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Abstract

We derive key results from dimension theory in dynamical systems and thermodynamic for-
malism at a level of generality suitable for the study of systems which are beyond the scope of the
standard uniformly hyperbolic theory. Let (X,d) be a compact metric space, f : X — X be a
continuous map and ¢ : X — R be a continuous function.

The subject of chapters 4 and 5 is the multifractal analysis of Birkhoff averages for ¢ when
topological pressure (in the sense of Pesin and Pitskel) is the dimension characteristic and f has the
specification property. In chapter 4, we consider the set of points for which the Birkhoff average of
¢ does not exist (which we call the irregular set for ¢) and show that this set is either empty or has
full topological pressure. We formulate various equivalent natural conditions on ¢ that completely
describe when the latter situation holds. In chapter 5, we prove a conditional variational principle
for topological pressure for non-compact sets of the form

n—1
{:r €X: ,}ig{)lo% > oe(fi(z) = a} :
=0

generalising a previously known result for topological entropy. As one application, we prove multi-
fractal analysis results for the entropy spectrum of a suspension flow over a continuous map with
specification.

In chapter 6, we assume that f : X +— X is a continuous map satisfying a property we call
almost specification (which is weaker than specification). We show that the set of points for which
the Birkhoff average of ¢ does not exist is either empty or has full topological entropy. Every 3-shift
satisfies almost specification and we show that the irregular set for any §-shift or S-transformation
is either empty or has full topological entropy and Hausdorff dimension.

In chapter 7, we introduce an alternative definition of topological pressure for arbitrary (non-
compact, non-invariant) Borel subsets of metric spaces. This new quantity is defined via a suitable
conditional variational principle, leading to an alternative definition of an equilibrium state. We study
the properties of this new quantity and compare it with existing notions of topological pressure. We
apply our new definition to some interesting examples, including the level sets of the pointwise
Lyapunov exponent for the Manneville-Pomeau family of maps.

Vi



Chapter 1

Introduction

The results of this thesis fall within the category of dimension theory in dynamical systems and ther-
modynamic formalism. We give a summary of the main results here and give detailed introductions
at the beginning of each chapter, where we motivate each topic and explain carefully the history of
our results. We give full reference to previously known results which arise as special cases of our
theorems.

The work is focused on deriving key results from dimension theory and thermodynamic for-
malism at a level of generality suitable for the study of systems which are beyond the scope of the
standard uniformly hyperbolic theory. Our focus is mainly on the development of abstract results
rather than on applications. That said, we emphasise that our theory applies to interesting examples
(many of which are inaccessible by other methods) and we take care to point these out. In particular,
we give a detailed application to the g-transformation.

Much of the work focuses on the class of maps with the specification property. The spec-
ification property was introduced by Bowen [Bow2]. He showed that uniformly hyperbolic systems
satisfy specification (a stronger version than the one we use) and gave important results about the
abundance of periodic orbits in a hyperbolic set. Among the many dynamical properties which can
be derived from the specification property, there are results on large deviations [Ruel], dimension
theory [TV1], thermodynamic formalism [Bow5] and distributional chaos [OS].

The class of maps with the specification property includes the usual array of uniformly hy-
perbolic examples as well as interesting non-uniformly and partially hyperbolic examples such as the
Manneville-Pomeau map and quasi-hyperbolic toral automorphisms. In chapter 6, we study the class
of maps with a property which we call almost specification and prove results which are applicable to

every (3-transformation.



Key results of the thesis

Topological pressure in multifractal analysis

Topological pressure is a well understood topological invariant of dynamical systems in the compact
setting [Wal], [PP1]. It is a tool that is used to prove, for example, results on multifractal analysis,
statistical properties of dynamical systems and ergodic optimisation. We study topological pressure
for non-compact sets, which is less well understood and was defined by Pesin and Pitskel [PP2]
analogously to Hausdorff dimension, an idea that Bowen introduced for entropy [Bow4]. For a
compact metric space (X, d), a continuous map f : X +— X and continuous functions 1, : X — R,
we undertake a programme to understand the topological pressure of the multifractal decomposition

X = Uner X (o, ) U X (¢), where X (p, @) denotes the level sets of the Birkhoff average, i.e.
1 n—1 )
— . 3 _ 1 —
X(p, ) = {xEX-nlglgon Z{:}«p(f (2)) —a} (1.1)
1=

and )A((w) denotes the set of points for which the Birkhoff average does not exist. The motivation
for proving multifractal analysis results where pressure is the dimension characteristic is twofold.
Firstly, topological pressure is a non-trivial and natural generalisation of topological entropy, which is
the standard dynamically defined dimension characteristic. Secondly, understanding the topological
pressure of the multifractal decomposition allows us to prove results about the topological entropy
of systems related to the original system, for example, suspension flows (see §4.3).

In chapters 4 and 5 respectively, we show for maps f with specification that the following

holds.
Theorem. X () is either empty or has full topological pressure.

Theorem. Let Py, ,)(¢) denote the topological pressure of 1) on X (¢, ) and hy, be the measure-

theoretic entropy of an f-invariant probability measure (1. Then

Px (p,0) (1) = sup {hu + /¢d,u i p € My(X) and /godp = a} . (1.2)

Our results generalise and unify various previously known results. We mention some of these
here and give a fuller description in the introductions of chapters 4 and 5.

It is an increasingly well known phenomenon that the irregular set can be large from the point
of view of dimension theory (despite being a null set with respect to any invariant measure). Symbolic
dynamics methods have confirmed this in the uniformly hyperbolic setting [BS5], for certain non-
uniformly hyperbolic examples [PW] and for a large class of multimodal maps [Tod]. The irregular

set has also been the focus of a great deal of work by Olsen and collaborators [BOS].



Formulae similar to (1.2) have a key role in multifractal analysis and the theorem generalises
and unifies results by Takens and Verbitskiy [TV2], Luzia [Luz], Barreira and Schmeling [BS2].
Barreira has used the phrase ‘conditional variational principle’ to describe formulae similar to (1.2)
and we follow suit. We recommend Barreira’s book [Bar] as reference for the symbolic dynamics
approach to the study of both irregular sets and conditional variational principles.

Our results apply to some interesting examples which are not covered by the standard uni-
formly hyperbolic theory. For example, the class of maps satisfying the specification property includes
the time-1 map of the geodesic flow of compact connected negative curvature manifolds and certain
quasi-hyperbolic toral automorphisms as well as any system which can be modelled by a topologically

mixing shift of finite type. We discuss these examples and others in §2.4.

Suspension flows
We apply our results to suspension flows, proving in §4.3 that

Theorem. The irregular set for a suspension flow over a map with specification is either empty or

has full topological entropy.

We only assume continuity of the roof function and along the way we derive some basic prop-
erties of suspension flows which, to the best of our knowledge, have previously only been investigated
when the roof function is Holder continuous. We also prove a conditional variational principle for

entropy for the suspension flow in §5.2.

The almost specification property

A recent weakening of the specification property provides new tools to study interesting systems
beyond the scope of uniformly hyperbolic dynamics such as the G-transformation. This property was
introduced by Pfister and Sullivan [PS2] as the g-almost product property. The version we study
is a priori slightly weaker and we rename it the almost specification property. The main results of

chapter 6 are

Theorem. When f satisfies the almost specification property, the irregular set is either empty or has

full topological entropy.

Theorem. The irregular set for an arbitrary [3-transformation (or (3-shift) is either empty or has full

entropy log 8 and Hausdorff dimension 1.

The proof relies on a generalisation of the techniques of chapters 4-5. We are required to
develop a theory of ‘strongly separated’ and ‘almost spanning’ sets and a modified version of the

Katok formula for measure-theoretic entropy. These should be of independent interest.



Thermodynamic formalism in non-compact spaces

The non-compact definition of topological pressure of Pesin and Pitskel has an important role in
dimension theory. In chapter 7, we contribute an alternative definition of topological entropy and
pressure. The definition is made via a suitable ‘conditional variational principle’ and leads to a new
definition of equilibrium state. The advantage of the new definition is that it is more tractable than
the Pesin and Pitskel definition and is well adapted to certain problems in thermodynamic formalism.
We study the properties of this new quantity and compare it with existing notions of topological
pressure, clarifying the literature on this topic [PP1], [HKR], [HNP], [Sar]. We note that the new
definition agrees with the old in the classical compact setting. We motivate the naturality of this
definition by applying it to some important examples. In particular, we calculate the equilibrium
states for the level sets of log f’ (defined as in (1.1)) when f is the Manneville-Pomeau map of the
interval (ie. f(z) =z + 2'7%(mod1), where s € (0,1) is a fixed parameter value). The Manneville-
Pomeau map is an important example of a map which displays non-uniform expansion. The result
fits in naturally with work of Takens and Verbitskiy [TV2] as well as that of Pollicott, Sharp & Yuri
[PSY].



Chapter 2

Preliminaries

We collect the definitions and fix notation for objects which we consider repeatedly through the
thesis. Theorems, definitions, lemmas and remarks are numbered in seperate sequences by section.

For example, lemma 4.2.3 is the third lemma in §4.2.

2.1 Notation for some standard definitions

Let (X, d) be a compact metric space and f : X — X a continuous map. We call such a pair (X, f)
a (topological) dynamical system. Let C'(X) denote the space of continuous functions from X to

R, and p,¢ € C(X). Let

n—1

Sp(z) =) _ o(f'(2)),

i=0
and for ¢ > 0, let

Var(p, ¢) := sup{|p(z) — p(y)| : d(z,y) < c}.
For Z C X, let Diam(Z) = sup{d(z,y) : ®,y € Z}. For a collection of subsets ¢, let Diam(&) =
sup{Diam(Z) : Z € &}. Let M(X) denote the space of f-invariant probability measures and

MG(X) denote those which are ergodic. If X' C X is an f-invariant subset, let M(X’) denote
the subset of M ;(X) for which the measures 1 satisfy p(X') = 1.

Definition 2.1.1. We define probability measures 6, , (sometimes called the empirical measures) as

1 n—1
Qo =~ D> Opr(a)s
k=0
where 0, is the Dirac measure at x.

Definition 2.1.2 (Bowen balls). Given e > 0,n € N and a point x € X, define the open (n,e)-ball

at x by
Bn(z,e) = {y € X : d(f'(z), f'(y)) <& foralli=0,...,n—1}.



Alternatively, let us define a new metric

du(,y) = max{d(f(@), 1(y)) 11 =0,1,...,n — 1}.
It is clear that By, (z,¢) is the open ball of radius € around z in the d,, metric, and that if n < m we

have d,,(z,y) < dp(z,y) and By (z,€) C By(x,¢).

Definition 2.1.3. Let Z C X. We say a set S C Z is an (n,e) spanning set for Z if for every
z € Z, there exists x € S with dy(x,z) < e. We say a set R C Z is an (n,c) separated set for Z if

for every x,y € R, dy(x,y) > €.

See [Wal] for the basic properties of spanning sets and separated sets.

2.1.1 Definition of the topological pressure

Let Z C X be an arbitrary Borel set, not necessarily compact or invariant. We use the definition
of topological pressure as a characteristic of dimension type, due to Pesin and Pitskel [PP2]. The
definition generalises Bowen's definition of topological entropy for non-compact sets [Bow4]. We
consider finite and countable collections of the form I" = {B,, (x;,e)}i. For s € R, we define the
following quantities:
ni—1
Q(Z,sTy)= Y exp (—Sm + sup Y ¢(fk($))> ;

B, (zi,€)€T TE€Bn, (%i:€) k=0

M(Z,s,e,N,¢) = iI%fQ(Z, s, 4),
where the infimum is taken over all finite or countable collections of the form I' = { B, (z,¢) }; with

x; € X such that I' covers Z and n; > N for all i =1,2,.... Define
m(Z? 87 67 ¢) = lim M(Z7 87 57 N7 /lp)'
N—oo

The existence of the limit is guaranteed since the function M (Z, s,e, N) does not decrease with V.

By standard techniques, we can show the existence of
Py (¢, e) :==1inf{s : m(Z,s,e,v) = 0} = sup{s: m(Z, s, e,v) = oo}.
Definition 2.1.4. The topological pressure of ¢ on Z is given by

P () = lim P (1)

See [Pes] for verification that the quantities Pz(1),e) and Pz(1)) are well defined. If Z is
compact and invariant, our definition agrees with the usual topological pressure as defined in [Wal].
We denote the topological pressure of the whole space by P)C(l““ic(w), to emphasise that we are

dealing with the familiar compact, invariant definition.



Remark 2.1.1. It is sometimes convenient to use an equivalent definition of topological pressure
where, in place of covers by Bowen balls, we consider covers by strings of open sets taken from
an arbitrary open cover. We use this in §7.3.1, so we save a formal definition until then. We also

implicitly use the alternative definition in §4.3.3.

2.1.2 Topological entropy for maps with discontinuities

When 1 = 0, we write hyop(Z) := P7(0). Pesin and Pitskel [PP2] gave a definition of pressure (and
hence entropy) which is suitable for maps f which admit discontinuities. We state the topological
entropy version of this definition, which we use in chapter 6, where we consider the 3-transformation.

Suppose X is a compact metric space, Y is a (generally non-compact) subset of X and
f:Y — Y is continuous. We do not assume that f extends continuously to X. When f: X — X

is continuous, we set Y = X. In chapter 6, when we consider the 3-transformation fg3, we set
Y =X\{p":ieN}=X\Jf;(0).
i

Let Z C Y be an arbitrary Borel set, not necessarily compact or invariant. We consider finite and

countable collections of the form I' = { B, (zi,¢)}i. For s € R, we define the following quantities:

Q(Z,s, ') = Z exp —sn;,

Bni(zi,a)el“
M(Z,s,e,N) = irllfQ(Z,s,F),
where the infimum is taken over all finite or countable collections of the form I' = {B,,, (z,£) }; with

x; € X such that I covers Z and n; > N for all i =1,2,.... Define

m(Z,s,e) = lim M(Z,s,e,N).

N—o0

The existence of the limit is guaranteed since the function M (Z, s,e, N) does not decrease with V.

By standard techniques, we can show the existence of
hiop(Z,€) = inf{s : m(Z, s,e) = 0} = sup{s : m(Z, s,e) = oo}.
Definition 2.1.5. The topological entropy of Z is given by
hiop(Z) = ;ILI(I) hiop(Z,€).

When X =Y, we denote the topological entropy of the dynamical system (X, f) by hop(f)
and we note that hiop(X) = hop(f). We sometimes write hi,(Z, f) in place of hiop(Z) when we

wish to emphasise the dependence on f.



2.1.3 Topological entropy for shift spaces

Let X be a closed subset of [[72,{0,...,n — 1} and o be the shift map o((z;);2;) = ()2, If ¥
is o-invariant, then the pair (3, o) defines a dynamical system. We call such a dynamical system a
(one-sided) shift space.

For shift spaces, which we consider in chapter 6, the definition of topological entropy can be
simplified and we introduce notation that reflects this. For x = (x;)2,, let Cp(z) ={y € ¥ : z; =
y; fori=1,...,n}.

Let Z C X be an arbitrary Borel set, not necessarily compact or invariant. We consider finite
and countable collections of the form I' = {C,,(x;)}i. For s € R, we define the following quantities:

Q(Z,S,F) = Z €XPp —8ny,

Ch (z;)€l

2

M(Z,s,N) = iI%fQ(Z, s,I),

where the infimum is taken over all finite or countable collections of the form I' = {C},,(x;)}i with

x; € X such that I' covers Z and n; > N for all i = 1,2,.... Define
m(Z,s) = lim M(Z,s,N).
N—o0
The existence of the limit is guaranteed since the function M (Z, s, N) does not decrease with N.
Lemma 2.1.1. The topological entropy of Z C X is given by
hiop(Z) :=inf{s : m(Z, s) = 0} = sup{s : m(Z, s) = oo}.

The proof, which we omit, follows from the fact that every open ball B(z,¢) in X is a set of

the form C),(x), where the value of n depends on ¢ and the metric on X.

2.1.4 Topological entropy for flows

Let Z C X be an arbitrary Borel set, not necessarily compact or invariant. Let ¥ = {¢;};>0 be
a semi-flow on X (i.e. a continuous family of continuous maps ¢y : X — X such that ¢y = Id
and ¥ o Yy = g4y for all s,t > 0). We consider finite and countable collections of the form

I' = {By,(zi, &) }i, where t; € (0,00), z; € X and
Bi(z,e) ={y € X : d(¢r(2),9-(y)) < € for all 7 € [0,t)}.
For s € R, we define the following quantities:

Q(Z,s,T') = Z exp (—st;) ,

By (:Ci,E)EF

i



M(Z,s,e,T) = ing(Z, s, I),

where the infimum is taken over all finite or countable collections of the form I" = { By, (z;, ) }; with

x; € X such that I' covers Z and t; > T for all i = 1,2,.... Define
m(Z,s,e) = lim M(Z,s,e,T).
T—o00

The existence of the limit is guaranteed since the function M(Z, s,e,T) does not decrease with T'.

By standard techniques, we can show the existence of
hiop(Z, €) == inf{s : m(Z,s,e) = 0} = sup{s : m(Z,s,e) = oo}.
Definition 2.1.6. The topological entropy of Z with respect to ¥ is given by

htop(Za \I’) = nh—>n<}o htop(Z7 E).

2.1.5 Upper and lower capacity pressure

The usual definition of P§%i(1)) in terms of spanning sets generalises to non-compact and non-
invariant subsets of a compact metric space. Let

Qn(Z,4,e) = inf{z exp Sp(z) : S'is an (n,e) spanning set for Z }.

zeSs

CPz(v) is defined to be lim._,q lim sup,,_, o, %log Qn(Z,1), ) and called in [Pes| the upper capacity
topological pressure. The lower capacity topological pressure C'P (1)) is given by repacing the
lim sup with liminf. In chapter 11 of [Pes], Pesin shows that these quantities can be formulated as
characteristics of dimension type and example 11.1 of [Pes] shows that they do not always coincide
with Pz (), even for compact non-invariant sets. It is proved in [Pes] that Pz(v) < CP,(v). For
Z C X, let

n—1
P, (Z,,e) = sup {Z exp{ w(fka:)} : S'is an (n,e) separated set for Z} .
x€S k=0
We have Q(Z,9,¢) < Pp(Z,%,¢) and Q,(Z,1), <) may be replaced with P,(Z,,¢) in the defini-

tions of lower and upper capacity pressure. We consider the capacity topological pressure in §5.1.1

and chapter 7.

2.1.6 Measure-theoretic entropy

For 1 € M¢(X) and a partition £ of X into finitely many measurable sets, we define

Hu(€) = =Y u(A)log u(A),

Acg

9



1 "
(1.6 = Jim ZHL(\ £76)
=
In the above, 0log0 is set to be 0 and log denotes the natural logorithm. We define the measure-

theoretic entropy of (X, f) with respect to u to be
hy = sup{h,(f,§) : € is a finite partition of X}.

We refer the reader to [Wal] for details. We could write h,(f) in place of h, to emphasise the

dependence of h, on f, but we choose not to.

2.1.7 The variational principle

The variational principle states that

Pgassic(y) = sup{h,, + /wdu tp € Mp(X)}

We sometimes call this formula the classical variational principle to differentiate it from the conditional

variational principles which are the subject of chapters 5 and 7.

2.1.8 Hausdorff dimension

For Hausdorff dimension, we fix the notation

H(Z,s,0) =inf{> 6 : Z C|JB(wi,8:),0; <6},

H(Z,s) = lims_,0H(Z,s,6) and Dimy(Z) = inf{s : H(Z,s) = 0}. We sometimes write
Dimg(Z,d) in place of Dimg(Z) when we wish to emphasise the dependence on the metric d.

For more information on Hausdorff dimension, we refer the reader to [Pes] or [Fal.

2.2 Specification properties

In chapters 4 and 5, we study transformations f of the following type:

Definition 2.2.1. A continuous map f : X — X satisfies the specification property if for all ¢ > 0,
there exists an integer m = m(e) such that for any collection {I; = [a;,b;] CN:j=1,... k} of
finite intervals with aj11 —b; > m(e) forj =1,...,k —1 and any x1,...,xy in X, there exists a

point x € X such that
d(fP*%x, fPx;) <e forallp=0,...,b;j —a; and every j = 1,... k. (2.1)
The original definition of specification, due to Bowen, was stronger.

10



Definition 2.2.2. We say f : X — X satisfies Bowen specification if under the assumptions of
definition 2.2.1 and for every p > by, — a1 + m(e), there exists a periodic point x € X of period p

satisfying (2.1).

One can describe a map f with specification intuititively as follows. For any set of points
ZT1,...,%k in X, there is an x € X whose orbit follows the orbits of all the points z1,...,zg. In
this way, one can connect together arbitrary pieces of orbit. If f has Bowen specification, x can be
chosen to be a periodic point of any sufficiently large period. A good reference for results about the
specification property (particularly Bowen specification) is [DGS].

One can verify that a map with the specification property is topologically mixing. The

following converse result holds [Blo], a recent proof of which is available in [Buz].

Theorem 2.2.1 (Blokh Theorem). A continuous topologically mixing map of the interval has Bowen

specification.

A factor of a system with specification has specification. We give a survey of many interesting
examples of maps with the specification property in §2.4.
In chapter 4, we study a weakening of the definition of specification as follows. Let X' C X

be an f-invariant (but not necessarily compact) Borel set.

Definition 2.2.3. A continuous map f : X — X satisfies specification on X' if for all € > 0, there
exists an integer m = m(e) such that for any collection {I; = [a;,b;] CN:j=1,... k} of finite
intervals with aj11 —b; > m(e) for j =1,...,k —1 and any x1, ...,z in X', there exists a point

x € X such that
d(fP*%x, fPx;) <e forallp=0,...,b; —a; and every j = 1,... k.

The main theorem of chapter 4 generalises to this setting naturaly with little extra difficulty
in the proofs. Although we do not offer an application of this extra generality, we think that there
may be examples of non-uniformly hyperbolic systems where definition 2.2.3 holds on an interesting

(non-compact) subset but where definition 2.2.1 is not verifiable.

2.2.1 Almost specification

In chapter 6, we consider a weak version of the specification property, which was introduced by Pfis-
ter and Sullivan as the g-almost product property, and which we rename as the almost specification
property. We define this property and study it in chapter 6. We mention here that the specification
property implies the almost specification property. Thus the class of maps with the almost specifi-

cation property is strictly larger than the class of maps with specification. Motivating examples of
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maps with almost specification but not specification are provided by a large class of (-shifts (see

§6.5.1).

2.3 Cohomology

2.3.1 The multifractal spectrum of Birkhoff averages

For a € R, we define
1 n—1 ]
X = X : lim — ! = :
(¢, ) {w €X: lim ;w(f () a}
We define the multifractal spectrum for ¢ to be
L,:={aecR:X(p,a)# 0}

Some authors reserve the terminology ‘multifractal spectrum’ for the pair (L., F), where F is a
dimension characteristic (eg. Hausdorff dimension or topological entropy). Our terminology agrees
with Takens and Verbitskiy [TV2]. The following lemma (whose proof is included for completeness)

is essentially contained in [TV2].

Lemma 2.3.1. When f has the specification property, L, is a non-empty bounded interval. Fur-

thermore, L, = { [ ¢dp : p € Ms(X)}.

Proof. We first show that L, = Z,, where Z, = { [ @du : p € My#(X)}. By Proposition 21.14
of [DGS], when f has the Bowen specification property, every f—invariant (not necessarily ergodic)
measure has a generic point (i.e. a point x which satisfies %Sncp(:z) — [ pdu for all continuous
functions ). One can verify that this remains true under the specification property. Thus, given
p € M#(X), any choice x of generic point for 1 lies in X (¢, [ wdp) and so Z, C L. Now take
a € Ly, and any x € X(p,a). Let i1 be any weak® limit of the sequence d, ,,. It is a standard result
that p is invariant, and easy to verify that [ @du = «. Thus Z, = L.

It is clear that Z, C [inf e x ¢(x),sup,cx ¢()] and is non-empty. To show Z,, is an interval
we use the convexity of M f(X). Assume Z,, is not a single point. Let oy, a0 € Z,,. Let 5 € (v, a2).
Let p; satisfy [ pdu; = «; fori =1,2. Let t € (0,1) satisfy 5 = tag + (1 — t)ag. One can easily
see that m := tp; + (1 — t)ue satisfies [ wdm = 3, and we are done. O

Let ¢1,¢2 € C(X). We say ¢ is cohomologous to ¢, if they differ by a coboundary, i.e.
there exists h € C'(X) such that

¢1=¢2+h—hof.

If ¢1 and ¢ are cohomologous, then L, equals L,.

12



For a constant ¢, let Cob(X, f,c) denote the space of functions cohomologous to ¢ and

Cob(X, f,c) be the closure of Cob(X, f,c) in the sup norm.

2.3.2 Cohomology and the irregular set

We recall that )A((ap, f) is the irregular set for ¢, defined as
n—1
X(p,f)=13z€X: lim E Z ©(f!(x)) does not exist
’ " nSoo n = :

By Birkhoff's ergodic theorem, u()?(cp,f)) =0 for all p € Ms(X). The following lemma

describes conditions equivalent to )A((go, f) being non-empty.

Lemma 2.3.2. When f has specification (or almost specification), the following are equivalent for
v e C(X):

(a) X(p, f) is non-empty;

(b) 25, does not converge pointwise to a constant;

(c) inf e pn,(x) [ pdp < supuen;(x) J pdisi

(d) nfpepsx) [ pdp < supuepex) [ pdp

(e) ¢ & Ucer Cob(X,, f, c);

(f) 25, does not converge uniformly to a constant;

(g) L, is not equal to a single point.

The argument for (c) <= (e) <= (f) was given to the author by Peter Walters and is
sketched here. In fact, no assumption on f other than continuity is required except to prove that
(a) is implied by the other properties. We note that (c) = (a) is a corollary of theorem 4.1.2 for
maps f with specification (and of theorem 6.4.1 for maps f with almost specification), so we omit
it for now. For expository reasons, we give a direct proof of (c) = (a) when f has specification as

lemma 3.0.2.

Proof. Statement (g) is just a different way of saying (b). We show the contrapositive of (e) = (f).
Suppose %Sn(p converges uniformly to ¢. Define for n € N

1 n—1 - .
o) = = " (n— i)l ).
i=1
We can verify that ¢ — %Sn(p = hyp—hypo f and it follows that ¢ € Cob(X, f,c). The contrapositive
of (c) = (e) is straight forward. Now we prove (f) = (c). Let u; € M#(X) and let ¢ := [ pdp.

