1 is_a free module over Z[G]. Thus we can kill this extra
homology at the next stage without introducing any further homology. This

_observation essentially comes down to the following algebraic lemma.

LEMMA. Suppose that G is cyclic of order n and that A is a Z[G]-module
such that (1) A is finite of order prime to n and (2) G acts trivially on A. Let
y: R = A be an epimorphism with R a free Z{G]-module. Then ker  is a free
Z[ G]-module.

A proof can be found in Jones [14].
Using similar ideas it is easy to extend Jones’s result to actions of finite

groups of prime power order.

+ See [14].
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THEOREM. Let G be a p-group (p a prime). A finite complex F is homotopy
equivalent to the fixed point set of a smooth G-action on some disk if and only
if F is Z,-acyclic.

To prove this, we choose H < G with G/H cyclic. Attach cells of G/H-
orbits to F to obtain a finite contractible G-complex X. Then attach cells of
free orbits in adjacent dimensions so as to make the action effective without
introducing any homology.

7. Actions on Disks

Having dealt with p-groups in the previous section, we shall in this section
summarize the definitive work of Oliver [21, 22, 24] on fixed point sets of
finite group actions on disks for groups not of prime power order. He shows
that in this case the only restriction on the homotopy type of the fixed
point set is that its Euler characteristic must sometimes satisfy a certain
congruence rclation.

THeEOREM (Oliver [21]).  For any finite group G not of prime power order
there is an integer ng such that a finite complex F is homotopy equivalent to
the fixed point set of some smooth G-action on a disk if and only if y(F) = 1
(mod nyg).

Oliver then goes on to explicitly calculate ng. In order to give this calcula-
tion, we shall first define an integer m(G). Let @' be the class of finite groups
G with G/P cyclic for some P <a G, with P of prime power order. For each
prime ¢q, let 7 be the class of groups G with G/H of g-power order for H<a G
and He %'. Thus ' consists of those groups that are “cyclic mod p” and
41 consists of those that are “g-hyperclementary mod p” for some prime p.
By definition, m(G) will be either 0, 1, or a product of distinct primes. It is
0 if and only if Ge %!, and q|m(G) if and only if G € ¥4

The result of Oliver’s calculation is that almost always n; = m(G). How-
ever, for a certain class of 2-hyperclementary groups, 1 =4, while m(G) = 2.
Since the definition of this class of groups is fairly complicated we shall
simply refer to it as the “exceptional case™ and direct the reader to Oliver
[22, p. 345] for the precise definition.

THeOREM (Oliver [24]). In the exceptional case, ng = 4. Otherwise,
ng = m(G).

If n; = 1, then the congruence in the theorem is automatically satisfied.
Hence, for such groups G any finite complex (including thc empty set!) can
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occur as the homotopy type of the fixed point set of a smooth G-action on
a disk. Notice that it is easy for a group to satisfy the condition m(G) = 1
(and hence ng; = 1). Any nonsolvable group has this property, as does any
sufficiently complicated solvable group. The smallest abelian group with
ng = 11s Z3o @ Z,,, while the smallest solvable groups with this property
have order 72. There are two such: S, @ Z, and A, @ S, [21, p 175].
Before discussing the proofs of the above theorems, let us warm up by

proving the following elementary result which makes the main results
possible.

ProrosiTioN  (Oliver), Suppose that F is the fixed point set of a smooth
G-action on a disk, then y(FF) = 1 (mod m(G)).

Let M be any compact smooth G-manifold. The proof of this is based on
the following three facts:

(1) 1If Gisa p-group, then y(M%) = y(M)(mod p).
(2) IfGisa p-group and M is Z -acyclic, then ME€ is Z-acyclic.
(3) If Gis cyclic and M is rationally acyclic, then y(M%) = 1.

Statement (1) is a standard result in Smith theory and can be found, for
example, in Bredon [3, p. 145]. Statement (2) is Smith’s theorem. Statement
(3) follows from the more general fact that if G is cyclic, then x(M¢) is equal
to the Lefschetz number of a generator of G.

