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Introduction

Fiber Bundles and more general fibrations are basic objects of study in many areas of mathe-
matics. A fiber bundle with base space B and fiber F can be viewed as a parameterized family of
objects, each “isomorphic” to F , where the family is parameterized by points in B. For example a
vector bundle over a space B is a parameterized family of vector spaces Vx, one for each point x ∈ B.
Given a Lie group G, a principal G - bundle over a space B can be viewed as a parameterized family
of spaces Fx, each with a free, transitive action of G (so in particular each Fx is homeomorphic to
G). A covering space is also an example of a fiber bundle where the fibers are discrete sets. Sheaves
and “fibrations” are generalizations of the notion of fiber bundles and are fundamental objects in
Algebraic Geometry and Algebraic Topology, respectively.

Fiber bundles and fibrations encode topological and geometric information about the spaces
over which they are defined. Here are but a few observations on their impact in mathematics.

• A structure such as an orientation, a framing, an almost complex structure, a spin structure,
and a Riemannian metric are all constructions on the the tangent bundle of a manifold.
• The exact sequence in homotopy groups, and the Leray - Serre spectral sequence for ho-

mology groups of a fibration have been basic tools in Algebraic Topology for nearly half a
century.
• Understanding algebraic sections of algebraic bundles over a projective variety is a basic

goal in algebraic geometry.
• K - theory, a type of classification of vector bundles over a topological space is at the same

time an important homotopy invariant of the space, and a quantity for encoding index
information about elliptic differential operators.
• The Yang - Mills partial differential equations are defined on the space of connections on

a principal bundle over a Riemannian two dimensional or four dimensional manifold. The
properties of the solution space have had a great impact on our understanding of four
dimensional Differential Topology in the last fifteen years.

In these notes we will study basic topological properties of fiber bundles and fibrations. We will
study their definitions, and constructions, while considering many examples. A main goal of these
notes is to develop the topology needed to classify principal bundles, and to discuss various models of
their classifying spaces. We will compute the cohomology of the classifying spaces of O(n) and U(n),
and use them to study K - theory. These calculations will also allow us to describe characteristic
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vi INTRODUCTION

classes for these bundles which we use in a variety of applications including the study of framings,
orientations, almost complex structures, Spin and SpinC - structures, vector fields, and immersions
of manifolds. We will also discuss the Chern-Weil method of defining characteristic classes (via
the curvature of a connection), and show how all U(n) - characteristic classes can be defined this
way. We also use these techniques to consider the topological implications when a bundle admits
a flat connection. Finally, we study the algebraic topology of fibrations. This includes the exact
sequence in homotopy groups of a fibration, general obstruction theory, including the interpretation
of characteristic classes as obstructions to the existence of cross sections, and the construction and
properties of Eilenberg - MacLane spaces. We then study the spectral sequence of a filtration and
the Leray - Serre spectral sequence for a fibration. A variety of applications are given, including the
Hurewicz theorem in homotopy theory, and a calculation of the homology of certain loop spaces and
Lie groups.

None of the results in these notes are new. This is meant to be an exposition of classical topics
that are of importance to students in any area of topology and geometry. There are several good
references for many of the topics covered here, in particular the classical text of Steenrod on fiber
bundles (describing the classification theorem) [39], the book of Milnor and Stasheff on characteristic
classes of vector bundles [31], the texts of Whitehead [42] and Mosher and Tangora [32] for the
results in homotopy theory. When good references are available we may not include the details of
all the proofs. These notes grew out of a graduate topology course I gave at Stanford University
during the Spring term, 1998. I am very grateful to the students in that course for comments on
earlier versions of these notes.

R.L. Cohen

Stanford University

August, 1998



CHAPTER 1

Locally Trival Fibrations

In this chapter we define our basic object of study: locally trivial fibrations, or “fiber bundles”.
We discuss many examples, including covering spaces, vector bundles, and principal bundles. We
also describe various constructions on bundles, including pull-backs, sums, and products. We then
study the homotopy invariance of bundles, and use it in several applications.

Throughout all that follows, all spaces will be Hausdorff and paracompact.

1. Definitions and examples

Let B be connected space with a basepoint b0 ∈ B, and p : E → B be a continuous map.

Definition 1.1. The map p : E → B is a locally trivial fibration, or fiber bundle, with

fiber F if it satisfies the following properties:

(1) p−1(b0) = F

(2) p : E → B is surjective
(3) For every point x ∈ B there is an open neighborhood Ux ⊂ B and a “fiber preserving

homeomorphism” ΨUx
: p−1(Ux)→ Ux×F , that is a homeomorphism making the following

diagram commute:

p−1(Ux)
ΨUx−−−−→∼= Ux × F

p

y yproj
Ux = Ux

Some examples:

• The projection map X × F −→ X is the trivial fibration over X with fiber F .
• Let S1 ⊂ C be the unit circle with basepoint 1 ∈ S1. Consider the map fn : S1 → S1 given

by fn(z) = zn. Then fn : S1 → S1 is a locally trivial fibration with fiber a set of n distinct
points (the nth roots of unity in S1).
• Let exp : R→ S1 be given by

exp(t) = e2πit ∈ S1.

Then exp is a locally trivial fibration with fiber the integers Z.

1



2 1. LOCALLY TRIVAL FIBRATIONS

• Recall that the n - dimensional real projective space RPn is defined by

RPn = Sn/ ∼

where x ∼ −x, for x ∈ Sn ⊂ Rn+1.

Let p : Sn → RPn be the projection map. This is a locally trivial fibration with fiber
the two point set.
• Here is the complex analogue of the last example. Let S2n+1 be the unit sphere in Cn+1.

Recall that the complex projective space CPn is defined by

CPn = S2n+1/ ∼

where x ∼ ux, where x ∈ S2n+1 ⊂ Cn, and u ∈ S1 ⊂ C. Then the projection p : S2n+1 →
CPn is a locally trivial fibration with fiber S1.
• Consider the Moebeus band M = [0, 1] × [0, 1]/ ∼ where (t, 0) ∼ (1 − t, 1). Let C be the

“center circle” C = {(1/2, s) ∈M} and consider the projection

p : M → C

(t, s)→ (1/2, s).

This map is a locally trivial fibration with fiber [0, 1].

Given a fiber bundle p : E → B with fiber F , the space B is called the base space and the space
E is called the total space. We will denote this data by a triple (F,E,B).

Definition 1.2. A map (or “morphism”) of fiber bundles Φ : (F1, E1, B1) → (F2, E2, B2) is a
pair of basepoint preserving continuous maps φ̄ : E1 → E2 and φ : B1 → B2 making the following
diagram commute:

E1
φ̄−−−−→ E2

p1

y yp2
B1 −−−−→

φ
B2

Notice that such a map of fibrations determines a continuous map of the fibers, φ0 : F1 → F2.

A map of fiber bundles Φ : (F1, E1, B1) → (F2, E2, B2) is an isomorphism if there is an inverse
map of fibrations Φ−1 : (F2, E2, B2)→ (F1, E1, B1) so that Φ ◦ Φ−1 = Φ−1 ◦ Φ = 1.

Finally we say that a fibration (F,E,B) is trivial if it isomorphic to the trivial fibration B×F →
B.

Exercise. Verify that all of the above examples of fiber bundles are all nontrivial except for the
first one.
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The notion of a locally trivial fibration is quite general and includes examples of many types.
For example you may have already noticed that covering spaces are examples of locally trivial
fibrations. In fact one may simply define a covering space to be a locally trivial fibration with discrete
fiber. Two other very important classes of examples of locally trivial fiber bundles are vector bundles

and principal bundles. We now describe these notions in some detail.

1.1. Vector Bundles.

Definition 1.3. An n- dimensional vector bundle over a field k is a locally trivial fibration
p : E → B with fiber an n - dimensional k - vector space V satisfying the additional requirement
that the local trivializations

ψ : p−1(U)→ U × V

induce k - linear transformations on each fiber. That is, restricted to each x ∈ U , ψ defines a k -
linear transformation (and thus isomorphism)

ψ : p−1(x)
∼=−−−−→ {x} × V.

It is common to denote the data (V,E,B) defining an n - dimensional vector bundle by a Greek
letter, e.g ζ.

A “map” or “morphism” of vector bundles Φ : ζ → ξ is a map of fiber bundles as defined above,
with the added requirement that when restricted to each fiber, φ̄ is a k - linear transformation.

Examples

• Given an n - dimensional k vector space V , then B × V → B is the corresponding trivial
bundle over the base space B. Notice that since all n - dimensional trivial bundles over B
are isomorphic, we denote it (or more precisely, its isomorphism class) by εn.
• Consider the “ Moebeus line bundle” µ defined to the the one dimensional real vector

bundle (“line bundle”) over the circle given as follows. Let E = [0, 1] × R/ ∼ where
(0, t) ∼ (1,−t). Let C be the “middle” circle C = {(s, 0) ∈ E}. Then µ is the line bundle
defined by the projection

p : E → C

(s, t)→ (s, 0).

• Define the real line bundle γ1 over the projective space RPn as follows. Let x ∈ Sn. Let
[x] ∈ RPn = Sn/ ∼ be the class represented by x. Then [x] determines (and is determined
by) the line through the origin in Rn+1 going through x. It is well defined since both
representatives of [x] (x and −x) determine the same line. Thus RPn can be thought of as
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the space of lines through the origin in Rn+1. Let E = {([x], v) : [x] ∈ RPn, v ∈ [x]}. Then
γ1 is the line bundle defined by the projection

p : E → RPn

([x], v)→ [x].

Exercise. Verify that the RP1 is a homeomorphic to a circle, and the line bundle γ1 over
RP1 is isomorphic to the Moebeus line bundle µ.

• By abuse of notation we let γ1 also denote the complex line bundle over CPn defined
analogously to the real line bundle γ1 over RPn above.
• Let Grk(Rn) (respectively Grk(Cn)) be the space whose points are k - dimensional subvec-

tor spaces of Rn (respectively Cn). These spaces are called “Grassmannian” manifolds, and
are topologized as follows. Let Vk(Rn) denote the space of injective linear transformations
from Rk to Rn. Let Vk(Cn) denote the analogous space of injective linear transformations
Ck ↪→ Cn. These spaces are called “Stiefel manifolds”, and can be thought of as spaces of
n×k matrices of rank k. These spaces are given topologies as subspaces of the appropriate
vector space of matrices. To define Grk(Rn) and Grk(Cn), we put an equivalence relation
on Vk(Rn) and Vk(Cn) by saying that two transformations A and B are equivalent if they
have the same image in Rn (or Cn). If viewed as matrices, then A ∼ B if and only if
there is an element C ∈ GL(k,R) (or GL(k,C)) so that A = BC. Then the equivalence
classes of these matrices are completely determined by their image in Rn (or Cn), i.e the
equivalence class is determined completely by a k - dimensional subspace of Rn (or Cn).
Thus we define

Grk(Rn) = Vk(Rn)/ ∼ and Grk(Cn) = Vk(Cn)/ ∼

with the corresponding quotient topologies.
Consider the vector bundle γk over Grk(Rn) whose total space E is the subspace of

Grk(Rn)× Cn defined by

E = {(W,ω) : W ∈ Grk(Rn) andω ∈W ⊂ Rn}.

Then γk is the vector bundle given by the natural projection

E → Grk(Rn)

(W,ω)→W

For reasons that will become more apparent later in these notes, the bundles γk are
called the “universal” or “canonical” k - dimensional bundles over the Grassmannians.

Exercises

1. Verify that γk is a k -dimensional real vector bundle over Grk(Rn).
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2. Define the analogous bundle (which by abuse of notation we also call γk) over
Grk(Cn). Verify that it is a k-dimensional complex vector bundle over Grk(Cn).
3. Verify that RPn−1 = Gr1(Rn) and that the line bundle γ1 defined above is the
universal bundle. Do the analogous exercise with CPn−1 and Gr1(Cn).

• Notice that the universal bundle γk over the Grassmanians Grk(Rn) and Grk(Cn) come
equipped with embeddings (i.e injective vector bundle maps) in the trivial bundlesGrk(Rn)×
Rn and Grk(Cn)×Cn respectively. We can define the orthogonal complement bundles γ⊥k
to be the n− k dimensional bundles whose total spaces are given by

E⊥k = {(W, ν) ∈ Grk(Rn)× Rn : ν ⊥W}

and similarly over Grk(Cn). Observe that the natural projection to the Grassmannian
defines n− k dimensional vector bundles (over R and C respectively).

• Perhaps the most important class of vector bundles are tangent bundles over differentiable
manifolds. To define the tangent bundle, for now we will assume we have a k - dimensional
closed manifold M embedded in Euclidean space Rn. (We will define the tangent bundle
independently of such an embedding later in this chapter.) The tangent bundle τM has
total space TM defined to be the subspace of M × Rn given as follows.

TM = {(x, v) ∈M × Rn : v is tangent to M at x.}

where v being tangent to M at x means there is a smooth curve

α : (−ε, ε)→M ⊂ Rn

for some ε > 0, satisfying the properties

α(0) = x and
dα

dt
(0) = v.

The natural projection

p : TM →M

(x, v)→ x

defines the tangent bundle τM .
The fiber of the tangent bundle at x ∈M , p−1(x) is called the tangent space of M at

x, and is denoted by TxM .
We say that a manifold is parallelizable if its tangent bundle is trivial. Parallelizable

manifolds form an important class of manifolds, but as we will see below, not all manifolds
are parallelizable.

Exercise. Verify that TM is indeed a k - dimensional vector bundle embedded in
M × Rn.
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• Let M ⊂ Rn be a k - dimensional closed manifold embedded in Rn as above. We define
the n− k dimensional “normal” bundle νn−k(M) to be the orthogonal complement of the
tangent bundle. That is, νn−k(M) has total space Nn−k(M) defined to be the subspace
of M × Rn given by

Nn−k(M) = {(x, u) ∈M × Rn : u ⊥ TxM ⊂ Rn}.

The natural projection

p : Nn−k(M)→M

(x, u)→ x

defines the normal bundle νn−k(M). Given x ∈ M , the fiber at x, p−1(x) is called the
normal space at x, and is denoted Nx(M).

An important notion associated to vector bundles (and in fact all fibrations) is the notion of a
(cross) section.

Definition 1.4. Given a fiber bundle

p : E → B

a section s is a continuous map s : B → E such that p ◦ s = identity : B → B.

Notice that every vector bundle has a section, namely the zero section

z : B → E

x→ 0x

where 0x is the origin in the vector space p−1(x). However most geometrically interesting sections
have few zero’s. Indeed as we will see later, an appropriate count of the number of zero’s of a
section of an n - dimensional bundle over an n - dimensional manifold is an important topological
invariant of that bundle (called the “Euler number”). In particular an interesting geometric question
is to determine when a vector bundle has a nowhere zero section, and if it does, how many linearly
independent sections it has. (Sections {s1, · · · , sm} are said to be linearly independant if the vectors
{s1(x), · · · , sm(x)} are linearly independent for every x ∈ B.) These questions are classical in the
case where the vector bundle is the tangent bundle. A section of the tangent bundle is called a
vector field.The question of how many linearly independent vector fields exist on the sphere Sn

was answered by J.F. Adams [2] in the early 1960’s using sophisticated techniques of homotopy
theory.

Exercises (from [31])
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1. Let x ∈ Sn, and [x] ∈ RPn be the corresponding element. Consider the functions fi,j :
RPn → R defined by fi,j([x]) = xixj . Show that these functions define a diffeomorphism between
RPn and the submanifold of R(n+1)2 consisting of all symmetric (n+1)× (n+1) matrices A of trace
1 satisfying AA = A.

2. Use exercise 1 to show that RPn is compact.

3. Prove that an n -dimensional vector bundle ζ has n - linearly independent sections if and
only if ζ is trivial.

4. Show that the unit sphere Sn admits a nowhere zero vector field if n is odd. Show that the
normal bundle of Sn ⊂ Rn+1 is a trivial line bundle for all n.

5. If Sn admits a nowhere zero vector field show that the identity map of Sn is homotopic to
the antipodal map. For n even show that the antipodal map of Sn is homotopic to the reflection

r(x1, · · · , xn+1) = (−x1, x2, · · · , xn+1);

and therefore has degree −1. Combining these facts, show that Sn is not parallelizable for n even,
n ≥ 2.

1.2. Lie Groups and Principal Bundles. Lie groups play a central role in bundle theory. In
this section we give a basic description of Lie groups, their actions on manifolds (and other spaces),
and one of the main objects of study in these notes, their principal bundles.

Definition 1.5. A Lie group is a topological group G which has the structure of a differentiable
manifold. Moreover the multiplication map

G×G→ G

and the inverse map

G→ G

g → g−1

are required to be differentiable maps.

The following is an important basic property of the differential topology of Lie groups.

Theorem 1.1. Let G be a Lie group. Then G is parallelizable. That is, its tangent bundle τG
is trivial.
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Proof. Let 1 ∈ G denote the identity element, and T1G the tangent space of G at 1. If G is an
n - dimensional manifold, T1G is an n- dimensional vector space. We define a bundle isomorphism
of the tangent bundle τG with the trivial bundle G× T1(G), which, on the total space level is given
by a map

φ : G× T1G −→ TG

defined as follows. Let g ∈ G. Then multiplication by g on the right is a diffeomorphism

×g : G→ G

x→ xg

Since ×g is a diffeomorphism, its derivative is a linear isomorphism at every point:

Dg(x) : TxG
∼=−−−−→ TxgG.

We can now define
φ : G× T1G→ TG

by
φ(g, v) = Dg(1)(v) ∈ TgG.

Clearly φ is a bundle isomorphism. �

Principal bundles are basically parameterized families of topological groups, and often Lie
groups. In order to define the notion carefully we first review some basic properties of group actions.

Recall that a right action of topological group G on a space X is a map

µ : X ×G→ X

(x, g)→ xg

satisfying the basic properties

(1) x · 1 = x for all x ∈ X
(2) x(g1g2) = (xg1)g2 for all x ∈ X and g1, g2 ∈ G.

Notice that given such an action, every element g acts as a homeomorphism, since action by
g−1 is its inverse. Thus the group action µ defines a map

µ : G→ Homeo(X)

where Homeo(X) denotes the group of homeomorphisms of X. The two conditions listed above are
equivalent to the requirement that µ : G→ Homeo(X) be a group homomorphism.

If G is a Lie group and M is a smooth manifold with a right G - action. We say that the action
is smooth if the homomorphism µ defined above factors through a homomorphism

µ : G→ Diffeo(M)

where Diffeo(M) is the group of diffeomorphisms of M .
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Let X be a space with a right G - action. Given x ∈ X, let xG = {xg : g ∈ G} ⊂ X. This
is called the orbit of x under the G - action. The isotropy subgroup of x, Iso(x), is defined by
Iso(x) = {g ∈ G : xg = x} Notice that the map

G→ xG

defined by sending g to xg defines a homeomorphism from the coset space to the orbit

G/Iso(x)
∼=−−−−→ xG ⊂ X.

A group action on a space X is said to be transitive if the space X is the orbit of a single point,
X = xG. Notice that if X = x0G for some x0 ∈ X, then X = xG for any x ∈ X. Notice furthermore
that the transitivity condition is equivalent to saying that for any two points x1, x2 ∈ X, there is
an element g ∈ G such that x1 = x2g. Finally notice that if X has a transitive G - action, then
the above discussion about isotropy subgroups implies that there exists a subgroup H < G and a
homeomorphism

G/H
∼=−−−−→ X.

Of course if X is smooth, G is a Lie group, and the action is smooth, then the above map would be
a diffeomorphism.

A group action is said to be (fixed point) free if the isotropy groups of every point x are trivial,

Iso(x) = {1}

for all x ∈ X. Said another way, the action is free if and only if the only time there is an equation
of the form xg = x is if g = 1 ∈ G. That is, if for g ∈ G, the fixed point set Fix(g) ⊂ X is the set

Fix(g) = {x ∈ X : xg = x},

then the action is free if and only if Fix(g) = ∅ for all g 6= 1 ∈ G.

We are now able to define principal bundles.

Definition 1.6. Let G be a topological group. A principal G bundle is a fiber bundle p : E → B

with fiber F = G satisfying the following properties.

(1) The total space E has a free, fiberwise right G action. That is, it has a free group action
making the following diagram commute:

E ×G µ−−−−→ E

p×ε
y yp

B × {1} = B

where ε is the constant map.
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(2) The induced action on fibers

µ : p−1(x)×G→ p−1(x)

is free and transitive.
(3) There exist local trivializations

ψ : p−1(U)
∼=−−−−→ U ×G

that are equivariant. That is, the following diagrams commute:

p−1(U)×G ψ×1−−−−→∼= U ×G×G

µ

y y1×mult.

p−1(U)
∼=−−−−→
ψ

U ×G.

Notice that in a principal G - bundle, the group G acts freely on the total space E. It is natural
to ask if a free group action suffices to induce a principal G - bundle. That is, suppose E is a space
with a free, right G action, and define B to be the orbit space

B = E/G = E/ ∼

where y1 ∼ y2 if and only if there exists a g ∈ G with y1 = y2g (i.e if and only if their orbits are
equal: y1G = y2G). Define p : E → B to be the natural projection, E → E/G. Then the fibers
are the orbits, p−1([y]) = yG. So for p : E → B to be a principal bundle we must check the local
triviality condition. In general for this to hold we need the following extra condition.

Definition 1.7. A group action E ×G→ E has slices if projection onto the orbit space

p : E → E/G

has local sections. That is, around every x ∈ E/G there is a neighborhood U and a continuous map
s : U → E such that p ◦ s = id : U → U.

Proposition 1.2. If E has a free G action with slices, then the projection map

p : E → E/G

is a principal G - bundle.

Proof. We need to verify the local triviality condition. Let x ∈ E/G. Let U be an open set
around x admitting a section s : U → E. Define a local trivialization

ψ : U ×G→ p−1(U)

by ψ(y, g) = s(y) · g. Clearly ψ is a local trivialization. �
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The following result is originally due to A. Gleason [15], and its proof can be found in Steenrod’s
book [39]. It is quite helpful in studying free group actions.

Theorem 1.3. Let E be a smooth manifold, having a free, smooth G - action, where G is a
compact Lie group. Then the action has slices. In particular, the projection map

p : E → E/G

defines a principal G - bundle.

The following was one of the early theorems in fiber bundle theory, appearing originally in H.
Samelson’s thesis. [34]

Corollary 1.4. Let G be a Lie group, and let H < G be a compact subgroup. Then the
projection onto the orbit space

p : G→ G/H

is a principal H - bundle.