From (f), there exists € > 0 and sequences nj, — oo and z3 € X such that

1
‘75711&0(3%) - C’ > E.
ng
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Let v, = 0z n, and let po be a limit point of the sequence vj. Then po € M¢(X) and [ pdus # c,
so we are done.

The contrapositive of (a) = (f) is clearly true and (b) = (f) is trivial. We use an ergodic
decomposition argument for (c) = (d). For (d) = (b), we take p1,p2 € M$(X) such that
[ edur < [ dpz. We can find z; such that 1S,¢(z;) — [du; for i = 1,2 and we are done.

O

2.4 Examples

We now describe some examples of systems with the specification property. The main results of

chapters 4 and 5 thus apply to all of these examples.

2.4.1 Standard examples

We recall that any factor of a topologically mixing shift of finite type has the specification property.
Bowen's specification theorem tells us that a compact locally maximal hyperbolic set of a topologically
mixing diffeomorphism f has the Bowen specification property [Bow3]. In particular, the class
of topologically mixing Anosov diffeomorphisms (which includes any Anosov diffeomorphism of a

compact connected manifold whose wandering set is empty) has specification.

2.4.2 The Manneville-Pomeau family of maps

Let I = [0,1]. The Manneville-Pomeau family of maps, parametrised by o € (0, 1) are given by
fo: T 1, folx) =z + 2T mod 1.

Considered as a map of S1, £, is continuous. Since f/,(0) = 1, the system is not uniformly hyperbolic.
However, since the Manneville-Pomeau maps are all topologically conjugate to a full shift on two

symbols, they satisfy the specification property.

2.4.3 Beyond symbolic dynamics

As remarked in §2.2, by the Blokh theorem, any continuous topologically mixing interval map satisfies
specification. For example, Jakobson [Jak| showed that there exists a set of parameter values A C
[0,4] of positive Lebesgue measure such that if A € A, then the logistic map fi(z) = Az(1 — ) is
topologically mixing.

Lind [Lin] showed that a quasi-hyperbolic toral automorphism satisfies specification but not

Bowen specification if and only if the matrix representation of the automorphism in Jordan normal
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form admits no 1's off the diagonal in the central direction. Such maps cannot be factors of
topologically mixing shifts of finite type or they would inherit the Bowen specification property.
Theorems 17.6.2 and 18.3.6 of [KH] (originally due to Anosov) ensure that the geodesic
flow of any compact connected Riemannian manifold of negative sectional curvature is topologically
mixing and Anosov. The specification theorem for flows (proved in [Bow3]) ensures that such a flow
has the specification property 18.3.13 of [KH]. It is easy to see that the time-t map of a flow with the
specification property satisfies our specification property 2.2.1. We conclude that our results apply
to the time-t map of the geodesic flow of any compact connected Riemannian manifold of negative

sectional curvature.
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Chapter 3

Techniques

We introduce some of the techniques which underpin our results. The technique for proving the main
results of chapters 4-6 was inspired by the proof of the conditional variational principle of Takens
and Verbitskiy [TV2] and we describe it here (although we note that §5.1.1 contains what we believe
to be a necessary correction to their proof). The Takens and Verbitskiy proof was in turn inspired
by large deviations arguments of Young [You]. In chapter 6, we were inspired by ideas of Pfister
and Sullivan [PS1], [PS2]. We have also used ideas from the proof of Pesin and Pitskel’s variational

principle [PP2] on two occasions (theorem 6.3.1 and theorem 7.3.2).

3.0.4 Constructing points in )A((go,f)

Proofs which use the specification property are typically constructive, and ours are no exception. The
general strategy is to choose sets of points which have a dynamical property that we are interested
in, and to use the specification property to construct new points which shadow the orbits of the
original points.

We show how to construct a single irregular point for a continuous function ¢ which satisfies
one of the equivalent conditions of lemma 2.3.2. The method for constructing points in X (¢, ) is
similar.

In the case of topologically mixing shifts of finite type, the specification property is equivalent
to the much simpler operation of concatenation of finite words. This example offers insight into our
technique. We show how to construct an irregular point for a full one-sided shift as a warm-up, then

we show how to construct irregular points for maps with specification.

Lemma 3.0.1. Let (X, 0) be a full (one-sided) shift on finitely many symbols. Let p € C(X) satisfy

infuens () [ pdi < supuens () J wdp. Then S(g, f) # 0.
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Proof. Let ju1, pp € MG(E) with [@du1 < [ @dus. Let § > 0 be such that

‘ / pdp — / pdpi

Let 2 = (2;)%°, satisfy 1S,0(z) — [pdu and y = (y;)°; satisfy 1S,0(y) — [@dus. Let

> 96.

Ny, — oo sufficiently rapidly that Niiq > exp(N1 + ... + Ng). Concatenation of a countable

sequence of finite words defines a point in X. For ¢ > 1, we define the finite words
Ww2;—1 = (3317 ceey xN2i71)7

W2 = (yh s 7yN2i)7

and define p = wywows ... € X. Let tp = N1 + ...+ Ng. Let
Var(p,n) := sup{|p(w) — p(v)| : w,v € L, w; = v; fori =1,...,n},

and choose M such that Var(y, M) < 6. Assume without loss of generality that N; was chosen so
that Ny > M. For k > 1, let p;, = o'*~1p. For k odd, we have

1SN p(Pr) = Snp()] < (N — M)Var(p, M) + 2M |||

Thus, for sufficiently large odd k, we have

‘N Snee(pr) — /Sadul < 34.
Similarly, for sufficiently large even k, we have
St — [ e < 35

Note that tx_1/tx — 0 and Ny /tp — 1. We have

St,.0(p) — Sny,0(pr)| < tre—1llll,

and it is thus easily verified that

1 1
‘tkstkso(p) - ESNksO(pk) — 0.
It follows that for all sufficiently large k
1
gstk@(p) - / dp )| < 49,
where p(k) = (k + 1)(mod2) + 1. Hence, p € (¢, f). O

Lemma 3.0.2. Let (X, f) be a dynamical system with the specification property. Let ¢ € C(X)

satisfy infueM?(X) Jpdu < SUDye e (X) [ pdu. Then X (g, f) # 0.
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Proof. Let pu1, j12 be ergodic measures with [ @duy < [@dpus. Let z; satisfy 2S,¢(x;) — [ @dp; for
i =1,2. Let my, := m(c/2%) be as in the definition of specification and Nj, — oo sufficiently rapidly
that Npq1 > exp{Zle(Ni + m;)} and Ny > expmy. We define z; € X inductively using the
specification property. Let t; = Ny, tx, = tx_1 +mg + Ny for k > 2 and p(k) := (k+1)(mod2) + 1.

Let z; = x1. Let zo satisfy
le (Zz,zl) < 6/4 and dNQ(fN1+m2Z2,SL‘2) < 6/4.

Let zj satisfy

dtkfl(zk_l,zk) < E/Qk and de (ftk_1+mkzk,$p(k)) < 5/2k.

Note that if ¢ € By, (z1,¢/281), then

dtk71 (Qa Zk—l) < dtk,1 (q’ Z/C) + dtk,1 (Zka Zk—l)
5 5 £
< 9k—1 + ok < 9k—2"
and thus By, (z,¢/2% 1) € By, ,(2x_1,2/2""2). Hence, we can define a point by

pi= ﬂ Etk(zk,s/Qk_l).
k>1

For k > 2, let p;, := ft»—11™kp. Since
A, (pry [T 2) < e/257 1 and div, (FF Tz 1p0) < /25,
it follows that dy, (p, (k) < £/257% and hence
1SN, 0(Pk) = SN (T o)) | < NiVar(p,e/2872).
Since limy_o Var(ip,£/2872) = 0, we have

— 0.

1
ESM ©(pr) — / O p(k)

We also have

1Snep(Pr) = Stp(P)] < (Bk—1 +mi)ll el

so we can use the fact that ]X—: — 1 and tkﬁ% — 0 to prove that
L5 (Pk) LSl )’ 0
— — —
N, N, P\Pk i t, PP

It follows that

and hence p € X (¢, ). O
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3.0.5 Lower bounds on topological entropy and pressure

We have shown how to construct one irregular point using the specification property. Now we
describe our strategy to construct sufficiently many irregular points that the irregular set has full
topological entropy. The result that the irregular set has full topological entropy (if it is non-empty)
for maps with the specification property is due to [EKL]. The author gave an independent proof of
this before he was aware of this paper. We sketch the ideas behind the proof of the ‘full entropy’
result. This will be useful for understanding the more general ‘full pressure’ result of chapter 4. The
same technique is also used in chapter 5 and chapter 6.

We require two key technical ingredients - the Entropy Distribution Principle (proof included

for completeness [TV2]) and the Katok formula for measure-theoretic entropy [Kat].

Proposition 3.0.1 (Entropy Distribution Principle). Let f : X +— X be a continuous transformation.
Let Z C X be an arbitrary Borel set. Suppose there exists a constant s > 0 such that for sufficiently
small e > 0 one can find a Borel probability measure . = . (which is not assumed to be invariant),
a constant C(e) > 0 and an integer N (g) satisfying j-(Z) > 0 and p.(By(z,e)) < C(e)e "™ for
every ball By, (z,¢) with By (z,e) N Z # 0 and n > N(g). Then hiop(Z) > s.

Proof. Choose € > 0 and p. satisfying the conditions of the theorem. Let I' = {B,,, (x;,&)}; cover

Z with all n; > N for some N > N(g). We may assume that By, (z;,&) N Z # () for every i. Then

QZ,s ) = Z exp(—sn;)
CE) Y Bz, )

C(e) u(2) > 0.

v

v

So M(Z,s,e,N) > C(e)'us(Z) > 0 for all N > N(e). Thus m(Z,s,e) > 0 and hyp(Z, ) > s.

The result follows. O

Proposition 3.0.2 (Katok's formula for measure-theoretic entropy). Let (X, d) be a compact metric
space, f : X — X be a continuous map and p be an ergodic invariant measure. For ¢ > 0 and
v € (0,1), denote by N*(y,e,n) the smallest cardinality of any set which (n,c)-spans a set with

p-measure greater than 1 — ~. We have

1 1
hy = ;1_1)11 lim sup — log N¥ (v, e,n) = lim lim inf — log N*(~, e, n).

n—oo N e—0 n—oo n

Loosely, our strategy is as follows. Let € > 0 be arbitrary.

e Take two ergodic measures pu1, o with [ @dur # [ @dus and hy, > hop(f) — e for i = 1,2

(that we can do this is a slightly subtle point).
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e Use Katok's formula to find a sequence Sy of (ng,2¢) separated sets with ny — oo so that

#S;. ~ exp(nkhup<k)) and if x € S, then S, p(z) ~ ny fgpdup(k).

e By the method of lemma 3.0.2, use the specification property to construct points which shadow

points taken from Sy,...,Sk,... respectively. The set of all such points is a fractal F' C

~

X(p, f)-

e Construct a measure on F' suitable for an application of the Entropy Distribution Principle.

The idea is as follows. Let pg = ﬁ > res, O0z- Since Sy is (ng, €) separated, then

(B (4€) < 8 ~ exp{—np(hiop(f) — €)}.

We define i to be the weak® limit of measures defined similarly to .
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Chapter 4

The irregular set for maps with the
specification property has full

topological pressure

For a compact metric space (X,d), a continuous map f : X — X and a continuous potential

v : X — R, we recall that the irregular set for ¢ is defined to be
=N 1 n—1 )
— R H - % .
X(p, f) = {x eX: nlg]go - E_O ©(f'(z)) does not exist } .

The irregular set arises naturally in the context of multifractal analysis, where one decomposes a
space X into the disjoint union
X = X(p,0) UX (o, f),
a€R

where X (¢, a) is the set of points for which the Birkhoff average of ¢ is equal to . In this chapter,
we begin a program to understand the topological pressure of the multifractal decomposition by
focusing on the irregular set X(cp, f). We consider the topological pressure of the sets X (¢, a) in
chapter 5.

As a consequence of Birkhoff's ergodic theorem, the irregular set is not detectable from the
point of view of an invariant measure. However, it is an increasingly well known phenomenon that
the irregular set can be large from the point of view of dimension theory [Bar]. Symbolic dynamics
methods have confirmed this in the uniformly hyperbolic setting [BS5], for certain non-uniformly
hyperbolic examples [PW] and for a large class of multimodal maps [Tod]. The irregular set has also
been the focus of a great deal of work by Olsen and collaborators [BOS].

The irregular set could also have a special role in physical applications. Ruelle uses the

terminology ‘set of points with historic behaviour’ to describe the irregular set [Rue2]. The idea is
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that points for which the Birkhoff average does not exist are capturing the ‘history’ of the system,
whereas points whose Birkhoff average converge only see average behaviour. For example, in the
dynamics of the weather, the irregular points are the ones that have observed epochs of climate
change. In [Tak]|, Takens asks for which smooth dynamical systems the irregular set has positive
Lebesgue measure. We take a topological point of view and prove that the irregular set is as large
as it can be with respect to the topological pressure, which is a family of dimension characteristics

parametrised by the continuous functions.

Main result of chapter 4. When f has the specification property, X (¢, f) has full topological
pressure or is the empty set. We give conditions on @ which completely describe which of the two

cases hold.

This result is stated formally as theorem 4.1.2. The first to notice the phenomenon of the
irregular set carrying full entropy were Pesin and Pitskel [PP2] in the case of the Bernoulli shift on 2
symbols. Barreira and Schmeling [BS5] studied the irregular set for a variety of uniformly hyperbolic
systems using symbolic dynamics. They showed that, for example, the irregular set of a generic
Holder continuous function on a conformal repeller has full entropy (and Hausdorff dimension). These
arguments can be found in Barreira's book [Bar] in which the result is also proved for subshifts with
the specification property. We note that these arguments do not extend to the more general class
of maps with the specification property. Furthermore, we consider irregular sets for any continuous
functions, whereas Barreira considers only funcions ¢ for which t¢ has a unique equilibrium state for
every t € R.

Takens and Verbitskiy have obtained multifractal analysis results for the class of maps with
specification, using topological entropy as the dimension characteristic [TV2], [TV1]. However, they
do not consider the irregular set. Ercai, Kupper and Lin [EKL] proved that the irregular set is either
empty or carries full entropy for maps with the specification property. Our results were derived
independently and include the result of [EKL] as a special case. Our methods are largely inspired by
those of Takens and Verbitskiy [TV2], and we follow the strategy that we sketched in chapter 3.

We apply our main result to show that the irregular set for a suspension flow over a map
with specification has full topological entropy. By considering the ‘u-dimension’ of the irregular set
in the base, Barreira and Saussol [BS1] proved analogous results which apply when the suspension
is over a shift of finite type. They assume Holder continuity of ¢ and the roof function, whereas we
require only continuity.

We expect that an analogue of our main theorem 4.1.2 holds for flows with the specification
property, and that our current method of proof can be adapted to this setting (although we do not

pursue this here). Such an approach would not cover every suspension flow to which our current
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results apply. In particular, a special flow (i.e. a suspension flow with constant roof function) over a
map with specification never has the specification property itself, but is in the class of flows treated
in §4.3.

In §4.1, we state the main results of the chapter and key ideas of the proof. In §4.2, we prove

the main theorem of the chapter. In §4.3, we apply our main result to suspension flows.

4.1 Results

We state our results and introduce the key technical tools of the proof.

Theorem 4.1.1. Let (X, d) be a compact metric space and f : X — X be a continuous map with
the specification property. Assume that p € C(X) satisfies inf, c v, (x) [ pdp < SUD e M (X) [ edp.
Let X (¢, f) be the irregular set for ¢, then P)?(so f)(@ZJ) = Pgassic(y) for all ¢ € C(X).

We remark that lemma 2.3.2 provides us with other natural interpretations of the assumption
inf e (x) Jpdu < SUD e M (X) [ @du. We state the assumption in this way because it is natural
for the method of proof. If our assumption fails, then X(cp,f) = (). In fact, we prove a slightly

stronger version of the theorem.

Theorem 4.1.2. Let (X,d) be a compact metric space, f : X — X be a continuous map and
X' C X be an f-invariant Borel set. Assume f satisfies the specification property on X'. Assume
that p € C(X) satisfies inf e, (xr) [ pdp < supyep,(xvy [ odp. Let X (g, f) be the irregular set
for o, then for all ¢ € C(X),

P)A((%f)(q/)) > sup{hu + /@Z)du S E Mf(X’)} .

I sup {hy + [ Gdp : o€ My(X')} = PE25(), then we have Py . (1) = PEo5<(1)).

If My(X') is dense in M (X), we need only assume inf e aq, (x) [ pdp < supuen,(x) J edp.
As described in chapter 3, we follow the method of Takens and Verbitskiy [TV2]. The key ingredients
for the Takens and Verbitskiy proof are an application of the Entropy Distribution Principle [TV2]
and Katok's formula for measure-theoretic entropy [Kat]. We are required to generalise both. We
offer two generalisations of the Entropy Distribution Principle. While the first offers a more straight
forward generalisation, we will use the second as it offers us a short cut in the proof later on. We

offer a proof of only the second version, since it is more general than the first.

Proposition 4.1.3 (Pressure Distribution Principle). Let f : X +— X be a continuous transformation.
Let Z C X be an arbitrary Borel set. Suppose there exists a constant s > 0 such that for sufficiently

small € > 0 one can find a Borel probability measure y., an integer N (¢) and a constant K(g) > 0
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satisfying 11-(Z) > 0 and piz(By(z,€)) < K () exp{—ns + X1 o(f'x)} for every ball By(z,¢)
such that By, (z,e) N Z # () and n > N(e). Then Pz() > s

Proposition 4.1.4 (Generalised Pressure Distribution Principle). Let f : X — X be a continuous
transformation. Let Z C X be an arbitrary Borel set. Suppose there exists ¢ > 0 and s > 0 such

that one can find a sequence of Borel probability measures iy, a constant K > 0 and an integer N

satisfying
n—1
lim sup pg(Bp(z,e)) < Kexp{—ns + Z (f'z)}
k=00 i=0

for every ball B, (x,¢) such that B,(z,e) N Z # () and n > N. Furthermore, assume that at least

one limit measure v of the sequence py, satisfies v(Z) > 0. Then Pz(¢,e) > s

Proof. Choose € > 0 and v satisfying the conditions of the theorem. Let 1, denote a subsequence
of measures which converges to v. Let I' = { B, (z;,¢)}i cover Z with all n; > N’ for some N > N.

We may assume that By, (x;,e) N Z # 0 for every i. Then

n;—1
Q(Z,s, I ¢) = Zexp{—snl sup Z¢fk }

YEBn, (Ti,€) 1—p

n;—1
> ZeXp{—Sni + Z w(fk(ffi))}

> K Z lim sup uk(Bn(% £))
- k—oo
> 1zhjrggolfuk( n(2i,€))
> 12 w(zi,€)) > K~ 'w(Z) > 0.

Our arrival at the last line is because for any open set U, if v converges to v in the weak® topol-
ogy, then liminfy_ . vx(U) > v(U) (see [Wal], p.149). We conclude that M (Z,s,e, N',¢) >
K=w(Z) > 0forall N > N. Thus m(Z, s,e,9) > 0 and Pz(1,€) > s. O

The following result generalises Katok's formula for measure-theoretic entropy. In [Men],
Mendoza gave a proof based on ideas from the Misiurewicz proof of the variational principle. Al-
though he states the result under the assumption that f is a homeomorphism, his proof works for f

continuous.

Proposition 4.1.5. Let (X, d) be a compact metric space, f : X — X be a continuous map and 1

be an ergodic invariant measure. Fore >0, v € (0,1) and 1) € C(X), define

NHE (), v, e,mn) = mf{Zexp{Zw (fix) }}

zeS
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where the infimum is taken over all sets S which (n,c) span some set Z with u(Z) > 1 —~. We

have
1
B T g L "
hu—l—/wdu—gmohnm mfnlogN (Y, 7,e,m).

The formula remains true if we replace the liminf by lim sup.

We prove a modified version of proposition 4.1.5 (for entropy) as theorem 6.3.1. The tech-
nique used there is also suitable for a proof of proposition 4.1.5.
We now begin the proof of theorem 4.1.2. For the sake of clarity, it will be convenient to

give the proof under a certain additional hypothesis, which we will later explain how to remove.

Theorem 4.1.6. Let us assume the hypotheses of theorem 4.1.2 and fix ¢ € C(X). Let
C :=sup {hu + /wdu TR ./\/lf(X’)} :

Let us assume further that P)C(l“SSic(q/J) is finite and for all v > 0, there exist ergodic measures
p, po € My(X') which satisfy

(1) hy; + [Ydp; > C —~ fori=1,2,

(2) | pdur # [ pdps.

_ classic _ . _
Then P)?(%f)(w) > C. If C = Pg¢*s'c(¢h), for example when X' = X, then PX(%J,)(W =

P)c(lassic(¢) ]

The assumption that P¢55%(q)) is finite is trivial to remove and is included only for notational
convenience. Given a result from [PS1], we give a short proof that the hypotheses of theorem 4.1.1
imply those of theorem 4.1.6. We explain how to modify the proof of theorem 4.1.6 to obtain a self

contained proof of theorem 4.1.2 in §4.2.2.

Proof of theorem 4.1.1. Let p; be ergodic and satisfy h,, + [¢dui > C —~/3, Let v € My(X)
satisfy [pdui # [@dv. Let v/ = tug + (1 — t)v where t € (0,1) is chosen sufficiently close to 1
so that h, + [dv > C — 2v/3. By [PS1], when f has a property called the g-almost product
property (see chapter 6), which is weaker than specification, we can find a sequence of ergodic
measures v, € M(X) such that h,, — h, and v, — /' in the weak-* topology (this also follows
from theorem B of [EKW] when f has specification and the map p — hy, is upper semi-continuous).

Therefore, we can choose a measure belonging to this sequence which we call o which satisfies

hu, + [Ydps > C — v and [ pdur # [ @dps. O
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4.2 Proof of the main theorem 4.1.6

Let us fix a small v > 0, and take the measures ;11 and ps provided by our hypothesis. Choose § > 0
sufficiently small so

‘ / edpn — / @dpa| > 46.

Let p: N — {1,2} be given by p(k) = (k + 1)(mod2) + 1. Choose a strictly decreasing sequence

0 — 0 with 67 < § and a strictly increasing sequence I, — oo so the set

1
Y, = {x c X' ’ Snep(x /gpdup

< 0 for all n > lk} (4.1)

satisfies 1,()(Yx) > 1 — for every k. This is possible by Birkhoff's ergodic theorem.

The following lemma follows readily from proposition 4.1.5.

Lemma 4.2.1. For any sufficiently small ¢ > 0, we can find a sequence ny — oo and a count-

able collection of finite sets Sy so that each Sy is an (ny,4¢) separated set for Yy, and M, =

> ores, exp{zn’c ! (fix )} satisfies
M, > exp(ng(C — 47)).

Furthermore, the sequence ny, can be chosen so that nj, > I, and ny, > 2™, where mj, = m(e/2F)

is as in definition 2.2.3 of the specification property.

Proof. By proposition 4.1.5, let us choose ¢ sufficiently small so
1
liminf — log N* (v, v, 4e,n) > hy, + /¢dm —v>C—2yfori=1,2.
n—oo n
For A C X, recall that

Qn(A 1, e) = inf {Z exp {Z U( fk } : S'is (n, &) spanning set for A} )

eSS

P, (A1, e) = sup {Z exp {Z O(fFx) } : S'is (n,e) separated set for A} .

z€S
We have Q,,(A,,€) < P,(A,,€) and since i, (Yy) > 1 — v for every k, it is immediate that

Qn(Yk7 wu 45) > NHEo®) <w7 V5 Es n)
Let M (k,n) = P,(Yg,,4¢). For each k, we obtain

lim mf —log M (k,n) > hm 1nf — log NHe®) (h,y,4e,n) > C — 27.

n—oo n,
We may now choose a sequence nj — oo satisfying the hypotheses of the lemma so

1
— log M (k,ny) > C — 3.
Nk
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Now for eack k, let S;, be a choice of (ny,4e) separated set for Y; which satisfies

1
log{Zexp{Z )}}anklogM(k,nk)—y.

€Sk 7
Let My, := Y e, €XP {zg;ol o fix)}, then
1 1
— log My, > —log M (k,ng) —v > C — 4.
ng n
We rearrange to obtain the desired result. O

We choose ¢ sufficiently small so that Var(i,2¢) < v and Var(p,2¢) < §, and fix all the
ingredients provided by lemma 4.2.1.
Our strategy is to construct a certain fractal F' C )?(go, f), on which we can define a sequence

of measures suitable for an application of the generalised Pressure Distribution Principle.

4.2.1 Construction of the fractal F

We begin by constructing two intermediate families of finite sets. The first such family we denote
by {Cr}ren and consists of points which shadow a very large number Ny of points from S;. The
second family we denote by {7;}xren and consist of points which shadow points (taken in order)
from C1,Co,...,Cr. We choose N}, to grow to infinity very quickly, so the ergodic average of a point

in 7y is close to the corresponding point in Cy.

Construction of the intermediate sets {Cj }ren

Let us choose a sequence Nj which increases to oo sufficiently quickly so that

lim Nk+1 + M1 ~ 0, lim Ni(ni +m1) + ...+ Ni(ng + mg)
k—o0 Ny, k—>oo Nk+1

=0. (4.2)
We enumerate the points in the sets Sy provided by lemma 4.2.1 and write them as follows

Sp={zF:i=1,2,...,#8.}.

We make a choice of k and consider the set of words of length Ny with entries in {1,2, ..., #Sk}.
Each such word ¢ = (i1,...,in,) represents a point in S,iv’“. Using the specification property, we can

choose a point y := y(i1, ..., iy, ) which satisfies

dnk(xZafaj ) < 27
forall j € {1,..., Ni}, where a; = (j — 1)(ny + my). In other words, y shadows each of the points

z¥ in order for length ny and gap my. We define

]

Cr = {y(in, . in) € Xt (in,yin) € {1, #S e}
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Let ¢ = Ngng + (N — 1)myg. Then ¢ is the amount of time for which the orbit of points in Cy, has
been prescribed. It is a corollary of the following lemma that distinct sequences (i1, ...,in,) give

rise to distinct points in Ci. Thus the cardinality of Cy, which we shall denote by #Cy, is #S,iv’“.

Lemma 4.2.2. Leti and j be distinct words in {1,2,...,#S,}Ve. Then yi := y(i) and y2 := y(j)

are (cy, 3¢) separated points (i.e. dc, (y1,y2) > 3¢).