Proof of the Proposition. Let D be a disk with smooth G-action. If
G e %!, then G/P is cyclic for some P <1 G, with P a p-group. By (2), D" is
Z ,-acyclic, hence rationally acyclic. Therefore, by (3), (D) = x(D")°'") = 1.
If Ge %4, then G/H is a g-group for some H € ¥'. We have just shown that
72(D*) = 1. Hence by (1), x(D€) = x((D™)¢'") = 1 (mod g).

A G-resolution of a finite complex F is an n-dimensional finite G-complex
Y, such that Yis (n — 1)-connected, H,(Y) is a projective Z[G]-module,
and Y = F. If H,(Y) is a free Z[G]-module (or cven stably free), then we
can add cells of free orbits to kill it without introducing any further homology,
obtaining in this way a finite contractible G-complex. Let yg(F, Y) denote
the class of H(Y) in Ko(Z[G]). Given F, Oliver breaks the problem of con-
structing a finite contractible G-complex X with X¢ = F into two parts:
(a) building a G-resolution Y and (b) analyzing the obstruction yg(F, Y).
He first proves the following result.

ProrosiTiON (Oliver). Suppose that G is a finite group not of prime
power order. A finite complex F has a G-resolution i and only if
x(F) = 1(mod m(G)).
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In order to construct a finite contractible G-complex with fixed point
set F, we are free to vary the G-resolution Y. Thus the obstruction we are
interested in has indeterminacy in the subgroup B(G) = {yg(point, Y)} <
Ko(Z[G]). Therc results an obstruction yg(F) € Ko(Z[G])/B(G). Oliver [21]
shows that if G is not hyperelementary, then y5(F) = 0 and hence ng = m(G).
He also shows that even when G is hyperelementary m(G) divides ng. Finally,
in a later paper [24] he analyzes the hyperelementary case and shows that
ng = m(G) precisely in the nonexceptional case.

8. Actions on Spheres

We have already given cxamples of nonlinear actions on spheres in
Sections 1 and 3. Although there is a large body of literature on this subject
we shall mention only one further example. Stein [30] constructed a smooth
action of the binary icosahedral group on S7 with only one fixed point.
Further work along these lines can be found in Assadi [1] and Doverman
and Petrie [8].

9. Actions on Euclidean Spaces

As we pointed out in Scction 2, the construction of such actions is related
to the construction of finite dimensional contractible G-complexes. Since
we are free to add infinitely many cells, the obstructions in the projective
class group are no longer relevant. Also, since R" is not compact, the Lefschetz
fixed point theorem no longer imposes constraints on the Euler character-
istics of fixed point sets of cyclic subgroups. Hence it is generally much casier
to construct actions with cxotic fixed point scts on cuclidean spaces than on
either disks or spheres.

For example, exotic fixed point sets occur ¢ven for actions of finite cyclic
groups which are not of prime power order. The first example of this type
was constructed by Connor and Floyd [7]. If p and q are relatively prime
integers, then they showed that a certain linear action of the cyclic group
Z,, on S? admits an cquivariant self-map of degree 0. By taking the infinite
mapping teclescope of this map they obtain a Z, -action on a contractible
4-complex with empty fixed point set and hence, a smooth Z, -action on
cuclidean space with empty fixed point sct. As Bredon observes [3, p. 62],
a slight modification of this construction shows that any finite complex is
homotopy cquivalent to the fixed point sct of some Z, -action on a cuclidean
space.
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The fixed point set of a linear action on euclidean space is a lincar subspace;;
hence it is either a point or noncompact. Smith [29] asked if a compact
manifold other than a point could occur as fixed point set. This was answered
by Edmonds and Lee [9]. They showed that a smooth closed manifold
occurs as the fixed point set of some finite cyclic group action on cuclidean
space if and only if its tangent bundle admits a complex structure.
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