Examples.

• The projection map p : S2n+1 → CPn is a principal S1 - bundle.
• Let Vk(Rn) be the Stiefel manifold of rank k n × k matrices described above. Then the

projection map

p : Vk(Rn)→ Grk(Rn)

is a principal GL(k,R) - bundle. Similarly the projection map

p : Vk(Cn)→ Grk(Cn)

is a principal GL(k,C) - bundle.
• Let Vk(Rn)O ⊂ R denote those n × k matrices whose k - columns are orthonormal n -

dimensional vectors. This is the Stiefel manifold of orthonormal k - frames in Rn. Then
the induced projection map

p : Vk(Rn)O → Grk(Rn)

is a principal O(k) - bundle. Similarly, if Vk(Cn)U is the space of orthonormal k - frames
in Cn (with respect to the standard Hermitian inner product), then the projection map

p : Vk(Cn)U → Grk(Cn)

is a principal U(n) - bundle.
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• There is a diffeomorphism

ρ : U(n)/U(n− 1)
∼=−−−−→ S2n−1

and the projection map U(n)→ S2n−1 is a principal U(n− 1) - bundle.
To see this, notice that U(n) acts transitively on the unit sphere in Cn (i.e S2n−1).

Moreover the isotropy subgroup of the point e1 = (1, 0, · · · , 0) ∈ S2n−1 are those elements
A ∈ U(n) which have first column equal to e1 = (1, 0, · · · , 0). Such matrices also have first
row = (1, 0, · · · , 0). That is, A is of the form

A =

(
1 0
0 A′

)
where A′ is an element of U(n − 1). Thus the isotropy subgroup Iso(e1) ∼= U(n − 1) and
the result follows.

Notice that a similar argument gives a diffeomorphism SO(n)/SO(n− 1) ∼= Sn−1.
• There is a diffeomorphism

ρ : U(n)/U(n− k)
∼=−−−−→ Vk(Cn)U .

The argument here is similar to the above, noticing that U(n) acts transitively on Vk(Cn)U ,
and the isotopy subgroup of the n× k matrix

e =



1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 0 · · · 0 1
0 0 · · · 0 0
...

. . .
...

0 0 · · · 0 0


consist of matrices in U(n) of them form

1 0 0 · · · 0 0 0 · · · 0 0

0 1 0 · · · 0
...

. . .
...

0 0 1 · · · 0
...

. . .
...

0 0 · · · 0 1 0 0 · · · 0 0
(0) (B)


where B is an (n− k)× (n− k) dimensional unitary matrix.

• A similar argument shows that there are diffeomorphisms

ρ : U(n)/ (U(k)× U(n− k))
∼=−−−−→ Grk(Cn)
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and

ρ : O(n)/ (O(k)×O(n− k))
∼=−−−−→ Grk(Rn)

Principal bundles define other fiber bundles in the presence of group actions. Namely, suppose
p : E → B be a principal G - bundle and F is a space with a cellular right group action. Then the
product space E × F has the “diagonal” group action (e, f)g = (eg, fg). Consider the orbit space,
E ×G F = (E × F )/G. Then the induced projection map

p : E ×G F → B

is a locally trivial fibration with fiber F .

For example we have the following important class of fiber bundles.

Proposition 1.5. Let G be a compact Lie group and K < H < G closed subgroups. Then the
projection map of coset spaces

p : G/K → G/H

is a locally trivial fibration with fiber H/K.

Proof. Observe that G/K ∼= G×H H/K where H acts on H/K in the natural way. Moreover
the projection map p : G/K → G/H is the projection can be viewed as the projection

G/K = G×H H/K → G/H

and so is the H/K - fiber bundle induced by the H - principal bundle G → G/H via the action of
H on the coset space H/K. �

Example

We know by the above examples, that U(2)/U(1) ∼= S3, and that U(2)/U(1)×U(1) ∼= Gr1(C2) =
CP1 ∼= S2. Therefore there is a principal U(1) - fibration

p : U(2)/U(1)→ U(2)/U(1)× U(1),

or equivalently, a principal U(1) = S1 fibration

p : S3 → S2.

This fibration is the well known “Hopf fibration”, and is of central importance in both geometry
and algebraic topology. In particular, as we will see later, the map from S3 to S2 gives an nontrivial
element in the homotopy group π3(S2), which from the naive point of view is quite surprising. It
says, that, in a sense that can be made precise, there is a “three dimensional hole” in S2 that cannot
be filled. Many people (eg. Whitehead, see [43]) refer to this discovery as the beginning of modern
homotopy theory.
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The fact that the Hopf fibration is a locally trivial fibration also leads to an interesting geometric
observation. First, it is not difficult to see directly (and we will prove this later) that one can take
the upper and lower hemispheres of S2 to be a cover of S2 over which the Hopf fibration is trivial.
That is, there are local trivializations,

ψ+ : D2
+ × S1 → p−1(D2

+)

and

ψ− : D2
− × S1 → p−1(D2

−)

where D2
+ and D2

− are the upper and lower hemispheres of S2, respectively. Putting these two local
trivializations together yields the following classical result:

Theorem 1.6. The sphere S3 is homeomorphic to the union of two solid tori D2 × S1 whose
intersection is their common torus boundary, S1 × S1.

As another example of fiber bundles induced by principal bundles, suppose that

ρ : G→ GL(n,R)

is a representation of a topological group G, and p : E → B is a principal G bundle. Then let Rn(ρ)
denote the space Rn with the action of G given by the representation ρ. Then the projection

E ×G Rn(ρ)→ B

is a vector bundle.

Exercise.

Let p : Vk(Rn) → Grk(Rn) be the principal bundle described above. Let Rn have the standard
GL(n,R) representation. Proved that the induced vector bundle

p : Vk(Rn)×GL(n,R) Rn

is isomorphic to the universal bundle γk described in the last section.

In the last section we discussed sections of vector bundles and in particular vector fields. For
principal bundles, the existence of a section (or lack thereof) completely determines the triviality of
the bundle.

Theorem 1.7. A principal G - bundle p : E → B is trivial if and only if it has a section.
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Proof. If p : E → B is isomorphic to the trivial bundle B × G → B, then clearly it has a
section. So we therefore only need to prove the converse.

Suppose s : B → E is a section of the principal bundle p : E → B. Define the map

ψ : B ×G→ E

by ψ(b, g) = s(b)g where multiplication on the right by g is given by the right G - action of G on
E. It is straightforward to check that ψ is an isomorphism of principal G - bundles, and hence a
trivialization of E. �

1.3. Clutching Functions and Structure Groups. Let p : E → B be a locally trivial
fibration with fiber F . Cover the basespace B by a collection of open sets {Uα} equipped with
local trivializations ψα : Uα × F

∼=−−−−→ p−1(Uα). Let us compare the local trivializations on the
intersection: Uα ∩ Uβ :

Uα ∩ Uβ × F
ψβ−−−−→∼= p−1(Uα ∩ Uβ)

ψ−1
α−−−−→∼= Uα ∩ Uβ × F.

For every x ∈ Uα ∩ Uβ , ψ−1
α ◦ ψβ determines a homeomorphism of the fiber F . That is, this

composition determines a map φα,β : Uα ∩ Uβ → Homeo(F ). These maps are called the clutching

functions of the fiber bundle. When the bundle is a real n - dimensional vector bundle then the
clutching functions are of the form

φα,β : Uα ∩ Uβ → GL(n,R).

Similarly, complex vector bundles have clutching functions that take values in GL(n,C).

If p : E → B is a G - principal - bundle, then the clutching functions take values in G:

φα,β : Uα ∩ Uβ → G.

In general for a bundle p : E → B with fiber F , the group in which the clutching values take
values is called the structure group of the bundle. If no group is specified, then the structure group is
the homeomorphism group Homeo(F ). For example if the bundle is smooth, then we are requiring
the structure group to be the subgroup of diffeomorphisms, Diffeo(F ).

The clutching functions and the associated structure group completely determine the isomor-
phism type of the bundle. Namely, given an open covering of a space B, and a compatible family
of clutching functions φα,β : Uα ∩ Uβ → G, and a space F upon which the group acts, we can form
the space

E =
⋃
α

Uα × F/ ∼

where if x ∈ Uα ∩Uβ , then (x, f) ∈ Uα × F is identified with (x, fφα,β(x)) ∈ Uβ × F . E is the total
space of a locally trivial fibration over B with fiber F and structure group G. If the original data of
clutching functions came from locally trivializations of a bundle, then notice that the construction
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of E above yields a description of the total space of the bundle. Thus we have a description of the
total space of a fiber bundle completely in terms of the family of clutching functions.

Suppose ζ is an n - dimensional vector bundle with projection map p : E → B and local
trivializations ψα : Uα × Rn → p−1(Uα). Then the clutching functions take values in the general
linear group

φα,β : Uα ∩ Uβ → GL(n,R).

So the total space E has the form E =
⋃
α Uα×Rn/ ∼ as above. We can then form the corresponding

principal GL(n,R) bundle with total space

EGL =
⋃
α

Uα ×GL(n,R)

with the same clutching functions. That is, for x ∈ Uα ∩ Uβ , (x, g) ∈ Uα × GL(n,R) is identified
with (x, g · φα,β(x)) ∈ Uβ ×GL(n,R). The principal bundle

p : EGL → B

is called the associated principal bundle to the vector bundle ζ, or sometimes is referred to as the
associated frame bundle.

Observe also that this process is reversable. Namely if p : P → X is a principal GL(n,R) -
bundle with clutching functions θα,β : Vα∩Vβ → GL(n,R), then there is an associated vector bundle
p : PRn → X where

PRn =
⋃
α

Vα × Rn

where if x ∈ Vα ∩ Vβ , then (x, v) ∈ Vα × Rn is identified with (x, v · θα,β(x)) ∈ Vβ × Rn.

This correspondence between vector bundles and principal bundles proves the following result:

Theorem 1.8. Let V ectRn(X) and V ectCn(X) denote the set of isomorphism classes of real and
complex n - dimensional vector bundles ovr X respectively. For a Lie group G let PrinG(X) denote
the set of isomorphism classes of principal G - bundles. Then there are bijective correspondences

V ectRn(X)
∼=−−−−→ PrinGL(n,R)(X)

V ectCn(X)
∼=−−−−→ PrinGL(n,C)(X).

This correspondence and theorem 1.6 allows for the following method of determining whether a
vector bundle is trivial:

Corollary 1.9. A vector bundle ζ : p : E → B is trivial if and only if its associated principal
GL(n) - bundle p : EGL → B admits a section.
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The use of clutching functions also allows us to describe the tangent bundle of a manifold, τM ,
independently of any embedding into Euclidean space. This is done as follows.

Recall that a smooth, n - dimensional manifold M admits a differentiable atlas, which consists
of an open cover {Uα} of M and homeomorphisms to open sets in Rn:

fα : Uα
∼=−−−−→ Vα ⊂ Rn.

For intersections, let Uα,β = fα(Uα ∩ Uβ) ⊂ Rn. The smooth structure on M comes from the
requirement that on the intersections, the compositions

Uα,β
f−1

α−−−−→ Uα ∩ Uβ
fβ−−−−→ Uβ,α

are required to be diffeomorphisms of open sets in Rn. Using a fixed trivialization of the tangent
bundle of Rn, TRn ∼= Rn × Rn, (and hence of the tangent bundle of any open set in Rn), then we
can define, for x ∈ Uα ∩ Uβ , the linear isomorphism φα,β(x) : Rn → Rn to be the derivative of the
above composition

φα,β(x) : Rn = Tfα(x)Uα,β
D(fβ◦f−1

α )(x)−−−−−−−−−→ Tfβ(x)Uα,β = Rn.

This defines clutching functions

φα,β = D(fβ ◦ f−1
α ) : Uα ∩ Uβ → GL(n,R)

from which we can form the tangent bundle

TM =
⋃
α

Uα × Rn/ ∼

with the identifications as described above.

Exercise.

Verify that this definition of the tangent bundle is isomorphic to the one given in section 1.1 when
the manifold is embedded in Euclidean space.

Clutching functions and structure groups are also useful in studying structures on principal
bundles and their associated vector bundles.

Definition 1.8. Let p : P → B be a principal G - bundle, and let H < G be a subgroup. P is
said to have a reduction of its structure group to H if and only if P is isomorphic to a bundle whose
clutching functions take values in H:

φα,β : Uα ∩ Uβ → H < G.

Exercise.
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Let P → X be a principal G - bundle. Then P has a reduction of its structure group to H < G if
and only if there is a principal H - bundle P̃ → X and an isomorphism of G bundles,

P̃ ×H G
∼=−−−−→ Py y

X = X

Definition 1.9. Let H < GL(n,R). Then an H - structure on an n - dimensional vector bundle
ζ is a reduction of the structure group of its associated GL(n,R) - principal bundle to H.

Examples.

• A {1} < GL(n,R) - structure on a vector bundle ( or its associated principal bundle) is a
trivialization or framing of the bundle. A framed manifold is a manifold with a framing of
its tangent bundle.
• Given a 2n - dimensional real vector bundle ζ, an almost complex structure on ζ is a
GL(n,C) < GL(2n,R) structure on its associated principal bundle. An almost complex
structure on a manifold is an almost complex structure on its tangent bundle.

We now study two examples of vector bundle structures in some detail: Euclidean structures,
and orientations.

Example 1: O(n) - structures and Euclidean structures on vector bundles.

Recall that a Euclidean vector space is a real vector space V together with a positive definite
quadratic function

µ : V → R.

Specifically, the statement that µ is quadratic means that it can written in the form

µ(v) =
∑
i

αi(v)βi(v)

where each αi and βi : V → R is linear. The statement that µ is positive definite means that

µ(v) > 0 for v 6= 0.

Positive definite quadratic functions arise from, and give rise to inner products (i.e symmetric
bilinear pairings (v, w)→ v · w) defined by

v · w =
1
2
(µ(v + w)− µ(v)− µ(w)).

Notice that if we write |v| =
√
v · v then |v|2 = µ(v). So in particular there is a metric on V .

This notion generalizes to vector bundles in the following way.
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Definition 1.10. A Euclidean vector bundle is a real vector bundle ζ : p : E → B together
with a map

µ : E → R

which when restricted to each fiber is a positive definite quadratic function. That is, µ induces a
Euclidean structure on each fiber.

Exercise.

Show that an O(n) - structure on a vector bundle ζ gives rise to a Euclidean structure on ζ.
Conversely, a Euclidean structure on ζ gives rise to an O(n) - structure.

Hint. Make the constructions directly in terms of the clutching functions.

Definition 1.11. A smooth Euclidean structure on the tangent bundle µ : TM → R is called
a Riemannian structure on M .

Exercises.

1. Existence theorem for Euclidean metrics. Using a partition of unity, show that any vector
bundle over a paracompact space can be given a Euclidean metric.

2. Isometry theorem. Let µ and µ′ be two different Euclidean metrics on the same vector bundle
ζ : p : E → B. Prove that there exists a homeomorphism f : E → E which carries each fiber
isomorphically onto itself, so that the composition µ ◦ f : E → R is equal to µ′. (Hint. Use the fact
that every positive definite matrix A can be xpressd uniquely as the square of a positive definite
matrix

√
A. The power series expansion√

(tI +X) =
√
t(I +

1
2t
X − 1

8t2
X2 +− · · · ),

is valid providing that the characteristic roots of tI +X = A lie between 0 and 2t. This shows that
the function A→

√
A is smooth.)

Example 2: SL(n,R) - structures and orientations.

Recall that an orientation of a real n - dimensional vector space V is an equivalence class of
basis for V , where two bases {v1, · · · , vn} and {w1, · · · , wn} are equivalent (i.e determine the same
orientation) if and only if the change of basis matrix A = (ai,j), where wi =

∑
j ai,jvj has positive

determinant, det(A) > 0. Let Or(V ) be the set of orientations of V . Notice that Or(V ) is a two
point set.
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For a vector bundle ζ : p : E → B, an orientation is a continuous choice of orientations of each
fiber. Said more precisely, we may define the “orientation double cover” Or(ζ) to be the two - fold
covering space

Or(ζ) = EGL ×GL(n,R) Or(Rn)

where EGL is the associated principal bundle, and where GL(n,R) acts on Or(Rn) by matrix
multiplication on a basis representing the orientation.

Definition 1.12. ζ is orientable if the orientation double cover Or(ζ) admits a section. A
choice of section is an orientation of ζ.

This definition is reasonable, in that a continuous section of Or(ζ) is a continuous choice of
orientations of the fibers of ζ.

Recall that SL(n,R) < GL(n,R) and SO(n) < O(n) are the subgroups consisting of matrices
with positive determinants. The following is now straightforward.

Theorem 1.10. An n - dimensional vector bundle ζ has an orientation if and only if it has a
SL(n,R) - structure. Similarly a Euclidean vector bundle is orientable if and only if it has a SO(n)
- structure. Choices of these structures are equivalent to choices of orientations.

Finally, a manifold is said to be orientable if its tangent bundle τM is orientable.
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2. Pull Backs and Bundle Algebra

In this section we describe the notion of the pull back of a bundle along a continuous map. We
then use it to describe constructions on bundles such as direct sums, tensor products, symmetric
and exterior products, and homomorphisms. We use direct sums to give a description of the tangent
bundle of projective space in terms of line bundles. We then study group completions, and define
the notion of K - theory. Finally we use exterior products of bundles to study differential forms,
and introduce the notions of connections, and curvature.

2.1. Pull Backs. Let p : E → B be a fiber bundle with fiber F . Let A ⊂ B be a subspace.
The restriction of E to A, written E|A is simply given by

E|A = p−1(A).

The restriction of the projection p : E|A → A is clearly still a locally trivial fibration with fiber F .

This notion generalizes from inclusions of subsets A ⊂ B to general maps f : X → B in the
form of the pull back bundle over X, f∗(E). This bundle is defined by

f∗(E) = {(x, u) ∈ X × E : f(x) = p(u)}.

Proposition 1.11. The map

pf : f∗(E)→ X

(x, u)→ x

is a locally trivial fibration with fiber F . Furthermore if ι : A ↪→ B is an inclusion of a subspace,
then the pull-back ι∗(E) is equal to the restriction E|A .

Proof. Let {Uα} be a collection of open sets in B and ψα : Uα × F → p−1(Uα) local trivial-
izations of the bundle p : E → B. Then {f−1(Uα)} is an open cover of X, and the maps

ψα(f) : f−1(Uα)× F → p−1
f (f−1(Uα))

defined by (x, y)→ (x, ψα(f(x), y)) are clearly local trivializations.

This proves the first statement in the proposition. The second statement is obvious. �

We now use the pull back construction to define certain algebraic constructions on bundles.

Let p1 : E1 → B1 and p2 : E2 → B2 be fiber bundles with fibers F1 and F2 respectively. Then
the cartesian product

p1 × p2 : E1 × E2 → B1 ×B2

is clearly a fiber bundle with fiber F1 × F2. In the case when B1 = B2 = B, we can consider the
pull back (or restriction) of this cartesian product bundle via the diagonal map
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∆ : B ↪→ B ×B

x→ (x, x).

Then the pull-back ∆∗(E1 × E2)→ B is a fiber bundle with fiber F1 × F2, is defined to be the
internal product, or Whitney sum of the fiber bundles E1 and E2. It is written

E1 ⊕ E2 = ∆∗(E1 × E2).

Notice that if E1 and E2 are G1 and G2 principal bundles respectively, then E1⊕E2 is a principal
G1×G2 - bundle. Similarly, if E1 and E2 are n and m dimensional vector bundles respectively, then
E1 ⊕E2 is an n+m - dimensional vector bundle. E1 ⊕E2 is called the Whitney sum of the vector
bundles. Notice that the clutching functions of E1⊕E2 naturally lie in GL(n,R)×GL(m,R) which
is thought of as a subgroup of GL(n+m,R) consisting of (n+m)× (n+m) - dimensional matrices
of the form (

A 0
0 B

)
where A ∈ GL(n,R) and B ∈ GL(m,R).

We now describe other algebraic constructions on vector bundles. The first is a generalization
of the fact that a given a subspace of a vector space, the ambient vector space splits as a direct sum
of the subspace and the quotient space.

Let η : Eη → B be a k - dimensional vector bundle and ζ : Eζ → B an n - dimensional bundle.
Let ι : η ↪→ ζ be a linear embedding of vector bundles. So on each fiber ι is a linear embedding of
a k - dimensional vector space into an n - dimensional vector space. Define ζ/η to be the vector
bundle whose fiber at x is Eζx/E

η
x .

Exercise.

Verify that ζ/η is an n− k - dimensional vector bundle over B.

Theorem 1.12. There is a splitting of vector bundles

ζ ∼= η ⊕ ζ/η.

Proof. Give ζ a Euclidean structure. Define η⊥ ⊂ ζ to be the subbundle whose fiber at x is
the orthogonal complement

Eη
⊥

x = {v ∈ Eζx : v · w = 0 for all w ∈ Eηx}

Then clearly there is an isomorphism of bundles

η ⊕ η⊥ ∼= ζ.
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Moreover the composition
η⊥ ⊂ ζ → ζ/η

is also an isomorphism. The theorem follows. �

Corollary 1.13. Let ζ be a Euclidean n - dimensional vector bundle. Then ζ has a O(k) ×
O(n− k) - structure if and only if ζ admits a k - dimensional subbundle η ⊂ ζ.

We now describe the dual of a vector bundle. So let ζ : Eζ → B be an n - dimensional bundle. Its
dual, ζ∗ : Eζ

∗ → B is the bundle whose fiber at x ∈ B is the dual vector space Eζ
∗

x = Hom(Eζ ,R).
If

{φα,β : Uα ∩ Uβ → GL(n,R)}

are clutching functions for ζ, then

{φ∗α,β : Uα ∩ Uβ → GL(n,R)}

form the clutching functions for ζ∗, where φ∗α,β(x) is the adjoint (transpose) of φα,β(x). The dual
of a complex bundle is defined similarly.

Exercise.

Prove that ζ and ζ∗ are isomorophic vector bundles. HInt. Give ζ a Euclidean structure.

Now let η : Eη → B be a k - dimensional, and as above, ζ : Eζ → B an n - dimensional bundle.
We define the tensor product bundle η ⊗ ζ to be the bundle whose fiber at x ∈ B is the tensor
product of vector spaces, Eηx ⊗ Eζx. The clutching fucntions can be thought of as compositions of
the form

φη⊗ζα,β : Uα ∩ Uβ
φη

α,β×φ
ζ
α,β−−−−−−−→ GL(k,R)×GL(n,R) ⊗−−−−→ GL(kn,R)

where the tensor product of two linear transformations A : V1 → V2 and B : W1 →W2 is the induced
linear transformation A⊗B : V1 ⊗W1 → V2 ⊗W2.