Proof. Since i # j, there exists [ so i; # j;. We have

€ €
dnk(:cf;,f“lyl) < Q—k,dnk(:ﬁ?l,f“lyg) < oF and dnk(xfl,xi) > 4e.

Combining these inequalities, we have

Y

dny, (f* 51, [ y2)
dnk (%Z,SCZ) - dnk (xfp falyl) - dnk (x§17 falyQ)

> de—¢g/2—¢/2=3c.

de (yla yQ)

v

Construction of the intermediate sets {7} }xen

We use the specification property to construct points whose orbits shadow points (taken in order)
from C1,Cy,...,Ci. Formally, we define 7 inductively. Let 73 = C;. We construct 7y from 7} as
follows. Let z € 7; and y € Cx41. Let t1 = ¢ and tg41 = ti + mp+1 + cx+1. Using specification,

we can find a point z := z(x, y) which satisfies

€ S
dtk(.’E,Z) < W and dck.+1(y7 ftk+mk+lz) < W

Define 711 = {2(z,y) : © € Tx,y € Cr11}. Note that ¢ is the amount of time for which the orbit
of points in 73 has been prescribed. Once again, points constructed in this way are distinct. So we

have
BT = #C1 .. HCp = #SN . H#S

This fact is a corollary of the following straightforward lemma:
Lemma 4.2.3. For every x € T;, and distinct yy,ys € C11
€
dtk (Z(ZE, y1)7 Z(‘Ta y?)) < 27 and dtk_;,_l (Z(‘T7 yl)a Z(‘Ta yQ)) > 2e.
Thus Ty, is a (tx, 2¢) separated set. In particular, if z, 2" € Ty, then

- 9 - 9
Btk (Z, 27) N Btk (Z/, 7) = @
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Proof. Let p := z(z,y1) and ¢ := z(x,y2). The first inequality is trivial since by construction,
dy, (7, 2) < /2K fori = 1,2.

Using lemma 4.2.2, we obtain the second inequality as follows:

Y

d ftk+mk+1p’ ftk"!‘karl q)

Ck+1(

Z dck+1 (yh y?) - dck+1 (yla ftk+mk+1p) - dck+1 (y23 ftk+mk+1Q)

> 3e—¢/2—¢/2=2¢.

dtk+1 (pa Q)

The third statement is a straightforward consequence of the second. O

Following the terminology of Takens and Verbitskiy, we say z € 71 descends from z € 7,
if z=z(x,y) for some y € Cp1.

Lemma 4.2.4. If z € T}, descends from x € T}, then

— g — 15
Btk+1 (zv 27) C Btk (JJ, F)

Proof. Let 2’ € By, ,(2,5). Then

IN

dtk (Z/7x) dtk+1(zl7z) + dtk (va)

A

g/2F 4 e/2k L < g2kt

Construction of the fractal I’ and a special sequence of measures i,

Let Fi, = Uyer, By, (z, Qk%l) By lemma 4.2.4, F}.,1 C F). Since we have a decreasing sequence of
compact sets, the intersection F' = [, F} is non-empty. Further, every point p € F' can be uniquely
represented by a sequence p = (91722’93’ ....) where each p, = (pi,... ,pﬁvi) € {1,2,...,#S;}V.
Each point in 73 can be uniquely represented by a finite word (131, .. 'Qk)' We introduce some useful
notation to help us see this. Let y(p,) € C; be defined as in 4.2.1. Let z1(p) = y(p,) and proceeding
inductively, let zi11(p) = 2(2i(p), y(p,, ;) € Ti+1 be defined as in 4.2.1. We can also write z;(p) as
z(gl, e ’Bz‘)' Then define p := 7p by

g
21'71

p=[) B (zp),

€N

).
It is clear from our construction that we can uniquely represent every point in F in this way.
Lemma 4.2.5. Given z = 2(p,, ... ’Bk) € Ty, we have for alli € {1,...,k} and alll € {1,..., N},

dni(x;;_7fti_1+mi_1+(l—1)(mi+ni)Z) < 2.
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Proof. We fixi € {1,...,k}andl € {1,...,N;}. Form e {1,...,k—1},let zp, = z(p,,...,p, ) €
Tm. Let a =1t;_1 +m;_1 and b= (I — 1)(m; + n;). Then

(s J742) < (e Fy(0,) + s (Fy(p), 74 20) 4 oy (422, £702).

We have, by construction,
dn (20, F7y(0;)) < 57+

We have, by construction,

a a €
dni(fby(gi), f +bzi) < dc«; (y(ﬂz)v f Z) < Qi+1"
We have

Aoy (fT02, £9702) < dyy (2i,2) < dy, (20, 2i41) + o+ diy (251, 2)

5 £ 5
Combining the inequalities, we obtain dm(f“bz,:z:;?) <Yk _. 3 + girr < 2¢, as required. O

We now define the measures on F' which yield the required estimates for the Pressure Distri-
bution Principle. For each z € 7, we associate a number £(z) € (0,00). Using these numbers as
weights, we define, for each k, an atomic measure centred on 7. Precisely, if z = z(gl, .. 'Bk)’ we

define
L(z) :== L(p,) .- L(p,),

where if p. = (pi,... 7P§vi) e {1,...,#S;}Vi, then

N; )
L(p,) :== H exp Sniw(:c;;-).

=1
We define

NES Z 0.L(2).

2€Ty,

We normalise v, to obtain a sequence of probability measures ;. More precisely, we let p := ,leyk'

where Ky, is the normalising constant

Rf 1= Z Ly(z)
z€Ty,
Lemma 4.2.6. ), = MM ... Mk,
Proof. We note that
Z £(£i) = Z exp Sniw(m;l )... Z eXpS’niw(x;év')
Eie{l,...,#Si}Ni pi:l plj'vizl i
= ]\41\[Z
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By the definition and since each z € 7} corresponds uniquely to a sequence (Ql, e ’Bk>' we have
Z Li(z) = Z Z E(Ql)...ﬁ(gk).
2€T, P E{L #SIINL p e{1 . # S}

The result follows. O

Lemma 4.2.7. Suppose v is a limit measure of the sequence of probability measures ui. Then

v(F)=1.

Proof. Suppose v is a limit measure of the sequence of probability measures pp. Then v =
limy,_, o0 pu,, for some l; — co. For any fixed [ and all p > 0, 14, (F}) = 1 since py4p(Fi4p) =1 and
Fiip € Fj. Therefore, v(F}) > limsupy_ . p, (F;) = 1. It follows that v(F) = limy_,o v(F}) =
1. O

In fact, the measures p converge. However, by using the generalised Pressure Distribution
Principle, we do not need to use this fact and so we omit the proof (which goes like lemma 5.4 of
[TV2)]).

We verify that F C X (¢, f).

Lemma 4.2.8. For any p € F, the sequence Zf’“;ol o(fi(p)) diverges.

t
Proof. Let us choose a point p € F. Using the notation of 4.2.1, let yy := y(p,) and z = z(p).

We first show that

1
‘%Scm(yk) - / @dfipry| — 0. (4.3)
We rely on the fact that Var(¢,c) — 0 as ¢ — 0 and that
N, N —1
im Ny g PV D g i 6, = 0. (4.4)
k—oo  Ck k—oo Ck k—oo

The first two limits follow from the assumption that n, > 2™+, Let a; = (j — 1)(ng + my). We

have

IN

Sepp(Yr) — ¢k / @ity

Ny
> Sue(fy) — ck / Pdfiy (k)
j=1

+ mi(Ne — D¢

Ni, N N
< Z Snksp(fajyk) - Z Snk()O(mZ) + Z Snk(p(xf]) — Ck / SOde(k)
j=1 j=1 j=1

+ mp(Ne = 1)

N Ny
< Z Snkso(fajyk) - Snk@(xf])’ + Z Snk@(xfj) - nk/@dﬂp(k)
j:l j:l

+ m = Dol + [ wduggo)
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< g Np{Var(p,e/2%) + 6.} + mp(N, — D[]l + / i) }-

We have used the fact d,, (mfj,f“fyk) < /2% in the last line. The statement of (4.3) follows from
this and (4.4).

Let p/ = f%*%p and 2, = ft% %z, Using dy, (p, z1) < /281, we have
p k k

dck(p/uyk) < dck(P/,Zi/g)‘chk(Z;wyk)

< g/l 4 e/ok < g/2k 2
Using this and (4.3), we obtain

1 _
- Suplf) — [ | < Varlp. /22, +5)

The final ingredient we require is to show that

0. (4.6)

1 1
‘tStksO(p) — —Se0(p)
k Ck

From the assumptions of (4.2), we can verify that ¢/t — 1. Thus for arbitrary v > 0 and
sufficiently large k, we have |c/ti, — 1| < v. We have

1

1 Ck
- Sue(p) = —Se, ()
k Ck

1 1
’tStk—cksO(p) + —Se0(p') ( - 1)‘
k Ck, tr

ty — Ck
tx,

< 29lel

IN

1
ol +v—Se, o (p")
Ck

Since « was arbitrary, we have verified (4.6). Using (4.5) and (4.6), it follows that

— 0.

1
‘tkStksO(p) - / ©dity(k)

O]

In order to prove theorem 4.1.6, we give a sequence of lemmas which will allow us to apply the
generalised Pressure Distribution Principle. Let B := B,,(q,¢/2) be an arbitrary ball which intersects
F'. Let k be the unique number which satisfies ¢, < n < tx41. Let j € {0,..., Nxy1 — 1} be the

unique number so
tr + (nk+1 + mk+1)j <n<tp+ (nk+1 + mk+1)(j + 1).
We assume that 7 > 1 and leave the details of the simpler case j = 0 to the reader.

Lemma 4.2.9. Suppose ju1(B) > 0, then there exists (a unique choice of) x € T}, and i1, ... ,i; €

{1,...,#Sk+1} satisfying

J
N s
Vk—i—l(B) S £(x) H exp Snk+1¢(xfl+1)Mk:f1 ]‘
=1
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Proof. If pg41(B) > 0, then Ty N B # 0. Let z = z(x,y) € Txgr1 N B where z € T, and

Yy = y(z’l, R 7iNk+1) € Ck+1. Let
Ax;ih...,i]’ — {Z(may(lla e 7lNk+1)) € 77i‘+1 : ll = il) .. 7l] = /LJ}

Suppose that z(2/,y(1)) € B. Since 7} is (tx, 2¢) separated and n > ti, x = a’. Forl € {1,2,...,j},

we have
tet(1—1 k+1
gy (DO 12) g L) 9
Since ka € Sky1 and Spy is (ngy1,4e) separated, it follows that iy = iy,...,l; = 4;. Thus, if
2 € Ty N B, then 2 € Ay, ;.. Hence,
Vi1(B) < Z L(z) = L(x) > L(p,., 1)
2€Az;iq,..., ij pk+l:p]f+1:i1,...,p§+l=i]’
Ni+1 #Sk+1
2k 1 k: 1
= Hexp S (25 + H Z exp Spy ., Y( + );
p=j+1 Ip=1
whence the required result. O

Lemma 4.2.10. Let x € T}, and i1,...,i; be as before. Then

J
('T) H exp Snk+1w($?l+1) < eXp{Snw(Q) + 2n Var(lb’ 25)
=1

k
+ IO Nomi + jmpqa)}-
im1

Proof. We write x = z(p,,...p,). Lemma 4.2.5 tells us that

dm(fti—1+mi—1+(l—1)(mi+ni)x, x;;) < %

forallie {1,...,k} and alll € {1,..., N;} and it follows that

k

L(x) < exp{Sy () + txVar(p,2e) + Y ||¢[|Nim;}.
i=1

Similarly,

[T xSy $(0E) < exp{Sami (2) + (1 — V(s ) + [ limi .
=1

We obtain the result from these two inequalities and that d,,(z,q) < 2¢ and dy, (2, q) < 2e. O

The proof of the following lemma is similar to that of lemma 4.2.9.

Lemma 4.2.11. For any p > 1, suppose pi1,(B) > 0. Let x € T, and i1, ... ,i; be as before. Then

every z € T, N B descends from some point in Ay, . ;.. We have
ohtl Nk+1 —J 3 1 NVe+2 Niyp
Vip(B) < H OXP Sy (3 )My T M M
=1
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Lemma 4.2.12.

1 i .
Pietp(B) < T exp {Snzp(q) +2nVar (v, 2¢e) + Hz/JH(Z N;m; —|—]mk+1)} .
kg1 i=1

Proof. Using lemma 4.2.10, it follows from lemma 4.2.11 that

N,
Vtp(B) < M,ﬁ]_“fl =7, .Mk_fp“’ exp{Spt(q) + 2nVar(y,2e)
k

+ 1RIO Nimi + jmyega)}
i=1

: _ 1 _ N1 Ni+p
Since fig1p = oy Vet and Kgip = kM - ]\Ik+ , the result follows.

Lemma 4.2.13. For sufficiently large n, ’{lengl > exp((C = 5y)n)

Proof. Recall that by construction M} > exp((C' — 4v)n). We have

kM = MM MY M
> exp{(C —4y)(Nini1 + Nang + ... + Ngng + jngs1)}

v

(
exp{(C 5’y)(N1(n1+m1)+N2(n2+mg)+...
+ N (ng + mu) + J(nk+1 + meg) b

(

= exp{(C — 5y)(tx +m1 + j(nry1 +mri1)} > exp{(C — 5y)n}.

Our arrival at the third line may require some explanation. Morally, we are able to add in the extra

terms with an arbitrarily small change to the constant s because ny is much larger than my.

reader may wish to verify this.

Lemma 4.2.14. For sufficiently large n,

n—1
likm sup pg (B (g, %)) < exp{—n(C —2Var(y,2e) — 6v) + Z W(f'q)}.
—00 i=0

Proof. By lemmas 4.2.12 and 4.2.13, for sufficiently large n and any p > 1,

1 k ,
prp(B) < g o {Snw(q) +2nV + |9 (O Nimi + ]mk+1)}
k+1 i=1

< e {Sutla) + 0 (2V + 7))
Rk

< exp{—n(C — 6y —2V)) + Suv(q)},
where V' = Var(1), 2¢). Our arrival at the second line is because ny is much larger than my.
Applying the Generalised Pressure Distribution Principle, we have
Pp(¢,e) > C — 2Var(¢, 2e) — 67.
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Recall that € was chosen sufficiently small so Var(v, 2¢) < . It follows that

Pg o) () 2 Pr(th,e) 2 C = 8.

Since v and € were arbitrary, the proof of theorem 4.1.6 is complete.

4.2.2 Modification of the construction to obtain theorem 4.1.2

Let us fix a small v > 0. Let 1 be ergodic and satisfy h,, + [dus > C — /2. Let v € M$(X')
satisfy [ pdu1 # [ wdv. Let po = t1p1 + tav where t1 +t2 = 1 and ¢; € (0,1) is chosen sufficiently

close to 1 so that hy, + [dus > C —~. Choose 6 > 0 sufficiently small so

‘ / edpy — / pdpia

Choose a strictly decreasing sequence d; — 0 with §; < §. For k odd, we proceed as before, choosing

> 80.

a strictly increasing sequence [, — 00 so the set

1
Yy = {a: € X': ‘ Spp(x) — /(pd,ul

n

< 0 for all n > lk}

satisfies 11 (Y;) > 1 — « for every k. For k even, we define Y, 1 := Y}, and find [}, > [;,_; so that

each of the sets

1
Yio = {x e X ’ Spep(x) — /godu

n

< Oy, for all n > lk}
satisfies (Y} 2) > 1 — 7. The proof of the following lemma is similar to that of lemma 4.2.1.

Lemma 4.2.15. For any sufficiently small ¢ > 0 and k even, we can find a sequence nj — o

so [tiig] > lx for i = 1,2 and sets S}, so that Si is a ([tify],4e) separated set for Yy.; with
. _1 - . .

M} = Zzes,i exp {Z?ﬁo w(qu:)} satisfying

M = exp([trie) (g + [ Vi = 47),

M} > exp([taig)(hy + /¢du —4v)).
Furthermore, the sequence 7, can be chosen so that i, > 2™ where my, = m(e/2F) is as in the

definition of specification.

We now use the specification property to define the set S, as follows. Fori =1,2, let y; € S,i

and define z = x(y1,y2) to be a choice of point which satisfies

13 A me g
ity (Y1, ) < o and ity (Y2, fOMITME ) < ok

Let Sk be the set of all points constructed in this way. Let ny = [t17] + [tank] + mg. Then ny is
the amount of time for which the orbit of points in Si has been prescribed and we have ny/n, — 1.
We note that Sy is (ny,4e) separated and so #S8 = #S}#S7. Let My = M M?. Given our new

construction of Sk, the rest of our constuction goes through unchanged.
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4.2.3 Moadification to the proof

For every x € Sk,

So@) =i [ gdia] < [Singol@) — ] [ wdal + il
+ S (S ) — [ty / pdv|
It follows that \%Snkw(a:) — [@dug| — 0. This observation allows us to modify the proof of lemma
4.2.8 and ensures that our construction still gives rise to points in )A((go, f). We have for sufficiently
large ng,
My = exp{{taiul (o + [ i —47) + ltain] (hy + [ v = 49)}
exp{(1 = in(trlly + [ ) + 1o, + [ ) — 4}

> exp(1 — )2y, + /wduz — 4v) > exp(l — 7)*ng(C — 57).

Y

Since v was arbitrary, this observation allows us to modify the estimates in lemma 4.2.13 to cover

this more general construction.

4.3 Application to suspension flows

We apply theorem 4.1.2 to suspension flows. Let f : X — X be a homeomorphism of a compact
metric space (X,d). We consider a continuous roof function p : X +— (0,00). We define the
suspension space to be

X, ={(x,5) € X xR:0< s < p()},

where (z, p(z)) is identified with (f(x),0) for all z. Alternatively, we can define X, to be X x [0, 00),
quotiented by the equivalence relation (x,t) ~ (y,s) iff (z,t) = (y,s) or there exists n € N so
(fro,t — X0 p(fix)) = (y,8) or (f"a,t+ X0 p(f~'2)) = (y,5). Let 7 denote the quotient
map from X x [0,00) to X,. We extend the domain of definition of 7 to X x (—inf p,c0) by
identifying points of the form (y, —t) with (f =1y, p(y) —t) for t € (0,inf p). We write (z, s) in place
of w(z,s) when inf p < s < p(x).We define the flow ¥ = {g;} on X, by

gi(x,s) =m(x,s +1).

To a function @ : X, — R, we associate the function ¢ : X — R by p(z) = fo’)(x) ®(x,t)dt. Since

the roof function is continuous, when @ is continuous, so is ¢. For u € M(X), we define the

/ ddpu, = / wdu/ / pdp
X, X
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for all ® € C(X,), where ¢ is defined as above. We have U-invariance of u, (ie. u(g; ' A) = u(A)
for all t > 0 and measurable sets A). The map R : M(X) — My(X,) given by p — p, is a
bijection. Abramov’s theorem [Abr], [PP1] states that h,, = h,/ [ pdu and hence,

Pron(0) = sup{ly s 1 € M ()} = sup { - e M)

hy
[ pdu
where o, (W) is the topological entropy of the flow. Proposition 6.1 of [PP1] states that /0, ()
is the unique solution to the equation P{®%¢(—sp) = 0. We use the notation hy(Z, ¥) for
topological entropy of a non-compact subset Z C X, with respect to ¥ (defined below). We define

~

X, ={(z,s5) € X,: Tlg]go—/ ®(g4(x, s))dt does not exist }.

By the ergodic theorem for flows, ,u()A(p) =0 for any p € My(X,). Our main result on suspension

flows is the following (the proof is at the end of the section).

Theorem 4.3.1. Let (X,d) be a compact metric space and f : X — X be a homeomorphism with
the specification property. Let p : X + (0,00) be continuous. Let (X,, V) be the corresponding
suspension flow over X . Assume that ® : X, — R is continuous and satisfies inf ey, (x,) [ Pdp <

SUD ye My (X,) J ®du. Then htop()/(\p,\ll) = htop(V).

We remark that the flow ® may not satisfy specification itself. For example, when p is a

constant function, ® is not even topologically mixing.
4.3.1 Properties of suspension flows

The following lemma is similar to one given in [BS4].

Lemma 4.3.1. Let (X,d) be a compact metric space and f : X — X be a homeomorphism. Let
p: X — (0,00) be continuous. Let (X,,¥) be the corresponding suspension flow over X. Let

®: X, — R be continuous and ¢ : X — R be given by ¢(x) = [0 Bz, t)dt. We have

1 T n

)

limsup — / D(g¢(x, 8))dt = limsup Sncp(x)’
T—o0 n—oo np(x)

)/(\p ={(z,s): lim Sup()
n=00 Spp(x)

does not exist,0 < s < p(z)}.

Proof. Fix v > 0. Given T' > 0, let n satisfy Sp,p(x) < T < S,41p(x). It follows that 1 — lel <

T
S"%(‘r) < 1. Assume T is sufficiently large that 2T_1||p\|||<I>H < 7. We note that

T
| el snar < Z / (Flat)dt + 2] @]
— Suplo) + 2ol
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and so

T ) Oonp(x
1 otatesna < SHDZEA L2

P C)
Snp(z)
The result follows from this and a similar calculation for the opposite inequality. ]

As the lemma suggests, our result on Xp will follow from a corresponding result about the

set

X(p,p) = {m € X: lim on®)

does not exist} . 4.7
e () #.7)

Lemma 4.3.2. Under our assumptions, the following are equivalent:

(a) X, #0; (b) X(p,p) # 0;

(c) inf e nmy (x,) J Pdp < SUPLepmy (x,) | Pdps

(d) infe i, x) [ odp/ [ pdpe < supuen,x) S edu/ | pdp;

(¢) infuene(x) S it/ [ pdi < supe s (x) S pd/ [ pdp;

(f) Sne/Snp does not converge (uniformly or pointwise) to a constant;

(g) %fOT ®(g.)dt does not converge (uniformly or pointwise) to a constant;

Let pr(x) := [y ®(gew)dt,

(h) There exists T > 0 such that o1 ¢ U.cg Cob(X,, gr,c), i.e @ is not in the closure of
the coboundaries for the time-T' map of the flow;

(i) For all T > 0, o7 ¢ U.er Cob(X,, g7, C).

Proof. First we note that (d) <= (e) <= (f) is similar to the proof of the analogous statements in
lemma 2.3.2. For (c) = (d), let u1, 2 € My(X,) satisfy [ @duy < [ ®dus. Let v; = Ry, fori =
1,2. By definition, [ dv;/ [ pdv; = [ ®du,; for i = 1,2 and so [ pdvi/ [ pdvr < [ pdva/ [ pdvs.
(d) = (c) is similar. (f) < (g) follows from lemma 4.3.1.

We show (g) <= (h) <= (i). It is clear that %fOT ®(g;)dt does not converge to a
constant iff %SnapT does not converge to a constant for any fixed 7 > 0. An appliction of lemma
2.3.2 gives the desired results.

(a) = (g), (b) = (f), (b) = (a) are trivial. (d) = (b) is a consequence of theorem 4.3.2,

so we omit the proof. O

We remark that if ¢ € Cob(X, f,0) or ¢ — p € Cob(X, f,0), then S,p/S,p converges

uniformly to a constant and so )A(p = 0.

38



4.3.2 A generalisation of the main theorem

To prove theorem 4.3.1, we require the following generalisation of theorem 4.1.1.

Theorem 4.3.2. Let (X,d) be a compact metric space and f : X — X be a continuous map with

specification. Let p, € C(X) and p: X — (0,00) be continuous with

inf /godu /pdu <  sup /cpd,u /pd,u.
HEM (X)) / HEM ¢ (X) /
Let X (¢, p) be defined as in (4.7). We have PXW p)(l/J) = Pglassic(y).

Proof. We require only a small modification to the proof of theorem 4.1.2. We replace the family

of sets defined at (4.1) by the following:

Sn(P<x) _ f(pd,up(k)
Sup(x) [ pdpyy

Yk::{xGX:|

< O for all n > lk}

chosen to satisfy f1,()(Yy) > 1 — v for every k. This is possible by the ratio ergodic theorem. The

rest of the proof requires only superficial modifications. O

4.3.3 The relationship between entropy of a suspension flow and pressure in the

base

The natural metric on X, is the Bowen-Walters metric [BW], [BS4]. The appendix of [BS4] contains
a study of dynamical balls taken with respect to this metric when the roof function is Holder. We
assume only continuity of p. When p is non-constant, computations involving this metric are rather
unwieldy, particularly when no regularity of the roof function is assumed. We sidestep this problem
by making the following definitions. Let (z,s) € X, with 0 < s < p(x). We define the horizontal
segment of (z,s) to be {(y,t) : y € X,0 <t < p(y),t = p(y)sp(z)~'} and the horizontal ball of

radius € at (z,s) to be

S S S

BY((x,5),¢) = {(y, Tp(y)) t(1 = ——=)d(z,y) + e d(fz, fy) < e}.

We define
B((m,s),s) = U BH((x>t)35)a

t:|s—t|<e

T
BT((:C’ S),t?) = m g,tB(gt(CL',S),€)-
t=0

We are abusing notation, since B((x,s),e) is not a ball in the Bowen-Walters metric. We can
consider covers by sets of the form Bp((x, s),e) in the definition of topological pressure in place of

covers consisting of dynamical balls (see remark 2.1.1 and §7.3.1). This is because one can verify
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that there exists constants C7,Cy > 0 such that the metric ball of radius Cie at (z,s) is a subset
of B((x,s),e), that a set of diameter ¢ is contained in some set B((z, s), Ca¢) for sufficiently small
e, that B((z,s),¢) is open and as ¢ — 0, Diam({B((z, s),¢) : (z,s) € X,}) — 0. Diameter and

topology are taken with respect to the Bowen-Walters metric.

Lemma 4.3.3. Let (y,s) € X x (—inf p,00) and suppose 7(y,s) € B((x,0),¢), where |§| < e <

inf p/4. Then for e sufficiently small there exists n € N such that

(y,8) ~ (f"y,s — Snp(y)), |s — Snp(y)| < Ke and d(z, f"y) < Ke,

where K = 4||p||/ inf p and Ke < inf p.

Proof. Suppose (y,s) € B ((x,7),e) for some v with 0 < |y| < 2¢. Then s = yp(y)p(z)~ .

Therefore, s < 2¢||p||/ inf p. We have
Y 7y
1— ——=)d(z,y) + ——=d(fz, fy) < e.
U ) e
Thus (1 — ﬁ)d(az,y) < e. Rearranging, we have d(z,y) < ep(x)(p(x) —v)~! < Ke. For
—e < v < 0, we apply a similar argument. Now assume n(y,s) € B((x,d),e). Then 7(y,s) has
a unique representation (y/,s’) with |s'| < 2 and v/ = f™y. We apply the previous argument to

(¥ s"). O
Lemma 4.3.4. Suppose |s| < e and Spp(x) < T < Spt1p(z), then
Br((x,s),e) C Bp(x,Ke) x (—Ke, Ke).

