
This page corrects details of a proof from §8.2 of Burns, Climenhaga, Fisher, Thompson, “Unique
equilibrium states for geodesic flows in nonpositive curvature”, GAFA 28 (2018), 1209–1259. The
only changes are in the blue text following (8.3). In particular, the statement of Theorem 8.1 is
unchanged. The rest of §8.2 is included for context.

8.2. Replacing singular orbit segments with regular ones. Fix η0 > 0 small enough that
Reg(η0) has nonempty interior. By Lemma 2.12, there exists R > 0 such that for every v ∈ T 1M
we have both W s

R(v) ∩ Reg(η0) 6= ∅ and W u
R(v) ∩ Reg(η0) 6= ∅. In particular, we can define maps

Πs,Πu : T 1M → Reg(η0) such that Πσ(v) ∈ W σ
R(v) for every v ∈ T 1M and σ = s, u. Given t > 0,

we use these to define a map Πt : Sing→ Reg by

(8.2) Πt = f−t ◦Πu ◦ ft ◦Πs.

That is, given v ∈ Sing we choose v′ = Πs(v) ∈ W s
R(v) with λ(v′) ≥ η0, and w = f−t(Π

u(ftv
′))

such that ftw ∈W u
R(ftv

′) and λ(ftw) ≥ η0, as shown in Figure 3.

Theorem 8.1. For every δ > 0 and η ∈ (0, η0), there exists L > 0 such that for every v ∈ Sing
and t ≥ 2L, the image w = Πt(v) has the following properties:

(1) w, ft(w) ∈ Reg(η);
(2) dK(fs(w), Sing) < δ for all s ∈ [L, t− L];
(3) for every s ∈ [L, t− L], fs(w) and v lie in the same connected component of B(Sing, δ) :=
{w ∈ T 1M : dK(w,Sing) < δ)}.

We emphasize that Theorem 8.1 does not allow us to conclude that fs(w) is close to fs(v); all
we know is that fs(w) is close to some singular vector for s ∈ [L, t − L]. For example, if fs(v) is
in the middle of a flat strip on a surface, then fs(w) will be close to the edge of the flat strip for
t ∈ [L, t− L].

Proof of Theorem 8.1. Let δ, η, η0 be as in the statement of the theorem. For property (1), it is
immediate from the definition of Πt that λ(ftw) ≥ η. By uniform continuity of λ, we can take ε0
sufficiently small such that if v2 ∈ W u

ε0(v1) and λ(v1) ≥ η0, then λ(v2) ≥ η. By Corollary 3.14,
,there exists T0 > 0 such that if t ≥ T0 and ft(w) ∈W u

R(ftv
′), then w ∈W u

ε0(v′). Thus, if λ(v′) ≥ η0,
then λ(w) ≥ η. Thus, item (1) of the theorem holds for any t ≥ T0.

We turn our attention to item (2). By Proposition 3.4, there are η′, T1 > 0 such that

(8.3) if λu(fsv) ≤ η′ for all |s| ≤ T1, then dK(v,Sing) < δ.

Given v ∈ Sing, we have Πs(v) = v′ ∈W s
R(v), and λ(fsv) = 0 for all s.

By continuity of λu, we can take ε1 sufficiently small such that if v2 ∈ W s
ε1(v1), then |λu(v1) −

λu(v2)| < η′/2. Applying Proposition 3.13 to the compact set {v : λu(v) ≥ η′/2} ⊂ Reg gives T2 > 0
such that if λu(v1) ≥ η′/2 and τ ≥ T2, then f−τW

s
ε1(v1) ⊃W s

R(f−τv1) and fτW
u
ε1(v1) ⊃W u

R(fτv1).
Suppose for a contradiction that λu(fsv

′) ≥ η′/2 for some s ≥ T2. Applying the previous
paragraph with v1 = fsv

′ gives fsv ∈ fsW
u
R(fsv

′) ⊂ W s
ε1(fsv

′). By our choice of ε1, this gives
λu(fsv) > 0, contradicting the fact that v ∈ Sing, and we conclude that λu(fsv

′) < η′/2 for s ≥ T2.
Similarly, if there is s ∈ [T2, t − T2] such that λu(fsw) ≥ η′, then the same argument with

v1 = fsw and τ = t − s gives fsv
′ ∈ f−(t−s)W

u
R(ftw) ⊂ W u

ε1(fsw), and our choice of ε1 gives
λu(fsv

′) ≥ λu(fsw) − η′/2 ≥ η′/2, a contradiction since λu(fsv
′) < η′/2 for all s ≥ T2. Thus

λu(fsw) < η′ for all s ∈ [T2, t− T2].
Applying (8.3) gives dK(fsw,Sing) < δ for all s ∈ [T2 + T1, t − T2 − T1]. Thus, taking L =

max(T0, T1 + T2), assertions (1) and (2) follow for s ≥ 2L.
For item (3) of the theorem, we observe that v and w can be connected by a path u(r) that follows

first W s
R(v), then f−t(W

u
R(ftv

′)) (see Figure 3), and that the arguments giving dK(fsw,Sing) < δ
also give dK(fsu(r), Sing) < δ for every s ∈ [L, t− L] and every r. We conclude that fsv and fsw
lie in the same connected component of B(Sing, δ) for every such s. �
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