With these two constructions we are now able to define the “homomorphism bundle”, Hom(η, ζ).
This will be the bundle whose fiber at x ∈ B is the k · m - dimensional vector space of linear
transformations

Hom(Eηx , E
ζ
x) ∼= (Eηx)

∗ ⊗ Eζx.

So as bundles we can define
Hom(η, ζ) = η∗ ⊗ ζ.

Observation. A bundle homomorphsim θ : η → ζ assigns to every x ∈ B a linear transforma-
tion of the fibers, θx : Eηx → Eζx. Thus a bundle homomorphism can be thought of as a section of
the bundle Hom(η, ζ). That is, there is a bijection between the space of sections, Γ(Hom(η, ζ)) and
the space of bundle homomorphisms, {θ : η → ζ}.
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2.2. The tangent bundle of Projective Space. We now use these constructions to identify
the tangent bundle of projective spaces, τRPn and τCPn. We study the real case first.

Recall the canonical line bundle, γ1 : Eγ1 → RPn. If [x] ∈ RPn is viewed as a line in Rn+1,
then the fiber Eγ1[x] is the one dimensional space of vectors in the line [x]. Thus γ1 has a natural
embedding into the trivial n+ 1 - dimensional bundle ε : RPn × Rn+1 → RPn via

Eγ1 = {([x], u) ∈ RPn × Rn+1 : u ∈ [x]} ↪→ RPn × Rn+1.

Let γ⊥1 be the n - dimensional orthogonal complement bundle of this embedding.

Theorem 1.14. There is an isomorphism of the tangent bundle with the homomorphism bundle

τRPn ∼= Hom(γ1, γ
⊥
1 )

Proof. Let p : Sn → RPn be the natural projection. For x ∈ Sn, recall that the tangent space
of Sn can be described as

TxS
n = {(x, v) ∈ Sn × Rn+1 : x · v = 0}.

Notice that (x, v) ∈ TxS
n and (−x,−v) ∈ T−xS

n have the same image in T[x]RPn under the
derivative Dp : TSn → TRPn. Since p is a local diffeomorphism, Dp(x) : TxSn → T[x]RPn is an
isomorphism for every x ∈ Sn. Thus T[x]RPn can be identified with the space of pairs

T[x]RPn = {(x, v), (−x,−v) : x, v ∈ Rn+1, |x| = 1, x · v = 0}.

If x ∈ Sn, let Lx = [x] denote the line through ±x in Rn+1. Then a pair (x, v), (−x,−v) ∈
T[x]RPn is uniquely determined by a linear transformation

` : Lx → L⊥

`(tx) = tv.

Thus T[x]RPn is canonically isomorphic to Hom(Eγ1x , E
γ⊥1
x ), and so

τRPn ∼= Hom(γ1, γ
⊥
1 ),

as claimed. �

The following description of the τRPn ⊕ ε1 will be quite helpful to us in future calculations of
characteristic classes.

Theorem 1.15. The Whiney sum of the tangent bundle and a trivial line bundle, τRPn ⊕ ε1 is
isomorphic to the Whitney sum of n+ 1 copies of the canonical line bundle γ1,

τRPn ⊕ ε1 ∼= ⊕n+1γ1.
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Proof. Consider the line bundle Hom(γ1, γ1) over RPn. This line bundle is trivial since it has
a canonical nowhere zero section

ι(x) = 1 : Eγ1[x] → Eγ1[x].

We therefore have

τRPn ⊕ ε1 ∼= τRPn ⊕Hom(γ1, γ1)

∼= Hom(γ1, γ
⊥
1 )⊕Hom(γ1, γ1)

∼= Hom(γ1, γ
⊥
1 ⊕ γ1)

∼= Hom(γ1, εn+1)

∼= ⊕n+1γ
∗
1

∼= ⊕n+1γ1

as claimed. �

The following are complex analogues of the above theorems and are proved in the same way.

Theorem 1.16.

τCPn ∼=C HomC(γ1, γ
⊥
1 )

and

τCPn ⊕ ε1 ∼= ⊕n+1γ
∗
1 ,

where ∼=C and HomC denote isomorphisms and homomorphisms of complex bundles, respectively.

Note. γ∗ is not isomorphic as complex vector bundles to γ1. It is isomorphic to γ1 with the
conjugate complex structure. We will discuss this phenomenon more later.

2.3. K - theory. Let V ect∗(X) = ⊕n≥0V ect
n(X) where, as above, V ectn(X) denotes the set

of isomorphism classes of n - dimensional complex bundles over X. V ect∗R(X) denotes the analogous
set of real vector bundles. In both these cases V ect0(X) denotes, by convention, the one point set,
representing the unique zero dimensional vector bundle.

Now the Whitney sum operation induces pairings

V ectn(X)× V ectm(X) ⊕−−−−→ V ectn+m(X)

which in turn give V ect∗(X) the structure of an abelian monoid. Notice that it is indeed abelian
because given vector bundles η and ζ we have an obvious isomorphism

η ⊕ ζ ∼= ζ ⊕ η.

The “zero” in this monoid structure is the unique element of V ect0(X).
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Given an abelian monoid, A, there is a construction due to Grothendieck of its group completion

K(A). Formally, K(A) is the smallest abelian group equipped with a homomorphism of monoids, ι :
A→ K(A). It is smallest in the sense if G is any abelian group and φ : A→ G is any homomorphism
of monoids, then there is a unique extension of φ to a map of abelian groups φ̄ : K(A)→ G making
the diagram commute:

A
ι−−−−→ K(A)

φ

y yφ̄
G = G

This formal property, called the universal property, characterizes K(A), and can be taken to be
the definition. However there is a much more explicit description. Basically the group completion
K(A) is obtained by formally adjoining inverses to the elements of A. That is, an element of K(A)
can be thought of as a formal difference α − β, where α, β ∈ A. Strictly speaking we have the
following definition.

Definition 1.13. Let F (A) be the free abelian group generated by the elements of A, and let
R(A) denote the subgroup of F (A) generated by elements of the form a⊕ b− (a+ b) where a, b ∈ A.
Here “⊕” is the group operation in the free abelian group and “+” is the addition in the monoid
structure of A. We then define the Grothendieck group completion K(A) to be the quotient group

K(A) = F (A)/R(A).

Notice that an element of K(A) is of the form

θ =
∑
i

niai −
∑
j

mjbj

where the ni’s and mj ’s are positive integers, and each ai and bj ∈ A. That is, by the relations in
R(A), we may write

θ = α− β

where α =
∑
i niai ∈ A, and β =

∑
jmjbj ∈ A.

Notice also that the composition ι : A ⊂ F (A) → F (A)/R(A) = K(A) is a homomorphism of
monoids, and clearly has the universal property described above. We can now make the following
definition.

Definition 1.14. Given a space X, its complex and real (or orthogonal) K - theories are defined
to be the Grothendieck group completions of the abelian monoids of isomorphism classes of vector
bundles:

K(X) = K(V ect∗(X))

KO(X) = K(V ect∗R(X)
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An element α = ζ − η ∈ K(X) is often referred to as a “virtual vector bundle” over X.

Notice that the discusion of the tangent bundles of projective spaces above (section 2.2) can be
interpreted in K -theoretic language as follows:

Proposition 1.17. As elements of K(CPn), we have the equation

[τCPn] = (n+ 1)[γ∗1 ]− [1]

where [m] ∈ K(X) refers to the class represented by the trivial bundle of dimension m. Similarly,
in the orthogonal K - theory KO(RPn) we have the equation

[τRPn] = (n+ 1)[γ1]− [1].

Notice that for a point, V ect∗(pt) = Z+, the nonnegative integers, since there is precisely one
vector bundle over a point (i.e vector space) of each dimension. Thus

K(pt) ∼= KO(pt) ∼= Z.

Notice furthermore that by taking tensor products there are pairings

V ectm(X)× V ectn(X) ⊗−−−−→ V ectmn(X).

The following is verified by a simple check of definitions.

Proposition 1.18. The tensor product pairing of vector bundles gives K(X) and KO(X) the
structure of commutative rings.

Now given a bundle ζ over Y , and a map f : X → Y , we saw in the previous section how to
define the pull-back, f∗(ζ) over X. This defines a homomorphism of abelian monoids

f∗ : V ect∗(Y )→ V ect∗(X).

After group completing we have the following:

Proposition 1.19. A continuous map f : X → Y induces ring homomorphisms,

f∗ : K(Y )→ K(X)

and

f∗ : KO(Y )→ KO(X).
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In particular, consider the inclusion of a basepoint x0 ↪→ X. This induces a map of rings, called
the augmentation,

ε : K(X)→ K(x0) ∼= Z.

This map is a split surjection of rings, because the constant map c : X → x0 induces a right inverse
of ε, c∗ : Z = K(x0) → K(X). Notice that the augmentation can be viewed as the “dimension”
map in that when restricted to the monoid V ect∗(X), then ε : V ectm(X) → {m} ⊂ Z. That is, on
an element ζ − η ∈ K(X), ε(ζ − η) = dim(ζ) − dim(η). We then define the reduced K -theory as
follows.

Definition 1.15. The reduced K - theory of X, denoted K̃(X) is defined to be the kernel of
the augmentation map

K̃(X) = ker{ε : K(X)→ Z}

and so consists of classes ζ − η ∈ K(X) such that dim(ζ) = dim(η). The reduced orthogonal K -
theory, K̃O(X) is defined similarly.

The following is an immediate consequence of the above observations:

Proposition 1.20. There are natural splittings of rings

K(X) ∼= K̃(X)⊕ Z

KO(X) ∼= K̃O(X)⊕ Z.

Clearly then the reduced K - theory is the interesting part of K - theory. Notice that a bundle
ζ ∈ V ectn(X) determines the element [ζ] − [n] ∈ K̃(X), where [n] is the K - theory class of the
trivial n - dimensional bundle.

The definitions of K - theory are somewhat abstract. The following discussion makes it clear
precisely what K - theory measures in the case of compact spaces.

Definition 1.16. Let ζ and η be vector bundles over a space X. ζ and η are said to be stably

isomorphic if for some m and n, there is an isomorphism

ζ ⊕ εn ∼= η ⊕ εm

where, as above, εk denotes the trivial bundle of dimension k. We let SV ect(X) denote the set of
stable isomorphism classes of vector bundles over X.

Notice that SV ect(X) is also an abelian monoid under Whitney sum, and that since any two
trivial bundles are stably isomorphic, and that adding a trivial bundle to a bundle does not change
the stable isomorphic class, then any trivial bundle represents the zero element of SV ect(X).
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Theorem 1.21. Let X be a compact space, then SV ect(X) is an abelian group and is isomorphic
to the reduced K -theory,

SV ect(X) ∼= K̃(X).

Proof. A main component of the proof is the following result, which we will prove in the next
chapter when we study the classification of vector bundles.

Theorem 1.22. Every vector bundle over a compact space can be embedded in a trivial bundle.
That is, if ζ is a bundle over a compact space X , then for sufficiently large N > 0, there is bundle
embedding

ζ ↪→ εN .

We use this result in the following way in order to prove the above theorem. Let ζ be a bundle
over a compact space X. Then by this result we can find an embedding ζ ↪→ εN . Let ζ⊥ be the
orthogonal complement bundle to this embedding. So that

ζ ⊕ ζ⊥ = εN .

Since εN represents the zero element in SV ect(X), then as an equation in SV ect(X) this becomes

[ζ] + [ζ⊥] = 0.

Thus every element in SV ect(X) is invertible in the monoid structure, and hence SV ect(X) is an
abelian group.

To prove that SV ect(X) is isomorphic to K̃(X), notice that the natural surjection of V ect∗(X)
onto SV ect(X) is a morphism of abelian monoids, and since SV ect(X) is an abelian group, this
surjection extends linearly to a surjective homomorphism of abelian groups,

ρ : K(X)→ SV ect(X).

Since [εn] = [n] ∈ K(X) maps to zero in SV ect(X) under ρ, this map factors through a surjective
homomorphism from reduced K - theory, which by abuse of notation we also call ρ,

ρ : K̃(X)→ SV ect(X).

To prove that ρ is a injective (and hence an isomorphism), we will construct a left inverse to ρ. This
is done by considering the composition

V ect∗(X) ι−−−−→ K(X)→ K̃(X)

which is given by mapping an n - dimensional bundle ζ to [ζ]−[n]. This map clearly sends two bundles
which are stably isomorphic to the same class in K̃(X), and hence factors through a homomorphism

j : SV ect(X)→ K̃(X).
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By checking its values on bundles, it becomes clear that the composition j◦ρ : K̃(X)→ SV ect(X)→
K̃(X) is the identity map. This proves the theorem. �

We end this section with the following observation. As we said above, in the next chapter we
will study the classification of bundles. In the process we will show that homotopic maps induce
isomorphic pull - back bundles, and therefore homotopy equivalences induce bijections, via pulling
back, on the sets of isomorphism classes of bundles. This tells us that K -theory is a “homotopy
invariant” of topological spaces and continuous maps between them. More precisely, the results of
the next chapter will imply the following important properties of K - theory.

Theorem 1.23. Let f : X → Y and g : X → Y be homotopic maps. then the pull back
homomorphisms are equal

f∗ = g∗ : K(Y )→ K(X)

and
f∗ = g∗ : KO(Y )→ KO(X).

This can be expressed in categorical language as follows: (Notice the similarity of role K - theory
plays in the following theorem to cohomology theory.)

Theorem 1.24. The assignments X → K(X) and X → KO∗(X) are contravariant functors
from the category of topological spaces and homotopy classes of continuous maps to the category of
rings and ring homomorphisms.

2.4. Differential Forms. In the next two sections we describe certain differentiable construc-
tions on bundles over smooth manifolds that are basic in geometric analysis. We begin by recalling
some “multilinear algebra”.

Let V be a vector space over a field k. Let T (V ) be the associated tensor algebra

T (V ) = ⊕n≥0V
⊗n

where V 0 = k. The algebra structure is comes from the natural pairings

V ⊗n ⊗ V ⊗m =−−−−→ V ⊗(n+m).

Recall that the exterior algebra

Λ(V ) = T (V )/A

where A ⊂ T (V ) is the two sided ideal generated by {a⊗ b+ b⊗ a : a, b ∈ V }.

The algebra Λ(V ) inherits the grading from the tensor algebra, Λ(V ) = ⊕n≥0Λk(V ), and the
induced multiplication is called the “wedge product”, u ∧ v. Recall that if V is an n - dimensional
vector space, Λk(V ) is an

(
n
k

)
- dimensional vector space.
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Assume now that V is a real vector space. An element of the dual space, (V ⊗n)∗ = Hom(V ⊗n,R)
is a multilinear form V × · · · × V → R. An element of the dual space (Λk(V ))∗ is an alternating
form, i.e a multilinear function θ so that

θ(vσ(1), · · · , vσ(k)) = sgn(σ)θ(v1, · · · , vk)

where σ ∈ Σk is any permutation.

Let Ak(V ) = (Λk(V ))∗ be the space of alternating k - forms. Let U ⊂ Rn be an open set. Recall
the following definition.

Definition 1.17. A differential k - form on the open set U ⊂ Rn is a smooth function

ω : U → Ak(Rn).

By convention, 0 -forms are just smooth functions, f : U → R. Notice that given such a
smooth function, its differential, df assigns to a point x ∈ U ⊂ Rn a linear map on tangent spaces,
df(x) : Rn = TxRn → Tf(x)R = R. That is, df : U → (Rn)∗, and hence is a one form on U .

Let Ωk(U) denote the space of k - forms on the open set U . Recall that any k -form ω ∈ Ωk(U)
can be written in the form

(2.1) ω(x) =
∑
I

fI(x)dxI

where the sum is taken over all sequences of length k of integers from 1 to n, I = (i1, · · · , ik),
fI : U → R is a smooth function, and where

dxI = dxi1 ∧ · · · ∧ dxik .

Here dxi denotes the differential of the function xi : U ⊂ Rn → R which is the projection onto the
ith - coordinate.

Recall also that there is an exterior derivative,

d : Ωk(U)→ Ωk+1(U)

defined by

d(fdxI) = df ∧ dxI ==
k∑
j=1

∂f

∂xj
dxj ∧ dxI

A simple calculation shows that d2(ω) = d(dω) = 0, using the symmetry of second order partial
derivatives.

These constructions can be extended to arbitrary manifolds in the following way. Given an n -
dimensional smooth manifold M , let Λk(τ(M)) be the

(
n
k

)
- dimensional vector bundle whose fiber

at x ∈M is the k - fold exterior product, of the tangent space, Λk(TxM).
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Exercise.

Define clutching functions of Λk(τ(M)) in terms of clutching functions of the tangent bundle, τ(M)

Definition 1.18. A differential k-form on M is a section of the dual bundle,

Λk(τ(M))∗ ∼= Λk(τ∗(M)) ∼= Hom(Λk(τ(M)), ε1).

That is, the space of k -forms is given by the space of sections,

Ωk(M) = Γ(Λk(τ∗(M))).

So a k -form ω ∈ Ωk(M) assigns to x ∈M an alternating k form on its tangent space,

ω(x) : TxM × · · · × TxM → R.

and hence given a local chart with a local coordinate system, then locally ω can be written in the
form (2.1).

Since differentiation is a local operation, we may extend the definition of the exterior derivative
of forms on open sets in Rn to all n - manifolds,

d : Ωk(M)→ Ωk+1(M).

In particular, the zero forms are the space of functions, Ω0(M) = C∞(M ; R), and for f ∈ Ω0(M),
then df ∈ Ω1(M) = Γ(τ(M)∗) is the 1 -form defined by the differential,

df(x) : TxM → Tf(x)R = R.

Now as above, d2(ω) = 0 for any form ω. Thus we have a cochain complex, called the deRham

complex,

(2.2)
Ω0(M) d−−−−→ Ω1(M) d−−−−→ · · · d−−−−→ Ωk−1(M) d−−−−→ Ωk(M) d−−−−→ Ωk+1(M)

d−−−−→ · · · d−−−−→ Ωn(M) d−−−−→ 0.

Recall that a k - form ω with dω = 0 is called a closed form. A k - form ω in the image of d, i.e
ω = dη for some η ∈ Ωk−1(M) is called an exact form. The quotient vector space of closed forms
modulo exact forms defined the “deRham cohomology” group:

Definition 1.19.

Hk
deRham(M) = {closed k - forms}/{exact k - forms}.
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The famous de Rham theorem asserts that these cohomology groups are isomorphic to singular
cohomology with R - coefficients. To see the relationship, let Ck(M) be the space of k - dimensional
singular chains on M , (i.e the free abelian group generated by smooth singular simplices σ : ∆k →
M), and let

Ck(M ; R) = Hom(Ck(M),R)

be the space of real valued singular cochains. Notice that a k -form ω gives rise to a k - dimensional
singular cochain in that it acts on a singular simplex σ : ∆k →M by

〈ω, σ〉 =
∫
σ

ω.

This defines a homomorphism

γ : Ωk(M)→ Ck(M ; R)

for each k.

Exercise. Prove that γ is a map of cochain complexes. That is,

γ(dω) = δγ(ω)

where δ : Ck(M ; R)→ Ck+1(M ; R) is the singular coboundary operator. Hint. Use Stokes’
theorem.

We refer the reader to [5] for a proof of the deRham Theorem:

Theorem 1.25. The map of cochain complexes,

γ : Ω∗(M)→ C∗(M ; R)

is a chain homotopy equivalence. Therefore it induces an isomorphism in cohomology

H∗
deRham(M)

∼=−−−−→ H∗(M ; R).

2.5. Connections and Curvature. In modern geometry, differential topology, and geometric
analysis, one often needs to study not only smooth functions on a manifold, but more generally,
spaces of smooth sections of a vector bundle Γ(ζ). (Notice that sections of bundles are indeed a
generalization of smooth functions in that the space of sections of the n - dimensional trivial bundle
over a manifold M , Γ(εn) = C∞(M ; Rn) = ⊕nC∞(M ; R).) Similarly, one needs to study differential
forms that take values in vector bundles. These are defined as follows.

Definition 1.20. Let ζ be a smooth bundle over a manifold M . A differential k - form with
values in ζ is defined to be a smooth section of the bundle of homomorphisms, Hom(Λk(τ(M)), ζ) =
Λk(τ(M)∗)⊗ ζ.
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We write the space of k -forms with values in ζ as

Ωk(M ; ζ) = Γ(Λk(τ(M)∗ ⊗ ζ).

The zero forms are simply the space of sections, Ω0(M ; ζ) = Γ(ζ). Notice that if ζ is the trivial
bundle ζ = εn, then one gets standard forms,

Ωk(M ; εn) = Ωk(M)⊗ Rn = ⊕nΩk(M).

Even though spaces of forms with values in a bundle are easy to define, there is no canonical
analogue of the exterior derivative. There do however exist differential operators

D : Ωk(M ; ζ)→ Ωk+1(M ; ζ)

that satisfy familiar product formulas. These operators are called covariant derivatives (or connec-

tions ) and are related to the notion of a connection on a principal bundle, which we now define and
study.

Let G be a compact Lie group. Recall that the tangent bundle τG has a canonical trivialization

ψ : G× T1G→ TG

(g, v)→ D(`g)(v)

where for any g ∈ G, `g : G → G is the map given by left multiplication by g, and D(`g) :
ThG→ TghG is its derivative. rg and D(rg) will denote the analogous maps corresponding to right
multiplication.

The differential of right multiplication on G defines a right action of G on the tangent bundle
τG. We claim that the trivialization ψ is equivariant with respect to this action, if we take as the
right action of G on T1G to be the adjoint action:

T1G×G→ T1G

(v, g)→ D(`g−1)(v)D(rg).

Exercise. Verify this claim.

As is standard, we identify T1G with the Lie algebra g. This action is referred to as the adjoint

representation of the Lie group G on its Lie algebra g. Now let

p : P →M

be a smooth principal G -bundle over a manifold M . This adjoint representation induces a vector
bundle ad(P ),

(2.3) ad(P ) : P ×G g→M.
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This bundle has the following relevance. Let p∗(τM) : p∗(TM)→ P be the pull - back over the
total space P of the tangent bundle of M . We have a surjective map of bundles

τP → p∗(τM).