Proof. Let (y,t) € Br((x,s),e), with |t| < Ke. Then d(z,y) < Ke. Let t; satisfy s +¢; =
Sip(x) for i = 1,...n. Then g, (y,t) € B((f""'x,0),¢). Applying the previous lemma, we have
d(f"y, fi='x) < Ke for some n € N. Furthermore, we must have n = i — 1. Suppose not, then
for some time 7 € [0, S;p(x)), g-(y,t) ¢ B(g-(x,s),e), which is a contradiction. This implies that
y € By(x, Ke). O

Theorem 4.3.3. Let (X,d) be a compact metric space and f : X — X be a homeomorphism. Let
p: X — (0,00) be continuous. Let (X,, V) be the corresponding suspension flow over X. For an
arbitrary Borel set Z C X, define Z, := {(z,s) : z € Z,0 < s < p(s)}. Let 3 be the unique solution
to the equation Pz(—tp) = 0. Then hiop(Z,, V) > [5.

Proof. The function ¢t — Pz(—tp) is continuous and decreasing. Since Pz(0) > 0, it follows
that there exists a unique solution to the equation Pz(—tp) = 0. We assume Pz(—f¢) > 0 and

show hiop(Z,,¥) > 3. Let € > 0 be arbitrary and sufficiently small so lemma 4.3.4 applies and
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Pz(—Bp,e) > 0. Choose I' = {By,((x;,5;),€)} covering Z, with t; > T. Take the subcover I
of I' which covers Z x {0}, and assume without loss of generality that |s;| < . Let m; be the
unique number so Sy, p(z) < t; < Sp,+1p(x). Let m(I”) = infm; obtained in this way. Then
m(T") > ||p||~(T — ||p||) and thus as T tends to infinity so does m(I"). Let I = {B,,,(z;, K¢)} :

By, ((xi,8:),¢) € I'}. By lemma 4.3.4, By, (x;, Ke) x (—Ke, Ke) covers Z x {0} and if we assume

e was chosen sufficiently small, then I is a cover for Z.

Q(Z x {0}, 8,T") = > exp—P(Sm;p(zi) + [lpll)

B;er”
> Y exp—B(sup Sm,p(y) + ||pll + Var(p, Ke))
B, eI yEB;
= exp{—pB(Var(p, Ke) + [|pl)}Q(Z,0,T", —3p)
> exp{—B(Var(p, Ke) + ||pl)} M(Z,0,m(I"), —Bp)
> 1

)

if T and hence m(T") are chosen to be sufficiently large. We have

Q(Z,,8,T) =2 Q(Z x {0}, 8,T")

and since I' was arbitrary, we have M(Z,,3,T — ||p|l,€) > 1 and hence hio,(Z,, ¥, ) > (. O

4.3.4 Proof of theorem 4.3.1

Given the results we have proved so far, theorem 4.3.1 follows easily. By lemma 4.3.1, )A(p = Z,,
where Z = X (p, p). We recall that hiop(W) is the unique number satisfing P{e55i¢(—tp) = 0. By
theorem 4.3.2, Py(—tp) = Pgasi¢(—tp) for all t € R, and so his,(¥) is the unique number such

that Pz(—tp) = 0. Applying theorem 4.3.3, our result follows.
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Chapter 5

A conditional variational principle for

topological pressure

We continue the programme started in chapter 4 to understand the topological pressure of the

multifractal decomposition

X = URX(SO»O‘) U X (g, f)-

In chapter 4, we showed that )A((gp) is either empty or has full topological pressure. In this chapter,

we turn our attention to the sets X (¢, «), which we recall are defined as
1 n—1 ]
— . 3 _ 7 —
X(p, ) = {w €X: lim — Z(:]w(f (z)) a}-
1=
Main result of chapter 5. Suppose f has specification. For any continuous functions p,v : X — R,

Px (p,0)(¥) = sup {hﬂ + /‘¢d,u i p € My(X) and / odp = a} . (5.1)

Formulae similar to (5.1) have a key role in multifractal analysis (see [Bar], [Pes] for a
broad and unified introduction). Following Barreira, we use the terminology ‘conditional variational
principle’ to describe formulae such as (5.1). For hyperbolic maps and Holder continous ¢, Barriera
and Saussol established our main result for the case v = 0, i.e. for the topological entropy of
X(p,a) and used it to give a new proof of the multifractal analysis in this setting [BS2]. The
study of multifractal analysis for arbitrary (ie. non-Hdlder) continuous functions was initiated in the
symbolic dynamics setting by Fan and Feng [FF] and Olivier [Oli]. Takens and Verbitskiy proved
(5.1) in the case of topological entropy for maps with the specification property [TV2].

Luzia proved our main result for topological pressure when the system is a topologically mixing
subshift of finite type and ¢, are Holder, and used it to analyse fibred systems [Luz]. Our current

result generalises and unifies the above mentioned results.
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Pfister and Sullivan generalised the result of Takens and Verbitskiy still further to the class
of maps with the almost specification property [PS2]. We strongly expect that a synthesis of the
method in this chapter and the method in chapter 6 can be used to prove (5.1) when f has almost
specification. Fan et al. [FLP] proved a version of (1.2) for ¢» = 0 which holds when ¢ takes values
in a Banach space.

Barreira and Saussol proved an analogue of (5.1) for hyperbolic flows when ¢ = 0 and ¢ is
Holder [BS3]. While we expect (5.1) can be established for flows with specification using our current
methods, we consider here the class of suspension flows over maps with specification, and show that
(5.1) holds true in this setting.

A large part of our argument is the same as that used in chapter 4, which was inspired by
Takens and Verbitskiy [TV2]. We do not give a self-contained proof of this part of the argument
but state the key ideas and refer the reader to chapter 4 for the details. We remark that we believe
the argument in §5.1.1 (also inspired by [TV2]) to be a necessary correction to the corresponding
argument of Takens and Verbitskiy.

An interesting application of our main result is a ‘Bowen formula’ for the Hausdorff dimension
of the level sets of the Birkhoff average for a class of non-uniformly expanding maps of the interval,
which includes the Manneville-Pomeau family of maps.

In §5.1, we state and prove our main results. In §5.2, we apply our main result to suspension

flows. In §5.3, we use our main result to derive a certain Bowen formula for interval maps.

5.1 Results
Theorem 5.1.1. Suppose f has specification, p,¢ € C(X,R) and o € L, then

Px (p,0)(¥) = sup {hu + /1/Jd,u tp € My(X) and /gpdu = a} .

As a simple corollary, we note that if o = [ @dm,,, where my; is an equilibrium measure for

¥ (in the usual sense), then Py (., () = Px ().

5.1.1 Upper bound on Px, ()

We clarify the method of Takens and Verbitskiy. Our proof relies on analysis of the lower capacity

pressure of X (¢, ). We recall the notation we set up in §2.1.5. For Z C X, let

n—

1
Qn(Z,1,e) = inf {Z exp{ I/J(f]%)} : S'is (n,e) spanning set for Z} )
0

zeS k=

n—

1
P, (Z,1,e) = sup {Z exp{ w(fkw)} : S'is (n,e) separated set for Z} .
0

z€eS k=
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We have Q,(Z,v,¢) < P,(Z,1,€). The lower capacity pressure is
cpP = liminf L 1 7
CPy(¢,e) =liminf —logQn(Z,¥,¢),

CPy () = im CP (¢, ).

It is proved in [Pes] that Pz(v)) < CP(1)). We use the specification property to construct
a set Z C X(p,a) which is almost as large as X (¢, ) (from the point of view of lower capacity

pressure) and satisfies a certain uniform convergence condition.

Lemma 5.1.1. When f has the specification property, given v > 0, there exists Z C X (¢, ),

tr — oo and g, — 0 such that if p € Z then

1

’Smgo(p) - oz‘ < ¢y for all m >ty (5.2)

m
and CP () > CPx(y ) (¥) — 4.
Proof. Choose € > 0 such that CPx (, o)(¢,2¢) > CPx(, 0)(%) —7. For 6 >0, let

1
X(a,n,0) ={z € X(p,a): ‘mSmap(x) - 04’ < 0 for all m > n}.

We have X(p,a) = U, X(a,n,d) and X(a,n,d) C X(a,n + 1,0), thus CPx(, ) (¥,2¢) =

lim,, 00 QX(a,n,zS) (1, 2¢). Fix an arbitrary sequence 0y — 0 and for each 4y pick M} € N so that

CPx(a,M;,50) (¥, 26) > CPx (0 (1, 26) — 7.

Write X, := X (a, My, 6%). Let my, = m(e/2%) be as in the definition of specification. Now pick a

sequence of natural numbers N, — oo increasing sufficiently rapidly so that

k

Ni41 > max {exp > (Ni 4 mi), exp M1, exp mk+1} 7 (5.3)
i1

QNk (X]C7 w: 26) > exp Nk(QX(Lp,a) (w) - 37) (54)

Let t1 = Ny and t = t_1 + my + Ny for k > 2. By (5.3), we have t /N — 1 and t;_1/tp — 0.
Fix 1 € X1,29 € Xo,..., 2 € Xk, .... We use the specification property to choose points

21,29, .-.,2k, ... as follows. Let z; = x1 and choose 25 to satisfy
le (2’2,2’1) < 8/4 and dNZ(leJFmZZQ,l‘Q) < 8/4
and zj to satisfy

de,_(zr—1, 21) < e€/2]”C and de(ftk*ﬁm’“zk,xk) < €/2k.
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We can verify that By, ., (zk+1,£/2%) C By, (21, e/2%7!) and so the point

x
p = ﬂ By, (zr,€/2871)
k=1

is well defined. We define Z to be the set of all points p constructed in this way.

Let p € Z. There exists 2, € X}, such that dy, (f-1T™r—1p z;) < /2872, We have
Stup(p) < Snp(r) + NpVar(p, e/257%) + tp 1 + myp1 0.
Therefore, we can find a sequence €}, — 0 such that for any p € Z,
1 /
|55tk90(p) —a| <&

Now let ¢t < n < tgy1. There are two cases to consider. First, suppose that n — ¢y, +my > Mpy1.

There exists © € Xj41 such that dy, ., (f"*"™p,z) < /2" and thus
Snp(p) < trla+el) + (0 —t) (@ + Sppr + Var(p,e/257 1) +mppalle]-

Now suppose n — t, < Mgpi1. Then

1 t
- wp(p) < 2

/ n—tk / iuk+1
— < .
ot ) + T ol S el + 2L

Let e, = max{e}, 011+ Var(p, /25 1)} +max{ M1 /Ni, mi11/Ni }|¢|| and we have shown that
(5.2) holds.

Take a (tx,c) spanning set Sy satisfying >, g, exp Sy ¥(z) = Q. (Z,1,¢). It follows
that fik-1Tm% Gy is a (Ng,e) spanning set for fi=1+" 7 Since sup{dn,(z,2) : © € Xy, 2z €
fl1tme 7Y < 2 /2K then flh-17Mk Gy is a (Ny, 2¢) spanning set for X;. Thus

> exp Sy () > Qg (X, ¥, 2) > exp Ng(CPx(,0) () — 37),
TES)
and for sufficiently large k,

> expSy(z) > exp{Ny(CPx(ya) (%) —37) + (tp—1 + my) inf ¢}
TESK

> exp{tk(CPx () (V) —47)}.

Taking the liminf of the sequence t,;l log Q1+, (Z,,¢), it follows that

Qz(ﬂ% 5) > QX(@,&) (¢) — 4.

Since € was arbitrary, we are done. O
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We follow the second half of the proof of the variational principle (Theorem 9.10 of [Wal]).
We construct a measure out of (n,¢) separated sets for Z (with a suitable fixed choice of €). In
contrast, Takens and Verbitskiy construct a measure from (n,¢,) separated sets with ¢, — 0. We
believe it is not clear in this case how to use the proof of the variational principle to give the desired
result. The uniform convergence provided by lemma 5.1.1 is designed to avoid this. We fix v > 0
and find € > 0 such that CP (¢, e) > CP,(¢) — .
Let S, be a (n,¢) separated set for Z with
Z exp Sp(x) = Po(Z,,€),
{L‘GS’rL

and write P, := P,(Z,%,¢). Let 0, € M(X) be given by

1

On = 5 Z exp Sp(x)0y

n €Sk

and let
1 n—1 ]
MWn = —Zanof_z.
"o
Let n; be a sequence of numbers so that f,; converges, and let n be the limit measure. We
have u € M(X) and we verify that [@du = a. Let n € N and k be the unique number so
try <n <tgy1. Using lemma 5.1.1, we have
11
P,n
€Sk

1

Z n(a + Ek)eS"w(x)
€Sk
= QTE&k,

1
P,n

and it follows that [ odu = a.

To show that h,+ [ dp > liminf; o n% log P, we recall some key ingredients of the proof
of the variational principle. Notation for the measure-theoretic entropy is given in §2.1.6 (following
[Wal]). See [Wal] for additional details of the proof. Let £ be a partition of X with diameter less

than € and p(9¢) = 0.
Hgn(\/ F7) + /Snwdan =log P,.
i=1

Since p(9€) = 0, we have for any k,q € N,

J—00

-1 -1
lim H,, (\/ f7€) = H.(\/ £7'€).
i=0 i=0

Forafixednand 1 <g<nand 0<j<qg—1, we have

q—1 2
q —i q
Liog o < H,,(\ 17€) +q [ v + 2% tog .
=0
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Replacing n by n; and taking j — oo, we obtain

J—00 ’n,

q—1
qhmlnf—logP < H,( \/ f_’f)—l—q/wdu.
=0
Dividing by ¢ and letting ¢ — oo, we obtain

1
CPy(,2) < limint log P < hu(£,€)+ [ i < hy+ [ i

It follows that

Px(pa)($) = 57 < CPx(p)(#) = 57 < CP4($) 7 < CPy (&) < by + [ vy

Since -y was arbitrary, we are done.

5.1.2 Lower bound on Px(, . (¢)

This inequality is harder and the proof is similar to the main theorem of chapter 4, which we follow
closely. As in chapter 4, the key ingredients are the Pressure Distribution Principle (proposition
4.1.4) and a Katok formula for measure-theoretic pressure (proposition 4.1.5).

Our strategy is to define a specially chosen family of finite sets Sy using the Katok formula
for mearure-theoretic pressure, which will form the building blocks for the construction of a certain
fractal F' C X (p, ), on which we can define a sequence of measures suitable for an application of
the Pressure Distribution Principle.

The first stage of the construction is where our current argument differs from chapter 4.

After this modification, the rest of the construction goes through largely verbatim.

5.1.3 Construction of the special sets S,

Choose a strictly decreasing sequence d; — 0 and fix an arbitrary v > 0. Let us fix p satisfying

[ dp = o and

hu—i-/i/}d,uzsup{hy—i-/wdy:VGMf(X) and /gpdyza}—’y.

We cannot assume that u is ergodic, so we use the following lemma [You], p.535, to approximate p

arbitrarily well by convex combinations of ergodic measures.

Lemma 5.1.2. For each 6, > 0, there exists n, € My(X) such that n, = 1(1) )\ml, where
1N =1 and nf € M%(X), satisfying | [ dp — [ odng| < 8, and hy, > hy, — 8.

Choose a strictly increasing sequence [ — 0o so that each of the sets

1
Yy = {x €X: ‘ Snp(z /(pdm < 0 for all n > lk} (5.5)
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satisfies nf(Y;”) > 1— forevery k € Nyi € {1,...,5(k)}. This is possible by Birkhoff's ergodic
theorem. Using proposition 4.1.5, we can establish the following lemma (see the corresponding

lemma in chapter 4 for details of the proof). Let 4/ > 0.

Lemma 5.1.3. For any sufficiently small ¢ > 0, we can find a sequence i, — oo with [Nifg] > Iy

and finite sets Sy ; so that each Sy, ; is a ([\ifwk], 5e) separated set for Yy, ; and

ne—1
My = > eXP{ > w(fix)}
=0

xES;w-

satisfies

Mi; > exp {[Amk] (hnf + / penf — @7’)} .

Furthermore, the sequence 7, can be chosen so that iy > 2™ where my, = m(c/2F) is as in the

definition of specification.

We choose ¢ sufficiently small so that the lemma applies and Var(¢, 2¢) < . We fix all the
ingredients provided by the lemma. We now use the specification property to define the set Si as

follows. Let y; € Sg; and define © = x(y1,...,y;x)) to be a choice of point which satisfies

a 9

for all I € {1,...,5(k)} where a; = 0 and a; = S\ [N + (I — V)ymy, for 1 € {2,...,5(k)}.
Let S; be the set of all points constructed in this way. Let ny = Zg(:kl) i) + (k) — 1)my,.
Then ny is the amount of time for which the orbit of points in S; has been prescribed and we have
ng/fx — 1. We can verify that S is (ny,4e) separated and so #Sy = #Sk1 .. #Sk k) Let
My = My ... My 0.

We assume that 7/ was chosen to be sufficiently small so the following lemma holds.

Lemma 5.1.4. We have
(1) for sufficiently large k, My, > expny(hy + [ dp — ),
(2) ifx € Sy, ]n—lkSnkgo(x) —a| < 8 + Var(p,e/2F) +1/k.

Proof. We have for sufficiently large k,

7 (k)
My > exp Y (g + [ vdnt —ai(k) )}
i=1

J(k)

> exp((L =) Y il + [ winf) — 4}
=1

> exp(l =7/ )Puulhy, + [ i~ 47)

> exp(l— o Puehy + [ b 17/ = 28,).
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Thus if 4/ is sufficiently small, we have (1).

Suppose = = z(y1, - -, Yj(k)) € Sk, then

Supl@) = mal < [Smpe) =l [ o = 30)

(k)
< Y ISpeage(fYiz) —nk)\i/SOdnﬂ
i=1
+nidx + my (3 (k) — 1)
i(k)
<D ISpnees) — D] [ e+ mei )|
i=1
—H”LkVal’(Lp, E/Qk) + ndk
i(k)
< 6k > [Nifw] + myi (k)| @l + nkVar(e, £/21) + nidi
i=1
The result follows on dividing through by ny. O

We now construct two intermediate families of finite sets. We follow chapter 4, to which we
refer the reader for the full details. The first such family we denote by {Cy } rcny and consists of points
which shadow a very large number Ny of points from Si. The second family we denote by {7 }ken
and consist of points which shadow points (taken in order) from C1,Ca,...,Cr. We choose Ny to
grow to infinity very quickly, so the ergodic average of a point in 7 is close to the corresponding

point in Cy.

5.1.4 Construction of the intermediate sets {Cj }en

Let us choose a sequence Ny which increases to oo sufficiently quickly so that

L L + M1 _ 0, lim Ni(ny +my) + ... + Ni(ng +my)

= 0. 5.6
k—o0 N k—o0 Nk+1 ( )

We enumerate the points in the sets S provided by lemma 5.1.3 and write them as follows
Sp={zF:i=12,... ,#S}.

We make a choice of k and consider the set of words of length Ny with entries in {1,2,..., #Sk}.
Each such word ¢ = (i1,...,in,) represents a point in S,ivk. Using the specification property, we can

choose a point y := y(i1, ..., in,) which satisfies

. €
dnk(l',]:;, fa]y) < 27
forall j € {1,..., N;}, where a; = (j — 1)(ny + my). In other words, y shadows each of the points

z¥ in order for length nj, and gap my. We define

]

Cr = {y(in, . in) € Xt (in,.yin) € {1, #S e }.

49



Let ¢ = Ngng + (N — 1)myg. Then ¢ is the amount of time for which the orbit of points in Cy, has
been prescribed. It is a corollary of the following lemma that distinct sequences (i1, ...,in,) give

rise to distinct points in Ci. Thus the cardinality of Cy, which we shall denote by #Cy, is #S,iv’“.

Lemma 5.1.5. Let i and j be distinct words in {1,2,...,#S,}c. Then y1 == y(i) and yo := y(j)

are (cy, 3¢) separated points (i.e. d, (y1,y2) > 3¢).

Construction of the intermediate sets {7} }ren

We define 7, inductively. Let 77 = C;. We construct 71 from 7 as follows. Let x € 7 and
y € Cry1. Let t1 = c1 and tp41 = tx + mgy1 + cp+1. Using specification, we can find a point

z := z(x,y) which satisfies

€ 3
d, (x,2) < Y] and dck+1 (y, ftk+mk+lz) < ok+1"

Define Tx 11 = {z(z,y) : © € Tk, y € Cr11}. Note that ¢ is the amount of time for which the orbit
of points in 7 has been prescribed. Once again, points constructed in this way are distinct. So we

have
BTp, = #Cy ... #Cp = #SN . H#S)r.

This fact is a corollary of the following straightforward lemma:

Lemma 5.1.6. For every x € 7}, and distinct yy,y2 € C41

€
dtk (Z(.’I?, y1)7 Z<m7 y?)) < 27 and dtk_H (Z(l.v y1)7 Z(fL’, Z/Q)) > 2e.
Thus Ty, is a (tx, 2¢) separated set. In particular, if z, 2" € Ty, then

Zy=9.

— 15 —
Btk (Z, 27) N Btk (Z/, ok

Lemma 5.1.7. Let z = z(x,y) € Tj41, then

_ € —
By, (2, 27) C By, (x, F)

Construction of the fractal I’ and a special sequence of measures i,

Let i, = Uyer, By, (z, 2,%1) By lemma 5.1.7, Fj41 C F). Since we have a decreasing sequence of
compact sets, the intersection F' = [, F}, is non-empty. Further, every point p € F' can be uniquely
represented by a sequence p = (31,22,93,....) where each p, = (i, .. 7pé\,i) c {1,2,... M;}Ni.
Each point in 73 can be uniquely represented by a finite word (]31, .. .Qk). We introduce some useful

notation to help us see this. Let y(p,) € C; be defined as in 5.1.4. Let z1(p) = y(p,) and proceeding
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inductively, let zi11(p) = 2(2i(p), ¥(p;, ;) € Ti+1 be defined as in 5.1.4. We can also write z;(p) as
z(gl, .. ,Bi). Then define p := 7p by

g
21'71

p= () B (z(p),

€N

It is clear from our construction that we can uniquely represent every point in F' in this way.

Lemma 5.1.8. Given z = 2(p,, ... ’Bk) € Ty, we have for alli € {1,...,k} and alll € {1,..., N;},
dn(mzl fti—l+mi—1+(l*1)(mi+ni)Z) < %2
0 pl7 °

We now define the measures on F' which yield the required estimates for the Pressure Distri-
bution Principle. For each z € 7, we associate a number £(z) € (0,00). Using these numbers as
weights, we define, for each k, an atomic measure centred on 7. Precisely, if 2 = z(p,,...p,), we

define
L(z):= ,C(Bl) e ,C(Qk),

where if p. = (pi,. .. ,pﬁvi) c{1,...,#S;}i, then

N;
ﬁ(BZ) = H €xXp Smw(x;;)
=1

We define
v 1= Z 9.L(2).

z€T},
. . oy . o i
We normalise v to obtain a sequence of probability measures . More precisely, we let py := Vs

where K is the normalising constant

Lemma 5.1.9. x, = M Mliv’“

Lemma 5.1.10. Suppose v is a limit measure of the sequence of probability measures . Then

v(F)=1.

In fact, the measures uj converge. However, by using the generalised Pressure Distribution
Principle, we do not need to use this fact and so we omit the proof (which goes like lemma 5.4 of
[TV2]). The proof of the following lemma is similar to lemma 5.3 of [TV2] or lemma 4.2.8, and

relies on (2) of lemma 5.1.4.

Lemma 5.1.11. For any p € F, the sequence limy,_, i Zf’“:_ol o(fi(p)) = a. Thus F C X(p,a).
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In order to prove theorem 5.1.1, we give a sequence of lemmas which will allow us to apply the
generalised Pressure Distribution Principle. The proofs are the same as the corresponding lemmas
from chapter 4, with minor modifications coming from the changed definition of S;, and lemma 5.1.4.

Let B := B,(q,¢/2) be an arbitrary ball which intersects F'. Let k be the unique number

which satisfies t;, < n < tg11. Let j € {0,..., Nxy1 — 1} be the unique number so
b+ (Meg1 +mpg1)j < n <tp+ (g1 +mpg) (G + 1).

We assume that 7 > 1 and leave the details of the simpler case j = 0 to the reader. The following
lemma reflects the fact that the number of points in B N 7y is restricted since 7 is (t,2¢)

separated and Siy1 is (ng41,4€) separated.

Lemma 5.1.12. Suppose pj11(B) > 0, then there exists (a unique choice of) x € Ty, and iy, . .. i €
{1,...,#S8k41} satisfying

J .
Vi1 (B) < L) [] exp S b (aE )M
=1

The following lemma is a consequence of lemma 5.1.8.

Lemma 5.1.13. Let x € T}, and iy,...,%; be as before. Then

J
L(x) H exXp Snk+11/)($§l+1) <exp{Sp¥(q) + 2nVar(),2e)
I=1
k
+ IO Nimi + jmisr)}-
i=1
The following lemma reflects the restriction on the number of points that can be contained

in BN 776-‘1—1)'

Lemma 5.1.14. For any p > 1, suppose jij1,(B) > 0. Let x € T}, and iy, ... ,i; be as before. We

have

U T k+p

J
11— N,
Viip(B) < L(2) [T exP Snpyy (&l ) MES I M2 M
=1
Lemma 5.1.15.

1 i .
fietp(B) < ———exp {SM/J(Q) +2nVar(y, 2e) + [¢1(3_ Nimi + ]mk+1)} :
kM4 i=1

Let C := h, + [ ¢dp. The following lemma is implied by lemma 5.1.4.
Lemma 5.1.16. For sufficiently large n, ’{lengl > exp((C — 2y)n)

Combining the previous two lemmas gives us
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Lemma 5.1.17. For sufficiently large n,

n—1
lim sup 41 (By (g, g)) < exp{—n(C - 2Var(¢,2e) — 37) + > _ ¥(f'q)}.

[—o0 =0

Applying the Generalised Pressure Distribution Principle, we have
Pr(¢,e) > C — 2Var(¢, 2¢) — 3.
Recall that € was chosen sufficiently small so Var(v, 2¢) < . It follows that

Px(4.0)(,€) > Pp(ip,e) > C — 5.

Since v and € were arbitrary, the proof of theorem 5.1.1 is complete.

