
DEFINABLE CHOICE IN D-MINIMAL EXPANSIONS
OF ORDERED GROUPS*

CHRIS MILLER

Version: December 15, 2006

A (first-order) theory T extending the theory of dense linear orders without endpoints
is d-minimal (short for “discrete-minimal”) if in every model of T:

• The underlying set of the model is definably connected (in the model).
• Every unary (parametrically) definable set either has interior or is a finite union of

discrete sets.

The intent is, loosely speaking, to capture the notion of the next best thing to o-mini-
mality for theories whose models may define infinite discrete sets. Note that T is o-minimal
if, in the above, “discrete sets” is replaced by “points”.

An expansion of a dense linear order without endpoints is d-minimal if its complete
theory is d-minimal. See [FM05, Mil05, MT06] for some examples of structures that are
d-minimal but not o-minimal.

The main result of this note extends a useful fact from o-minimality:

Theorem. Let T be a complete d-minimal theory extending the theory of dense ordered
groups with a distinguished positive element. Then T has definable Skolem functions and
elimination of imaginaries.

Indeed:

Definable Choice. Let R be a d-minimal expansion of a dense ordered group (R,<, +, 0, 1)
with 1 > 0. Then:

• If Y ⊆ Rm+n is ∅-definable and X is the projection of Y on the first m coordinates,
then there is a ∅-definable f : X → Rn such that the graph of f is contained in Y .

• If E is a ∅-definable equivalence relation on a ∅-definable X ⊆ Rm, then there is a
∅-definable f : X → X such that xEy ⇔ f(x) = f(y) for all x, y ∈ X.

(Of course, the above then holds with “A-definable” in place of “∅-definable” for any
A ⊆ R.)

The use of abelian notation is justified: Definable connectedness allows us to work in
many respects as if we were over the reals—see e.g. [Mil01] for details—in particular, every
definably connected dense ordered group is abelian and divisible.

From now on, R denotes a fixed, but arbitrary, expansion of a dense linear order without
endpoints (R,<). Definability is with respect to R. Topological notions are with respect to
the usual box topologies. The variables m and n range over N (the non-negative integers).

The definition of d-minimality given above is possibly the easiest to state, but it misses
the point somewhat, especially for structures.

*This is not a preprint; please do not refer to it as such.
1



Proposition 1. R is d-minimal if and only if R is definably connected and for every
definable S ⊆ Rm+1 there exists N ∈ N such that for all x ∈ Rm the fiber

Sx := { t ∈ R : (x, t) ∈ S }
either has interior or is a union of N (not necessarily distinct) discrete sets.

Proof. It is easy to see that definable connectedness is an elementary property. The rest is
a routine compactness argument; cf. [Mil05, §8.5]. �

Note. Under the present definition, d-minimality of structures is trivially preserved under
elementary equivalence. One of the remarkable facts about o-minimality is that this artifice
is unnecessary: If R is o-minimal—i.e., if every unary definable set is a finite union of points
and open intervals—then the same is true of every R′ ≡ R [KPS86]. Open questions: If R
is definably connected and every unary definable set either has interior or is a finite union
of discrete sets, is R d-minimal? What if R expands an ordered group or field? What if
R = R?

Proof of Definable Choice. (Cf. [Dri98, pp. 93–94] and the proof of [Mil05, Theorem 4].)
Suppose that R is a d-minimal expansion of a dense ordered group (R,<, +, 0, 1) with
1 > 0. For A ⊆ R, put:

int(A) = the interior of A

cl(A) = the closure of A

bd(A) = the boundary of A ( = cl(A) \ int(A) )

isol(A) = the isolated points of A.

If A is ∅-definable, then so are each of the above sets. For each n, let Bn be the collection
of all nonempty ∅-definable A ⊆ R such that bd(A) is a union of n discrete sets. Note
if S ⊆ Rm+1 is ∅-definable, then {x ∈ Rm : Sx ∈ Bn } is ∅-definable. By the previous
proposition (and a routine induction; see [Dri98, pp. 94]), it suffices to show that for every
n there exists βn : Bn → R such that:

• For every A ∈ Bn, βn(A) ∈ int(A) ∪ isol(A);
• For every ∅-definable S ⊆ Rm+1, the function

x 7→ βn(Sx) : {x ∈ Rm : Sx ∈ Bn } → R

is ∅-definable.

These requirements will be realized by construction.
First, for each n, put An = {A ∈ Bn : int(A) = ∅ }. Note that A0 = ∅. We define

functions αn : An → R by induction on n ≥ 1 such that for every n ≥ 1 and A ∈ An we
have αn(A) ∈ isol(A) and αn+1�An = αn.

Suppose n = 1. Then every A ∈ A is nonempty, closed and discrete. Define α1 by

α1(A) =


min A, if inf A 6= −∞
max A, if inf A = −∞ and sup A < +∞
min{ t ∈ A : t ≥ 0 }, otherwise.

(The existence of the appropriate maxima and minima follows from definable connectedness;
see [Mil01, 1.10].)
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Assume the result for a certain n ≥ 1; we show it for n + 1. Let A ∈ An+1. If A ∈ An,
then put αn+1(A) = αn(A). Suppose that A /∈ An; then cl(A) \ isol(A) ∈ An. Inductively,
put b = αn(cl(A) \ isol(A)). Now, b is a limit point of isol(A)—but not of A \ isol(A), nota
bene—so it is limit point of at least one of (−∞, b) ∩ isol(A) or (b,∞) ∩ isol(A). If the
former, put a = inf{ t < b : (t, b) ∩ A ⊆ isol(A) } and

αn+1(A) =

{
min{ t ∈ A : t ≥ b− 1 }, if a = −∞
min{ t ∈ A : 2t ≥ b− a }, otherwise.

If b is not a limit point of (−∞, b)∩ isol(A), then put c = sup{ t > b : (b, t)∩A ⊆ isol(A) }
and

αn+1(A) =

{
min{ t ∈ A : t ≥ b + 1 }, if c = ∞
min{ t ∈ A : 2t ≥ b + a }, otherwise.

(We have finished the construction of the functions αn.)
For −∞ ≤ a < b ≤ +∞, put

midpt(a, b) =


(a + b)/2 if a, b ∈ R

0 if a = −∞ and b = +∞
a + 1 if a ∈ R and b = +∞
b− 1 if a = −∞ and b ∈ R.

For U ⊆ R open and definable, put

midpts(U) = {midpt(a, b) : −∞ ≤ a < b ≤ +∞, (a, b) ⊆ U, a, b /∈ U }.
Note that midpts(U) ∈ An+1 if U ∈ Bn \ An. Finally, for n ∈ N and B ∈ Bn, put

βn(B) =

{
αn(B), B ∈ An

αn+1(midpts(int(B))), B /∈ An

�

Corollary 1 (of the proof). If R expands a dense ordered group (R,<, +, 0, 1) with 1 > 0
such that R is definably connected, then for all m, n and ∅-definable S ⊆ Rm+1, the function
x 7→ βn(Sx) : {x ∈ Rm : Sx ∈ Bn } → R is ∅-definable.

Corollary 2. For all m,n and S ⊆ Rm+1, x 7→ βn(Sx) : {x ∈ Rm : Sx ∈ Bn } → R is
∅-definable in (R, <, +, 1, S).
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