Define TFP to be the kernel bundle of this map. So the fiber of TFP at a point y ∈ P is the kernel
of the surjective linear transformation Dp(y) : TyP → Tp(y)M . Notice that the right action of G on
the total space of the principal bundle P defines an action of G on the tangent bundle τP , which
restricts to an action of G on TFP . Furthermore, by recognizing that the fibers are equivariantly
homeomorphic to the Lie group G, the following is a direct consequence of the above considerations:

Proposition 1.26. TFP is naturally isomorphic to the pull - back of the adjoint bundle,

TFP ∼= p∗(ad(P )).

Thus we have an exact sequence of G - equivariant vector bundles over P :

(2.4) 0→ p∗(ad(P ))→ τP
Dp−−−−→ p∗(τM)→ 0.

Recall that short exact sequences of bundles split as Whitney sums. A connection is a G -
equivariant splitting of this sequence:

Definition 1.21. A connection on the principal bundle P is a G - equivariant splitting

ωA : τP → p∗(ad(P ))

of the above sequence of vector bundles. That is, ωA defines a G - equivariant isomorphism

ωA ⊕Dp : τP → p∗(ad(P ))⊕ p∗(τM).

The following is an important description of the space of connections on P , A(P ).

Proposition 1.27. The space of connections on the principal bundle P , A(P ), is an affine
space modeled on the infinite dimensional vector space of one forms on M with values in the bundle
ad(P ), Ω1(M ; ad(P )).

Proof. Consider two connections ωA and ωB ,

ωA, ωB : τP → p∗(ad(P ).

Since these are splittings of the exact sequence 2.4, they are both the identity when restricted to
p∗(ad(P )) ↪→ τP . Thus their difference, ωA−ωB is zero when restricted to p∗(ad(P )). By the exact
sequence it therefore factors as a composition

ωA − ωB : τP → p∗(τM) α−−−−→ p∗(ad(P ))
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for some bundle homomorphism α : p∗(τM) → p∗(ad(P )). That is, for every y ∈ P , α defines a
linear transformation

αy : p∗(TM)y → p∗(ad(P ))y.

Hence for every y ∈ P , α defines (and is defined by) a linear transformation

αy : Tp(y)M → ad(P )p(y).

Furthermore, the fact that both ωA and ωB are equivariant splittings says that ωA−ωB is equivariant,
which translates to the fact that αy only depends on the orbit of y under the G - action. That is,

αy = αyg : Tp(y)M → ad(P )p(y)

for every g ∈ G. Thus αy only depends on p(y) ∈ M . Hence for every x ∈ M , α defnes, and is
defined by, a linear transformation

αx : TxM → ad(P )x.

Thus α may be viewed as a section of the bundle of homormorphisms, Hom(τM, ad(P )), and hence
is a one form,

α ∈ Ω1(M ; ad(P )).

Thus any two connections on P differ by an element in Ω1(M ; ad(P )) in this sense.

Now reversing the procedure, an element β ∈ Ω1(M ; ad(P )) defines an equivariant homomor-
phism of bundles over P ,

β : p∗(τM)→ p∗(ad(P )).

By adding the composition

τP
Dp−−−−→ p∗(τM)

β−−−−→ p∗(ad(P ))

to any connection (equivariant splitting)

ωA : τP → p∗(ad(P ))

one produces a new equivariant splitting of τP , and hence a new connection. The proposition
follows. �

Remark. Even though the space of connections A(P ) is affine, it is not, in general a vector space.
There is no “zero” in A(P ) since there is no pre-chosen, canonical connection. The one exception
to this, of course, is when P is the trivial G - bundle,

P = M ×G→M.

In this case there is an obvious equvariant splitting of τP , which serves as the “zero” in A(P ).
Moreover in this case the adjoint bundle ad(P ) is also trivial,

ad(P ) = M × g→M.



2. PULL BACKS AND BUNDLE ALGEBRA 37

Hence there is a canonical identification of the space of connections on the trivial bundle with
Ω1(M ; g) = Ω1(M)⊗ g.

Let p : P →M be a principal G - bundle and let ωA ∈ A(P ) be a connection.

The curvature FA of ωA is a two form

FA ∈ Ω2(M ; ad(P ))

which measures to what extent the splitting ωA commutes with the braket operation on vector
fields. More precisely, let X and Y be vector fields on M . The connection ωA defines an equivariant
splitting of τP and hence defines a “horizontal” lifting of these vector fields, which we denote by X̃
and Ỹ respectively.

Definition 1.22. The curvature FA ∈ Ω2(M ; ad(P )) is defined by

FA(X,Y ) = ωA[X̃, Ỹ ].

For those unfamiliar with the bracket operation on vector fields, we refer you to [38]

Another important construction with connections is the associated covariant derivative which is
defined as follows.

Definition 1.23. The covariant derivative induced by the connection ωA

DA : Ω0(M ; ad(P ))→ Ω1(M ; ad(P ))

is defined by

DA(σ)(X) = [X̃, σ].

where X is a vector field on M .

The notion of covariant derivative, and hence connection, extends to vector bundles as well. Let
ζ : p : Eζ →M be a finite dimensional vector bundle over M .

Definition 1.24. A connection on ζ (or a covariant derivative) is a linear transformation

DA : Ω0(M ; ζ)→ Ω1(M ; ζ)

that satisfies the Leibnitz rule

(2.5) DA(fφ) = df ⊗ φ+ fDA(φ)

for any f ∈ C∞(M ; R) and any φ ∈ Ω0(M ; ζ).
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Now we can model the space of connections on a vector bundle, A(ζ) similarly to how we
modeled the space of connections on a principal bundle A(P ). Namely, given any two connections
DA and DB on ζ and a function f ∈ C∞(M ; R), one can take the convex combination

f ·DA + (1− f) ·DB

and obtain a new connection. From this it is not difficult to see the following. We leave the proof
as an exercise to the reader.

Proposition 1.28. The space of connections on the vector bundle ζ, A(ζ) is an affine space
modeled on the vector space of one forms Ω1(M ;End(ζ)), where End(ζ) is the bundle of endomor-
phisms of ζ.

Let X be a vector field on M and DA a connection on the vector bundle ζ. The covariant
derivative in the direction of X, which we denote by (DA)X is an operator on the space of sections
of ζ,

(DA)X : Ω0(M ; ζ)→ Ω0(M ; ζ)

defined by

(DA)X(σ) = 〈DA(φ);X〉.

One can then define the curvature FA ∈ Ω2(M ;End(ζ)) by defining its action on a pair of vector
fields X and Y to be

(2.6) FA(X,Y ) = (DA)X(DA)Y − (DA)Y (DA)X − (DA)[X,Y ].

To interpret this formula notice that a - priori FA(X,Y ) is a second order differential operator on the
space of sections of ζ. However a direct calculation shows that for f ∈ C∞(M ; R) and σ ∈ Ω0(M ; ζ),
then

FA(X,Y )(fσ) = fFA(X,Y )(σ)

and hence FA(X,Y ) is in fact a zero - order operator on Ω0(M ; ζ). But a zero order operator on
the space of sections of ζ is a section of the endomorphism bundle End(ζ). Thus FA assigns to
any pair of vector fields X and Y a section of End(ζ). Moreover it is straightforward to check that
this assignment is tensorial in X and Y (i.e FA(fX, Y ) = FA(X, fY ) = fFA(X,Y )). Thus FA is
an element of Ω2(M ;End(ζ)). The curvature measures the lack of commutativity in second order
partial covariant derivatives.

Given a connection on a bundle ζ the linear mapping DA : Ω0(M ; ζ) → Ω1(M ; ζ) extends to a
deRham type sequence,

Ω0(M ; ζ) DA−−−−→ Ω1(M ; ζ) DA−−−−→ Ω2(M ; ζ) DA−−−−→ · · ·



2. PULL BACKS AND BUNDLE ALGEBRA 39

where for σ ∈ Ωp(M ; ζ), DA(σ) is the p+ 1 -form defined by the formula

DA(σ)(X0, · · · , Xp) =
p∑
j=0

(−1)j(DA)Xj (σ(X0, · · · , X̂j , · · · , Xp))(2.7)

+
∑
i<j

(−1)i+jσ([Xi, Xj ], X0, · · · , X̂i, · · · , X̂j , · · · , Xp).

We observe that unlike with the standard deRham exterior derivative (which can be viewed as
a connection on the trivial line bundle), it is not generally true that DA ◦DA = 0. In fact we have
the following, whose proof is a direct calculation that we leave to the reader.

Proposition 1.29.

DA ◦DA = FA : Ω0(M ; ζ)→ Ω2(M ; ζ)

where in this context the curvature FA is interpreted as a assigning to a section σ ∈ Ω0(M ; ζ) the 2
- form FA(σ) which associates to vector fields X and Y the section FA(X,Y )(σ) as defined in (2.6).

Thus the curvature of a connection FA can also be viewed as measuring the extent to which the
covariant derivative DA fails to form a cochain complex on the space of differential forms with values
in the bundle ζ. However it is always true that the covariant derivative of the curvature tensor is
zero. This is the well known Bianchi identity (see [38] for a complete discussion).

Theorem 1.30. Let A be a connection on a vector bundle ζ. Then

DAFA = 0.

We end this section by observing that if P is a principal G - bundle with a connection ωA,
then any representation of G on a finite dimensional vector space V induces a connection on the
corresponding vector bundle

P ×G V →M.

We refer the reader to [16] and [38] for thorough discussions of the various ways of viewing connec-
tions. [3] has a nice, brief discussion of connections on principal bundles, and [14] and [23] have
similarly concise discussions of connections on vector bundles.

2.6. The Levi - Civita Connection. Let M be a manifold equipped with a Riemannian
structure. Recall that this is a Euclidean structure on its tangent bundle. In this section we will
show how this structure induces a connection, or covariant derivative, on the tangent bundle. This
connection is called the Levi - Civita connection associated to the Riemannian structure. Our
treatment of this topic follows that of Milnor and Stasheff [31]
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Let DA : Ω0(M ; ζ)→ Ω1(M ; ζ) be a connection (or covariant derivative) on an n - dimensional
vector bundle ζ. Its curvature is a two- form with values in the endomorphism bundle

FA ∈ Ω2(M ;End(ζ))

The endomorphism bundle can be described alternatively as follows. Let Eζ be the principal
GL(n,R) bundle associated to ζ. Then of course ζ = Eζ ⊗GL(n,R) Rn. The endomorphism bun-
dle can then be described as follows. The proof is an easy exercise that we leave to the reader.

Proposition 1.31.

End(ζ) ∼= ad(ζ) = Eζ ×GL(n,R) Mn(R)

where GL(n,R) acts on Mn(R) by conjugation,

A ·B = ABA−1.

Let ω be a differential p - form on M with values in End(ζ),

ω ∈ Ωp(M ;End(ζ)) ∼= Ωp(M ; ad(ζ)) = Ωp(M ;Eζ ×GL(n,R) Mn(R)).

Then on a coordinate chart U ⊂M with local trivialization ψ : ζ|U ∼= U × Cn for ζ, (and hence the
induced coordinate chart and local trivialization for ad(ζ)), ω can be viewed as an n× n matrix of
p -forms on M . We write

ω = (ωi,j).

Of course this description depends on the coordinate chart and local trivialization chosen, but at
any x ∈ U , then by the above proposition, two trivializations yield conjugate matrices. That is, if
(ωi,j(x)) and (ω′i,j(x)) are two matrix descriptions of ω(x) defined by two different local trivializations
of ζ|U , then there exists an A ∈ GL(n,C) with

A(ωi,j(x))A−1 = (ω′i,j(x)).

Now suppose the bundle ζ is equipped with a Euclidean structure. As seen earlier in this chapter
this is equivalent to its associated principal GL(n,R) - bundle Eζ having a reduction to the structure
group O(n). We let EO(n) →M denote this principal O(n) - bundle.

Now the Lie algebra o(n) of O(n) (i.e the tangent space T1(O(n))) is a subspace of the Lie
algebra of GL(n,R), i.e

o(n) ⊂Mn(R).

The following is well known (see, for example[35])
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Proposition 1.32. The Lie algebra o(n) ⊂Mn(R) is the subspace consisting of skew symmetric
n× n - matrices. That is, A ∈ o(n) if and only if

At = −A

where At is the transpose.

So if ζ has a Euclidean structure, we can form the adjoint bundle

adO(ζ) = EO(n) ×O(n) o(n) ⊂ Eζ ×GL(n,R) Mn(R) = ad(ζ)

where, again O(n) acts on o(n) by conjugation.

Now suppose DA is an orthogonal connection on ζ. That is, it is induced by a connection on
the principal O(n) - bundle EO(n) → M . The following is fairly clear, and we leave its proof as an
exercise.

Corollary 1.33. If DA is an orthogonal connection on a Euclidean bundle ζ, then the curvature
FA lies in the space of o(n) valued two forms

FA ∈ Ω2(M ; adO(ζ)) ⊂ Ω2(M ; ad(ζ)) = Ω2(M ;End(ζ)).

Furthermore, on a coordinate chart U ⊂M with local trivialization ψ : ζ|U ∼= U ×Cn that preserves
the Euclidean structure, we may write the form FA as a skew - symmetric matrix of two forms,

FA|U = (ωi,j) i, j = 1, · · · , n

where each ωi,j ∈ Ω2(M) and ωi,j = −ωj,i. In fact the connection DA itself can be written as skew
symmetric matrix of one forms

DA|U
= (αi,j)

where each αi,j ∈ Ω1(M).

We now describe the notion of a “symmetric” connection on the cotangent bundle of a manifold,
and then show that if the manifold is equipped with a Riemannian structure (i.e there is a Euclidean
structure on the (co) - tangent bundle), then there is a unique symmetric, orthogonal connection on
the cotangent bundle.

Definition 1.25. A connection DA on the cotangent bundle τ∗M is symmetric (or torsion free

) if the composition

Γ(τ∗) = Ω0(M ; τ∗) DA−−−−→ Ω1(M ; τ∗) = Γ(τ∗ ⊗ τ∗) ∧−−−−→ Γ(Λ2τ∗)

is equal to the exterior derivative d.
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In terms of local coordinates x1, · · · , xn, if we write

(2.8) DA(dxk) =
∑
i,j

Γki,jdxi ⊗ dxj

(the functions Γki,j are called the “Christoffel symbols”), then the requirement that DA is symmetric
is that the image

∑
i,j Γki,jdxi ⊗ dxj be equal to the exterior derivative d(dxk) = 0. This implies

that the Christoffel symbols Γki,j must be symmetric in i and j. The following is straightforward to
verify.

Lemma 1.34. A connection DA on τ∗ is symmetric if and only if the covariant derivative of the
differential of any smooth function

DA(df) ∈ Γ(τ∗ ⊗ τ∗)

is a symmetric tensor. That is, if ψ1, · · · , ψn form a local basis of sections of τ∗, and we write the
corresponding local expression

DA(df) =
∑
i,j

ai,j ψi ⊗ ψj

then ai,j = aj,i.

We now show that the (co)-tangent bundle of a Riemannian metric has a preferred connection.

Theorem 1.35. The cotangent bundle τ∗M of a Riemannian manifold has a unique orthogo-
nal, symmetric connection. (It is orthogonal with respect to the Euclidean structure defined by the
Riemannian metric.)

Proof. Let U be an open neighborhood in M with a trivialization

ψ : U × Rn :→ τ∗|U

which preserves the Euclidean structure. ψ defines n orthonormal sections of τ∗|U , ψ1, · · · , ψn. The
ψj ’s constitute an orthonormal basis of one forms on M . We will show that there is one and only
one skew-symmetric matrix (αi,j) of one forms such that

dψk =
∑

αk,j ∧ ψj .

We can then define a connection DA on τ∗|U by requiring that

DA(ψk) =
∑

αk,j ⊗ ψj .

It is then clear that DA is the unique symmetric connection which is compatible with the metric.
Since the local connections are unique, they glue together to yield a unique global connection with
this property.
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In order to prove the existence and uniqueness of the skew symmetric matrix of one forms (αi,j)
we need the following combinatorial observation.

Any n × n × n array of real valued functions Ai,j,k can be written uniquely as the sum of an
array Bi,j,k which is symmetric in i, j, and an array Ci,j,k which is skew symmetric in j, k. To see
this, consider the formulas

Bi,j,k =
1
2
(Ai,j,k +Aj,i,k −Ak,i,j −Ak,j,i +Aj,k,i +Ai,k,j)

Ci,j,k =
1
2
(Ai,j,k −Aj,i,k +Ak,i,j +Ak,j,i −Aj,k,i −Ai,k,j)

Uniqueness would follow since if an array Di,j,k were both symmetric in i, j and skew symmetric in
j, k, then one would have

Di,j,k = Dj,i,k = −Dj,k,i = −Dk,j,i = Dk,i,j = Di,k,j = −Di,j,k

and hence all the entries are zero.

Now choose functions Ai,j,k such that

dψk =
∑

Ai,j,k ψi ∧ ψj

and set Ai,j,k = Bi,j,k + Ci,j,k as above. It then follows that

dψk =
∑

Ci,j,k ψi ∧ ψj

by the symmetry of the Bi,j,k’s. Then we define the one forms

αk,j =
∑

Ci,j,k ψi.

They clearly form the unique skew symmetric matrix of one forms with dψk =
∑
αk,j ∧ ψj . This

proves the lemma. �

This preferred connection on the (co)tangent bundle of a Riemannian metric is called the Levi -
Civita connection. Statements about the curvature of a metric on a manifold are actually statements
about the curvature form of the Levi - Civita connection associated to the Riemannian metric. For
example, a “flat metric” on a manifold is a Riemannian structure whose corresponding Levi-Civita
connection has zero curvature form. As is fairly clear, these connections form a central object of
study in Riemannian geometry.





CHAPTER 2

Classification of Bundles

In this chapter we prove Steenrod’s classification theorem of principal G - bundles, and the
corresponding classification theorem of vector bundles. This theorem states that for every group
G, there is a “classifying space” BG with a well defined homotopy type so that the homotopy
classes of maps from a space X, [X,BG], is in bijective correspondence with the set of isomorphism
classes of principal G - bundles, PrinG(X). We then describe various examples and constructions
of these classifying spaces, and use them to study structures on principal bundles, vector bundles,
and manifolds.

1. The homotopy invariance of fiber bundles

The goal of this section is to prove the following theorem, and to examine certain applications
such as the classification of principal bundles over spheres in terms of the homotopy groups of Lie
groups.

Theorem 2.1. Let p : E → B be a fiber bundle with fiber F , and let f0 : X → B and f1 : X → B

be homotopic maps.Then the pull - back bundles are isomorphic,

f∗0 (E) ∼= f∗1 (E).

The main step in the proof of this theorem is the basic Covering Homotopy Theorem for fiber
bundles which we now state and prove.

Theorem 2.2. Covering Homotopy theorem. Let p0 : E → B and q : Z → Y be fiber
bundles with the same fiber, F , where B is normal and locally compact. Let h0 be a bundle map

E
h̃0−−−−→ Z

p

y yq
B −−−−→

h0
Y

45
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Let H : B × I → Y be a homotopy of h0 (i.e h0 = H|B×{0} .) Then there exists a covering of the
homotopy H by a bundle map

E × I H̃−−−−→ Z

p×1

y yq
B × I −−−−→

H
Y.

Proof. We prove the theorem here when the base space B is compact. The natural extension
is to when B has the homotopy type of a CW - complex. The proof in full generality can be found
in Steenrod’s book [39].

The idea of the proof is to decompose the homotopy H into homotopies that take place in local
neighborhoods where the bundle is trivial. The theorem is obviously true for trivial bundles, and
so the homotopy H can be covered on each local neighborhood. One then must be careful to patch
the coverings together so as to obtain a global covering of the homotopy H.

Since the space X is compact, we may assume that the pull - back bundle H∗(Z)→ B × I has
locally trivial neighborhoods of the form {Uα× Ij}, where {Uα} is a locally trivial covering of B (i.e
there are local trivializations φα,β : Uα × F → p−1(Uα)), and I1, · · · , Ir is a finite sequence of open
intervals covering I = [0, 1], so that each Ij meets only Ij−1 and Ij+1 nontrivially. Choose numbers

0 = t0 < t1 < · · · < tr = 1

so that tj ∈ Ij ∩ Ij+1. We assume inductively that the covering homotopy H̃(x, t) has been defined
E × [0, tj ] so as to satisfy the theorem over this part.

For each x ∈ B, there is a pair of neighborhoods (W,W ′) such that for x ∈ W , W̄ ⊂ W ′ and
W̄ ′ ⊂ Uα for some Uα. Choose a finite number of such pairs (Wi,W

′
i ), (i = 1, · · · , s) covering B.

Then the Urysohn lemma implies there is a map ui : B → [tj , tj+1] such that ui(W̄i) = tj+1 and
uj(B −W ′

i ) = tj . Define τ0(x) = tj for x ∈ B, and

τi(x) = max(u1(x), · · · , ui(x)), x ∈ B, i = 1, · · · , s.

Then

tj = τ0(x) ≤ τ1(x) ≤ · · · ≤ ts(x) = tj+1.

Define Bi to be the set of pairs (x, t) such that tj ≤ t ≤ τi(x). Let Ei be the part of E × I lying
over Bi. Then we have a sequence of total spaces of bundles

E × tj = E0 ⊂ E1 ⊂ · · · ⊂ Es = E × [tj , tj+1].

We suppose inductively that H̃ has been defined on Ei−1 and we now define its extension over Ei.

By the definition of the τ ’s, the set Bi−Bi−1 is contained in W ′
i× [tj , tj+1]; and by the definition

of the W ’s, W̄ ′
i × [tj , tj+1] ⊂ Uα × Ij which maps via H to a locally trivial neighborhood, say Vk,
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for q : Z → Y . Say φk : Vk × F → q−1(Vk) is a local trivialization. In particular we can define
ρk : q−1(Vk)→ F to be the inverse of φk followed by the projection onto F . We now define

H̃(e, t) = φk(H(x, t), ρ(H̃(e, τi−1(x)))

where (e, t) ∈ Ei − Ei−1 and x = p(e) ∈ B.

It is now a straightforward verification that this extension of H̃ is indeed a bundle map on Ei.
This then completes the inductive step. �

We now prove theorem 2.1 using the covering homotopy theorem.

Proof. Let p : E → B, and f0;X → B and f1 : X → B be as in the statement of the theorem.
Let H : X × I → B be a homotopy with H0 = f0 and G1 = f1. Now by the covering homotopy
theorem there is a covering homotopy H̃ : f∗0 (E)× I → E that covers H : X× I → B. By definition
this defines a map of bundles over X × I, that by abuse of notation we also call H̃,

f∗0 (E)× I H̃−−−−→ H∗(E)y y
X × I −−−−→

=
X × I.