5.2 Application to suspension flows

We apply theorem 5.1.1 to suspension flows. Let f : X — X be a homeomorphism of a compact
metric space (X,d). We consider a continuous roof function p : X +— (0,00). We define the
suspension space to be

X,={(z,s) e X xR:0<s<p(x)},
where (z, p(x)) is identified with (f(x),0) for all z. We define the flow ¥ = {g;} on X, locally
by gi(x,s) = (x,s +t). To a function ® : X, — R, we associate the function ¢ : X — R by
o(x) = fop(x) ®(x,t)dt. Since the roof function is continuous, when @ is continuous, so is ¢. We

have (see lemma 4.3.1)

i, Mo ) = inint 90
1

T
lim sup T / @ (g(x, s))dt = limsup Suep(2)
0

T—oo n—00 np(x) .

We consider

1 T
X,(®,0) = {(z,9) eXp:TlijréoT/o B(gi(z, 5))dt = a}
= {(z,s): lim Supl(@) _ a,0 <s < p(z)}.

n—s0 Spp(z)

For 1 € M(X), we define the measure 1, by

/ ddpy, = / wdu/ / pdp
X, X

for all ® € C(X,), where ¢ is defined as above. We have W-invariance of 11, (ie. u(g; "A) = p(A)
for all ¢ > 0 and measurable sets A). The map R : M(X) — My(X,) given by p +— p, is a
bijection. Abramov's theorem [Abr], [PP1] states that h,, = h,/ [ pdu and hence,

b (¥) = sup{l 1€ My (X,)} = sup { 2 o€ My ()}
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where ho, () is the topological entropy of the flow. We use the notation hy,,(Z, V) for topological

entropy of a non-compact subset Z C X, with respect to ¥ (defined in 2.1.4).

Theorem 5.2.1. Let (X,d) be a compact metric space and f : X — X be a continuous map
with specification. Let ¢, € C(X) and p : X — (0,00) be continuous. Let X(p,p,a) :=
{:c € X :limy oo % = a}. For « such that X (p, p, ) # 0, we have

d
Jedp a}.
S pdp

Proof. We require only a small modification to the proof of theorem 5.1.1. We modify lemma 5.1.2

PX(cp,p,a)(dj) = sup {hu + /wd,u NS Mf(X) and

so 1y, satisfies | [odu/ [ pdp — [pdni/ | pdng| < 6k and replace the family of sets defined at (5.5)
by the following:

Snp(x) [ dnf
Spp(x) [ pdnk

chosen to satisfy nf(Y;“) > 1 — ~y for every k. This is possible by the ratio ergodic theorem. The

Yii= {mGX:

< 0 for all n > lk}

rest of the proof requires only superficial modifications. O

Theorem 5.2.2. Let (X,d) be a compact metric space and f : X — X be a homeomorphism with
the specification property. Let p : X +— (0,00) be continuous. Let (X,, V) be the corresponding

suspension flow over X. Let ® : X, — R be continuous. We have

Piop(X,(P, a), ¥) = sup {hu tp € My (X)) and /<I>d,u = a} .

Proof. Let Z C X be arbitrary and Z, := {(z,s) : z € Z,0 < s < p(x)}. In theorem 4.3.3, we
proved that if 3 is the unique solution to the equation Pz(—tp) = 0, then hi,(Z,, ¥) > . Thus, if h

be the unique positive real number which satisfies Px(, o) (—hp) = 0, then hiop( X, (P, a), ¥) > h.

0,0
By theorem 5.2.1,

d
sup{hu—h/pdu:,uEMf(X) and m :a} =
Jedu hy

Thus, if p € M;(X) satisfies Toin = «, then h > T v and

h J pdu
> B, —_— =
oz Sup{fpdu ”EMf(X)’fpdu a}

= sup{hu i p € My(X,) and /<I>d,u = a} :
For the opposite inequality, we note that hto,(Z, ¥) < CP4(0), where CP,(0) is defined

with respect to the time-1 map of W. Given v > 0, we can adapt lemma 5.1.1 to find a set Z C X,

t, — oo and 5, — 0 such that for (z,s) € X,, we have

1 T
T/ D(gy(z,8))dt — a| < e forall T >ty
0
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and CP4(0) > QX(Q&)(O) — 4. We repeat the argument of 5.1.1 to construct a suitable
probability measure v out of (n,e) spanning sets for the time-1 map of the flow which satisfies

ffol O (gix)dtdv = o and CP(0) — v < h,. We use v to define a flow invariant measure p by

/. Gp= /. P / ' C(gua)dtdv

for all ( € C(X,) and note that h, = h, and [ ®dp = a. We obtain

Piop(Xp(®, ), ¥) < sup {hu tp € My (X,) and /<I>d,u = a} :
O

As a simple corollary, we note that if & = [ ®dm, where m is a measure of maximal entropy

for the flow, then hyop(X, (P, ), U) = hiop(P).

5.3 A Bowen formula for Hausdorff dimension of level sets of the

Birkhoff average for certain interval maps

The following application was described to the author by Thomas Jordan. If f is a C'*%, uniformly

expanding Markov map of the interval and ¢ : [0, 1] — R, then it was shown by Olsen [Ols] that

dimg (X (p,«)) = sup {flo}gll}’d,u : /godu = a} . (5.7)

In [JJOP], the authors consider piecewise C'! Markov maps of the interval with a finite number of
parabolic fixed points x; such that f(x;) = x;, f'(x;) =1 and f'(z) > 1 for z € [0,1] \ U; x;. They
show that (5.7) holds for o € L, \ [min;{¢(z;)}, max;{e(x;)}]. Simple examples in this category
are provided by the Manneville-Pomeau family of maps fi(z) = ' + 2!**(mod1) (where t > 0 is
a fixed parameter), which have a single parabolic fixed point at 0. Henceforth, we let ¢ = log f.
Note that since 9 is non-negative, s — Px(, 4)(—5v) is decreasing (although possibly not strictly

decreasing).

Theorem 5.3.1. Suppose s + Px(,q)(—5%) has a unique zero d and (5.7) holds true. Then
d = dimg(X(p,a)).

Proof. By (5.7), if p € M¢(X) and [ @du = «, then

= dimy (X(p,)) [ wdu < 0.

By theorem 5.1.1, Px(,, o) (—dimp (X (p,a))y) < 0. Thus dimpy (X (p,a)) > d.
Now suppose dimy (X (¢, a)) < d. Since s+ Px(, q)(—5%) is decreasing and has a unique

zero, Py (pa)(—dimy(X(p,a))yp) > 0. By theorem 5.1.1, there exists p with [@dy = o and

v,a)
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hy — dimg (X (¢, a)) [dp > 0. This implies that dimy (X (p, ) < h,/ [ 1dp, which contradicts
(5.7). O

We remark that by a slight modification to the proof, a more general statement is that if
(5.7) holds and d = inf{s : Px(,, 4)(—5s¢) = 0}, then d = dimy (X (p, a)).

We comment on the hypotheses of theorem 5.3.1. If there exists p with [ pdu = « and
[dp > 0, then s — Px(p,0)(=57) is strictly decreasing. Now suppose ¢ = 1 = log f/. In
the case of the Manneville-Pomeau family of maps, the only measure with [du = 0 is the Dirac
measure supported at 0, and so s +— Px(, «)(—5v) is decreasing for o € L, \ {0}. By [JJOP], (5.7)
holds true for the same set of values and thus theorem 5.3.1 applies. We remark that for a = 0,

PX(logf/,O)(_Sw) =0 for all s € R.
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Chapter 6

Irregular sets for maps with the almost
specification property and for the

(S-transformation

For a compact metric space (X,d), a continuous map f : X — X and a continuous function

v : X — R, we return to our study of the irregular set for ¢,

N 1 =l .
X = X lim — ¢ i )
(o, f) {:E € A ;:0 ©(f*(x)) does not exist }

As a special case of the main result of chapter 4, we showed that when f has the specification
property, )A((go, f) is either empty or has full topological entropy. Here, we extend this result to the
class of maps f which satisfies a property we call almost specification.

Pfister and Sullivan introduced the g-almost product property in [PS2], [PS1]. We have taken
the liberty of renaming this property as the almost specification property (in fact, our definition is a
priori slightly weaker). The most striking application of the almost specification property (to date)
is that it applies to every (-shift. In sharp contrast, the set of 8 for which the (-shift has the

specification property has zero Lebesgue measure [Buz], [Sch].

First main result of chapter 6. When f satisfies the almost specification property, the irregular

set is either empty or has full topological entropy.

Second main result of chapter 6 . The irregular set for an arbitrary 3-transformation (or (3-shift)

is either empty or has full entropy log 8 and Hausdorff dimension 1.

For a set of 3 of full Lebesgue measure, our second main result (stated formally as theorem

6.5.1 and theorem 6.5.2) is a corollary of our first main result (stated formally as theorem 6.4.1).

57



Some further analysis is required to extend the Hausdorff dimension part of the statement to the
remaining null set of 3 (see theorem 6.5.3).

To undertake the proof of our first main result, we develop notions of almost spanning sets,
strongly separated sets and a generalised version of the Katok formula for entropy. This should be
of independent interest.

In chapter 4, we showed that when f has the specification property, the irregular set is either
empty or has full topological pressure. The method of this chapter can be used to show that this
more general result holds true in the almost specification setting. However, we restrict ourselves to
the special case of entropy for clarity and brevity.

Furthermore, Pfister and Sullivan proved that the conditional variational principle for entropy
of Takens and Verbitskiy holds for maps with the almost specification property (this corresponds to
the special case ¢y = 0 of our theorem 5.1.1). A synthesis of the techniques of this chapter and
chapter 5 can be used to prove a full version of theorem 5.1.1 for maps with almost specification
(i.e. a conditional variational principle for pressure). We choose not to write out the proof as all the
necessary ideas are included in this chapter and chapter 5.

In §6.1, we define the almost specification property. In §6.3 we establish our general version of
the Katok formula for entropy. In §6.4, we prove our first main result. In §6.5, we consider arbitrary

(-shifts and (-transformations and establish our second main result.

6.1 The almost specification property

Pfister and Sullivan have introduced a property called the g-almost product property. We take the
liberty of renaming this property the almost specification property. The almost specification property
can be verified for every (3-shift (see §6.5.1). The version we use here is a priori weaker than that in

[PS2]. First we need an auxiliary definition.

Definition 6.1.1. Let ¢g > 0. A function g : N x (0,e9) — N is called a mistake function if for all

e € (0,e0) and alln € N, g(n,e) < g(n+1,e) and

L 900:9)
n—00 n

=0.
Given a mistake function g, if ¢ > £¢, we define g(n,¢) := g(n, o).

We note that for fixed £k € N and A > 0, if g is a mistake function, then so is h defined by
h(n,e) = kg(n, \e).

Definition 6.1.2. For n,m € N,m < n, we define the set of (n,—m) index sets to be
I(n,—m) :={ACH{0,...,n—1},#A >n —m}.
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Let g be a mistake function and € > 0. For n sufficiently large so that g(n,e) < n, we define the

set of (g,n, ) index sets to be I(g;n,c) = I(n,—g(n,c)). Equivalently,
I(g;n,e) :={ACH{0,...,n—1},#A > n —g(n,e)}.
For a finite set of indices A, we define
da(z,y) = max{d(f'z, fly) : j € A} and By(z,¢) = {y € X : da(z,y) < }.

Definition 6.1.3. When g(n,e) < n, we define a ‘dynamical ball of radius £ and length n with

g(n,e) mistakes’. Let

B, (g;z,e) = {y€ X :y € Bx(z,¢e) for some A € I(g;n,¢)}

= U Ba(z,¢)

Ael(gin.g)
Definition 6.1.4. A continuous map f : X — X satisfies the almost specification property if there
exists a mistake function g such that for any ey, ... e, > 0, there exist integers N(g, 1), ..., N(g,k)
such that for any x1,...,xy in X and integers n; > N(g,¢&;),
k .
() 1~ Z%0 "B, (g3 25,5) £ 0,
j=1

where ng = 0.

Remark 6.1.1. The function g can be interpreted as follows. The integer g(n,¢) tells us how many
mistakes we are allowed to make when we use the almost specification property to € shadow an orbit
of length n. Henceforth, we assume for convenience and without loss of generality that N(g,¢) is

chosen so that g(n,e)/n < 0.1 for all n > N(g,¢).

Remark 6.1.2. Pfister and Sullivan use a slightly different definition of mistake function (which
they call a blowup function). They do not allow g to depend on . An example of a function
which is a mistake function under our definition but is not considered by Pfister and Sullivan is
g(n,e) = e 'logn. Since we allow a larger class of mistake functions, the almost specification
property defined here is slightly more general than the g-almost product property of Pfister and

Sullivan.

We compare specification with almost specification. We recall that f : X — X satis-
fies specification if for all ¢ > 0, there exists an integer m = m(e) such that for any collection
{I; = la;,b;] CN:j=1,... k} of finite intervals with aj;1 —b; > m(e) for j=1,...,k—1 and

any x1,...,x in X, there exists a point z € X such that
d(fPt%z, fPz;) <eforallp=0,...,b; —a; and every j = 1,... k.
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Pfister and Sullivan showed that the specification property implies the almost specification property
[PS2] using ANY blow-up function g. To see the relation between the two concepts, we note that if
f has specification and we set g(n, ) = m(e) for all n larger than m(e) and set N(g,¢) = m(e)+1,
then for any x1,..., 2% in X and integers n; > N(g,¢), we have
k .
N 5By, (giwy,2) #0.
j=1

The trick required to replace € by €1,...,& can be found in [PS2].

6.2 Technique

To prove our first main theorem of the chapter, we modify the strategy laid out in chapter 3. We
require a generalised version of the Katok entropy formula in order to successfully generalise the
method of proof described above. We briefly explain why.

The key basic fact required for the construction in chapter 4 which does not generalise is
lemma 4.2.2. We give an example to demonstrate why. First, we assume that f has specification.
Let S; and Sz be (n,4¢e) separated sets. For each pair (z,y) € S; X Sa, let us use the specification

property to define a point z := z(z,y) such that dy,(z,z) < € and d,,(f*T™)2,1) < e. Define
Y ={z(z,y) 1z € S1,y € S2}.

Suppose that 21 = z(z1,y1), 22 = z(z2,y2) € Y and (z1,y1) # (z2,y2). Either z; # 9, in which
case

dn(zl,ZQ) > dn(fL‘l,ZL‘z) — dn(:vl,zl) — dn(l‘l,ZQ) > 26,

or Y1 # 2, in which case d,,(f*t™&) 2y, 717 2) > 2. In particular, z; # zp. Thus #Y =
#517#S5. This kind of argument is essential for our entropy estimates.

We now see what happens when we attempt the same construction only assuming that f has
the almost specification property. For each pair (z,y) € S X Sg, the almost specification property

guarantees the existence of a point z(x,y) such that

2(x,y) € Bu(g;x,€) N f~"Bn(g;y,€),

where ¢ is a suitable mistake function and we assume that n was chosen to be sufficiently large.
Define
Y/ = {Z(':va) HEUNS Sl7y € 82}7

where z(z, y) is a choice of point in By, (g; x,e)Nf "By (g;y,€). Let 21 = z(z1,y1), 22 = z(z2,y2) €

Y’ with (z1,y1) # (22,y2). We have no guarantee that 21 # z3. This is because it is possible that

60



d(fiwy, fixg) > 4e at only oneindex i € {0,...,n—1} and we cannot guarantee that d(fizy, fiz1) <
e. Thus, a priori, we may have #Y' < #81#8S-.

To solve this problem, we develop a notion of a ‘strongly separated set’. The idea is that
S is (n, —m,4c) separated (where m < n) if for every set of indices A C {0,...,n — 1} such that
#A > n —m we have

max{d(f'z, f'y) :i € A} > 4e.

In our example, if we replace S; and Sz by (n, —m, 4¢) separated sets where m = 2g(n,e) + 1, we
can guarantee that the set of points Y constucted as before using the almost specification property
satisfies #Y" = #81#8>.

Thus to adapt our strategy to the almost specification setting, we prove a modification of

the Katok entropy formula which uses ‘strongly separated sets' in place of spanning sets.

6.3 A modified Katok entropy formula

The following definitions of ‘strongly separated’ and ‘almost spanning’ sets are inspired by Pfister

and Sullivan and designed for use in the setting of maps with the almost specification property.

Definition 6.3.1. Let Z C X. Form <mn, a set S is (n,—m,¢) separated for Z if S C Z and for
every A € I(n,—m), we have dx(x,y) > € for every z,y € S. We define a set S to be (g;n,¢)

separated if it is (n, —g(n,e),e) separated. Equivalently, S is (g;n,¢€) separated if for every z,y € S

#{j€{0,...n—1} : d(fix, fly) > e} > g(n,¢).

We think of an (n, —m,¢) separated set to be ‘a set which remains (n,¢) separated when
you permit m mistakes'. In particular, a set S which is (g;n,e) separated is (n, ) separated in the

usual sense. We define the natural dual notion of a (g;n,¢) spanning set.

Definition 6.3.2. Form <mn, aset S C Z is (n,—m,¢) spanning for Z if for all x € Z, there exists
y € S and A € I(n,—m) such that dp(x,y) < e. Note that A depends on x and an (n,c) spanning
set is always (n,—m, ) spanning. We define a set S to be (g;n,e) spanning if it is (n,—g(n,e),¢)

spanning.

We think of an (n, —m,€) spanning set to be ‘a set which requires up to m mistakes to be

(n,e) spanning’. Let
sn(g; Z,e) = sup{#S : Sis (g;n,c) separated for Z},

rn(g; Z,e) = inf{#S : Sis (g;n,e) spanning for Z},

61



sn(Z,e) =sup{#S: Sis (n,e) separated for Z},
rn(Z,e) = inf{#S : S'is (n,e) spanning for Z}.

Lemma 6.3.1. We have
(1) Tn(g;Z, 5) < sn(g;Z,E) < Sn(ZvE)/
(2) Sn(QQ;Z, 25) < Tn(g§Za 5) < Tn(Za 5) < Sn(Za 5)'

Proof. Suppose that S is a (g;n,e) separated set for Z of maximum cardinality such that S is not

(g;n, ) spanning. We can find

z€Z\ U U Bp(x,e) = ﬂ (Z\ U BMx,a)) :

A€l(gine) z€S A€l(gin,e) z€S

Since dp(z,z) > ¢ forall z € S and A € I(g;n,¢e), then SU{z} is a (g;n,c) separated set, which
contradicts the maximality of S. Thus, every (g; n, ) separated set of maximal cardinality is (g; n, €)
spanning.

For (2), suppose E is (2g;n, 2¢) separated and F'is (g; n, ) spanning for Z. Define ¢ : E —
F by choosing for each x € E some ¢(z) € F and some A, € I(g;n,e) such that dp,(z, ¢(x)) < e.
Suppose = # y. Let A = A, N A,. Since A € I(2g;n,¢), we have dp(¢(x), ¢(y)) > 0 and thus
d(x) # ¢(y) . Thus ¢ is injective and hence |E| < |F|. O

Theorem 6.3.1 (Modified Katok entropy formula). Let (X, d) be a compact metric space, f : X +—
X be a continuous map and 1 be an ergodic invariant measure. For v € (0,1) and any mistake

function g, we have

hy, = lim liminfllog(inf{rn(g; Ze): ZCX,u(Z)>1—~})
n

e—0 n—oo

The formula remains true if we replace the liminf by limsup and/or r,,(g; Z,€) by sn(g; Z,€). The

value taken by the liminf (or limsup) is independent of the choice of mistake function g.

Proof. Since r,(Z,e) > rn(g; Z,€), it follows from the original Katok entropy formula that the
expression on the right hand side is less than or equal to h,, (this is the easier inequality to prove
directly any way). To prove the opposite inequality, we give a method inspired by the proof of
theorem A2.1 of [Pes].

For any n > 0, there exists 6, 0 < § < 7, a finite Borel partition £ = {C1,...,Cy,} and a
finite open cover U = {Uy, ..., U} of X where k > m with the following properties:

(1) Diam(U;) < n, Diam(C;) <nforalli=1,...,m, j=1,...,k,

(2)U; CcCiforalli=1,...,m,

(3) u(C;\U;) <6 foralli=1,...,mand u(Ur,,.1 Ui) <4,
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(4) 20logm < n.

This is a consequence of the regularity of the measure . Fix pso 1 —+ > n > 0 and take
the corresponding number §, covering U and partition £. Fix Z C X with u(Z) > 1 —~. Let t,(x)
denote the number of I, 0 < I < n — 1 for which fi(z) € Uf:mH Ui, Let &, = V2 f7¢ and

C¢, (x) denote the member of the partition &, to which z belongs.

Lemma 6.3.2. There exists a set A C Z and N > 0 with u(A) > pu(Z) — 0 such that for every
r€Aandn>N

(1) tp(x) < 26n

(2) 1(Ce,, (x)) < exp(—(hu(f,€) — 0)n)

Proof. Let x be the characteristic function of UF_,, .| Ui. We can write t,(z) = 7 x(fz). By
Birkhoff's ergodic theorem and Egorov's theorem, we can find a set A; C X with p(A41) > u(2) —g

such that for x € Ay, we have uniform convergence

1 n—1 ‘ k
o) = - Y x(F) [ xdn=p( | U) <
=0 i=m+1

Choose Ny such that if n > Ny and x € Ay, then t,(z) < 20n.
By Shannon-Mcmillan-Brieman theorem and Egorov’'s theorem, we can find a set A; C X

with (Az) > p(Z) — & such that for € Ay, we have uniform convergence

_% log 'u,(an (Z‘)) - h,u(fv §)

There exists Ny such that if n > Ny and z € Ay, then —2logu(Ce, () < h(f,&) + 5. Set
A= A1 N Az and N = max{Ny, N2} and the lemma is proved. O

Let & be the collection of elements C¢, of the partition &, for which C¢, N A # (). Then for
n > N, using property (2) of A,

#e = Y wC)exp{n(h(f,) - 0)}

cee;

> u(A)exp{n(hu(f,§) —0)}}.

Let 2¢ be a Lebesgue number for U and let S be (g;n,e) spanning for Z. We have Z C
Uzes Ba, (z,€) for suitably chosen A, € I(g;n,e). Let us fix B = By, (z,e). Let £z be the
partition \/;cx f'€. We estimate the number p(B, &y, ) of elements of the partition £s, which have
non-empty intersection with AN B.

Since 2¢ is a Lebesgue number for U, then B(f/z,e) C U;, for some U;; € U. If ij €

{1,...,m} then f79(U;,) C f77(Cy;). Ifij € {m+1,...,k}, then anything up to m sets of the
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form f‘j(C’ij) may have non-empty intersection with f‘j(Uij). It follows, using property (1) of A,
that

p(B,&y,) < m*" = exp(2dnlogm)

The number p(B,&,,) of elements of the partition &, which have non-empty intersection with both

A and B satisfies

p(B, &) < p(B,éa, )m? ™) < exp{(20n + g(n,e)) logm}.

It follows that

465 < 3 p(Bi. (1), £) < #8 exp{(26n + g(n, ¢)) log m}.
zeSs

Rearranging, we have

1
~log #8 > hy(f,€) =6 = (25+ 9(72@) log m.
Since 26 logm < n, Diam(§) <n, 6 <n, @ — 0, and n was arbitrary, we are done. Ol

As a corollary, we have a version of theorem 6.3.1 for topological entropy (which we do not

use).

Theorem 6.3.2. Let (X, d) be a compact metric space and f : X — X be a continuous map. We
have

1
hiop(f) = lim lim inf — log 7, (g; X, €)
n

e—0 n—oo
The formula remains true if we replace the liminf by lim sup and/or r,(g; X,€) by s,(g; X,€). The

value taken by the liminf (or limsup) is independent of the choice of mistake function g.

6.4 Main result

Theorem 6.4.1. Let (X,d) be a compact metric space and f : X — X be a continuous map
with the almost specification property. Assume that ¢ € C(X) satisfies inf,,c vy £(X) [ dp <

SUP e, (x) J pdp. Let X (¢, f) be the irregular set for o, then htop()A((go, 1)) = heop(f).

We remark that X (¢, f) # 0 is a sufficient condition on ¢ for the theorem to apply (see
lemma 2.3.2).

Proof. Let us fix a small v > 0, and take ergodic measures 1 and pz such that
(1) hyy > hiop(f) — fori=1,2,
(2) [ edps # [ dps.
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That we are able to choose p; to be ergodic is a slightly subtle point. Let i be ergodic and
satisfy by, > hiop(f) —7/3. Let v € My(X) satisfy [ @oduy # [ pdv. Let v/ = tpy +(1—t)v where
t € (0,1) is chosen sufficiently close to 1 so that h,s > h¢op(f) — 27/3. By [PS1], when f has the
almost specification property, we can find a sequence of ergodic measures v, € Mf(X) such that
hy, — hy and v, — V' in the weak-* topology. Therefore, we can choose a measure belonging to
this sequence which we call pi2 which satisfies h,, > hiop(f) — 7 and [ @dps # [ @dps. (We could
avoid the use of the result from [PS1] by giving a self-contained proof along the lines of the ‘modified

construction’ in §4.2.2. We do not do so in the interest of brevity.) Choose § > 0 sufficiently small

‘ / edpy — / pdpr

Let p: N — {1,2} be given by p(k) = (k + 1)(mod2) + 1. Choose a strictly decreasing sequence

SO

> 49.

0 — 0 with §; < § and a strictly increasing sequence [, — 0o so the set

1
Y, = {:L“ eX': ' Snep(x) — /‘Pd/‘p(k)

n

< 6 for all n > lk} (6.1)

satisfies 11,4 (Y) > 1 — 7 for every k.
The following lemma follows readily from proposition 6.3.1. The proof is similar to that of

lemma 4.2.1.

Lemma 6.4.1. Define mistake functions hy(n, ) := 2g(n,e/2%). For any sufficiently small ¢ > 0,
we can find a sequence ny, — oo and a countable collection of finite sets Sy so that each Sy is a

(hy; ng, 4e) separated set for Yy, and satisfies

#Sk > exp(ng(heop(f) — 47)).

Furthermore, the sequence ny, can be chosen so that ny > Iy, ng > N (hg,€) and hy(ng,e)/ni — 0.

We choose ¢ sufficiently small and fix all the ingredients provided by lemma 6.4.1. Our
strategy is to construct a certain fractal F' C X(gp, f), on which we can define a sequence of
measures suitable for an application of the Entropy Distribution Principle (we use a version which is

a special case of theorem 4.1.4).

Theorem 6.4.2 (Entropy Distribution Principle). Let f : X +— X be a continuous transformation.
Let Z C X be an arbitrary Borel set. Suppose there exists € > 0 and s > 0 such that one can find

a sequence of Borel probability measures uy, a constant K > 0 and an integer N satisfying

lim sup p(Bn(z,¢)) < Ke™™*

k—o0
for every ball B, (x,¢) such that B,(z,e) N Z # () and n > N. Furthermore, assume that at least

one limit measure v of the sequence p, satisfies v(Z) > 0. Then hio,(Z,€) > s.
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6.4.1 Construction of the fractal F

Let us choose a sequence with Ny = 0 and Ny, increasing to oo sufficiently quickly so that

N ...+ N
lim 2L _ g gy e e (6.2)
k—oo Nk k—o0 Nk+1
Let z; = (2} i) €SN F ( ) € S x ... x Sp'k, by the almost specificati
et z; = (z1,..., 2y, ;. Forany (zq,...,2; 1 .+ by the almost specification
property, we have
ko Ni i—1 1 —
B(zy,...x3) = ﬂ n f‘Zz:o iy —(3— )mBni(QQ x}, i) £ (.
i=1j=1

We define F}, by

Fy={B(xy, . x) : (x1,...2p) € S x ... x Sk}
Note that Fj, is compact and Fyy; C Fj,. Define F' = (72, Fk.

Lemma 6.4.2. For any p € F, the sequence - Z’?’“Bl ©(f!(p)) diverges, where ty, = Y% Nin,.

by, £i=
Proof. Choose p € F and let py, := f'%*~1p. Then there exists (z¥, ... ,xﬂ“\,k) € S,iv’“ such that
Ny .
pe € () fUI™B, (g5 2%, e/2p).
j=1

For ¢ > 0, let Var(ip, ¢) := sup{|p(z) — p(y)| : d(x,y) < c}. We have

Ny
SneNe®(Pr) <D Snpp(ah) + npNpVar(p,e/2%) + Nyg(ng, /2%) | o
j=1

and hence

1

1
k k
msnklvk@(pk) < /@dup(k) + 0k, + Var(p,e/2%) + nfkg(nk,f/2 )-

It follows that

— 0.

msnkl\/k@(pk) - / AL (k)

We can use the fact that ”’;—i\[’“ — 1 to prove that

1
nka

1
SNy P (Pr) — tkstkw(p)‘ — 0,

and the result follows. O
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6.4.2 Construction of a special sequence of measures ji;

We first undertake an intermediate construction. For each z = (z,...,2;) € S{Vl X ... X S,iv’“, we

choose (one) point z = z(z) such that
z € B(zy,...23).

Let 7; be the set of all points constructed in this way. We show that points constructed in this way
are distinct and thus #7; = #S{Vl ...#S,iv’“.

Lemma 6.4.3. Let z andy be distinct members of S x ... x S,]CV’“. Then z1 := z(z) and 2o := 2(y)

are distinct points. Thus #Tj, = #S™ ... #Sk.
Proof. Since x # y, there exists i,j so x # y%. We have A1, Ay € I(g;ni,£/2") such that

; 9 . c
dp, (x;‘afaZl) < 5 and dAz(y;,fazQ) < 50

where a = 32170 Nyny+ (j — 1)n;. Let A = AyNAs. Since A € I(2g;n;,£/2%), we have dA(xé,yé) >

4e. Using these inequalities, we have d(f%z1, f%2z2) > 3e. O

We now define the measures on F' which yield the required estimates for the Entropy Distri-
bution Principle. We define, for each k, an atomic measure centred on 7. Precisely, let
VE ‘= Z (52
z€Ty,

We normalise v to obtain a sequence of probability measures p, ie. we let g := ﬁl/k.

Lemma 6.4.4. Suppose 1 is a limit measure of the sequence of probability measures . Then

u(F) = 1.

Proof. For any fixed I and all p > 0, py4p(Fi) = 1 since py4p(Fi4p) = 1 and Fi4,, C F}. Suppose
p = limy_o i, for some [, — oo, then p(Fy) > limsupy_, . pu, (F1) = 1. It follows that u(F) =

In fact, the measures i, converge. However, by using our version of the Entropy Distribution
Principle, we do not need to use this fact and so we omit the proof (which goes like lemma 5.4 of
[TV2)]).

Let B := B, (q,¢) be an arbitrary ball which intersects F. Let k be the unique number which

satisfies ty, < mn < txy1. Let 7 € {0,..., Ngy1 — 1} be the unique number so
te + 1] <n <tp +npp(+1).

We assume that 7 > 1 and leave the details of the simpler case j = 0 to the reader. The following

lemma reflects the restriction on the number of points that can be in BN 7;4,.
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Lemma 6.4.5. Forp > 1, upip(B) < (#71) " (#Sk41) ™

Proof. First we show that gy 1(B) < (#75) ' (#Sk+1)™/. We require an upper bound for the

number of points in Ty N B. If g1 (B) > 0, then Ty NB # 0. Let z = z(x, 2441) € Tep1 N B

N
where 2 € ST x ... x Sp* and ), € S, K. Let

-Ag;ml,...,xj = {Z(&, Y, .- 7yNk+1) & 77“_1 1T =Yy, L5 = yj}-

We suppose that 2’ = z(y, gkﬂ) € Tr41 N B and show that 2" € Ay, .. o;- We have d,(2,2") < 2¢
and we show that this implies z; = y; for | € {1,2,...,j} (the proof that = y is similar). Suppose

that y; # 2; and let a; = t, + (I — 1)(ng41). There exists A1, Ay € I(g;npy1,/28F1) such that
da, (f* " and da, (f2 -
a (f2, ) < g and d, (F2,m) < g
Let A = Ay N As. Since A € I(2g; npy1,e/2FFL), we have dp(z7,7;) > 4e. We have

dn(z,2")

Y

da(f"z, f2)

> da(@y) — da(f"2,m) — da(f"2 y1) > 3e,
which is a contradiction. Thus, we have
Vikr1(B) < #Avay,w; = (#Sk+1)Nk+1_ja
1 (B) < (#Thi1) ™ (#Sk) 01 = (#Th) " (#Sk41)
Now consider fi1,(B). Arguing similarly to above, we have
Veip(B) < # Aoy, FSkr2) VL (HSpp) Vi
The desired result follows from this inequality by dividing by #7}.,,. O

By lemma 6.4.1, we have

H#To(#Sp1) > exp{(huop(f) — 4y)(Nin1 + Nong + ... + Ngng, + jng41) }

> eXp{(htop(f) - 47)77‘}'

Combining this with the previous lemma gives us

limsup y(Bn(g,€)) < eXp{_n(htop(f) - 47)}-

l—o0

Applying the Entropy Distribution Principle, we have

htop(Fvs) 2 htop(f) - 47'

Since v and € were arbitrary and F C X (¢, f), we have htop()A((cp, f)) = hiop(f). O
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6.5 The (-transformation

In this section, let X = [0,1). For any fixed 3 > 1, we consider the [-transformation fg: X — X

given by
f5(x) = Bz (mod).
As reference for the basic properties of the (-transformation, we recommend the introduction of the

thesis of Maia [Mai]. For 5 ¢ N, let b =[] and for 8 € N, let b = 3 — 1. We consider the partition

e o) e e 39,

For z € [0,1), let w(z) = (w;(x))32; be the sequence given by wj(z) = i when fi7tz € J;. We

into b+ 1 intervals

call w(zx) the greedy [-expansion of x and we have
0 .
xr = ij(a:)ﬁfj.
j=1

The [(-shift (Xg,03) is the subshift defined by the closure of all such sequences in [];2,{0,...,b}.
Let w(B3) = (w;(3))52, denote the sequence which is the lexicographic supremum of all 3-expansions.

The sequence w(/3) satisfies
j=1

so we call w(3) the B-expansion of 1. Parry showed that the set of sequences which belong to ¥
can be characterised as

w € Vg = o"(w) <w(p) forall k > 1,

where < is taken in the lexicographic ordering [Par]. Parry also showed that any sequence w which
satisfies o (w) < w is the B-expansion of 1 for some 3 > 1. The (-shift contains every sequence
which arises as a greedy (3-expansion and an additional point for every x whose 3-expansion is finite

(i.e. when there exists j so w;(z) = 0 for all i > j). Thus the map 7 : ¥3 +— [0, 1] defined by
0 .
m(w) =Y w;f~
j=1

is one to one except at the countably many points for which the (-expansion is finite.

Y5 is typically not a shift of finite type (nor even a shift with specification) and the set of all
(-shifts gives a natural and interesting class of subshifts. In the next section, we decribe in detail the
known results on specification properties for the 3-shift. The key fact for our analysis is that every

B-shift has the almost specification property [PS1]. We have (p.179 of [Wal]) that hep(0g) = log 3.

Theorem 6.5.1. For 3 > 1, let fg : X — X be the (B-transformation, fg(x) = [x(modl). Let

@ € C([0,1]) and assume that the irregular set for o is non-empty (ie. X (g, fs) # 0), then

~

hiop(X (0, f)) = log B.
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Proof. Let EIB denote the set of sequences which arise as [3-expansions. Recall that ¥z \ Eb is a
countable set and the restriction of 7 to 225 is a homeomorphism satisfying m o og = fgom. Thus,

if Z e Xgand Z':= ZNXj, we have

htop(Zv 0,6’) = htop(Z,aJﬂ) = htop(ﬂ-(Z/)vf,@)'

Suppose ¢ : [0,1) — R satisfies X (¢, f3) # 0. Let = € X (¢, fs) and let w(x) be its 3-expansion.
We let 3 € C(Xp) be the unique continuous function which satisfies 3 = p o on ¥j; (this exists
because we assumed ¢ to be continuous on [0, 1]). It is clear that w(z) € Z/I\g(@ o). Since the
dynamical system (X3, 03) satisfies the almost specification property, it follows from theorem 6.5.1
that huop(5(, 05)) = log B. Since 7(S5(%, 03)NSY) = X (¢, f3), it follows that o, (X (), f5) =
log . O

6.5.1 [-transformations and specification properties

There is a simple presentation of ¥3 by a labelled graph Gg. See [PS1] and [BH] for reference. We
describe the construction of Gg when the B-expansion of 1 is not eventually periodic. We refer the
reader to [PS1] for the slightly different construction required when the 3-expansion of 1 is eventually
periodic (in this case, X3 is a sofic shift [BM] and therefore has specification).

Let v1,vo,... be a countable set of vertices. We draw a directed edge from v; to v; 41 and
label it with the value w;((3) for all i > 1. If w;(8) > 1, we draw a directed edge from v; to v;
labelled with the value 0. If b = 1, the construction is complete. If b > 1, then for all j € {2,...,b}
and all w;(3) > j, we draw a directed edge from v; to vy labelled with the value j — 1. Note that
if w;(8) = 0, the only edge which starts at v; is the edge from v; to v;11 labelled by 0, and if
w;() # 0 there is always an edge from v; to v1. We have w € ¥z iff w labels an infinite path of
directed edges of Gz which starts at the vertex v1. The following figure depicts part of the graph Gg
for a value of (3 satisfying (wj(ﬂ))?zl =(2,0,1,0,0,1).

OO0

&) b

An arbitrary subshift ¥ on b+ 1 symbols is a closed shift-invariant subset of [[;2,{0,...,b}.
We define v to be admissible word of length n > 1 for X if there exists x € ¥ such that v =
(21, ...,xy). The specification property of definition 2.2.1 can easily be seen to be equivalent to the

following property in the case of an arbitrary subshift.
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Definition 6.5.1. A subshift ¥ has the specification property if there exists M > 0 such that for
any two admissible words w1 and wo, there exists a word w of length less than M such that wywws

is an admissible word.

We now return to the 3-shift X 3. Define

zn () = min{i > 0 : wy,44(B) # 0}.

Equivalently, z,(3) + 1 is the minimum number of edges required to travel from v, to v;. The
(B-shift fails to have the specification property iff ‘blocks of consecutive zeroes in the 3 expansion
of 1 have unbounded length’, ie. if z,((3) is unbounded [BM]. Consider concatenations of the word
cn = (wi1(B), ..., wn(B)) with some other admissible word v. We can see from the graph Gg that
the length of the shortest word w such that ¢,wv is an admissible word is z,(3) (the word w is a
block of zeroes of length z,(5)). Now for x € ¥3, we define z,(z) to be the length of the shortest
word w required so that for any admissible word v, (x1,...,z,)wv is an admissible word. Note that
for all € X3, z,(z) < 2,(8). Thus X3 has specification iff z, (/) is bounded. Buzzi shows that
the set of 3 for which this situation occurs has Lebesgue measure 0.

Pfister and Sullivan [PS1] used the graph Gg to observe that every (-shift has the almost
specification property. Their strategy is to ‘jump ship’ on the last non-zero entry of an admissible
word. More precisely, every G-shift has the following property. Given any admissible word w, there is
a word w’ which differs from w only by one symbol, such that w’v is admissible for every admissible
word v. The modified word w’ is given by replacing the last non-zero entry of the word w by a 0.
This property is best seen from inspection of the graph Gg and is the content of proposition 5.1 of

[PS1]. It can easily be seen that this property implies the almost specification property.

6.5.2 Hausdorff dimension of the irregular set for the 3-shift

We give an elementary direct proof of the relationship between topological entropy and Hausdorff
dimension. We use the metric dg(z,y) = ﬂ% where n is the smallest integer such that z,11 # ypt1-

Let Cp(z) ={y € Xg:z;=y; fori=0,...,n—1}. We have

1
Diam(Cp(w(p))) = Brtan(8)’
. 1

3 > Diam(Cy,()) > Brtan(B)”

For Hausdorff dimension, we recall our notation
H(Z,o,6) = inf{) 67 : Z C | JB(xi,68:),6; < 6},

71



H(Z,a) = lims0H(Z,a,d) and Dimy(Z) = inf{a : H(Z,a) = 0}. We sometimes write
Dimpg(Z,d) in place of Dimg(Z) when we wish to emphasise the dependence on the metric d.
We note that the map x +— w(x) is bi-Lipshitz with respect to the metric dg and thus for Z C [0, 1),
Dimg(Z) = Dimg(n~Y(Z), dgs).
Define
z(B) := limsup z,(08)/n.

n—00
Remark 6.5.1. z((3) may be arbitrarily large or even co. To see this, let (a,) be an increasing
sequence. Let (b,) be the sequence given by by = 1, followed by a block of consecutive zeroes of
length aq, followed by b,,12 = 1, followed by a block of consecutive zeroes of length a2, followed
by ba,+ay,+3 = 1, and so forth. Let [ satisfy w(3) = (b,,). We can choose a,, to grow as fast as we

like.

Lemma 6.5.1. For arbitrary Z C ¥ 3, we have log BDimy(Z) < hiop(Z), and when z(3) < 1,

1
1+ 2(P)

Proof. Recall that for shift spaces, topological entropy admits a simplified definition, which was

described in §2.1.3. We use the notation from §2.1.3. That log SDimg(Z) < hiop(Z) is a standard

hiop(Z) < log BDimy (Z).

argument which follows from the fact that Diam(C),(z)) < BL” For the other inequality, we fix ¢ > 0
and choose N sufficiently large so that for n > N, z,(5)/n < z(8) + . For n > N, we have

| 1
Diam(Ch(z)) > Br(+z(5)+2)

Let v, = 3~"(1+2()+e) " Take a cover of Z by metric balls B(x;,d;) with ; < vn. Let n; be the

unique integer such that
1 1

G = % 7 Guiee

Then I = {C},,(2;)} covers Z and

D> 67> exp(—ani(1+4 2(8) + €)log 8) = Q(Z, a1 + 2(B) + €) log B,T).

Taking infimums, we have M(Z, a(1+ 2(8) 4+ ¢)log 3, N) < H(Z, o, ). It follows that
M(Z,a(1+ 2(8)logB) < lim H(Z,a,7) = H(Z,a)

and the inequality follows.

O]

We will also use the following elementary lemma which can be proved similarly to the above.
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Lemma 6.5.2. For Z C Xg, if zy(x) is bounded for x € Z (ie. there exists C' > 0 such that

SUP,c 7 Sup,, 2n(x) < C), then log BDimy(Z) = hiop(Z).

In [PS1], Pfister and Sullivan sketch an argument which shows that the set of 3 for which
2(B) = 0 has full Lebesgue measure. Thus for these 3, lemma 6.5.1 tells us that log BDimg(Z) =
htop(Z) for any set Z. In particular, it follows from theorem 6.5.1 that if ¢ € C'(X) and X(p, fs) #0,

then Dimg (X (¢, fs)) = 1. In conclusion, this discussion proves the following theorem.

Theorem 6.5.2. There is a set of 3 of full Lebesgue measure, such that
(1) If p € C(25) and Ss(p,05) # 0, then Dimp (S5(,05)) = 1,
(2) If p € C([0,1]) and X (¢, f5) # 0, then Dimy (X (¢, f5)) = 1.

6.5.3 An alternative approach which covers the case z(/3) > 0
We describe a method of proof which shows that

Theorem 6.5.3. For every 5 > 1,
(1) If p € C(X3) and ig(cp,ag) # 0, then DimH(Ag(cp,ag)) =1,
(2) If o € C([0,1]) and X (¢, f5) # 0, then Dimu(X (¢, f)) = 1.

The method described does not use the almost specification property, and provides an alter-
native proof of our main results in the case of the 3-shift. The key quoted result in this method is
a version of theorem 6.5.1 in the special case of n-step Markov shifts. We note that the ‘almost
specification’ method of proof applies in far greater generality and a self-contained version of the

proof described below would be comparable in length.

Proof. We give the proof for the -shift version of the statement (part of the proof of theorem 6.5.1
can be used to extend the result to the -transformation). Recall that any sequence (a,) on a finite
number of symbols which satisfies o*(a,,) < (ay,) for all k > 0 arises as w(3) for some 3 > 1. Fix
B > 1 and write w; := w;(3). Let B(n) be the simple S-number which corresponds to the sequence
(w1, wa,...,wy,0,0,0,...). An elementary argument [Par| shows that 5(n) — (. It is clear that
¥i3(n) can be considered to be a subsystem of X5 (the subshift X3, corresponds to the set of labels
of edges of infinite paths that only visit the first n vertices of Gg).

Now suppose ¢ € C(X3) is a function for which the irregular set is non-empty. Then there

exists x,y € Xg such that

1 1
lim —Snp(z) # lim —Sup(y).

n—oo n,
Let 6 > 0 and N; € N be such that for n > Ny,
1

n

1
Snp(r) — - ne(y)| > 46.
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Pick N sufficiently large that
sup{|p(w) — p(v)| : w,v € g, w; =v; for i =1,..., Na} < 4.

For any n > N = max{Nj, Na}, let us choose 2’ € Cn(x) N X3, and ¥’ € Cn(y) N Xg(,). We
have for all m > N,

1 1
= Smo(z) — =S, o) > 26.
- e(x") - o) >

Thus the restriction of ¢ to X5(,,) does not have trivial spectrum of Birkhoff averages and by lemma

2.3.2, our main theorem gives us

hiop(Ea0n) (01 T5(m))) = heop(T5(n)) = log B(n). (6.3)

We remark that Y5(,,) is an n-step Markov shift (and thus has specification), so formula (6.3) also
follows for Holder continuous ¢ from theorem 9.3.2 of [Bar]. Note that iﬁ(n)(go, o3(n)) C ig(ap, 03).
By lemma 6.5.2, any subset Z C Xg(,,) satisfies Dimpy (Z, dg) = hiop(Z)/log 3. In particular,

DimH(Eﬁ(n),dﬁ) = log(ﬁ(n))/logﬁ. Thus

logﬂ(n)} _1q

Dimy (S5(p, 04),dg) > sup {DimH<iﬁ(n)(§070ﬂ(n)>v dﬁ)} = SUp{ log 7

O]

Remark 6.5.2. An almost sofic shift [LM] is defined to be a shift space ¥ for which one can find a
sequence of subshifts of finite type ¥,, such that ¥,, C ¥ and limy, .o htop(Xn, 0) = hiop(E,0). By
our previous reasoning, every 3-shift is almost sofic. We remark that the proof of theorem 6.5.3 shows

that if (2, 0) is an almost sofic shift, ¢ € C(X) and (i, 0) # 0, then htop(fl(go,o)) = hiop(0).

Remark 6.5.3. Pfister and Sullivan [PS1] consider the relationship between topological entropy and
Billingsley dimension Dim, (with respect to a reference measure v). We remark that when v is
equivalent to Lebesgue measure, then Dim, = Dimy. Every (-transformation has an invariant
measure vz which is equivalent to Lebesgue (and is the measure of maximal entropy). It is thus a

corollary of theorem 6.5.3 that if ¢ € C(X) and )A((go,fg) # (), then Dim,,; (X (¢, fs)) =1
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Chapter 7

Defining pressure via a conditional

variational principle

We now give an alternative definition of topological pressure for arbitrary (non-compact, non-
invariant) Borel subsets of metric spaces. We focus our attention on the case when the ambient
metric space is compact. The current approach is to define pressure as a characteristic of dimension
type, as used in chapter 4 and chapter 5. This approach was introduced by Bowen [Bow4] and
generalised by Pesin and Pitskel [PP2]. The entropy version in particular is very well established in
the literature as a dimension characteristic and plays an important role in dimension theory. One can
also define the upper and lower capacity topological pressure (see §2.1.5). This definition involves
the minimum cardinality of spanning sets and resembles the usual definition of topological pressure
in the compact invariant setting. As we saw in §5.1.1, the capacity topological pressure has its uses
(see also remark 7.1.3).

It would be desirable if topological pressure for arbitrary sets satisfied a variational principle

analogous to the classical variational principle

Pf(lamc(cp) = sup {hu + /cpdu e Mf(X)} :

A variational principle for the pressure of Pesin and Pitskel does exist but only applies to invariant
sets satisfying a certain condition which is very difficult to check (see theorem 7.1.1). No general
variational principle is known in the non-compact or non-invariant case for the upper or lower capacity
topological pressure (although the relativised variational principle of Ledrappier and Walters involves
the consideration of upper capacity topological pressure, see remark 7.1.3). We propose a new notion
of pressure, which by its very definition satisfies a suitable variational principle. We study the new
definition directly, deriving many desirable properties satisfied by the previous notions of pressure.

We study the relationship between the definitions and give interesting examples where the definitions
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differ or coincide. The new pressure has the advantage that its properties are significantly easier
to derive than that of the dimension-like version and we seem to pay no price in terms of desirable
properties. Since the new pressure is defined via a conditional variational principle, it is by its very
nature adapted to the study of thermodynamic properties.

In §7.1, we state our definition and set up our notation. In §7.2, we study the properties of
our new topological pressure when the ambient space is compact. In §7.3, we study the relationship
between the different definitions. In §7.4, we consider some interesting examples. In §7.5, we
study our new topological pressure when the ambient space is non-compact. In §7.6, we prove an

elementary result which we use in §7.2 (this should serve as a nice digestif to round off the thesis).

7.1 The new definition

Let (X,d) be a compact metric space and f : X — X a continuous map. Let C(X) be the space
of continuous real-valued functions on X. Let Z C X be an arbitrary Borel set. Let M;(X)
denote the space of f-invariant Borel probability measures on X and M¢%(X) denote those which
are ergodic. If Z is f-invariant, let M¢(Z) denote the subset of M ;(X) for which the measures
pu satisfy the additional property p(Z) = 1. Let M%(Z) := My(Z) N M$(X). We define the
(empirical) probability measures )

n—

Oan = % > Oph(a)

k=0

where ¢, denotes the Dirac d-measure supported on x. We define V(z) to be the set of limit points

for 04, namely:

V(z) ={p € M#(X) : 0gn, — p for some nj — oo}.
We state the new definition which will be the object of our study.

Definition 7.1.1. Let Z be an arbitrary non-empty Borel set and p € C(X). Define

P (p) = sup {hu +/ wdp : € V(x) for some x € Z} .
X
We set Pj(p) = infyex w(z). If p =0, than we may denote P7(0) by hy,,(Z).

Notation. As before, we denote the topological pressure of ¢ on Z defined as a dimension character-
istic using the definition of Pesin (see §2.1.1) by Pz(¢) and htop(Z) := Pz(0). The new topological
pressure of definition 7.1.1 and quantities associated with it will always carry an asterisk, eg. P%(¢),
hi, (Z).

top

Remark 7.1.1. An alternative natural definition to make is as follows:
P?((p) = sup {hu +/ wdp : pp= lim 0, for some x € Z} .
X n—oo
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If no such measures exist, then we set Pf(go) = infyex ¢(x). One obvious relationship is P5(p) >
Pj(gp). We take the point of view that P} (¢) is the better quantity to study because it captures
more information about Z than P?((p). Furthermore, the relationship between P7(y) and Pz(p)
is better than the relationship between Pf(go) and Pz(y) (see remark 7.3.3). Theorem 7.4.1 gives
an example of a set Z for which hi,,(Z) = hiop(Z) = hiop(f) but Pf(O) = 0.

Remark 7.1.2. When the ambient space X is non-compact, we can define hj,,(Z) as in definition

7.1.1, although we must insist that if ., V(z) = 0, then hj,,(Z) = 0. The definition of P (i)

requires a small modification in the non-compact setting and we study this situation further in §7.5.
Let us recall that the variational principle for Pz (y) proved by Pesin and Pitskel.

Theorem 7.1.1 (Pesin and Pitskel). Let Z be f-invariant and L(Z) = {x € Z : V(z)NM(Z) # 0}.
Then Pr(z) () = sup {hy + [, pdu}, where the supremum is taken over either M¢(Z) or M$(Z).

Remark 7.1.3. We note that in the context of fibred systems (i.e. (X1, f1) and (X2, f2) are dynamical
systems and 7 : X; — X continuous satisfies 7(X1) = X5 and mo f; = fa o), the relativized
variational principle of Ledrappier and Walters [LW] involves the pressure of compact non-invariant
sets (the fibres), and they use CPz(p) rather than Pz(yp). We state the entropy version of the
relativized variational principle: given v € M¢(X3),

sup  hy,=hy, —i—/X CPr1()(0)dv(z).
2

piporn—l=v
7.1.1 The set of generic points

For an invariant measure 1, let G, denote its set of generic points
Gu={x € X :6;pn— p}.

We consider GG, repeatedly in this chapter. If p is ergodic, G, is non-empty and by Birkhoff's
theorem (G),) = 1. Furthermore, if f satisfies definition 2.2.1 (specification), G}, is non-empty for
any invariant measure. This is proved in [DGS] when f satisfies definition 2.2.2 (Bowen specification).
When h, > 0, it is a corollary of the result h;,,(G,) = h, for any invariant measure. This was

proved for maps with the g-almost product property in [PS2], and thus for maps with specification.