This is clearly a bundle isomorphism since it induces the identity map on both the base space
and on the fibers. Restricting this isomorphism to X × {1}, and noting that since H1 = f1, we get
a bundle isomorphism

f∗0 (E) H̃−−−−→∼= f∗1 (E)y y
X × {1} −−−−→

=
X × {1}.

This proves theorem 2.1 �

We now derive certain consequences of this theorem.

Corollary 2.3. Let p : E → B be a principal G - bundle over a connected space B. Then for
any space X the pull back construction gives a well defined map from the set of homotopy classes of
maps from X to B to the set of isomorphism classes of principal G - bundles,

ρE : [X,B]→ PrinG(X).



48 2. CLASSIFICATION OF BUNDLES

Definition 2.1. A principal G - bundle p : EG → BG is called universal if the pull back
construction

ρEG : [X,BG]→ PrinG(X)

is a bijection for every space X. In this case the base space of the universal bundle BG is called a
classifying space for G (or for principal G - bundles).

The main goal of this chapter is to prove that universal bundles exist for every group G, and
that the classifying spaces are unique up to homotopy type.

Applying theorem 2.1 to vector bundles gives the following, which was claimed at the end of
chapter 1.

Corollary 2.4. If f0 : X → Y and f1 : X → Y are homotopic, they induce the same
homomorphism of abelian monoids,

f∗0 = f∗1 : V ect∗(Y )→ V ect∗(X)

V ect∗R(Y )→ V ect∗R(X)

and hence of K theories

f∗0 = f∗1 : K(Y )→ K(X)

KO(Y )→ KO(X)

Corollary 2.5. If f : X → Y is a homotopy equivalence, then it induces isomorphisms

f∗ : PrinG(Y )
∼=−−−−→ PrinG(X)

V ect∗(Y )
∼=−−−−→ V ect∗(X)

K(Y )
∼=−−−−→ K(X)

Corollary 2.6. Any fiber bundle over a contractible space is trivial.

Proof. IfX is contractible, it is homotopy equivalent to a point. Apply the above corollary. �

The following result is a classification theorem for bundles over spheres. It begins to describe
why understanding the homotopy type of Lie groups is so important in Topology.

Theorem 2.7. There is a bijective correspondence between principal bundles and homotopy
groups

PrinG(Sn) ∼= πn−1(G)
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where as a set πn−1G = [Sn−1, x0; G, {1}], which refers to (based) homotopy classes of basepoint
preserving maps from the sphere Sn−1 with basepoint x0 ∈ Sn−1, to the group G with basepoint the
identity 1 ∈ G.

Proof. Let p : E → Sn be a G - bundle. Write Sn as the union of its upper and lower
hemispheres,

Sn = Dn
+ ∪Sn−1 Dn

−.

Since Dn
+ and Dn

− are both contractible, the above corollary says that E restricted to each of
these hemispheres is trivial. Morever if we fix a trivialization of the fiber of E at the basepoint
x0 ∈ Sn−1 ⊂ Sn, then we can extend this trivialization to both the upper and lower hemispheres.
We may therefore write

E = (Dn
+ ×G) ∪θ (Dn

− ×G)

where θ is a clutching function defined on the equator, θ : Sn−1 → G. That is, E consists of
the two trivial components, (Dn

+ × G) and (Dn
− × G) where if x ∈ Sn−1, then (x, g) ∈ (Dn

+ × G)
is identified with (x, θ(x)g) ∈ (Dn

− × G). Notice that since our original trivializations extended a
common trivialization on the basepoint x0 ∈ Sn−1, then the trivialization θ : Sn−1 → G maps the
basepoint x0 to the identity 1 ∈ G. The assignment of a bundle its clutching function, will define
our correspondence

Θ : PrinG(Sn)→ πn−1G.

To see that this correspondence is well defined we need to check that if E1 is isomorphic to E2, then
the corresponding clutching functions θ1 and θ2 are homotopic. Let Ψ : E1 → E2 be an isomorphism.
We may assume this isomorphism respects the given trivializations of these fibers of these bundles
over the basepoint x0 ∈ Sn−1 ⊂ Sn. Then the isomorphism Ψ determines an isomorphism

(Dn
+ ×G) ∪θ1 (Dn

− ×G) Ψ−−−−→∼= (Dn
+ ×G) ∪θ2 (Dn

− ×G).

By restricting to the hemispheres, the isomorphism Ψ defines maps

Ψ+ : Dn
+ → G

and
Ψ− : Dn

− → G

which both map the basepoint x0 ∈ Sn−1 to the identity 1 ∈ G, and furthermore have the property
that for x ∈ Sn−1,

Ψ+(x)θ1(x) = θ2(x)Ψ−(x),

or, Ψ+(x)θ1(x)Ψ−(x)−1 = θ2(x) ∈ G. Now by considering the linear homotopy Ψ+(tx)θ1(x)Ψ−(tx)−1

for t ∈ [0, 1], we see that θ2(x) is homotopic to Ψ+(0)θ1(x)Ψ−(0)−1, where the two zeros in this
description refer to the origins of Dn

+ and Dn
− respectively, i.e the north and south poles of the

sphere Sn. Now since Ψ+ and Ψ− are defined on connected spaces, their images lie in a connected
component of the group G. Since their image on the basepoint x0 ∈ Sn−1 are both the identity,



50 2. CLASSIFICATION OF BUNDLES

there exist paths α+(t) and α−(t) in Sn that start when t = 0 at Ψ+(0) and Ψ−(0) respectively, and
both end at t = 1 at the identity 1 ∈ G. Then the homotopy α+(t)θ1(x)α−(t)−1 is a homotopy from
the map Ψ+(0)θ1(x)Ψ−(0)−1 to the map θ1(x). Since the first of these maps is homotopic to θ2(x),
we have that θ1 is homotopic to θ2, as claimed. This implies that the map Θ : PrinG(Sn)→ πn−1G

is well defined.

The fact that Θ is surjective comes from the fact that every map Sn−1 → G can be viewed as
the clutching function of the bundle

E = (Dn
+ ×G) ∪θ (Dn

− ×G)

as seen in our discussion of clutching functions in chapter 1.

We now show that Θ is injective. That is, suppose E1 and E2 have homotopic clutching functions,
θ1 ' θ2 : Sn−1 → G. We need to show that E1 is isomorphic to E2 As above we write

E1 = (Dn
+ ×G) ∪θ1 (Dn

− ×G)

and

E2 = (Dn
+ ×G) ∪θ2 (Dn

− ×G).

Let H : Sn−1 × [−1, 1] → G be a homotopy so that H1 = θ1 and H1 = θ2. Identify the closure of
an open neighborhood N of the equator Sn−1 in Sn with Sn−1 × [−1, 1] Write D+ = D2

+ ∪ N̄ and
D− = D2

− ∪ N̄ Then D+ and D− are topologically closed disks and hence contractible, with

D+ ∩ D− = N̄ ∼= Sn−1 × [−1, 1].

Thus we may form the principal G - bundle

E = D+ ×G ∪H D− ×G

where by abuse of notation, H refers to the composition

N̄ ∼= Sn−1 × [−1, 1] H−−−−→ G.

We leave it to the interested reader to verify that E is isomorphic to both E1 and E2. This
completes the proof of the theorem. �

2. Universal bundles and classifying spaces

The goal of this section is to study universal principal G - bundles, the resulting classification
theorem, and the corresponding classifying spaces. We will discuss several examples including the
universal bundle for any subgroup of the general linear group. We postpone the proof of the existence
of universal bundles for all groups until the next section.

In order to identify universal bundles, we need to recall the following definition from homotopy
theory.
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Definition 2.2. A space X is said to be aspherical if all of its homotopy groups are trivial,

πn(X) = 0 for all n ≥ 0.

Equivalently, a space X is aspherical if every map from a sphere Sn → X can be extended to a map
of its bounding disk, Dn+1 → X.

Note. A famous theorem of J.H.C. Whitehead states that if X has the homotopy type of a
CW - complex, then X being aspherical is equivalent to X being contractible (see [44]).

The following is the main result of this section. It identifies when a principal bundle is universal.

Theorem 2.8. Let p : E → B be a principal G - bundle, where the total space E is aspherical.
Then this bundle is universal in the sense that if X is any space, the induced pull-back map

ψ : [X,B]→ PrinG(X)

f → f∗(E)

is a bijective correspondence.

For the purposes of these notes we will prove the theorem in the setting where the action of
G on the total space E is cellular. That is, there is a CW - decomposition of the space E which,
in an appropriate sense, is respected by the group action. There is very little loss of generality in
these assumptions, since the actions of compact Lie groups on manifolds, and algebraic actions on
projective varieties satisfy this property. For the proof of the theorem in its full generality we refer
the reader to Steenrod’s book [39], and for a full reference on equivariant CW - complexes and how
they approximate a wide range of group actions, we refer the reader to [24]

In order to make the notion of cellular action precise, we need to define the notion of an
equivariant CW - complex, or a G - CW - complex. The idea is the following. Recall that a
CW - complex is a space that is made up out of disks of various dimensions whose interiors are
disjoint. In particular it can be built up skeleton by skeleton, and the (k + 1)st skeleton X(k+1) is
constructed out of the kth skeleton X(k) by attaching (k + 1) - dimensional disks via “attaching
maps”, Sk → X(k).

A “G - CW - complex” is one that has a group action so that the orbits of the points on the
interior of a cell are uniform in the sense that each point in a cell Dk has the same isotropy subgroup,
say H, and the orbit of a cell itself is of the form G/H ×Dk. This leads to the following definition.

Definition 2.3. A G - CW - complex is a space with G -action X which is topologically the
direct limit of G - invariant subspaces {X(k)} called the equivariant skeleta,

X(0) ⊂ X(1) ⊂ · · · ⊂ X(k−1) ⊂ X(k) ⊂ · · ·X
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where for each k ≥ 0 there is a countable collection of k dimensional disks, subgroups of G, and
maps of boundary spheres

{Dk
j , Hj < G, φj : ∂Dk

j ×G/Hj = Sk−1
j ×G/Hj → X(k−1) j ∈ Ik}

so that

(1) Each “attaching map” φj : Sk−1
j ×G/Hj → X(k−1) is G -equivariant, and

(2)

X(k) = Xk−1)
⋃

φj j∈Ij

(Dk
j ×G/Hj).

This notation means that each “ disk orbit ” Dk
j × G/Hj is attached to X(k−1) via the map φj :

Sk−1
j ×G/Hj → X(k−1).

We leave the following as an exercise to the reader.

Exercise. Prove that when X is a G - CW complex the orbit space X/G has the an induced
structure of a (non-equivariant) CW - complex.

Note. Observe that in a G -CW complex X with a free G action, all disk orbits are of the form
Dk ×G, since all isotropy subgroups are trivial.

We now prove the above theorem under the assumption that the principal bundle p : E → B

has the property that with respect to group action of G on E, then E has the structure of a G - CW
- complex. The basespace is then given the induced CW - structure. The spaces X in the statement
of the theorem are assumed to be of the homotopy type of CW - complexes.

Proof. We first prove that the pull - back map

ψ : [X,B]→ PrinG(X)

is surjective. So let q : P → X be a principal G - bundle, with P a G - CW - complex. We prove
there is a G - equivariant map h : P → E that maps each orbit pG homeomorphically onto its image,
h(y)G. We prove this by induction on the equivariant skeleta of P . So assume inductively that the
map h has been constructed on the (k − 1) - skeleton,

hk−1 : P (k−1) → E.

Since the action of G on P is free, all the k - dimensional disk orbits are of the form Dk × G.
Let Dk

j × G be a disk orbit in the G-CW - structure of the k - skeleton P (k). Consider the disk
Dk
j × {1} ⊂ Dk

j ×G. Then the map hk−1 extends to Dk
j × {1} if and only if the composition

Sk−1
j × {1} ⊂ Sk−1

j ×G φj−−−−→ P (k−1) hk−1−−−−→ E
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is null homotopic. But since E is aspherical, any such map is null homotopic and extends to a map
of the disk, γ : Dk

j × {1} → E. Now extend γ equivariantly to a map hk,j : Dk
j × G → E. By

construction hk,j maps the orbit of each point x ∈ Dk
j equivariantly to the orbit of γ(x) in E. Since

both orbits are isomorphic to G (because the action of G on both P and E are free), this map is
a homeomorphism on orbits. Taking the collection of the extensions hk,j together then gives an
extension

hk : P (k) → E

with the required properties. This completes the inductive step. Thus we may conclude we have a
G - equivariant map h : P → E that is a homeomorphism on the orbits. Hence it induces a map on
the orbit space f : P/G = X → E/G = B making the following diagram commute

P
h−−−−→ E

q

y yp
X −−−−→

f
B

Since h induces a homeomorphism on each orbit, the maps h and f determine a homeomorphism of
principal G - bundles which induces an equivariant isomorphism on each fiber. This implies that h
induces an isomorphism of principal bundles to the pull - back

P
h−−−−→∼= f∗(E)

q

y yp
X −−−−→

=
X.

Thus the isomorphism class [P ] ∈ PrinG(X) is given by f∗(E). That is, [P ] = ψ(f), and hence

ψ : [X,B]→ PrinG(X)

is surjective.

We now prove ψ is injective. To do this, assume f0 : X → B and f1 : X → B are maps so that
there is an isomorphism

Φ : f∗0 (E)
∼=−−−−→ f∗1 (E).

We need to prove that f0 and f1 are homotopic maps. Now by the cellular approximation theorem
(see [37]) we can find cellular maps homotopic to f0 and f1 respectively. We therefore assume
without loss of generality that f0 and f1 are cellular. This, together with the assumption that E is a
G - CW complex, gives the pull back bundles f∗0 (E) and f∗1 (E) the structure of G -CW complexes.

Define a principal G - bundle E → X × I by

E = f∗0 (E)× [0, 1/2] ∪Φ f
∗
1 (E)× [1/2, 1]

where v ∈ f∗0 (E)× {1/2} is identified with Φ(v) ∈ f∗1 (E)× {1/2}. E also has the structure of a G -
CW - complex.
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Now by the same kind of inductive argument that was used in the surjectivity argument above,
we can find an equivariant map H : E → E that induces a homeomorphism on each orbit, and that
extends the obvious maps f∗0 (E) × {0} → E and f∗1 (E) × {1} → E. The induced map on orbit
spaces

F : E/G = X × I → E/G = B

is a homotopy between f0 and f1. This proves the correspondence Ψ is injective, and completes the
proof of the theorem. �

The following result establishes the homotopy uniqueness of universal bundles.

Theorem 2.9. Let E1 → B1 and E2 → B2 be universal principal G - bundles. Then there is a
bundle map

E1
h̃−−−−→ E2y y

B1 −−−−→
h

B2

so that h is a homotopy equivalence.

Proof. The fact that E2 → B2 is a universal bundle means, by 2.8 that there is a “classifying
map” h : B1 → B2 and an isomorphism h̃ : E1 → h∗(E2). Equivalently, h̃ can be thought of as a
bundle map h̃ : E! → E2 lying over h : B1 → B2. Similarly, using the universal property of E1 → B1,
we get a classifying map g : B2 → B1 and an isomorphism g̃ : E2 → g∗(E1), or equivalently, a bundle
map g̃ : E2 → E1. Notice that the composition

g ◦ f : B1 → B2 → B1

is a map whose pull back,

(g ◦ f)∗(E1) = g∗(f∗(E1))

∼= g∗(E2)

∼= E1.

That is, (g ◦ f)∗(E1) ∼= id∗(E1), and hence by 2.8 we have g ◦ f ' id : B1 → B1. Similarly,
f ◦ g ' id : B2 → B2. Thus f and g are homotopy inverses of each other. �

Because of this theorem, the basespace of a universal principal G - bundle has a well defined
homotopy type. We denote this homotopy type by BG, and refer to it as the classifying space of
the group G. We also use the notation EG to denote the total space of a universal G - bundle.

We have the following immediate result about the homotopy groups of the classifying space BG.
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Corollary 2.10. For any group G, there is an isomorphism of homotopy groups,

πn−1G ∼= πn(BG).

Proof. By considering 2.7 and 2.8 we see that both of these homotopy groups are in bijective
correspondence with the set of principal bundles PrinG(Sn). To realize this bijection by a group
homomorphism, consider the “suspension” of the group G, ΣG obtained by attaching two cones on
G along the equator. That is,

ΣG = G× [−1, 1]/ ∼

where all points of the form (g, 1), (h,−1), or (1, t) are identified to a single point.

Notice that this suspension construction can be applied to any space with a basepoint, and in
particular ΣSn−1 ∼= Sn.

Consider the principal G bundle E over ΣG defined to be trivial on both cones with clutching
function id : G× {0} =−−−−→ G on the equator. That is, if C+ = G × [0, 1]/ ∼⊂ ΣG and C− =
G× [−1, 0] ⊂ ΣE are the upper and lower cones, respectively, then

E = (C+ ×G) ∪id (C− ×G)

where ((g, 0), h) ∈ C+ ×G is identified with ((g, 0)gh ∈ C− ×G. Then by 2.8 there is a classifying
map

f : ΣG→ BG

such that f∗(EG) ∼= E.

Now for any space X, let ΩX be the loop space of X,

ΩX = {γ : [−1, 1]→ X such that γ(−1) = γ(1) = x0 ∈ X}

where x0 ∈ X is a fixed basepoint. Then the map f : ΣG→ BG determines a map (its adjoint)

f̄ : G→ ΩBG

defined by f̄(g)(t) = f(g, t). But now the loop space ΩX of any connected space X has the property
that πn−1(ΩX) = πn(X) (see the exercise below). We then have the induced group homomorphism

πn−1(G)
f̄∗−−−−→ πn−1(ΩBG)

∼=−−−−→ πn(BG)

which induces the bijective correspondence described above. �

Exercises. 1. Prove that for any connected space X, there is an isomorphism

πn−1(ΩX) ∼= πn(X).

2. Prove that the composition

πn−1(G)
f̄∗−−−−→ πn−1(ΩBG)

∼=−−−−→ πn(BG)
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in the above proof yields the bijection associated with identifying both πn−1(G) and πn(BG) with
PrinG(Sn).

We recall the following definition from homotopy theory.

Definition 2.4. An Eilenberg - MacLane space of type (G,n) is a space X such that

πk(X) =

G if k = n

0 otherwise

We write K(G,n) for an Eilenberg - MacLane space of type (G,n). Recall that for n ≥ 2, the
homotopy groups πn(X) are abelian groups, so in this K(G,n) only exists

Corollary 2.11. Let π be a discrete group. Then the classifying space Bπ is an Eilenberg -
MacLane space K(π, 1).

Examples.

• R has a free, cellular action of the integers Z by

(t, n)→ t+ n t ∈ R, n ∈ Z.

Since R is contractible, R/Z = S1 = BZ = K(Z, 1).
• The inclusion Sn ⊂ Sn+1 as the equator is clearly null homotopic since the inclusion

obviously extends to a map of the disk. Hence the direct limit space

lim−→
n

Sn = ∪nSn = S∞

is aspherical. Now Z2 acts freely on Sn by the antipodal map, as described in chapter
one. The inclusions Sn ⊂ Sn+1 are equivariant and hence there is an induced free action
of Z2 on S∞. Thus the projection map

S∞ → S∞/Z2 = RP∞

is a universal principal Z2 = O(1) - bundle, and so

RP∞ = BO(1) = BZ2 = K(Z2, 1)

.
• Similarly, the inclusion of the unit sphere in Cn into the unit sphere in Cn+1 gives an the

inclusion S2n−1 ⊂ S2n+1 which is null homotopic. It is also equivariant with respect to
the free S1 = U(1) - action given by (complex) scalar multiplication. Then the limit
S∞ = ∪nS2n+1 is aspherical with a free S1 action. We therefore have that the projection

S∞ → S∞/S1 = CP∞
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is a principal S1 = U(1) bundle. Hence we have

CP∞ = BS1 = BU(1).

Moreover since S1 is a K(Z, 1), then we have that

CP∞ = K(Z, 2).

• The cyclic groups Zn are subgroups of U(1) and so they act freely on S∞ as well. Thus
the projection maps

S∞ → S∞/Zn

is a universal principal Zn bundle. The quotient space S∞/Zn is denoted L∞(n) and is
referred to as the infinite Zn - lens space.

These examples allow us to give the following description of line bundles and their relation
to cohomology. We first recall a well known theorem in homotopy theory. This theorem will be
discussed further in chapter 4. We refer the reader to [42] for details.

Theorem 2.12. Let G be an abelian group. Then there is a natural isomorphism

φ : Hn(K(G,n);G)
∼=−−−−→ Hom(G,G).

Let ι ∈ Hn(K(G,n);G) be φ−1(id). This is called the fundamental class. Then if X has the
homotopy type of a CW - complex, the mapping

[X,K(G,n)]→ Hn(X;G)

f → f∗(ι)

is a bijective correspondence.

With this we can now prove the following:

Theorem 2.13. There are bijective correspondences which allow us to classify complex line
bundles,

V ect1(X) ∼= PrinU(1)(X) ∼= [X,BU(1)] = [X,CP∞] ∼= [X,K(Z, 2)] ∼= H2(X; Z)

where the last correspondence takes a map f : X → CP∞ to the class

c1 = f∗(c) ∈ H2(X),

where c ∈ H2(CP∞) is the generator. In the composition of these correspondences, the class c1 ∈
H2(X) corresponding to a line bundle ζ ∈ V ect1(X) is called the first Chern class of ζ (or of the
corresponding principal U(1) - bundle).
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Proof. These correspondences follow directly from the above considerations, once we recall
that V ect1(X) ∼= PrinGL(1,C)(X) ∼= [X,BGL(1,C)], and that CP∞ is a model for BGL(1,C) as
well as BU(1). This is because, we can express CP∞ in its homogeneous form as

CP∞ = lim−→
n

(Cn+1 − {0})/GL(1,C),

and that lim−→n
(Cn+1 − {0}) is an aspherical space with a free action of GL(1,C) = C∗. �

There is a similar theorem classifying real line bundles:

Theorem 2.14. There are bijective correspondences

V ect1R(X) ∼= PrinO(1)(X) ∼= [X,BO(1)] = [X,RP∞] ∼= [X,K(Z2, 1)] ∼= H1(X; Z2)

where the last correspondence takes a map f : X → RP∞ to the class

w1 = f∗(w) ∈ H1(X; Z2),

where w ∈ H1(RP∞; Z2) is the generator. In the composition of these correspondences, the class
w1 ∈ H1(X; Z2) corresponding to a line bundle ζ ∈ V ect1R(X) is called the first Stiefel - Whitney
class of ζ (or of the corresponding principal O(1) - bundle).

More Examples.

• Let Vn(CN ) be the Stieflel - manifold studied in the last chapter. We claim that the
inclusion of vector spaces CN ⊂ C2N as the first N - coordinates induces an inclusion
Vn(CN ) ↪→ Vn(C2N ) which is null homotopic. To see this, let ι : Cn → C2N be a fixed
linear embedding, whose image lies in the last N - coordinates in C2N . Then given any
ρ ∈ Vn(CN ) ⊂ Vn(C2N ), then t · ι+(1− t) ·ρ for t ∈ [0, 1] defines a one parameter family of
linear embeddings of Cn in C2N , and hence a contraction of the image of Vn(CN ) onto the
element ι. Hence the limiting space Vn(C∞) is aspherical with a free GL(n,C) - action.
Therefore the projection

Vn(C∞)→ Vn(C∞)/GL(n,C) = Grn(C∞)

is a universal GL(n,C) - bundle. Hence the infinite Grassmannian is the classifying space

Grn(C∞) = BGL(n,C)

and so we have a classification

V ectn(X) ∼= PrinGL(n,C)(X) ∼= [X,BGL(n,C)] ∼= [X,Grn(C∞)].
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• A simlar argument shows that the infinite unitary Stiefel manifold, V Un (C∞) is aspherical
with a free U(n) - action. Thus the projection

V Un (C∞)→ Vn(C∞)/U(n) = Grn(C∞)

is a universal principal U(n) - bundle. Hence the infinite Grassmanian Grn(C∞) is the
classifying space for U(n) bundles as well,

Grn(C∞) = BU(n).

The fact that this Grassmannian is both BGL(n,C) and BU(n) reflects the fact that every
n - dimensional complex vector bundle has a U(n) - structure.
• We have similar universal GL(n,R) and O(n) - bundles:

Vn(R∞)→ Vn(R∞)/GL(n,R) = Grn(R∞)

and

V On (R∞)→ V On (R∞)/O(n) = Grn(R∞).

Thus we have

Grn(R∞) = BGL(n,R) = BO(n)

and so this infinite dimensional Grassmannian classifies real n - dimensional vector bundles
as well as principal O(n) - bundles.

Now suppose p : EG→ EG/G = BG is a universal G - bundle. Suppose further that H < G is
a subgroup. Then H acts freely on EG as well, and hence the projection

EG→ EG/H

is a universal H - bundle. Hence EG/H = BH. Using the infinite dimensional Stiefel manifolds
described above, this observation gives us models for the classifying spaces for any subgroup of a
general linear group. So for example if we have a subgroup (i.e a faithful representation) H ⊂
GL(n,C), then

BH = Vn(C∞)/H.

This observation also leads to the following useful fact.

Proposition 2.15. . Let p : EG → BG be a universal principal G - bundle, and let H < G.
Then there is a fiber bundle

BH → BG

with fiber the orbit space G/H.
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Proof. This bundle is given by

G/H → EG×G G/H → EG/G = BG

together with the observation that EG×G G/H = EG/H = BH. �

3. Classifying Gauge Groups

In this section we describe the classifying space of the group of automorphisms of a principal G
- bundle, or the gauge group of the bundle. We describe the classifying space in two different ways:
in terms of the space of connections on the bundle, and in terms of the mapping space of the base
manifold to the classifying space BG. These constructions are important in Yang - Mills theory,
and we refer the reader to [3] and [11] for more details.

Let A be a connection on a principal bundle P −→ M where M is a closed manifold equipped
with a Riemannian metric. The Yang - Mills functional applied to A, YM(A) is the square of the
L2 norm of the curvature,

YM(A) =
1
2

∫
M

‖FA‖2 d(vol).

We view YM as a mapping YM : A(P ) −→ R. The relevance of the gauge group in Yang -
Mills theory is that this is the group of symmetries of A that YM preserves.

Definition 2.5. The gauge group G(P ) of the principal bundle P is the group of bundle au-
tomorphisms of P −→ M . That is, an element φ ∈ G(P ) is a bundle isomorphism of P with itself
lying over the identity:

P
φ−−−−→∼= Py y

M
=−−−−→ M.

Equivalently, G(P ) is the group G(P ) = AutG(P ) of G - equivariant diffeomorphisms of the space
P .

The gauge group G(P ) can be thought of in several equivalent ways. The following one is
particularly useful.

Consider the conjugation action of the Lie group G on itself,

G×G −→ G

(g, h) −→ ghg−1.
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This left action defines a fiber bundle

Ad(P ) = P ×G G −→ P/G = M

with fiber G. We leave the following as an exercise for the reader.

Proposition 2.16. The gauge group of a principal bundle P −→M is naturally isomorphic (as
topological groups) the the group of sections of Ad(P ), C∞(M ;Ad(P )).

The gauge group G(P ) acts on the space of connections A(P ) by the pull - back construction.
More generally, if f : P → Q is any smooth map of principal G - bundles and A is a connection on
Q, then there is a natural pull back connection f∗(A) on Q, defined by pulling back the equivariant
splitting of τQ to an equivariant splitting of τP in the obvious way. The pull - back construction
for automorphisms φ : P −→ P defines an action of G(P ) on A(P ).

We leave the proof of the following is an exercise for the reader.

Proposition 2.17. Let P be the trivial bundle M × G → M . Then the gauge group G(P ) is
given by the function space from M to G,

G(P ) ∼= C∞(M ;G).

Furthermore if φ : M → G is identified with an element of G(P ), and A ∈ Ω1(M ; g) is identified
with an element of A(G), then the induced action of φ on G is given by

φ∗(A) = φ−1Aφ+ φ−1dφ.

It is not difficult to see that in general the gauge group G(P ) does not act freely on the space
of connections A(P ). However there is an important subgroup G0(P ) < G(P ) that does. This is the
group of based gauge transformations. To define this group, let x0 ∈ M be a fixed basepoint, and
let Px0 be the fiber of P at x0.

Definition 2.6. The based gauge group G0(P ) is a subgroup of the group of bundle automor-
phisms G(P ) which pointwise fix the fiber Px) . That is,

G0(P ) = {φ ∈ G(P ) : if v ∈ Px0thenφ(v) = v}.

Theorem 2.18. The based gauge group G0(P ) acts freely on the space of connections A(P ).
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Proof. Suppose that A ∈ A(P ) is a fixed point of φ ∈ G0(P ). That is, φ∗(A) = A. We need
to show that φ = 1.

The equivariant splitting ωA given by a connection A defines a notion of parallel transport in P
along curves in M (see [16]) . It is not difficult to see that the statement φ∗(A) = A implies that
application of the automorphism φ commutes with parallel transport. Now let w ∈ Px be a point in
the fiber of an element x ∈M . Given curve γ in M between the basepoint x0 and x one sees that

φ(w) = Tγ(φ(Tγ−1(w))

where Tγ is parallel transport along γ. But since Tγ−1(w) ∈ Px0 and φ ∈ G0(P ),

φ(Tγ−1(w)) = w.

Hence φ(w) = w, that is, φ = 1. �

Remark. Notice that this argument actually says that if A ∈ A(P ) is the fixed point of any gauge
transformation φ ∈ G(P ), then φ is determined by its action on a single fiber.

Let B(P ) and B0(P ) be the orbit spaces of connections on P up to guage and based gauge
equivalence respectively,

B(P ) = A(P )/G(P ) B0(P ) = A(P )/G0(P ).

Now it is straightforward to check directly that the Yang - Mills functional in invariant under
gauge transformations. Thus it yields maps

YM : B(P )→ R and YM : B0(P )→ R.

It is therefore important to understand the homotopy types of these orbit spaces. Because of the
freeness of the action of G0(P ), the homotopy type of the orbit space G0(P ) is easier to understand.

We end this section with a discussion of its homotopy type. Since the space of connections A(P )
is affine, it is contractible. Moreover it is possible to show that the free action of the based gauge
group G0(P ) has local slices (see [11]). Thus we have B0(P ) = A(P )/G0(P ) is the classifying space
of the based gauge group,

B0(P ) = BG0(P ).

But the classifying spaces of the gauge groups are relatively easy to understand. (see [3].)

Theorem 2.19. Let G −→ EG −→ BG be a universal principal bundle for the Lie group G (so
that EG is aspherical). Let y0 ∈ BG be a fixed basepoint. Then there are homotopy equivalences

BG(P ) 'MapP (M,BG) and B0(P ) ' BG0(P ) 'MapP0 (M,BG)
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where Map(M,BG) is the space of all continuous maps from M to BG and Map0(M,BG) is the
space of those maps that preserve the basepoints. The superscript P denotes the path component of
these mapping spaces consisting of the homotopy class of maps that classify the principal G - bundle
P .

Proof. Consider the space of all G - equivariant maps from P to EG, MapG(P,EG). The
gauge group G(P ) ∼= AutG(P ) acts freely on the left of this space by composition. It is easy to see
that MapG(P,EG) is aspherical, and its orbit space is given by the space of maps from the G - orbit
space of P (= M) to the G - orbit space of EG (= BG),

MapG(P,EG)/G(P ) ∼= MapP (M,BG).

This proves that Map(M,BG) = BG(P ). Similarly MapG0 (P,EG), the space of G - equivariant
maps that send the fiber Px0 to the fiber EGy0 , is an aspherical space with a free G0(P ) action,
whose orbit space is MapP0 (M,BG). Hence MapP0 (M,BG) = BG0(P ). �

4. Existence of universal bundles: the Milnor join construction and the simplicial

classifying space

In the last section we proved a “recognition principle” for universal principal G bundles. Namely,
if the total space of a principal G - bundle p : E → B is aspherical, then it is universal. We also
proved a homotopy uniqueness theorem, stating among other things that the homotopy type of the
base space of a universal bundle, i.e the classifying space BG, is well defined. We also described
many examples of universal bundles, and particular have a model for the classifying space BG, using
Stiefel manifolds, for every subgroup of a general linear group.

The goal of this section is to prove the general existence theorem. Namely, for every group G,
there is a universal principal G - bundle p : EG → BG. We will give two constructions of the
universal bundle and the corresponding classifying space. One, due to Milnor [30] involves taking
the “infinite join” of a group with itself. The other is an example of a simplicial space, called the
simplicial bar construction. It is originally due to Eilenberg and MacLane [12]. These constructions
are essentially equivalent and both yield G - CW - complexes. Since they are so useful in algebraic
topology and combinatorics, we will also take this opportunity to introduce the notion of a general
simplicial space and show how these classifying spaces are important examples.

4.1. The join construction. The “join” between two spaces X and Y , written X ∗ Y is the
space of all lines connecting points in X to points in Y . The following is a more precise definition:



64 2. CLASSIFICATION OF BUNDLES

Definition 2.7. The join X ∗ Y is defined by

X ∗ Y = X × I × Y/ ∼

where I = [0, 1] is the unit interval and the equivalence relation is given by (x, 0, y1) ∼ (x, 0, y2) for
any two points y1, y2 ∈ Y , and similarly (x1, 1, y) ∼ (x2, 1, y) for any two points x1, x2 ∈ X.

A point (x, t, y) ∈ X ∗ Y should be viewed as a point on the line connecting the points x and y.
Here are some examples.

Examples.

• Let y be a single point. Then X ∗ y is the cone CX = X × I/X × {1} .
• Let Y = {y1, y2} be the space consisting of two distinct points. Then X ∗ Y is the

suspension ΣX discussed earlier. Notice that the suspension can be viewed as the union
of two cones, with vertices y1 and y2 respectively, attached along the equator.

• Exercise. Prove that the join of two spheres, is another sphere,

Sn ∗ Sm ∼= Sn+m+1.

• Let {x0, · · · , xk} be a collection of k + 1 - distinct points. Then the k - fold join
x0 ∗ x1 ∗ · · · ∗ xk is the convex hull of these points and hence is by the k - dimensional
simplex ∆k with vertices {x0, · · · , xk}.

Observe that the space X sits naturally as a subspace of the join X ∗Y as endpoints of line segments,

ι : X ↪→ X ∗ Y

x→ (x, 0, y).

Notice that this formula for the inclusion makes sense and does not depend on the choice of
y ∈ Y . There is a similar embedding

j : Y ↪→ X ∗ Y

y → (x, 1, y).

Lemma 2.20. The inclusions ι : X ↪→ X ∗ Y and j : Y ↪→ X ∗ Y are null homotopic.

Proof. Pick a point y0 ∈ Y . By definition, the embedding ι : X → X ∗ Y factors as the
composition

ι : X ↪→ X ∗ y0 ⊂ X ∗ Y

x→ (x, 0, y0).
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But as observed above, the join X ∗ y0 is the cone on X and hence contractible. This means that ι
is null homotopic, as claimed. The fact that j : Y ↪→ X ∗ Y is null homotopic is proved in the same
way. �

Now let G be a group and consider the iterated join

G∗(k+1) = G ∗G ∗ · · · ∗G

where there are k + 1 copies of the group element. This space has a free G action given by the
diagonal action

g · (g0, t1, g1, · · · , tk, gk) = (gg0, t1, gg1, · · · , tk, ggk).

Exercise. 1. Prove that there is a natural G - equivariant map

∆k ×Gk+1 → G∗(k+1)

which is a homeomorphism when restricted to ∆̃k ×Gk+1 where ∆̃k ⊂ ∆k is the interior. Here G
acts on ∆k ×Gk+1 trivially on the simplex ∆k and diagonally on Gk+1.

2. Use exercise 1 to prove that the iterated join G∗(k+1) has the structure of a G - CW - complex.

Define J (G) to be the infinite join

J (G) = lim
k→∞

G∗(k+1)

where the limit is taken over the embeddings ι : G∗(k+1) ↪→ G∗(k+2) Since these embedding maps
are G -equivariant, we have an induced G - action on J (G).

Theorem 2.21. The projection map

p : J (G)→ J (G)/G

is a universal principal G - bundle.

Proof. By the above exercise the space J (G) has the structure of a G - CW - complex with
a free G - action. Therefore by the results of the last section the projection p : J (G)→ J (G)/G is
a principal G - bundle. To see that J (G) is aspherical, notice that since Sn is compact, any map
α : Sn → J (G) is homotopic to one that factors through a finite join (that by abuse of notation we
still call α), α : Sn → G∗(n+1) ↪→ J (G). But by the above lemma the inclusion G∗(n+1) ⊂ J (G)
is null homotopic, and hence so is α. Thus J (G) is aspherical. By the results of last section, this
means that the projection J (G)→ J (G)/G is a universal G - bundle. �
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4.2. Simplicial spaces and classifying spaces. We therefore now have a universal bundle
for every topological group G. We actually know a fair amount about the geometry of the total
space EG = J (G) which, by the above exercise can be described as the union of simplices, where
the k - simplices are parameterized by k + 1 -tuples of elements of G,

EG = J (G) =
⋃
k

∆k ×Gk+1/ ∼

and so the classifying space can be described by

BG = J (G)/G ∼=
⋃
k

∆k ×Gk/ ∼

It turns out that in these constructions, the simplices are glued together along faces, and these
gluings are parameterized by the k + 1 - product maps ∂i : Gk+2 → Gk+1 given by multiplying the
ith and (i+ 1)st coordinates.

Having this type of data (parameterizing spaces of simplices as well as gluing maps) is an example
of an object known as a “simplicial set” which is an important combinatorial object in topology. We
now describe this notion in more detail and show how these universal G - bundles and classifying
spaces can be viewed in these terms.

Good references for this theory are [9], [26].

The idea of simplicial sets is to provide a combinatorial technique to study cell complexes built
out of simplices; i.e simplicial complexes. A simplicial complex X is built out of a union of simplices,
glued along faces. Thus if Xn denotes the indexing set for the n - dimensional simplices of X, then
we can write

X =
⋃
n≥0

∆n ×Xn/ ∼

where ∆n is the standard n - simplex in Rn;

∆n = {(t1, · · · , tn) ∈ Rn : 0 ≤ tj ≤ 1, and
n∑
i=1

ti ≤ 1}.

The gluing relation in this union can be encoded by set maps among the Xn’s that would tell
us for example how to identify an n − 1 simplex indexed by an element of Xn−1 with a particular
face of an n - simplex indexed by an element of Xn. Thus in principal simplicial complexes can be
studied purely combinatorially in terms of the sets Xn and set maps between them. The notion of
a simplicial set makes this idea precise.

Definition 2.8. A simplicial set X∗ is a collection of sets

Xn, n ≥ 0



4. EXISTENCE OF UNIVERSAL BUNDLES: THE MILNOR JOIN CONSTRUCTION AND THE SIMPLICIAL CLASSIFYING SPACE67

together with set maps

∂i : Xn −→ Xn−1 and sj : Xn −→ Xn+1

for 0 ≤ i, j ≤ n called face and degeneracy maps respectively. These maps are required to satisfy
the following compatibility conditions

∂i∂j = ∂j−1∂i for i < j

sisj = sj+1si for i < j

and

∂isj =


sj−1∂i for i < j

1 for i = j, j + 1

sj∂i−1 for i > j + 1

As mentioned above, the maps ∂i and sj encode the combinatorial information necessary for
gluing the simplices together. To say precisely how this works, consider the following maps between
the standard simplices:

δi : ∆n−1 −→ ∆n and σj : ∆n+1 −→ ∆n

for 0 ≤ i, j ≤ n defined by the formulae

δi(t1, · · · , tn−1) =

(t1, · · · , ti−1, 0, ti, · · · , tn−1) for i ≥ 1

(1−
∑n−1
q=1 tq, t1, · · · , tn−1) for i = 0

and

σj(t1, · · · , tn+1) =

(t1, · · · , ti−1, ti + ti+1, ti+2, · · · , tn+1) for i ≥ 1

(t2, · · · , tn+1) for i = 0 .

δi includes ∆n−1 in ∆n as the ith face, and σj projects, in a linear fashion, ∆n+1 onto its jth

face.

We can now define the space associated to the simplicial set X∗ as follows.

Definition 2.9. The geometric realization of a simplicial set X∗ is the space

‖X∗‖ =
⋃
n≥0

∆n ×Xn/ ∼

where if t ∈ ∆n−1 and x ∈ Xn, then

(t, ∂i(x)) ∼ (δi(t), x)
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and if t ∈ ∆n+1 and x ∈ Xn then
(t, sj(x)) ∼ (σj(t), x).

In the topology of ‖X∗‖, each Xn is assumed to have the discrete topology, so that ∆n ×Xn is
a discrete set of n - simplices.

Thus ‖X∗‖ has one n - simplex for every element of Xn, glued together in a way determined by
the face and degeneracy maps.

Example. Consider the simplicial set S∗ defined as follows. The set of n - simplices is given by

Sn = Z/(n+ 1), generated by an element τn.

The face maps are given by

∂i(τ rn) =

τ rn−1 if r ≤ i ≤ n

τ r−1
n−1 if 0 ≤ i ≤ r − 1.

The degeneracies are given by

si(τ rn) =

τ rn+1 if r ≤ i ≤ n

τ r+1
n+1 if 0 ≤ i ≤ r − 1.

Notice that there is one zero simplex, two one simplices, one of them the image of the degeneracy
s0 : S0 −→ S1, and the other nondegenerate (i.e not in the image of a degeneracy map). Notice also
that all simplices in dimensions larger than one are in the image of a degeneracy map. Hence we
have that the geometric realization

‖S∗‖ = ∆1/0 ∼ 1 = S1.

Let X∗ be any simplicial set. There is a particularly nice and explicit way for computing the
homology of the geometric realization, H∗(‖X∗‖).

Consider the following chain complex. Define Cn(X∗) to be the free abelian group generated by
the set of n - simplices Xn. Define the homomorphism

dn : Cn(X∗) −→ Cn−1(X∗)

by the formula

dn([x]) =
n∑
i=0

(−1)i∂i([x])

where x ∈ Xn.

Proposition 2.22. The homology of the geometric realization H∗(‖X∗‖) is the homology of the
chain complex

−→ · · · dn+1−−−−→ Cn(X∗)
dn−−−−→ Cn−1(X∗)

dn−1−−−−→ · · · d0−−−−→ C0(X∗).
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Proof. It is straightforward to check that the geometric realization ‖X∗‖ is a CW - complex
and that this is the associated cellular chain complex. �

Besides being useful computationally, the following result establishes the fact that all CW
complexes can be studied simplicially.

Theorem 2.23. Every CW complex has the homotopy type of the geometric realization of a
simplicial set.

Proof. Let X be a CW complex. Define the singular simplicial set of X , S(X)∗ as follows.
The n simplices S(X)n is the set of singular n - simplices,

S(X)n = {c : ∆n −→ X}.

The face and degeneracy maps are defined by

∂i(c) = c ◦ δi : ∆n−1 −→ ∆n −→ X

and

sj(c) = c ◦ σi : ∆n+1 −→ ∆n −→ X.

Notice that the associated chain complex to S(X)∗ as in 2.22 is the singular chain complex of
the space X. Hence by 2.22 we have that

H∗(‖S(X)‖) ∼= H∗(X).

This isomorphism is actually realized by a map of spaces

E : ‖S(X)∗‖ −→ X

defined by the natural evaluation maps

∆n × S(X)n −→ X

given by

(t, c) −→ c(t).

It is straightforward to check that the map E does induce an isomorphism in homology. In fact it
induces an isomorphism in homotopy groups. We will not prove this here; it is more technical and
we refer the reader to [M] for details. Note that it follows from the homological isomorphism by the
Hurewicz theorem if we knew that X was simply connected. A map between spaces that induces an
isomorphism in homotopy groups is called a weak homotopy equivalence. Thus any space is weakly
homotopy equivalent to a CW - complex (i.e the geometric realization of its singular simplicial
set). But by the Whitehead theorem, two CW complexes that are weakly homotopy equivalent are
homotopy equivalent. Hence X and ‖S(X)∗‖ are homotopy equivalent. �
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We next observe that the notion of simplicial set can be generalized as follows. We say that X∗
is a simplicial space if it is a simplicial set (i.e it satisfies definition 2.8) where the sets Xn are
topological spaces and the face and degeneracy maps

∂i : Xn −→ Xn−1 and sj : Xn −→ Xn+1

are continuous maps. The definition of the geometric realization of a simplicial space X∗, ‖X∗‖,
is the same as in 2.9 with the proviso that the topology of each ∆n ×Xn is the product topology.
Notice that since the “set of n - simplices” Xn is actually a space, it is not necessarily true that ‖X∗‖
is a CW complex. However if in fact each Xn is a CW complex and the face and degeneracy maps
are cellular, then ‖X∗‖ does have a natural CW structure induced by the product CW - structures
on ∆n ×Xn.