7.2 Properties of P} (p)

Theorem 7.2.1. The topological pressure of definition 7.1.1 satisfies:
(1) P3 (p) < Py, (p) if Z1 C Z C X,
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(2) P;(p) =sup{Py(p) : Y € F} where Z = UycrY and F is a collection (countable or
uncountable) of Borel subsets of X,

(3) Py(po f) = Py(yp),

(4) If ¢ is cohomologous to ¢, then P () = P (),

(5) PZ(p+ ) < P(p) + B(¥), where B(1) = supem, x) Jx Ydi,

(6) P7((1 —t)p + 1) < (1 =) P7(p) +tP5(¥).

(7) 1P5(0) = Pz ()| < ¢ = @lloo,

(8) P3(p) > infrex (),

(9) For every k € Z, P}‘kz(go) = P (¢),

(10) POkEkaz(gp) = PD fsz(@) = PDkekaZ(SO) = P}(SO)

keN
Proof. Since U,cz, V() € Ugez, V(), the first statement is immediate. The second statement
is true because U,cz V(2) € Uyer Uzey V(). It is a standard result that V(z) C M(X) (see
for example [Wal]) and thus [y @dp = [y ¢ o fdp for p € V(). The third statement follows. If
1 is cohomologous to ¢, then there exists a continuous function A so ¥ = ¢+ h — ho f and so
Jx ¢dp = [x dp. The fourth statement follows. We leave (5) and (6) as easy exercises. (7) follows

from the fact that for p € V(x),

hu+/s0du§hu+/¢du+llw—s@lloo-

(8) follows from the fact that h, + [ pdu > infrex @(z). (9) is true since V(x) = Uyy.y— oy V(¥)
for all z € Z and we can apply (2). (10) follows from (9) and (2). O

P7%(¢p) is a topological invariant of dynamical systems in the following sense:

Theorem 7.2.2. Let (X;,d;) be compact metric spaces and f; : X; — X; be continuous maps for
1=1,2. Let m: X1 — X9 be a homeomorphism satisfying wo f; = foomw. Then for any continuous

¢ : Xo +— R and Borel Z C X5, we have P (p) = P;,l(z)(ap o).

Proof. For 1) € C(X3) and pu € My, (X2), let Y:=twomand fi:=pom Letpyc Ugez V(2).

Then p = limy,, o0 05, for some z € Z, ni — oo. Let y € X satisfy 7(y) = «. For an arbitrary

function ¥ € C(X4),
[wdn = [word

= lim iSnkwowfl(gc)

nE—00 N,

1
— lim —S,
oSt (y)

— lim / Oy -

nj— 00
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Since this is true for all ) € C(X1), we have fi € V(y). Thus pi € Uyez V(2) = it € Uyer—1(2) V(Y)-
Since hj + [ @dfi = hy + [ @dp, then P;,l(z)(gé) > P (). Reversing the previous argument gives
the desired equality. O

The proof shows that if m were only assumed to be a continuous surjective map, we would
obtain the inequality P} (p) < P;,l(z)(go o). We now verify that in the compact, invariant case

P’ (y) agrees with the classical topological pressure.
Theorem 7.2.3. If Z is compact and f-invariant, then P}(p) = Pg%¢(¢).

Proof. By compactness of Z, M(Z) is compact and thus (J,c; V(z) € Mf(Z). The inequality
Py (p) < PZa5%i¢(p) follows immediately. For the opposite inequality, let 1 € M ;(Z) be ergodic.
Taking any point z in G, we have V(z) = pu. We conclude that M$(Z) C U,cz V() and the

desired inequality follows from the classical variational principle. O
The following result is clear from the definition.

Theorem 7.2.4. Suppose Z contains a periodic point x with period n. Then

n—1 n—1
Phy(®) == 3 olf'a) and P(p) > = 3 o(f'a).
=0 i=o0

We now consider the set of generic points G,,. Bowen (for entropy [Bow4]) and Pesin (for
pressure [PP2]) showed that Pg,(¢) = h, + [@dp. In fact, it was this property that motivated
Bowen'’s original dimensional definition of topological entropy. We see that similar properties holds

for the new topological pressure.

Theorem 7.2.5. For any invariant measure, Péu () = hy + [@dp. Let Z be a Borel set with
ZNG, #0, then P} (o) > hy + [ pdu. Now assume that p is an equilibrium measure for @, then
Pgu(w) = P§assic(p). In particular, let m be a measure of maximal entropy and Z NGy, # (). Then

hrop(Z) = htop(f)-

The proof follows immediately from the definitions. Let us remark that if a measure of
maximal entropy is fully supported then hy, (U) = hip(f) for every open set U.

It is informative to consider the pressure of a single point.

Theorem 7.2.6. Let v € G,. Then Pfx}(go) = hu+ [ wdp and Py (p) = [ pdp. Thus Pfx}(sp) =
P (@) iff by = 0.

Proof. The first statement is clear. The second follows from the formula for pressure at a point
Py (p) = liminf,, o LS, p(x) (see §7.6). Since x € G, LS Lo(fi(x)) — [ pdu for every

continuous ¢. O
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Theorem 7.2.7. Let z € X. If hy, > 0 for some pn € V(x), then P{ () > Pryy(p).

Proof. Suppose 1 € V(x). Then for some my, — oo, we have
dp = li 1S > i 'f15 =P
/@ p=lim mp(2) = iminf =S, 0(2) = Pray(¢)-
Therefore, if hy, >0, then P{\(¢) = hy + [ odp > Pryy(p). O

Remark 7.2.1. Theorem 7.2.6 provides us with a simple example which shows that Pz () and P ()
are not equal. In theorem 7.6.1, we verify that for x € G, CP,3(¢) = CPyy(¢) = [ pdu. Hence,

theorem 7.2.6 shows that P} () cannot be equal to these quantities either.

Remark 7.2.2. We note that P7(¢y) is sensitive to the addition of a single point to the set Z. When
¢ # 0, the same is true of Pz(¢). However, in the case of entropy, we have a contrast between
htop(Z), which remains the same under the addition of a countable set, and h},,(Z), where a single

point can carry full entropy.

For ergodic measures, an inverse variational principal holds.

Theorem 7.2.8. Suppose p is ergodic. Then
(1) hM - 1nf{htop( ) (Z) = 1}'
(2) hy + [ edp = inf{P7(p) : p(Z) = 1}.

Proof. We prove (2), then (1) follows as a special case. Suppose Z is a Borel set with u(Z) = 1.
Since p is assumed to be ergodic, u(G,) = 1 and thus Z NG, # (. It follows that P}(p) >
hu + [ pdp and thus inf{P} () : p(Z) =1} = by + [ @dp. Since PG (@) = hy + [ @dp, we have
an equality. O

The assumption that p is ergodic is essential. For example, let 1 = pu; + (1 — p)ue where
1, po are ergodic with h,, # hy, and p € (0,1). If u(Z) = 1, then p1(Z) = 1 and thus Z
contains generic points for y11. Therefore, hy,,(Z) > h,,. Repeating the argument for 15, we obtain
inf{hj,,Z : W(Z) = 1} > max{hy,, by, } > by = phy, +(1—=p)hy,. In fact, since u(Gp, UG,,) =1
and h;{op(Gu1 UGp,) = max{hy,, hy,}, we have inf{h;,,Z : u(Z) = 1} = max{hy,, hy, }.

We have a version of Bowen's equation.

Theorem 7.2.9. Let ¢ be a strictly negative continuous function. Let ¢ : R — R be given by

Y(t) := P (tp). Then the equation 1(t) = 0 has a unique solution. The solution lies in [0, 00).

Proof. Let s > t. Let p € U,z V(2) and C = inf —p(z) > 0. We have

hMJr/sgod,u:hunL/tgodu—(s—t)/—gpdu
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and, since [ —@du € [C, [|¢]|),

h#+/s<pduSh#—i-/ttpdu—(s—t)C.

Therefore, ¥(s) — 1(t) < —(s — t)C and so v is strictly decreasing. (Similarly, ¥ (s) — ¥(t) >

—(s —t)||¢|lco, S0 ¥ is bi-Lipschitz.) Since ¥(0) > 0, P (ty) = 0 has a unique root. O

Remark 7.2.3. We compare the properties derived here with those satisfied by Pz(y). In theorem
7.2.1, properties (1), (3), (4), (6) and (7) hold for Pz(¢). Property (2) holds for Pz(y) only when
the union is at most countable. Properties (9) and (10) are known to hold for Pz(¢) when f is a

homeomorphism. Theorems 7.2.2, 7.2.3, 7.2.8 and 7.2.9 hold for Pz(y).

7.2.1 Equilibrium states for P} ()

Suppose a measure p* satisfies P} () = hys + [y @dp* and p* € U,z V() for a (not necessarily
invariant) Borel set Z. Then we call 1* a *-equilibrium state for p on Z. If u* satisfies hy,,(Z) = hy+,
we call ©* a measure of maximal x-entropy. If Z is invariant, we call a measure u that satisfies both
Pz(p) = hy+ [ @dp and p(Z) = 1 simply an equilibrium state for ¢ on Z. The latter definition
coincides with that of Pesin [Pes|. It is clear from the definition that if ©* is a *-equilibrium state

and p is an equilibrium state for ¢ on Z, then

hys +/ wdu* > h#+/ wdjL.
X X

Note that it is possible that p*(Z) = 0. There are situations where the new definition seems more
appropriate than the old. We describe a non-trivial example in 7.4.4 but first let us a consider a
periodic point  of period n > 1. Then, for any function, d,, is a *-equilibrium state on {z}.

However, as {x} is not invariant, the notion of equilibrium state is not defined.

7.3 The relationship between P;(y) and P} (p)

In theorem 7.3.3, we show that the inequality Pz(p) < P;(y) holds. Theorem 7.2.6 provides
examples where Pz(y) < P} (¢) and non-trivial examples can be constructed. §7.4 contains concrete

examples where Pz (¢) = P%(y) and we have the following:

Theorem 7.3.1. For an f-invariant Borel set Z, let G(Z) = U, e, (z) Gu N Z. Then Pg(z)(¢) =
Pg(z)(#)

Proof. Note that L(G(Z)) = G(Z). Applying theorem 7.1.1, we have Pg(z)(¢) = sup{h,+ [ @dpu :
ne My(G(2)) = Py (). 0
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Before embarking on a sketch proof that Pz (y¢) < P (), we give a less sharp result, whose

proof is straight forward given theorem 7.1.1.

Theorem 7.3.2. If Z is an f-invariant Borel set, we have

Priz) () < Py(p) < PE*(p) and Pr(z)(#) < Ppiz)(#)-

Proof. We note that if p € M%(Z), then u(ZNG,) = 1. Taking z € ZN Gy, we have V(z) = {u}

and thus M%(Z) C U,cz V(z). Note that x € L(Z) and so M$(Z) C Uyer(z) V(). By theorem

7.1.1, the first and third inequalities follows. For the second inequality, we have P7 () < PZ(¢) =
classic

P7 (). [

Example 7.4.4 shows that the second inequality may be strict (the sets X (¢, ) are dense
but do not carry full entropy), and remark 7.4.3 shows that the third inequality may be strict. The
first inequality of the following theorem is the main result of this section. We do not assume that Z

is invariant.

Theorem 7.3.3. Let Z be an arbitrary Borel set and Y = Uy f~FZ, then

Py(p) < Py(p) < Pgossie(p).

§7.3.2 constitutes a sketch proof of the first inequality. This result, although never stated
before, follows from part of Pesin and Pitskel’'s proof of theorem 7.1.1, with only minor changes
required. For a complete proof, we refer the reader to [PP2] or [Pes]. Here, we attempt to convey
the key technical ingredients. The second inequality is trivial as Y is a closed invariant set containing

Z.

7.3.1 Definition of Pesin and Pitskel’s topological pressure using open covers

For the proof on which we are about to embark, it is more convenient to work with an alternative
formulation of Pesin and Pitskel’s topological pressure which is equivalent to that stated in §2.1.1.
Let (X,d) be a compact metric space, f : X — X be a continuous map and ¢ € C(X). Let
Z C X be a Borel subset. We take a finite open cover U of X and denote by S, () the set of all
strings U = {(Ui, .-, Ui,,_,) : Ui; € U} of length m = m(U). We define S(U) = U,,>0 Sm(U),
where So(U) consists of (). To a given string U = (U,,,...,U;,, ,) € S(U), we associate the set
X(U)={z e X: fi(x) € Uy forall j = 0,...,m(U) — 1} = ﬂ;ﬁ:(éj)*l f77Us,. We say that a
collection of strings G C S(U) covers Z if Z C Upyeg X(U). Let a € R. We make the following

definitions:
1

m(U)—
Q(Z,a,U,G,0) = > exp (—am(U) + sup Y
) k=0

Ueg JJEX(U

w(fk(w))) : (7.1)
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M(Z7 a7u7 N7 SO) = iEfQ(ZJ a7u7g7gp)7 (72)

where the infimum is taken over all finite or countable subcollections of strings G C S(U) such that
m(U) > N for all U € G and G covers Z. We set sup,cx(u) Sio m(U)-1 o(f*(z)) = —co when
X(U) = 0. Define

m(Z,a,U, ) := ]\;iian(Z,a,M,N,w). (7.3)

There exists a critical value a, with —oco < a,. < 400 such that m(Z, a,U, p) = oo for a < a, and

m(Z,a,U,p) =0 for « > ae. Let |U| = max{Diam(U;) : U; € U}.
Definition 7.3.1. We define
Pz(o,U) :=inf{a: m(Z,a,U, ) =0} =sup{a: m(Z,a,U, ) = o0} = o,

Lemma 7.3.1.

Pz(p) = llyfgo Pz(p,U).

For the proof that Pz(i) coincides with limyy, .o Pz(p,U), we refer the reader to [PP2] or
[Pes].

7.3.2 Sketch proof of P;(p) < P3(p)

Let Y = {Uy,...,U,} be an open cover of X and £ > 0. Let
Var(p,U) = sup{|p(z) — ¢(y)| : z,y € U for some U € U}.

Let E be a finite set of cardinality n, and a = (aq,...,ar_1) € E¥. Define the probability vector

Ha = (Mg(el), . -aﬂg(en)) on E by
1 . .
pales) = %(the number of those j for which a; = ¢;).

Define

n

Z (€i) log pa(e€i).

In [Pes], the contents of the following lemma are proved under the assumption that p € V(z) N

M(Z). However, the property p(Z) = 1 is not required. We omit the proof.

Lemma 7.3.2. Given x € Z and pu € V(z), there exists a number m > 0 such that for any n > 0
one can find N > n and a string U € S(U) of length N satisfying:

(1) z € X(U),

(2) suppex(u) Lo P(fF(2)) < N ([ wdp + Var(p,U) + <),
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(3) U = (Uy,...,Un_1) contains a substring U’ with the following properties: There exists
ke NwithN—m<km<Nand0 <iyg<...<ig15s0ayg= Uy,.-..,Uiptm), ---,0k—1 =
(Uip_ys-- - Uip_y4+m) and U’ = (ag,...,ax_1). Note that the length of U’ is km. Writing E =

{ag,...,ax—1} and a = (ag,...,ar_1), then

1
—H <h .
m (a) <h,+e

Given a number m > 0, denote by Z,, the set of points x € Z for which there exists a
measure p € V(x) so lemma 7.3.2 holds for this m. We have that Z = J,;,»g Zm. Denote by Z,, ,,
the set of points z € Z,, for which there exists ;1 € V(x) so lemma 7.3.2 holds for this m and
Jodp € [u—e,u+e]. Set c =sup{h,+ [pdu : p € Uyey V(x)}. Note that if © € Zy, ,,, then the

corresponding measure u satisfies

hugcf/gpd,ugcfque. (7.4)
Suppose a finite set {uy,...,us} forms an e-net of the interval [—||¢||, ||¢]/]. Then
o0 S
Z= U U Zm,u;
m=11=1

and hence Pz(p) > sup,,; Pz, ,.(¢). It will suffice to prove that for arbitrary m € N and u € R
that Pz, .(¢) <c.

For each z € Z,,, ,, we construct a string U, and substring U/, satisfying the conditions of
lemma 7.3.2. Let G,,, denote the collection of all such strings U, and g:w denote the collection
of all such substrings U’,. Choose Ny so m(U,) > Ny for all U, € Gy, . Let Gy N denote
the subcollection of strings U, € G, with m(U) = N and g:mu’N denote the correponding
subcollection of substrings. Note that

)
Gmuw=|J Gmun and #Gpmun < #UTH#Gr, o\ N-
N=Np

We use the following lemma of Bowen [Bow6].
Lemma 7.3.3. Fixh > 0. Let R(k,h,E) ={a € E*: H(a) < h}. Then

1
lim sup Z log #(R(k,h,E)) < h.

k— 00
Set h = c—u+e. It follows from (7.4) and the third statement of lemma 7.3.2 thatif z € Z,,, ,,
has an associated string U, of length NN, then its substring U, is contained in R(k,m(h +¢),U™)
where k satisfies N > km > N —m. Therefore, #G;, , \ does not exceed #R(k, m(h +¢),U™),
and thus #Gp, u.n < #UTH#(R(k,m(h +¢),U™)). Applying lemma 7.3.3, we obtain

1 1
lim sup N log #Gmun < limsup — log #U™#(R(k,m(h +¢),U™))

N—o0 k—oo

< h+e.
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Since the collection of strings G, ,, covers the set Z,, ,,, we use property (2) of lemma 7.3.2 to get

N—-1

Q(Zms NU, Gy ) = i > GXP{—ANJr sup Zﬂf’“(aﬁ))}

N=No UEG,, u,N zeX(U) k=g
< Z #Gm,u,N €xp {N <—)\ + Var(o,U) + /cpd,u + 5) } )
N=Np

Choose Ny sufficiently large so for N > Ny, we have #G,, , N < exp(N(h + 2¢)) and thus

o0

M(Zypus MU, Noy ) <> exp {N (h—A+Var(<p,U)+/<pdu+3e>}-
N=Ny

Let B =exp (h — X+ Var(o,U) + [ @du+ 3¢). If X > ¢+ Var(o,U) + 5e, then 0 < 8 < 1. Thus,

pho
M(Zm,ua)‘vquOﬂO) < m,
. BNo
m(ZmM,)\,Z/{,gp) < N})lgloo 1-3 = 0.

It follows that A > Pz, (o,U). Since we can choose \ arbitrarily close to ¢ + Var(p,U) + 5e, it
follows that

Pz,..(o,U) < c+ Var(p,U) + 5e.
We are free to choose ¢ arbitrarily small, so on taking the limit [U/| — 0, we have Pz, (¢) <¢, as
required. It follows that Pz (y¢) < c.

Remark 7.3.1. In [PP2], it is shown that if 4 € M¢(X) and pu(Z) =1 then Pz(p) > h, + [ ¢dp.
Thus, if Z is a set satisfying u(Z) =1 for all pn € U,z V(x), then Pz(p) = P (p).

Remark 7.3.2. If Pz(¢) < P%(y), then we see a phenomenon similar to example 7.4.4, where
probability measures p with (Z) < 1 or even u(Z) = 0 capture information about the set Z. This

may seem unusual but example 7.4.4 motivates the utility of this point of view.

Remark 7.3.3. We can adapt the proof to obtain the inequality Fg(z)(v) < P?(go). The argument
would differ in the paragraph above lemma 7.3.3. We would construct strings U, and U/, only for

those = € G(Z) rather than every z € Z.

Remark 7.3.4. We can view the result of this section as an inequality for P;(y). We state this
explicitly without reference to definition 7.1.1. Let Z be a Borel subset (not necessarily invariant) of

a compact metric space (X, d). Then

Pz(p) < sup{h, + /(pd,u, U= nill»noo dz.n, for some x € Z, nj, — oo},

7.4 Examples

Here are some interesting examples for which Pz(y) and P} () coincide.
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7.4.1 North-South map

The following example was suggested by Pesin. Let X = S', f be the North-South map and
Z = S'\ {S}. (By the North-South map, we mean the map f = g~! o hog where g is the
stereographic projection from a point [NV onto the tangent line at .S, where S is the antipodal point
of N, and h: R+ R is h(x) = 2/2.) One can verify that if z € S'\ {N, S}, then V(z) = §5 and

it is clear that V({N}) = dn. Using this and the fact that hs, = hs, = 0, we have

Py(p) = max{ [ pdis, [ iy} =max{p(N), o(5)}

To calculate Pz(¢), one can use Pz(p) = max{Pny(¥), Pz vy (¢)}. Using the formula for pres-
sure at a point or Pesin’s variational principle, Py} (¢) = @(N). One can verify that P\ ny(¢) =

©(S). Thus, Pz(y) and P;(p) coincide for all continuous ¢.

Remark 7.4.1. Note that £(Z) = {N}. If we choose ¢ so that ¢(S) > ¢(N), we are furnished
with an example where Pz(p) > Pr(z) (), showing that we could not replace Py (¢) by Pz(¢)

in Pesin’s variational principle (see theorem 7.1.1).

Remark 7.4.2. Our example shows that, in contrast to the compact case, the wandering set can
contribute to the pressure (whether we consider P} () or Pz(y¢)). Let NW(X) be the non-
wandering set of (X, f) and W(X) := X \ NW(X). (Recall that x € NW(X) if for any open set
U containing x there exists N so fN(U)NU # ).) For an arbitrary set Y C X, let N\W(Y) =
Y NNW(X) and W(Y) =Y NW(X). For the set Z of our example, NW(Z) = N (see §5.3 of
[Wal]). Assuming that ¢(S) > ¢(IV), we have

Pirwz)(9) = ¢(N) < ¢(S) = P7(p).

classic

This contrasts with the compact case, where PNW(X)(‘P) = Pglassic().

7.4.2 Irregular sets

Theorem 7.4.1. Let (3, 0) be a topologically mixing subshift of finite type and 3 be the set

Si=%)\ U G-
neEMy (%)

Then hi,,(5) = hiop(0r) and PL(1) = PEessic(yp) for all y € C(X).

We remark that Barreira and Schmeling showed in [BS5] that hop(3) = hyep(). It follows
that hyep(2) = A

top(f]). After an application of the classical variational principle, the proof of

theorem 7.4.1 follows immediately from the next lemma in which, for simplicity, we assume X is a

full shift.
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Lemma 7.4.1. M$(2) C U, s V(z).

Proof. Let p11 be some ergodic measure. Let 12 be some other ergodic measure. Let z € G, y €
G, and N — oo sufficiently rapidly that V1 > 2Nk We can use the specification property of the
shift to construct a point p so 0, n,, — w1 and d, n,, ., — p2. Namely, let wo; 1 = (21,...,2N,,_,)

and wa; = (Yy1,...,YN,,;) forall i > 1. Let p = wjwows... € X. Then p € S and p € V(p). dJ
We establish a result analogous to the main result of chapter 4.

Theorem 7.4.2. Let (X,d) be a compact metric space and f : X — X be a continuous map with

the specification property. Assume p € C(X) satisfies nf e, (x) [ pdu < SUD e M (X) J pdu. Let
=R 1 n—1 )
X(p, f) = {:1: e X: lim — Z o(f*(x)) does not exist } .
n—oo n 4
1=0

Then h;‘op()?(ap, 1)) = hiop(f) and P% (1) = Pgassic(y) for all 1 € C(X).

X(p.f)
Combining this with the main result of chapter 4, we have P)?(%f)(w) = P)?(%f) (1) when
f has specification. The proof of theorem 7.4.2 follows immediately from the next lemma by the

classical variational principle.
Lemma 7.4.2. M?(X) - Ux@)@, V(x).

Sketch proof. Let pu1, 2 be ergodic measures with [ @dupy < [ @dups. Let x; satisfy %Sngp(:ni) —
[@du; for i = 1,2. Let my, := m(c/2%) be as in the definition of specification and N — oo
sufficiently rapidly that Np,q > exp{Zle(Ni + m;)}. We define z; € X inductively using the
specification property. Let t; = Ny, tx, = tx_1 +mg + Ny for k > 2 and p(k) := (k+1)(mod2) + 1.
Let 21 = x1. Let 2y satisfy dp,(29,21) < /4 and dn,(fN17™229,29) < /4. Let z, satisfy
Aoy, (zr—1,21) < &/2F and dp, (fE=1TM 2, 250)) < €/2F. Let Bu(z,6) ={y € X : dy(z,y) <}
We can verify that By, ,, (2k+1,6/2%) C By, (2k,2/2"1). Define p := N By, (zx,£/2571). For any
¥ € C(X), we can show tlkStkq/)(p) — [ Ydpyy. Thus 0pryy — 1, Opty, — p2 and so
p1, 2 € V(p). In particular, p € X’(% 1) O

Remark 7.4.3. Using a similar construction to the proof of lemma 7.4.1, we can show that the
inequality Pr(z)(¢) < PZ(Z)(go) may be strict. Let (X, 0) be a Bernoulli shift. Let yuq, o be ergodic
measures with h,, > h,,. We can construct a point z so the sequence of measures ¢, does not
converge and V(z) = {1, u2}. Let Z = G, U {z}. We see that L(Z) = Z and, by theorem 7.1.1,
hiop(Z) = hy,. However, hi,(Z) = hy, .

Remark 7.4.4. The proof of lemma 7.4.2 generalises in the expected way to the setting of maps f

with the almost specification property. Thus, the statement of theorem 7.4.2 holds for continuous
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maps with the almost specification property. In particular, the statement of theorem 7.4.2 holds

when f is the (-shift.

7.4.3 Levels sets of the Birkhoff average
We establish a result analogous to the main result of chapter 5.

Theorem 7.4.3. Let (X,d) be a compact metric space, f : X — X be a continuous map with the

specification property and ¢, € C(X). For a € R, let
1 n—1 ]
— . 3 _ 7 —
X(p, ) = {w €X: lim — Z(:]w(f (z)) —a}-
1=

Suppose X (p, ) # 0, then
(1) hiop(X(p,a)) = sup{hy : p€ My(X) and [ dp = a},
(2) Px (o)) =sup{hy + [Ydp: p € My(X) and [dp = a}.

Combining this with the main result of chapter 5, we have Px(, o) (¢) = P)*(W a)(I/J) when

f has specification. The proof of theorem 7.4.3 follows from the next lemma.
Lemma 7.43. {p e My(X): [pdp=a}={peV(z):zec X(p,a)}.