Notice that this simplicial notion generalizes even further. For example a simplicial group

would be defined similarly, where each Xn would be a group and the face and degeneracy maps are
group homomorphisms. Simplicial vector spaces, modules, etc. are defined similarly. The categorical
nature of these definitions should by now be coming clear. Indeed most generally one can define a
simplicial object in a category C using the above definition where now the Xn’s are assumed
to be objects in the category and the face and degenarcies are assumed to be morphisms. If the
category C is a subcategory of the category of sets then geometric realizations can be defined as in 2.9
For example the geometric realization of a simplicial (abelian) group turns out to be a topological
(abelian) group.(Try to verify this for yourself!)

We now use this simplicial theory to construct universal principal G - bundles and classifying
spaces.

Let G be a topological group and let EG∗ be the simplicial space defined as follows. The space
of n - simplices is given by the n+ 1 - fold cartesian product

EGn = Gn+1.

The face maps ∂i : Gn+1 −→ Gn are given by the formula

∂i(g0, · · · , gn) = (g0, · · · , ĝi, · · · , gn).

The degeneracy maps sj : Gn+1 −→ Gn+2 are given by the formula

sj(g0, · · · , gn) = (g0, · · · , gj , gj , · · · , gn).

Exercise. Show that the geometric realization ‖EG∗‖ is aspherical. Hint. Let ‖EG∗‖(n) be the nth

- skeleton,

‖EG∗‖(n) =
n⋃
p=0

∆p ×Gp+1.
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Then show that the inclusion of one skeleton in the next ‖EG∗‖(n) ↪→ ‖EG∗‖(n+1) is null -
homotopic. One way of doing this is to establish a homeomorphism between ‖EG∗‖(n) and n - fold
join G ∗ · · · ∗G. See [M] for details.

Notice that the group G acts freely on the right of ‖EG∗‖ by the rule

‖EG∗‖ ×G =

⋃
p≥0

∆p ×Gp+1

×G −→ ‖EG∗‖(4.1)

(t; (g0, · · · , gp))× g −→ (t; (g0g, · · · , gpg)) .

Thus we can define EG = ‖EG∗‖. The projection map

p : EG→ EG/G = BG

is therefore a universal principal G - bundle.

This description gives the classfiying space BG an induced simplicial structure described as
follows.

.

Let BG∗ be the simplicial space whose n - simplices are the cartesian product

BGn = Gn.(4.2)

The face and degeneracy maps are given by

∂i(g1, · · · , gn) =


(g2, · · · , gn) for i = 0

(g1, · · · , gigi+1, · · · gn) for 1 ≤ i ≤ n− 1

(g1, · · · , gn−1) for i = n.

The degeneracy maps are given by

sj(g1, · · · , gn) =

(1, g1, · · · , gn) for j = 0

(g1, · · · gj , 1, gj+1, · · · , gn) for j ≥ 1.

The simplicial projection map

p : EG∗ −→ BG∗

defined on the level of n - simplicies by

p(g0, · · · , gn) = (g0g−1
1 , g1g

−1
2 , · · · , gn−1g

−1
n )

is easily checked to commute with face and degeneracy maps and so induces a map on the level of
geometric realizations
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p : EG = ‖EG∗‖ −→ ‖BG∗‖

which induces a homemorphism

BG = EG/G
∼=−−−−→ ‖BG∗‖.

Thus for any topological group this construction gives a simplicial space model for its classifying
space. This is referred to as the simplicial bar construction. Notice that when G is discrete
the bar construction is a CW complex for the classifying space BG = K(G, 1) and 2.22 gives a
particularly nice complex for computing its homology. (The homology of a K(G, 1) is referred to as
the homology of the group G.)

The n - chains are the group ring

Cn(BG∗) = Z[Gn] ∼= Z[G]⊗n

and the boundary homomorphisms

dn : Z[G]⊗n −→ Z[G]⊗n−1

are given by

dn(a1 ⊗ · · · ⊗ an) = (a2 ⊗ · · · ⊗ an)+
n−1∑
i=1

(−1)i(a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an)

+ (−1)n(a1 ⊗ · · · ⊗ an−1).

This complex is called the bar complex for computing the homology of a group and was
discovered by Eilenberg and MacLane in the mid 1950’s.

We end this chapter by observing that the bar construction of the classifying space of a group
did not use the full group structure. It only used the existence of an associative multiplication with
unit. That is, it did not use the existence of inverse. So in particular one can study the classifying
space BA of a monoid A. This is an important construction in algebraic - K - theory.

5. Some Applications

In a sense much of what we will study in the next chapter are applications of the classification
theorem for principal bundles. In this section we describe a few immediate applications.
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5.1. Line bundles over projective spaces. By the classification theorem we know that the
set of isomorphism classes of complex line bundles over the projective space CPn is given by

V ect1(CPn) ∼= PrinGL(1,C)(CPn) ∼= PrinU(1)(CPn) ∼= [CPn, BU(1)] = [CPn,CP∞]

= [CPn,K(Z, 2)] ∼= H2(CPn,Z) ∼= Z

Theorem 2.24. Under the above isomorphism,

V ect1(CPn) ∼= Z

the n - fold tensor product of the universal line bundle γ⊗n1 corresponds to the integer n ≥ 0.

Proof. The classification theorem says that every line bundle ζ over CPn is the pull back of
the universal line bundle via a map fζ : CPn → CP∞. That is,

ζ ∼= f∗ζ (γ1).

The cohomology class corresponding to ζ, the first chern class c1(ζ), is given by

c1(ζ) = f∗ζ (c) ∈ H2(CPn) ∼= Z

where c ∈ H2(CP∞) ∼= Z is the generator. Clearly ι∗(c) ∈ H2(CPn) is the generator, where
ι : CPn ↪→ CP∞ is natural inclusion. But ι∗(γ1) = γ1 ∈ V ect1(CPn). Thus γ1 ∈ V ect1(CPn) ∼= Z
corresponds to the generator.

To see the effect of taking tensor products, consider the following “tensor product map”

BU(1)× · · · ×BU(1) ⊗−−−−→ BU(1)

defined to be the unique map (up to homotopy) that classifies the external tensor product γ1⊗· · ·⊗γ1

over BU(1) × · · · × BU(1). Using CP∞ ∼= Gr1(C∞) as our model for BU(1), this tensor product
map is given by taking k lines `1, · · · , `k in C∞ and considering the tensor product line

`1 ⊗ · · · ⊗ `k ⊂ C∞ ⊗ · · · ⊗ C∞
∼=−−−−→
ψ

C∞

where ψ : C∞ ⊗ · · · ⊗ C∞ ∼= C∞ is a fixed isomorphism. The induced map

τ : CP∞ × · · · × CP∞ → CP∞ ∼= K(Z, 2)

is determined up to homotopy by what its effect on H2 is. Clearly the restriction to each factor is
the identity map and so

τ∗(c) = c1 + · · ·+ ck ∈ H2(CP∞ × · · · × CP∞) = H2(CP∞)⊕ · · · ⊕H2(CP∞) ∼= Z⊕ · · · ⊕ Z

where ci denotes the generator of H2 of the ith factor in the product. Therefore the composition

tk : CP∞ ∆−−−−→ CP∞ × · · · × CP∞ τ−−−−→ CP∞
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has the property that t∗k(c) = kc ∈ H2(CP∞). But also we have that on the bundle level,

t∗k(γ1) = γ⊗k1 ∈ V ect1(CP∞).

The theorem now follows. �

We have a similar result for real line vector bundles over real projective spaces.

Theorem 2.25. The only nontrivial real line bundle over RPn is the canonical line bundle γ1.

Proof. We know that γ1 is nontrivial because its restriction to S1 = RP1 ⊂ RPn is the
Moebeus strip line bundle, which is nonorientable, and hence nontrivial. On the other hand, by the
classification theorem,

V ect1R(RPn) ∼= [RPn, BGL(1,R)] = [RPn,RP∞] = [RPn,K(Z2, 1)] ∼= H1(RPn,Z2) ∼= Z2.

Hence there is only one nontrivial line bundle over RPn. �

.

5.2. Structures on bundles and homotopy liftings. The following theorem is a direct
consequence of the classification theorem. We leave its proof as an exercise.

Theorem 2.26. . Let p : E → B be a principal G - bundle classified by a map f : B → BG.
Let H < G be a subgroup. By the naturality of the construction of classifying spaces, this inclusion
induces a map (well defined up to homotopy) ι : BH → BG. Then the bundle p : E → B has an H

- structure (i.e a reduction of its structure group to H) if and only if there is a map

f̃ : B → BH

so that the composition

B
f̃−−−−→ BH

ι−−−−→ BG

is homotopic to f : B → BG. In particular if p̃ : Ẽ → B is the principal H - bundle classified by f̃ ,
then there is an isomorphism of principal G bundles,

Ẽ ×H G ∼= E.

The map f̃ : B → BH is called a “lifting” of the classifying map f : B → BG. It is called a
lifting because, as we saw at the end of the last section, the map ι : BH → BG can be viewed as
a fiber bundle, by taking our model for BH to be BH = EG/H. Then ι is the projection for the
fiber bundle

G/H → EG/H = BH
ι−−−−→ EG/G = BG.
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This bundle structure will allow us to analyze in detail what the obstructions are to obtaining a lift
f̃ of a classifying map f : B → BG. We will study this is chapter 4.

Examples.

• An orientation of a bundle classified by a map f : B → BO(k) is a lifting
f̃ : B → BSO(k). Notice that the map ι : BSO(k)→ BO(k) can be viewed as a two -
fold covering map

Z2 = O(k)/SO(k)→ BSO(k) ι−−−−→ BO(k).

• An almost complex structure of a bundle classified by a map f : B → BO(2n) is a lifting
f̃ : B → BU(n). Notice we have a bundle

O(2n)/U(n)→ BU(n)→ BO(2n).

The following example will be particularly useful in the next chapter when we define character-
istic classes and do calculations with them.

Theorem 2.27. A complex bundle vector bundle ζ classified by a map f : B → BU(n) has
a nowhere zero section if and only if f has a lifting f̃ : B → BU(n − 1). Similarly a real vector
bundle η classified by a map f : B → BO(n) has a nowhere zero section if and only if f has a lifting
f̃ : B → BO(n− 1). Notice we have the following bundles:

S2n−1 = U(n)/U(n− 1)→ BU(n− 1)→ BU(n)

and

Sn−1 = O(n)/O(n− 1)→ BO(n− 1)→ BO(n).

This theorem says that BU(n − 1) forms a sphere bundle (S2n−1) over BU(n), and similarly,
BO(n− 1) forms a Sn−1 - bundle over BO(n). We identify these sphere bundles as follows.

Corollary 2.28. The sphere bundles

S2n−1 → BU(n− 1)→ BU(n)

and

Sn−1 → BO(n− 1)→ BO(n)

are isomorphic to the unit sphere bundles of the universal vector bundles γn over BU(n) and BO(n)
respectively.
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Proof. We consider the complex case. The real case is proved in the same way. Notice that
the model for the sphere bundle in the above theorem is the projection map

p : BU(n− 1) = EU(n)/U(n− 1)→ EU(n)/U(n) = BU(n).

But γn is the vector bundle EU(n)×U(n) Cn → BU(n) which therefore has unit sphere bundle

S(γn) = EU(n)×U(n) S
2n−1 → BU(n)(5.1)

where S2n−1 ⊂ Cn is the unit sphere with the induced U(n) - action. But S2n−1 ∼= U(n)/U(n− 1)
and this diffeomorphism is equivariant with respect to this action. Thus the unit sphere bundle is
given by

S(γn) = EU(n)×U(n) U(n)/U(n− 1) ∼= EU(n)/U(n− 1) = BU(n− 1)

as claimed. �

We observe that by using the Grassmannian models for BU(n) and BO(n), then their relation
to the sphere bundles can be seen explicitly in the following way. This time we work in the real case.

Consider the embedding

ι : Grn−1(RN ) ↪→ Grn(RN × R) = Grn(RN+1)

defined by

(V ⊂ RN )→ (V × R ⊂ RN × R).

Clearly as N → ∞ this map becomes a model for the inclusion BO(n − 1) ↪→ BO(n). Now for
V ∈ Grn−1(RN ) consider the vector (0, 1) ∈ V × R ⊂ RN × R. This is a unit vector, and so is an
element of the fiber of the unit sphere bundle S(γn) over V × R. Hence this association defines a
map

j : Grn−1(RN )→ S(γn)

which lifts ι : Grn−1(RN ) ↪→ Grn(RN+1). By taking a limit over N we get a map j : BO(n− 1)→
S(γn).

To define a homotopy inverse ρ : S(γn)→ BO(n−1), we again work on the finite Grassmannian
level.

Let (W,w) ∈ S(γn), the unit sphere bundle over Grn(RK). Thus W ⊂ RK is an n -dimensional
subspace and w ∈W is a unit vector. Let Ww ⊂W denote the orthogonal complement to the vector
w in W . Thus Ww ⊂W ⊂ RK is an n− 1 - dimensional subspace. This association defines a map

ρ : S(γn)→ Grn−1(RK)

and by taking the limit over K, defines a map ρ : S(γn)→ BO(n− 1). We leave it to the reader to
verify that j : BO(n− 1)→ S(γn) and ρ : S(γn)→ BO(n− 1) are homotopy inverse to each other.
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5.3. Embedded bundles and K -theory. The classification theorem for vector bundles
says that for every n - dimensional complex vector bundle ζ over X, there is a classifying map
fζ : X → BU(n) so that ζ is isomorphic to pull back, f∗(γn) of the universal vector bundle. A
similar statement holds for real vector bundles. Using the Grassmannian models for these classifying
spaces, we obtain the following as a corollary.

Theorem 2.29. Every n - dimensional complex bundle ζ over a space X can be embedded in a
trivial infinite dimensional bundle, X ×C∞. Similarly, every n - dimensional real bundle η over X
can be embedded in the trivial bundle X × R∞.

Proof. Let fζ : X → Grn(C∞) = BU(n) classify ζ. So ζ ∼= f∗(γn). But recall that

γn = {(V, v) ∈ Grn(C∞)× C∞ such that v ∈ V.}

Hence γn is naturally embedded in the trivial bundle Grn(C∞)×C∞. Thus ζ ∼= f∗(γn) is naturally
embedded in X × C∞. The real case is proved similarly. �

Notice that because of the direct limit topology on Grn(C∞) = lim−→Grn(CN ), then if X is a
compact space, any map f : X → Grn(C∞) has image that lies in Grn(CN ) for some finite N . But
notice that over this finite Grassmannian, γn ⊂ Grn(CN )×CN . The following is then an immediate
corollary. This result was used in chapter one in our discussion about K -theory.

Corollary 2.30. If X is compact, then every n - dimensional complex bundle zeta can be
embedded in a trivial bundle X × CN for some N . The analogous result also holds for real vector
bundles.

Let f : X → BU(n) classify the n - dimensional complex vector bundle ζ. Then clearly the
composition f : X → BU(n) ↪→ BU(n + 1) classifies the n + 1 dimensional vector bundle ζ ⊕ ε1,
where as before, ε1 is the one dimensional trivial line bundle. This observation leads to the following.

Proposition 2.31. Let ζ1 and ζ2 be two n -dimensional vector bundles over X classified by
f1 and f2 : X → BU(n) respectively. Then if we add trivial bundles, we get an isomorphism

ζ1 ⊕ εk ∼= ζ2 ⊕ εk

if and only if the compositions,

f1, f2 : X → BU(n) ↪→ BU(n+ k)

are homotopic.
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Now recall from the discussion of K - theory in chapter 1 that the set of stable isomorphism
classes of vector bundles SV ect(X) is isomorphic to the reduced K - theory, K̃(X), when X is
compact. This proposition then implies the following important result, which displays how in the
case of compact spaces, computing K -theory reduces to a specific homotopy theory calculation.

Definition 2.10. Let BU be the limit of the spaces

BU = lim−→
n

BU(n).

Similarly,

BO = lim−→
n

BO(n).

Theorem 2.32. For X compact there are isomorphisms (bijective correspondences)

K̃(X) ∼= SV ect(X) ∼= [X,BU ]

and

K̃O(X) ∼= SV ectR(X) ∼= [X,BO].

5.4. Representations and flat connections. Recall the following classification theorem for
covering spaces.

Theorem 2.33. . Let X be a connected space. Then the set of isomorphism classes of connected
covering spaces, p : E → X is in bijective correspondence with conjugacy classes of normal subgroups
of π1(X). This correspondence sends a covering p : E → B to the image p∗(π1(E)) ⊂ π1(X).

Let π = π1(X) and let p : E → X be a connected covering space with π1(E) = N C π. Then
the group of deck transformations of E is the quotient group π/N , and so can be thought of as a
principal π/N - bundle. Viewed this way it is classified by a map fE : X → B(π/N), which on the
level of fundamental groups,

f∗ : π = π1(X)→ π1(Bπ/N) = π/N

(5.2)

is just the projection on to the quotient space. In particular the universal cover X̃ → X is the
unique simply connected covering space. It is classified by a map

γX : X → Bπ

which induces an isomorphism on the fundamental group.
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Now let θ : π → G be any group homomorphism. By the naturality of classifying spaces this
induces a map on classifying spaces,

Bθ : Bπ → BG.

This induces a principal G - bundle over X classified by the composition

X
γX−−−−→ Bπ

Bθ−−−−→ BG.

The bundle this map classifies is given by

X̃ ×π G→ X

where π acts on G via the homomorphism θ : π → G.

This construction defines a map

ρ : Hom(π1(X), G)→ PrinG(X).

Now if X is a smooth manifold then its universal cover p : X̃ → X induces an isomorphism on
tangent spaces,

Dp(x) : TxX̃ → Tp(x)X

for every x ∈ X̃. Thus, viewed as a principal π - bundle, it has a canonical connection. Notice
furthermore that this connection is flat, i.e its curvature is zero. (Exercise. Check this claim!)
Moreover notice that any bundle of the form X̃ ×π G → X has an induced flat connection. In
particular the image of ρ : Hom(π1(X), G) → PrinG(X) consists of principal bundles equipped
with flat connections.

Notice furthermore that by taking G = GL(n,C) the map ρ assigns to an n - dimensional
representation an n - dimensional vector bundle with flat connection

ρ : Repn(π1(X))→ V ectn(X).

By taking the sum over all n and passing to the Grothendieck group completion,we get a homomor-
phism of rings from the representation ring to K - theory,

ρ : R(π1(X))→ K(X).

An important question is what is the image of this map of rings. Again we know the image is
contained in the classes represented by bundles that have flat connections. For X = Bπ, for π a
finite group, the following is a famous theorem of Atiyah and Segal:

Let

ε : R(π)→ Z and ε : K(Bπ)→ Z

be the augmentation maps induced by sending a representation or a vector bundle to its dimension.
Let I ⊂ R(π) and I ⊂ K(Bπ) denote the kernels of these augmentations, i.e the “augmentation



80 2. CLASSIFICATION OF BUNDLES

ideals”. Finally let R̄(π) and K̄(Bπ) denote the completions of these rings with respect to these
ideals. That is,

R̄(π) = lim←−
n

R(π)/In and K̄(Bπ) = lim←−
n

K(Bπ)/In

where In is the product of the ideal I with itself n - times.

Theorem 2.34. (Atiyah and Segal) [4] For π a finite group, the induced map on the completions
of the rings with respect ot the augmentation ideals,

ρ : R̄(π)→ K̄(Bπ)

is an isomorphism.



CHAPTER 3

Characteristic Classes

In this chapter we define and calculate characteristic classes for principal bundles and vector
bundles. Characteristic classes are the basic cohomological invariants of bundles and have a wide
variety of applications throughout topology and geometry. Characteristic classes were introduced
originally by E. Stiefel in Switzerland and H. Whitney in the United States in the mid 1930’s.
Stiefel, who was a student of H. Hopf intoduced in his thesis certain “characteristic homology
classes” determined by the tangent bundle of a manifold. At about the same time Whitney studied
general sphere bundles, and later introduced the general notion of a characteristic cohomology class
coming from a vector bundle, and proved the product formula for their calculation.

In the early 1940’s, L. Pontrjagin, in Moscow, introduced new characteristic classes by studying
the Grassmannian manifolds, using work of C. Ehresmann from Switzerland. In the mid 1940’s,
after just arriving in Princeton from China, S.S Chern defined characteristic classes for complex
vector bundles using differential forms and his calculations led a great clarification of the theory.

Much of the modern view of characteristic classes has been greatly influenced by the highly
influential book of Milnor and Stasheff. This book was originally circulated as lecture notes written
in 1957 and finally published in 1974. This book is one of the great textbooks in modern mathematics.
These notes follow, in large part, their treatment of the subject. The reader is encouraged to consult
their book for further details.

1. Preliminaries

Definition 3.1. Let G be a topological group (possibly with the discrete topology). Then a
characteristic class for principal G - bundles is an assignment to each principal G - bundle p : P → B

a cohomology class

c(P ) ∈ H∗(B)

satisfying the following naturality condition. If

P1
f̄−−−−→ P2

p1

y yp2
B1 −−−−→

f
B2

81
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is a map of principal G - bundles inducing an equivariant homeomorphism on fibers, then

f∗(c(P2)) = c(P1) ∈ H∗(B1).

Remarks. 1. In this definition cohomology could be taken with any coefficients, including,
for example, DeRham cohomology which has coefficients in the real numbers R. The particular
cohomology theory used is referred to as the “values” of the characteristic classes.

2. The same definition of characteristic classes applies to real or complex vector bundles as well
as principal bundles.

The following is an easy consequence of the definition.

Lemma 3.1. Let c be a characteristic class for principal G - bundles so that c takes values in
Hq(−), for q ≥ 1. Then if ε is the trivial G bundle,

ε = X ×G→ X

then c(ε) = 0.

Proof. The trivial bundle ε is the pull - back of the constant map to the one point space
e : X → pt of the bundle ν = G→ pt. Thus c(ε) = e∗(c(ν)). But c(ν) ∈ Hq(pt) = 0 when q > 0. �

The following observation is also immediate from the definition.