Proof. Let ;1 € My(X) and [@dp = a. Recall that G, # 0 and let z € G,. Then V(z) = p,
and so {pp € M¢(X) : [pdp = a} € {p e V(z):z e X(p,a)}. Conversely, if € V(zx) for
x € X(p,a) then there exists nj, — 00 50 [ pdu = limy, oo [ Pddsp, = limy, oo - m = Sno(x) =

lim,,— oo %Sngo(x) =«

7.4.4 Manneville-Pomeau maps

Manneville-Pomeau maps are the family of maps on [0, 1] given by
fs(z) =z + 2" (mod1)

where s € (0,1) is a fixed parameter value. Each of these maps is a topological factor of a full
one-sided shift on 2 symbols and so satisfies the specification property. Takens and Verbitskiy have
performed a multifractal analysis for the function ¢(x) = log f1(z) (i.e. the multifractal analysis of
pointwise Lyapunov exponents). We recall some results which can be found in [TV2]. One of the

key results used for their multifractal analysis, restated in our new language, is

Theorem 7.4.4. f: X — X be a continuous map with the specification property, and ¢ : X — R

a continuous function. Then
(1) hjpp(X (@, 0)) < ;gﬂg{P§§“SSic(q¢) — qa}.
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Furthermore, if f has upper semi-continuous entropy map then

(2) h:op(X((pv a)) = ;gﬂg{Pgéassic(q()&) - qa}'

Since fs is positively expansive, it has upper semi-continuous entropy map. There is an
interval of values Z (which turns out to be (0,h,) where p is the absolutely continuous invariant
measure for fs) which has the following property. For o € Z, the infimum of theorem 7.4.4 (2)
is attained uniquely at ¢ = —1 and P§%%¢(—¢) = 0 (using results from [Urb] and [PS3]). Thus,
B

top(X(@,a)) = a and if v is an equilibrium measure for —p with [ @dv = a, then hf, (X (o, a)) =

hy. The set A = {pdo+ (1 —p)p : p € [0,1]} consists of equilibrium measures for —p and Takens
and Verbitsky show there is a unique measure satisfying 1, € A and [ odp, = . By lemma 7.4.3,
to € V(z) for some z € X (¢, a), and so pu,, is a *-equilibrium measure (for 0 on X (¢, a)). However,
even though hiop(X (¢, @) = hy,,,, they show 1, (X (¢, ) = 0, so pq is not an equilibrium measure
(for 0 on X (¢, )) under the definition of Pesin.

In fact, jiq is the unique x-equilibrium measure. In Proposition 1 of [PSY], Pollicott, Sharp
and Yuri show that v is an equilibrium state for —¢ iff v € A (they also give a nice proof that
Pgassic(—p) = 0). It follows that if 4 ¢ A and [ ¢du = a, then h, < a. Combining this with the

above discussion shows that p,, is unique.

7.5 Topological pressure in a non-compact ambient space

We define P (¢) for an arbitrary set Z C X and ¢ € C(X) when the ambient space X is non-
compact. For the definition to make sense, we must exclude the consideration of measures u such

that both h, = oo and [ pdp = —o0.

Definition 7.5.1. Let Z be an arbitrary Borel set and ¢ € C(X). Define
Py (p) = Sup{hu —I—/ wdp : p € U V(x) and / odp > —oo}.
X T€Z X

If Upez V(x) =0, let P3(p) = infrex o(x). If Upez V(2) # 0 and {1 € Upez V() : [x pdp >
—oo} =0, then P%(p) = —o0.

The reason we set P () = inf,ecx ¢(z) when U, V(z) = 0 is to ensure that the inequality
P}l(gp) < P}Q(gp) holds for all Z3 C Z,. We remark that if ¢ is bounded below, then we have
Jx @dp > —oo for all 4 € M¢(X). Hence, if X is compact, definitions 7.5.1 and 7.1.1 agree.

Remark 7.5.1. Assume h}

top(Z) < 0o. Then we do not have to restrict ourselves to measures with

Jx @dp > —oo in the definition of P (). Either P}(¢) = —oo or the extra measures considered

do not contribute to the supremum.
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Remark 7.5.2. In the non-compact setting, dimensional definitions of pressure have the disadvantage
that there are examples of metrizable spaces X (eg. countable state shifts) and metrics dy,dy on X
where Py x, () # Pz x,(¢) (where X1 = (X, d;) and X3 = (X, d2)) but d; and d; give rise to the
same Borel structure on X and thus no variational principle can hold. However, P} (¢) depends only

on the Borel structure of X and is thus invariant under a change of topologically equivalent metric.

Remark 7.5.3. In [DJ], Dai and Jiang study a definition of topological entropy for non-compact
spaces adapted to the problem of estimating the Hausdorff dimension of the space. Their definition
is not a topological invariant, so is not equivalent to ours. They give an interesting discussion of
the issues one faces when considering entropy as a measure of chaotic behaviour in the non-compact

setting.

We now study some properties of P (¢) in the non-compact setting.

Theorem 7.5.1. Let P} (¢) denote the pressure of ¢ on Z when Z C 'Y and Y is considered

as the ambient space in the definition. Let K C X be compact and invariant and Z C K. Then

PE,X(SD) = P%,K(‘P)-
Proof. It suffices to notice that if 41 € U,cz V(x), then p € My (K) and h,(f|x) = hu(f). O

Theorem 7.5.2. Let X be a separable metric space and ¢ € C(X). Then
(1) Px(p) = sup{Pj x(¢) : K C X is compact},
(2) Px(p) = sup{hy, + [@dp: p € Myp(X), [ odp > —oo}.

Proof. For (1), we note that if K, is a countable collection of compact sets that cover X, then
P (p) = sup{ Pk, x(p)} by basic properties of P¥ (). For (2), let c denote the value taken by
the supremum. That P (¢) < c is immediate. It suffices to consider only ergodic measures in the
supremum. We note that since X is a separable space, if 1 is ergodic then 1(G,) = 1. Thus, there

exists x satisfying V(x) = p, which shows that P (¢) > c. O

In [GS], Gurevich and Savchenko study two definitions of topological pressure adapted to

non-compact spaces. We compare these with P} ().

Definition 7.5.2. Set P™' (X, ) = sup{P%%¢(¢)}, where the supremum is over all subsets
K C X which are compact and invariant. Suppose X can be continuously embedded in a compact
metric space X and f can be extended continuously to X. We set P<"t(X, ) = inf{ Py ¢(¥)},

where the infimum is over all such embeddings.

Theorem 7.5.3. For any X separable, f: X — X and ¢ € C(X), we have P™ (X, ¢) < P%(y).
When Pe*t(X, ) is well defined, P%(p) < P<UH(X, ).
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Proof. The first inequality follows from the classical variational principle and (2) of theorem 7.5.2.
Let X be a compact metric space satisfying the requirements of the definition and ¢ be the extension

by continuity of ¢ to X. By theorem 7.1.1 and (2) of theorem 7.5.2,

Px(p) = Pﬁ(X),f((@) < PXX(@)
Since X was arbitrary, we obtain the desired inequality. O

Remark 7.5.4. Both inequalities of theorem 7.5.3 may be strict. As noted in [GS] and [HKR], let Y be
a compact metric space and f : Y +— Y be a minimal homeomorphism with /A, (f) > 0. Let ¢ = 0.
Let X =Y \ O(z), where O(x) is the orbit of an arbitrary € Y. There are no compact, invariant,
non-empty subsets of X, so P™(X,0) = 0. However, A, (X) = sup{h, : p € Ms(Y)} = hiop(f).
For the second inequality, we use an example similar to 7.4.1. Let X = S'\ {S} with induced metric

d from S, f is the North-South map and ¢(z) = d(z,{N}). We have P%(¢) = ¢(N) = 0. We

can verify that given any continuous embedding into X and any y € X \ X, Py x(p) > p(y) > 0.

Remark 7.5.5. In [HNP], the authors compare various definitions of topological entropy for a non-
compact space X and a continuous map f : X +— X. One of these definitions is a natural
generalisation of Adler-Konheim-McAndrew's original definition of entropy [AKM], which we denote
by hé)fM(f). Proposition 5.1 of [HNP] provides an example of a homeomorphism f of the open
unit interval (equipped with a non-standard metric) for which h{ng(f) = 00 but h,,(f) = 0.

In [HKR], Handel, Kitchens and Rudolph give another definition of entropy for a non-compact
metric space (X, d) and continuous f : X — X, which is invariant under a change of topologically
equivalent metric and is a generalisation of CPz(0). Let S(K,n, ¢, d) denote the smallest cardinality

of an (n,e) spanning set for a compact set K C X in the metric d. Let

1
hfop(X) = sup{lin(l) limsup — log S(K,n,e,d) : K C X is compact }.
E—>

n—oo T

In fact, this definition first appeared in [Bowl]. The innovation of [HKR] is to define

hfng(X) = inf{hf;p(X) : d’ is a metric topologically equivalent to d}.

They show that hng(X) > sup{hy : p € My(X)} and construct an example where the inequality

is strict. Thus hng(X) > hi,p(X) and it is possible that the two quantities may not coincide.
However, if X is locally compact, f : X — X is uniformly continuous, Y is the one point
compactification of X and g : Y + Y is the extension by continuity of f, they show that h/IKE(X) =

top
hz(op(X) = htop(g)-
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7.5.1 Countable state shifts of finite type

We conclude by considering a topologically mixing countable state shift of finite type (X, ). Follow-
ing Sarig [Sar], we equip ¥ with the metric d(z,y) = r(®¥) where t(z,y) = inf({k : 2} # yx} Uo0)
and r € (0,1). Let P%(y) denote the Gurevic pressure as defined by Sarig [Sar] where ¢ is a locally
Holder function and h%(o) := P%(0). In [GS], the authors allow ¥ to be equipped with more general
metrics and study P (X, ) and P (X, ) for ¢ € C(X). To rephrase corollary 1 of [Sar], Sarig
showed that in his setting P%(p) = P (%, ).

Theorem 7.5.4. h}, (X) = h%(0).

top

Proof. By corollary 1.7 of [GS], P (X,0) = P*(X,0) in the metric d. The result follows from
theorem 7.5.3. Ul

Theorem 7.5.5. We have P§(¢) > P%(p). With the extra assumption sup,¢s, | e?W| < oo,

we have P (¢) = P%(p) < co. If P9(p) = oo, then P%(yp) = .

oy=x

Proof. The first inequality is a rephrasing of theorem 7.5.3. Under the extra assumption, Sarig
showed PY(p) = sup{h, + [@du : p € Ms(2), [ wdu < 0o} < co. The supremum is equal to
P3.(p) by theorem 7.5.2. O

7.6 Pressure at a point

In theorems 7.2.6, 7.2.7 and the remark afterwards, we considered the topological pressure on a point

z. Here, we prove the formulae that we quoted for Py (), CPy.1(v) and CPr.y(p).

Theorem 7.6.1. Let X be a compact metric space, f : X — X and z be an arbitrary point. Then

n—1

PLy(9) = CP Ly (¢) = limint 3 o(f1(2),
=0

n—1
TP o) = limsup 32 (7))

Remark 7.6.1. It follows from theorem 7.6.1 and the ergodic theorem that for any invariant measure

1, there is a set of full measure so that Pp.y(¢) = CPy.y(¢) = CP(p). If uis ergodic, this value

is [ pdu.

Remark 7.6.2. If 2 is a point for which the Birkhoff average of ¢ does not exist, then P (p) =

CPy(p) < CPy(p).

The theorem is a consequence of the lemmas that follow and the relation Pz () < CP,(p) <
CPz(p) for any Borel set Z C X (formula (11.9) of [Pes]).
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Lemma 7.6.1. Let (X,d) be a compact metric space, ¢ : X — R a continuous function, and

z€ X. Then

n—1

Pea(p) = hmmff Z o(fi(z

n—oo n,

Proof. We work directly with our usual definition of Pesin and Pistskel topological pressure (see
§2.1.1). Without loss of generality, it suffices to consider covers of {z} by a single set B, (z,¢). Fix

e>0, NeNand 0<d < % Choose « satisfying

n—1

a < hnm inf 1 Z ©(f1(2)) — Var(p,e) — 6. (7.5)
=0

Assume N was chosen sufficiently large so that for m > N,
1 n—1 ) 1 n—1 )
=Y @(fi(2)) = liminf = > o(f'(2)) — 0. (7.6)
"izo L

Choose I' = {B,,,(x, €)} such that z € B,,(x,c), m > N and

‘Q({Z},a,r,(p) - M<{Z}7a757N7 90)‘ S d.

We can prove that -7t o(f*(2)) — mVar(y, €) — ma > 0, which follows from (7.5) and (7.6). It

follows that

M{{z},a,e,N,p)

v

exp

am -+ sup ngfk }

{ yEBm(:c €) k=0
> { m + Z o(f*(2) mVar(w,s)} — 39
6>

> 11—

l\')\»i

So M({z},a,e,N,¢) >0 and hence P1(p,€) > a. It follows that

P > liminf — ‘ -V — 4.
(:3(p:€) = liminf ~ ;)sa(f (2)) — Var(p,e)
On taking the limit ¢ — 0 and noting that § was arbitrary, we obtain the desired result. O
Lemma 7.6.2. CP,(p) = liminf, . 3707 Lo(fi(2)).

Proof. It follows from the definition of C'P,(¢) that

1 ' n—1 .
CPr(p) = lim lim inf — log ( inf , oXP {;:) o(f (53))}) :

z:2€ Bp(z,e

For a fixed € and B, (x,¢) which contains z,

n—1 n—1
Yoe(f{(@) <D0 e(fi(2) +my(e).
=0 =0



It follows that .
| -
< Tim T inf & i '
CPyy() < lim lim inf n{g o(f1(2)) + ()}
We obtain CPr(p) < liminf, . 1 ) D L o(fi(2)) and we can prove the reverse inequality in the
same way. [

Lemma 7.6.3. CPy(p) = limsup,,_,. + ) B L o(fi(2)).

Proof. It follows from the definition of C'Pz(¢) that

n—1
Q{Z}( )= hr%hmsup log < inf( exp {Z cp(f%x))}) )
i=0

e—=0 n—soo MN 2:2€EBp (x,€)

The rest of the proof proceeds in the same way as that of lemma 7.6.2. O
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Future directions

We mention some questions of further interest which relate to the contents of the thesis.

There are some very interesting questions surrounding the almost specification property (see
chapter 6). Many interesting results which are known for maps with the specification property should
generalise to the class of maps with almost specification. For example, Bowen's results concerning
uniqueness of equilibrium states for maps with the specification property [Bow5]| should carry over
to this more general setting.

Another obvious avenue of investigation is to see which other maps have almost specification.
We have some ideas about this problem in the context of piecewise monotonic interval maps and
for certain examples of shift spaces. However, this project has not come to fruition in time to be
included in the thesis.

In §6.5.3, we found subshifts of finite type within the 3-shift with entropy arbitrarily close
to log 8. This suggests the investigation of a ‘horseshoe’ method of proof for results about the
topological entropy of the irregular set. More precisely, we could study the class of systems (X, f)
which contain subsystems (Y, f) which are topological factors of shifts of finite type, where Y C X
is compact and n € N. We call (Y, f™) a horseshoe for (X, f). If the entropy of the horseshoe can
be chosen to approximate that of the whole space arbitrarily well, then it should suffice to study
the intersection of the irregular set with the horseshoe. We note that systems with specification
do not necessarily contain any horseshoes, so this approach would not recover our current results.
Also, theorems on the existence of horseshoes typically require smoothness of the system (see, for
example, theorem S.5.9 of [KH]), whereas our current approach is a topological approach to a
topological question. However, we do note that examples exist that do not have specification but
where a ‘horseshoe’ approach could yield results. For example, a continuous interval map which is
not mixing contains horseshoes but does not have specification (see corollary 15.2.10 of [KH]). Thus,
the ‘horseshoe’ approach certainly has merit.

An idea from the thesis which we hope will prove useful is to only ask for specification to
hold on an interesting invariant non-compact subset X’ C X (see definition 2.2.3). The idea could

have applications for the study of non-uniformly hyperbolic systems. The interesting invariant set
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X'’ to which we allude is the set of points which return infinitely often to a set on which the map
is uniformly hyperbolic. We hope to pursue this in the future. A particular avenue of interest for
this is the Rauzy-Veech map and Teichmiiller flow [Buf], which are related systems of great current

interest arising from geometry.

Finally, we hope to further investigate the properties of P (1)) in some explicit examples.

96



Bibliography

[Abr]

[AKM]

[Bar]

[BH]

[Blo]

[BM]

[BOS]

[Bowl]

[Bow2]

[Bow3|

[Bow4|

[Bow5]

[Bow6]

L. M. Abramov. On the entropy of a flow. Dokl. Akad. Nauk. SSSR, 128:873-875, 1959.

R.L. Adler, A.G. Konheim, and M.H. McAndrew. Topological entropy. Trans. Amer. Math.
Soc., 114:309-319, 1965.

L. Barreira. Dimension and recurrence in hyperbolic dynamics, volume 272 of Progress in

Mathematics. Birkhauser, 2008.
F. Blanchard and G. Hansel. Systémes codés. Theor. Comput. Sci., 44:17-49, 1986.

A. M. Blokh. Decomposition of dynamical systems on an interval. Uspekhi Mat. Nauk.,
38(5(233)):179-180, 1983.

A. Bertrand-Mathis. Développement en base 0. Bull. Soc. math. France, 114:271-323, 1986.

I.S. Baek, L. Olsen, and N. Snigireva. Divergence points of self-similar measures and packing

dimension. Adv. Math., 214(1):267-287, 2007.

R. Bowen. Entropy for group endomorphisms and homogeneous spaces. Trans. Amer. Math.

Soc., 153:401-510, 1971.

R. Bowen. Periodic points and measures for axiom A diffeomorphisms. Trans. Amer. Math.

Soc., 154:377-397, 1971.
R. Bowen. Periodic orbits for hyperbolic flows. American J. Math., 94:1-30, 1972.

R. Bowen. Topological entropy for non-compact sets. Trans. Amer. Math. Soc., 184:125-136,
1973.

R. Bowen. Some systems with unique equilibrium states. Math. Syst. Theory, 8:193-202,
1974,

R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, volume

470 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1975.

97



[BS1]

[BS2)

[BS3]

[BS4]

[BS5]

[Buf]

[Buz]

[BW]

[DGS]

[DJ]

[EKL]

[EKW]

[Fal]

[FF]

[FLP]

L. Barreira and B. Saussol. Multifractal analysis of hyperbolic flows. Comm. Math. Phys.,
214(2):339-371, 2000.

L. Barreira and B. Saussol. Variational principles and mixed multifractal spectra. Trans.

Amer. Math. Soc., 353:3919-3944, 2001.

L. Barreira and B. Saussol. Variational principles for hyperbolic flows. Fields Inst. Comm.,

31:43-63, 2002.

L. Barreira and J. Schmeling. Invariant sets with zero measure and full Hausdorff dimension.

Electron. Res. Announc. Amer. Math. Soc., 3:114-118, 1997.

L. Barreira and J. Schmeling. Sets of “non-typical” points have full topological entropy and

full Hausdorff dimension. Israel J. Math., 116:29-70, 2000.

A.l. Bufetov. Decay of correlations for the Rauzy-Veech-Zorich induction map on the space
of interval exchange transformations and the central limit theorem for the Teichmiiller flow

on the moduli space of abelian differentials. J. Amer. Math. Soc., 19(3):579-623, 2006.
J. Buzzi. Specification on the interval. Trans. Amer. Math. Soc., 349(7):2737-2754, 1997.

R. Bowen and P. Walters. Expansive one-parameter flows. J. Differential Equations, 12:180—

193, 1972.

M. Denker, C. Grillenberger, and K. Sigmund. Ergodic Theory on Compact Spaces, volume
527 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1976.

X. Dai and Y. Jiang. Distance entropy of dynamical systems on noncompact phase spaces.

Discrete and Continuous Dynamical Systems, 20:313-333, 2008.

C. Ercai, T. Kiipper, and S. Lin. Topological entropy for divergence points. Ergodic Theory
Dynam. Systems, 25(4):1173-1208, 2005.

A. Eizenberg, Y. Kifer, and B. Weiss. Large deviations for Z%-actions. Comm. Math. Phys.,
164(3):433-454, 1994.

K. Falconer. Fractal Geometry. Wiley, second edition, 2003.

A.-H. Fan and D.-J. Feng. On the distribution of long-term time averages on symbolic space.

J. Stat. Phys., 99(3-4):813-856, 2000.

A.-H. Fan, L. Liao, and J. Peyriére. Generic points in systems of specification and Banach

valued Birkhoff ergodic average. Preprint, arXiv:0802.3434, 2008.

98



[GS]

[HKR]

[HNP]

[Jak]

[JJOP]

[Kat]

[KH]

[Lin]

[LM]

[Luz]

[LW]

[Mai]

[Men]

B.M. Gurevic and V Savchenko. Thermodynamic formalism for countable symbolic Markov

chains. Soviet Math. Dokl., 53:245-344, 1998.

M. Handel, B. Kitchens, and D. Rudolph. Metrics and entropy for non-compact spaces.
Israel Journal of Mathematics, 91:253-271, 1995.

B. Hasselblatt, Z. Nitecki, and J. Propp. Topological entropy for nonuniformly continuous

maps. Discrete and Continuous Dynamical Systems, 22(1-2):201-213, 2008.

M.V. Jakobson. Absolutely continuous invariant measures for one-parameter families of

one-dimensional maps. Comm. Math. Phys., 81(1):39-88, 1981.

A. Johansson, T.M. Jordan, A. Oberg, and M. Pollicott. Multifractal analysis of non-
uniformly hyperbolic systems. Preprint, arXiv:0801.1383v1, 2008.

A. Katok. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms. Inst. Hautes

Etudes Sci. Publ. Math., (51):137-173, 1980.

A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems,
volume 54 of Encyclopedia of Mathematics and its Applications. Cambridge University Press,
1995.

D. Lind. Ergodic group automorphims and specification. In Lecture Notes in Mathematics,

volume 729, pages 93-104. Springer, 1979.

D. Lind and B. Marcus. An Introduction to symbolic dynamics and coding. Cambridge
University Press, 1995.

N. Luzia. Measure of full dimension for some nonconformal repellers.  Preprint,

arXiv:0705.3604, 2006.

F. Ledrappier and P. Walters. A relativised variational principle for continuous transforma-

tions. J. London. Math. Soc., 16:568-576, 1977.

B. Maia. An equivalent system for studying periodic points of the (3-transformation
for a Pisot or a Salem number. PhD thesis, University of Warwick, 2007.

http://www.warwick.ac.uk/~marcq/bmaia_thesis.pdf.

L. Mendoza. Ergodic attractors for diffeomorphisms of surfaces. J. London Math. Soc.,

37(2):362-374, 1988.

99



[Ol]

[Ols]

[0S]

[Par]

[Pes]

[PP1]

[PP2]

[PS1]

[PS2]

[PS3]

[PSY]

[PW]

[Ruel]

[Rue2]

E. Olivier. Analyse multifractale de fonctions continues. C. R. Acad. Sci. Paris Sér. | Math.,
326(10):1171-1174, 1998.

L. Olsen. Multifractal analysis of divergence points of deformed measure theoretical Birkhoff

averages. J. Math. Pures Appl., 82:1591-1649, 2003.

P. Oprocha and M. Stefankova. Specification property and distributional chaos almost ev-

erywhere. Proc. Amer. Math. Soc., article electronically published, 2008.
W. Parry. On the (§-expansions of real numbers. Acta Math. Hung., 11:401-416, 1960.

Y.B. Pesin. Dimension Theory in Dimensional Systems : Contemporary Views and Applica-

tions. University of Chicago Press, Chicago, 1997.

W. Parry and M. Pollicott. Zeta functions and the periodic orbit structure of hyperbolic
dynamics. Number 187-188 in Astérisque. Soc. Math. France, 1990.

Y.B. Pesin and B.S. Pitskel. Topological pressure and the variational principle for non-

compact sets (english translation). Funct. Anal. Appl., 18:307-318, 1984.

C.-E. Pfister and W.G. Sullivan. Large deviations estimates for dynamical systems without

the specification property. Applications to the 3-shifts. Nonlinearity, 18:237-261, 2005.

C.-E. Pfister and W.G. Sullivan. On the topological entropy of saturated sets. Ergodic
Theory Dynam. Systems, 27:929-956, 2007.

T. Prellberg and J. Slawny. Maps of intervals with indifferent fixed points: thermodynamic
formalism and phase transitions. J. Stat. Phys., 66(1-2):503-514, 1992.

M. Pollicott, R. Sharp, and M. Yuri. Large deviations for maps with indifferent fixed points.
Nonlinearity, 11:1173-1184, 1998.

M. Pollicott and H. Weiss. Multifractal analysis of Lyapunov exponent for continued frac-
tion and Manneville-Pomeau transformations and applications to Diophantine approximation.

Comm. Math. Phys., 207:145-171, 1999.

D. Ruelle. Statistical mechanics on a compact set with ZV action satisfying expansiveness

and specification. Trans. Amer. Math. Soc., 185:237-251, 1973.

D. Ruelle. Historic behaviour in smooth dynamical systems. In H. W. Broer, B. Krauskopf,
and G. Vegter, editors, Global Analysis of Dynamical Systems. Bristol: Institute of Physics
Publishing, 2001.

100



[Sar]

[Sch]

[Tak]

[Tod]

[TV1]

[TV2]

[Urb]

[Wal]

[You]

O. Sarig. Thermodynamic formalism for countable Markov shifts. Ergodic Theory and
Dynamical Systems, 19:1565-1593, 1999.

J. Schmeling. Symbolic dynamics for (-shifts and self-normal numbers. Ergodic Theory

Dynam. Systems, 17:675-694, 1997.

F. Takens. Orbits with historic behaviour, or non-existence of averages. Nonlinearity, 21:T33—

T36, 2008.
M. Todd. Multifractal analysis for multimodal maps. Preprint, arXiv:0809.1074v2, 2008.

F. Takens and E. Verbitskiy. Multifractal analysis of local entropies for expansive homeo-

morphisms with specification. Comm. Math. Phys., 203(3):593-612, 1999.

F. Takens and E. Verbitskiy. On the variational principle for the topological entropy of certain

non-compact sets. Ergodic Theory Dynam. Systems, 23(1):317-348, 2003.
M. Urbanski. Parabolic Cantor sets. Fund. Math., 151(3):241-277, 1996.

P. Walters. An Introduction to Ergodic Theory (Graduate Texts in Mathematics 79).
Springer, New York, 1982.

L.S. Young. Large deviations in dynamical systems. Trans. Amer. Math. Soc., 318(2):525—
543, 1990.

101