Lemma 3.2. Characteristic classes are invariant under isomorphism. More specifically, Let c
be a characteristic class for principal G - bundles. Also let p1 : E1 → X and p2 : E2 → X be
isomorphic principal G - bundles. Then

c(E1) = c(E2) ∈ H∗(X).

Thus for a given space X, a characteristic class c can be viewed as a map

c : PrinG(X)→ H∗(X).

3. The naturality property in the definition can be stated in more functorial terms in the
following way.

Cohomology (with any coefficients) H∗(−) is a contravariant functor from the category hoT op
of topological spaces and homotopy classes of maps, to the category Ab of abelian groups. By the
results of chapter 2, the set of principal G - bundles PrinG(−) can be viewed as a contravariant
functor from the category hoT op to the category of sets Sets.
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Definition 3.2. (Alternative) A characteristic class is a natural transformation c between
the functors PrinG(−) and H∗(−):

c : PrinG(−) H∗(−)

Examples.

(1) The first Chern class c(ζ) is a characteristic class on principal U(1) - bundles, or
equivalently, complex line bundles. If ζ is a line bundle over X, then c1(ζ) ∈ H2(X; Z).
As we saw in the last chapter, c1 is a complete invariant of line bundles. That is to say,
the map

c1 : PrinU(1)(X)→ H2(X; Z)

is an isomorphism.
(2) The first Stiefel - Whitney class w1(η) is a characteristic class of two fold covering spaces

(i.e a principal Z2 = O(1) - bundles) or of real line bundles. If η is a real line bundle over
a space X, then w1(η) ∈ H1(X; Z2). Moreover, as we saw in the last chapter, the first
Stiefel - Whitney class is a complete invariant of line bundles. That is, the map

w1 : PrinO(1)(X)→ H1(X; Z2)

is an isomorphism.

We remark that the first Stiefel - Whitney class can be extended to be a characteristic class of real
n - dimensional vector bundles (or principal O(n) - bundles) for any n. To see this, consider the
subgroup SO(n) < O(n). As we saw in the last chapter, a bundle has an SO(n) structure if and
only if it is orientable. Moreover the induced map of classifying spaces gives a 2 - fold covering space
or principal O(1) - bundle,

Z2 = O(1) = O(n)/SO(n)→ BSO(n)→ BO(n).

This covering space defines, via its classifying map w1 : BO(n) → BO(1) = RP∞ an element
w1 ∈ H1(BO(n); Z2) which is the first Stiefel - Whitney class of this covering space.

Now let η be any n - dimensional real vector bundle over X, and let

fη : X → BO(n)

be its classifying map.

Definition 3.3. The first Stiefel - Whitney class w1(η) ∈ H1(X; Z2) is defined to be

w1(η) = f∗η (w1) ∈ H1(X; Z2)

The first Chern class c1 of an n - dimensional complex vector bundle ζ over X is defined similarly,
by pulling back the first Chern class of the principal U(1) - bundle

U(1) ∼= U(n)/SU(n)→ BSU(n)→ BU(n)
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via the classifying map fζ : X → BU(n).

The following is an immediate consequence of the above lemma and the meaning of SO(n) and
SU(n) - structures.

Theorem 3.3. Given a complex n - dimensional vector bundle ζ over X, then c1(ζ) ∈ H2(X)
is zero if and only if ζ has an SU(n) -structure.

Furthermore, given a real n - dimensional vector bundle η over X, then w1(η) ∈ H1(X; Z2) is
zero if and only if the bundle η has an SO(n) - structure, which is equivalent to η being orientable.

We now use the classification theorem for bundles to describe the set of characteristic classes
for principal G - bundles.

Let R be a commutative ring and let CharG(R) be the set of all characteristic classes for principal
G bundles that take values in H∗(−;R). Notice that the sum (in cohomology) and the cup product
of characteristic classes is again a characteristic class. This gives CharG the structure of a ring.
(Notice that the unit in this ring is the constant characteristic class c(ζ) = 1 ∈ H0(X).

Theorem 3.4. There is an isomorphism of rings

ρ : CharG(R)
∼=−−−−→ H∗(BG;R)

Proof. Let c ∈ CharG(R). Define

ρ(c) = c(EG) ∈ H∗(BG;R)

where EG → BG is the universal G - bundle over BG. By definition of the ring structure of
CharG(R), ρ is a ring homomorphism.

Now let γ ∈ Hq(BG;R). Define the characteristic class cγ as follows. Let p : E → X be a
principal G - bundle classified by a map fE : X → BG. Define

cγ(E) = f∗E(γ) ∈ Hq(X;R)

where f∗E : H∗(BG : R) → H∗(X;R) is the cohomology ring homomorphism induced by fE . This
association defines a map

c : H∗(BG;R)→ CharG(R)

which immediately seen to be inverse to ρ. �
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2. Chern Classes and Stiefel - Whitney Classes

In this section we compute the rings of unitary characteristic classes CharU(n)(Z) and Z2 - valued
orthogonal characteristic classes CharO(n)(Z2). These are the characteristic classes of complex and
real vector bundles and as such have a great number of applications. By 3.4 computing these rings of
characteristic classes reduce to computing the cohomology rings H∗(BU(n); Z) and H∗(BO(n); Z2).
The following is the main theorem of this section.

Theorem 3.5. a. The ring of U(n) characteristic classes is a polynomial algebra on n - gener-
ators,

CharU(n)(Z) ∼= H∗(BU(n); Z) ∼= Z[c1, c2, · · · , cn]

where ci ∈ H2i(BU(n); Z) is known as the ith - Chern class.

b.The ring of Z2 - valued O(n) characteristic classes is a polynomial algebra on n - generators,

CharO(n)(Z2) ∼= H∗(BO(n); Z2) ∼= Z2[w1, w2, · · · , wn]

where wi ∈ Hi(BO(n); Z2) is known as the ith - Stiefel - Whitney class.

This theorem will be proven by induction on n. For n = 1 BU(1) = CP∞ and BO(1) = RP∞

and so the theorem describes the ring structure in the cohomology of these projective spaces. To
complete the inductive step we will study the sphere bundles

Sn−1 → BO(n− 1)→ BO(n)

and

S2n−1 → BU(n− 1)→ BU(n)

described in the last chapter. In particular recall from 2.28 that in these fibrations, BO(n− 1) and
BU(n − 1) are the unit sphere bundles S(γn) of the universal bundle γn over BO(n) and BU(n)
respectively. Let D(γn) be the unit disk bundles of the universal bundles. That is, in the complex
case,

D(γn) = EU(n)×U(n) D
2n → BU(n)

and in the real case,

D(γn) = EO(n)×O(n) D
n → BO(n)

where D2n ⊂ Cn and Dn ⊂ Rn are the unit disks, and therefore have the induced unitary and
orthogonal group actions.

Here is one easy observation about these disk bundles.
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Proposition 3.6. The projection maps

p : D(γn) = EU(n)×U(n) D
2n → BU(n)

and

D(γn) = EO(n)×O(n) D
n → BO(n)

are homotopy equivalences.

Proof. Both of these bundles have zero sections Z : BU(n)→ D(γn) and Z : BO(n)→ D(γn).
In both the complex and real cases, we have p ◦Z = 1. To see that Z ◦ p ' 1 consider the homotopy
H : D(γn)× I → D(γn) defined by H(v, t) = tv. �

We will use this result when studying the cohomology exact sequence of the pair (D(γn), S(γn)):

(2.1)
· · · → Hq−1(S(γn))

δ−−−−→ Hq(D(γn), S(γn))→ Hq(D(γn))→ Hq(S(γn))
δ−−−−→ Hq+1(D(γn), S(γn))→ Hq+1(D(γn))→ · · ·

Using the above proposition and 2.28 we can substituteH∗(BU(n)) forH∗(D(γn)), andH∗(BU(n−
1)) for H∗(S(γn)) in this sequence to get the following exact sequence

(2.2)

· · · → Hq−1(BU(n− 1)) δ−−−−→ Hq(D(γn), S(γn))→ Hq(BU(n)) ι∗−−−−→ Hq(BU(n− 1))
δ−−−−→ Hq+1(D(γn), S(γn))→ Hq+1(BU(n))→ · · ·

and we get a similar exact sequence in the real case

(2.3)

· · · → Hq−1(BO(n− 1); Z2)
δ−−−−→ Hq(D(γn), S(γn); Z2)→ Hq(BO(n); Z2)

ι∗−−−−→

Hq(BO(n− 1); Z2)
δ−−−−→ Hq+1(D(γn), S(γn); Z2)→ Hq+1(BO(n); Z2)→ · · ·

These exact sequences will be quite useful for inductively computing the cohomology of these
classifying spaces, but to do so we need a method for computingH∗(D(γn), S(γn)), or more generally,
H∗(D(ζ), S(ζ)), where ζ is any Euclidean vector bundle and D(ζ) and S(ζ) are the associated unit
disk bundles and sphere bundles respectively. The quotient space,

(2.4) T (ζ) = D(ζ)/S(ζ)
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is called the Thom space of the bundle ζ. As the name suggests, this construction was first studied
by R. Thom [41], and has been quite useful in both bundle theory and cobordism theory. Notice
that on each fiber (say at x ∈ X) of the n - dimensional disk bundle ζ, the Thom space construction
takes the unit n - dimensional disk modulo its boundary n− 1 - dimensional sphere which therefore
yields an n - dimensional sphere, with marked basepoint, say ∞x ∈ Sn(ζx) = Dn(ζx)/Sn−1(ζx).
The Thom space construction then identifies all the basepoints ∞x to a single point. Notice that
for a bundle over a point Rn → pt, the Thom space T (Rn) = Dn/Sn−1 = Sn ∼= Rn ∪ ∞. More
generally, notice that when the basespace X is compact, then the Thom space is simply the one
point compactification of the total space of the vector bundle ζ,

(2.5) T (ζ) ∼= ζ+ = ζ ∪∞

where we think of the extra point in this compactification as the common point at infinity assigned
to each fiber. In order to compute with the above exact sequences, we will need to study the
cohomology of Thom spaces. But before we do we examine the topology of the Thom spaces of
product bundles. For this we introduce the “smash product” construction.

Let X and Y be spaces with basepoints x0 ∈ X and y0 ∈ Y .

Definition 3.4. The wedge X ∨ Y is the “one point union”,

X ∨ Y = X × y0 ∪ x0 × Y ⊂ X × Y.

The smash product X ∧ Y is given by

X ∧ Y = X × Y/X ∨ Y.

Observations. 1. The k be a field. Then the Kunneth formula gives

H̃∗(X ∧ Y ; k) ∼= H̃∗(X; k)⊗ H̃∗(Y ; k).

2. Let V and W be vector spaces, and let V + and W+ be their one point compactifications. These
are spheres of the same dimension as the respective vector spaces. Then

V + ∧W+ = (V ×W )+.

So in particular,

Sn ∧ Sm = Sn+m.

Proposition 3.7. Let ζ be an n - dimensional vector bundle over a space X, and let η be an
m - dimensional bundle over X. Let ζ × η be the product n +m - dimensional vector bundle over
X ∧ Y . Then the Thom space of ζ × η is given by

T (ζ × η) ∼= T (ζ) ∧ T (η).



88 3. CHARACTERISTIC CLASSES

Proof. Notice that the disk bundle is given by

D(ζ × η) ∼= D(ζ)×D(η)

and its boundary sphere bundle is given by

S(ζ × η) ∼= S(ζ)×D(η) ∪D(ζ)× S(η).

Thus

T (ζ × η) = D(ζ × η)/S(ζ × η) ∼= D(ζ)×D(η)/ (S(ζ)×D(η) ∪D(ζ)× S(η))

∼= D(ζ)/S(ζ) ∧D(η)/S(η)

∼= T (ζ) ∧ T (η).

�

We now proceed to study the cohomology of Thom spaces.

2.1. The Thom Isomorphism Theorem. We begin by describing a cohomological notion of
orientability of an vector bundle ζ over a space X.

Consider the 2 - fold cover over X defined as follows. Let Eζ be the principal GL(n,R) bundle
associated to ζ. Also let Genn be the set of generators of Hn(Sn) ∼= Z. So Genn is a set with
two elements. Moreover the general linear group GL(n,R) acts on Sn = Rn ∪ ∞ by the usual
linear action on Rn extended to have a fixed point at ∞ ∈ Sn. By looking at the induced map on
cohomology, there is an action of GL(n,R) on Genn. We can then define the double cover

G(ζ) = Eζ ×GL(n,R) Genn −→ Eζ/GL(n,R) = X.

Lemma 3.8. The double covering G(ζ) is isomorphic to the orientation double cover Or(ζ).

Proof. Recall from chapter 1 that the orientation double cover Or(ζ) is given by

Or(ζ) = Eζ ×GL(n,R) Or(Rn)

where Or(Rn) is the two point set consistingof orientations of the vector space Rn. A matrix
A ∈ GL(n,R) acts on this set trivially if and only if the determinant detA is positive. It acts
nontrivially (i.e permutes the two elements) if and only if detA is negative. Now the same is true of
the action of GL(n,R) on Genn. This is because A ∈ GL(n,R) induces multiplication by the sign
of detA on Hn(Sn). (Verify this as an exercise!)

Since Or(Rn) and Genn are both two point sets with the same action of GL(n,R), the corre-
sponding two fold covering spaces Or(ζ) and G(ζ) are isomorphic. �
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Corollary 3.9. An orientation of an n - dimensional vector bundle ζ is equivalent to a section
of G(ζ) and hence defines a continuous family of generators

ux ∈ Hn(Sn(ζx)) ∼= Z

for every x ∈ X. Here Sn(ζx) is the unit disk of the fiber ζx modulo its boundary sphere. Sn(ζx) is
called the sphere at x.

Now recall that given a pair of spaces A ⊂ Y , there is a relative cup product in cohomology,

Hq(Y )⊗Hr(Y,A) ∪−−−−→ Hq+r(Y,A).

So in particular the relative cohomology H∗((Y,A) is a (graded) module over the (graded) ring
H∗(Y ).

In the case of a vector bundle ζ over a space X, we then have that H∗(D(ζ), S(ζ)) = H̃∗(T (ζ))
is a module over H∗(D(ζ)) ∼= H∗(X). So in particular, given any cohomology class in the Thom
space, α ∈ Hr(T (ζ)) we get an induced homomorphism

Hq(X) ∪α−−−−→ Hq+r(T (ζ)).

Our next goal is to prove the famous Thom Isomorphism Theorem which can be stated as
follows.

Theorem 3.10. Let ζ be an oriented n - dimensional real vector bundle over a connected space
X. Let R be any commutative ring. The orientation gives generators ux ∈ Hn(Sn(ζx);R) ∼= R.

Then there is a unique class (called the Thom class) in the cohomology of the Thom space

u ∈ Hn(T (ζ);R)

so that for every x ∈ X, if

jx : Sn(ζx) ↪→ D(ζ)/S(ζ) = T (ζ)

is the natural inclusion of the sphere at x in the Thom space, then under the induced homomorphism
in cohomology,

j∗x : Hn(T (ζ);R)→ Hn(Sn(ζx);R) ∼= R

j∗x(u) = ux.

Furthermore The induced cup product map

γ : Hq(X;R) ∪u−−−−→ H̃q+n(T (ζ);R)

is an isomorphism for every q ∈ Z. So in particular H̃r(T (ζ);R) = 0 for r < n.

If ζ is not an orientable bundle over X, then the theorem remains true if we take Z2 coefficients,
R = Z2.
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Proof. We prove the theorem for oriented bundles. We leave the nonorientable case (when
R = Z2) to the reader. We also restrict our attention to the case R = Z, since the theorem for
general coefficients will follow immediately from this case using the universal coefficient theorem.

Case 1: ζ is the trivial bundle X × Rn.

In this case the Thom space T (ζ) is given by

T (ζ) = X ×Dn/X × Sn−1.

The projection of X to a point, X → pt defines a map

π : T (ζ) = X ×Dn/X × Sn−1 → Dn/Sn−1 = Sn.

Let u ∈ Hn(T (ζ)) be the image in cohomology of a generator,

Z ∼= Hn(Sn) π∗−−−−→ Hn(T (ζ)).

The fact that taking the cup product with this class

Hq(X) ∪u−−−−→ Hq+n(T (ζ)) = Hq+n(X ×Dn, X × Sn−1) = Hq+n(X × Sn, X × pt)

is an isomorphism for every q ∈ Z follows from the universal coefficient theorem.

Case 2: X is the union of two open sets X = X1 ∪X2, where we know the Thom isomorphism
theorem holds for the restrictions ζi = ζ|Xi

for i = 1, 2 and for ζ1,2 = ζ|X1∩X2
.

We prove the theorem for X using the Mayer - Vietoris sequence for cohomology. Let X1,2 =
X1 ∩X2.

→ Hq−1(T (ζ1,2))→ Hq(T (ζ))→ Hq(T (ζ1))⊕Hq(T (ζ2))→ Hq((T (ζ1,2))→ · · ·

Looking at this sequence when q < n, we see that since

Hq(T (ζ1,2)) = Hq(T (ζ1)) = Hq(T (ζ2)) = 0,

then by exactness we must have that Hq(T (ζ)) = 0.

We now let q = n, and we see that by assumption, Hn(T (ζ1)) ∼= Hn(T (ζ2)) ∼= Hn(T (ζ1,2)) ∼=
Z, and that the Thom classes of each of the restriction maps Hn(T (ζ1)) → Hn(T (ζ1,2)) and
Hn(T (ζ2))→ Hn(T (ζ1,2)) correspond. Moreover Hn−1(T (ζ1,2)) = 0. Hence by the exact sequence,
Hn(T (ζ)) ∼= Z and there is a class u ∈ Hn(T (ζ)) that maps to the direct sum of the Thom classes
in Hn(T (ζ1))⊕Hn(T (ζ2)).

Now for q ≥ n we compare the above Mayer - Vietoris sequence with the one of base spaces,

→ Hq−1(X1,2)→ Hq(X)→ Hq(X1)⊕Hq(X2)→ Hq(X1,2)→ · · ·

This sequence maps to the one for Thom spaces by taking the cup product with the Thom classes.
By assumption this map is an isomorphism on H∗(Xi), i = 1, 2 and on H∗(X1,2). Thus by the
Five Lemma it is an isomorphism on H∗(X). This proves the theorem in this case.
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Case 3. X is covered by finitely many open sets Xi, i = 1, · · · , k so that the restrictions of the
bundle to each Xi, ζi is trivial.

The proof in this case is an easy inductive argument (on the number of open sets in the cover),
where the inductive step is completed using cases 1 and 2.

Notice that this case includes the situation when the basespace X is compact.

Case 4. General Case. We now know the theorem for compact spaces. However it is not
necessarily true that the cohomology of a general space (i.e homotopy type of a C.W complex) is
determined by the cohomology of its compact subspaces. However it is true that the homology of a
space X is given by

H∗(X) ∼= lim−→
K

H∗(K)

where the limit is taken over the partially ordered set of compact subspaces K ⊂ X. Thus we want
to first work in homology and then try to transfer our observations to cohomology.

To do this, recall that the construction of the cup product pairing actually comes from a map
on the level of cochains,

Cq(Y )⊗ Cr(Y,A) ∪−−−−→ Cq+r(Y,A)

and therefore has a dual map on the chain level

C∗(Y,A)
ψ−−−−→ C∗(Y )⊗ C∗(Y,A).

and thus induces a map in homology

ψ : Hk(Y,A)→ ⊕r≥0Hk−r(Y )⊗Hr(Y,A).

Hence given α ∈ Hr(Y,A) we have an induced map in homology (the “slant product”)

/α : Hk(Y,A)→ Hk−r(Y )

defined as follows. If θ ∈ Hk(Y,A) and

ψ(θ) =
∑
j

aj ⊗ bj ∈ H∗(Y )⊗H∗(Y,A)

then

/α(θ) =
∑
j

α(bj) · aj

where by convention, if the degree of a homology class bj is not equal to the degree of α, then
α(bj) = 0.

Notice that this slant product is dual to the cup product map

Hq(Y ) ∪α−−−−→ Hq+r(Y,A).
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Again, by considering the pair (D(ζ), S(ζ)), and identifying H∗(D(ζ)) ∼= H∗(X), we can apply
the slant product operation to the Thom class, to define a map

/u : Hk(T (ζ))→ Hk−n(X).

which is dual to the Thom map γ : Hq(X) ∪u−−−−→ Hq+n(T (ζ)). Now since γ is an isomorphism
in all dimensions when restricted to compact sets, then by the universal coefficient theorem, /u :
Hq(T (ζ|K )) → Hq−n(K) is an isomorphism for all q and for every compact subset K ⊂ X. By
taking the limit over the partially ordered set of compact subsets of X, we get that

/u : Hq(T (ζ))→ Hq−n(X)

is an isomorphism for all q. Applying the universal coefficient theorem again, we can now conclude
that

γ : Hk(X) ∪u−−−−→ Hk+n(T (ζ))

is an isomorphism for all k. This completes the proof of the theorem. �

We now observe that the Thom class of a product of two bundles is the appropriately defined
product of the Thom classes.

Lemma 3.11. Let ζ and η be an n and m dimensional oriented vector bundles over X and Y

respectively. Then the Thom class u(ζ×η) is given by the tensor product: u(ζ×η) ∈ Hn+m(T (ζ×η))
is equal to

u(ζ)⊗ u(η) ∈ Hn(T (ζ))⊗Hm(T (η))

∼= Hn+m(T (ζ) ∧ T (η))

= Hn+m(T (ζ × η)).

In this description, cohomology is meant to be taken with Z2 - coefficients if the bundles are not
orientable.

Proof. u(ζ)⊗ u(η) restricts on each fiber (x, y) ∈ X × Y to

ux ⊗ uy ∈ Hn(Sn(ζx))⊗Hm(Sm(ηy))

∼= Hn+m(Sn(ζx) ∧ Sm(ηy))

= Hn+m(Sn+m(ζ × η)(x,y)))

which is the generator determined by the product orientation of ζx × ηy. The result follows by the
uniqueness of the Thom class. �

We now use the Thom isomorphism theorem to define a characteristic class for oriented vector
bundles, called the Euler class.
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Definition 3.5. The Euler class of an oriented, n dimensional bundle ζ, over a connected space
X, is the n - dimensional cohomology class

χ(ζ) ∈ Hn(X)

defined to be the image of the Thom class u(ζ) ∈ Hn(T (ζ)) under the composition

Hn(T (ζ)) = Hn(D(ζ), S(ζ))→ Hn(D(ζ)) ∼= Hn(X).

Again, if ζ is not orientable, cohomology is taken with Z2 - coefficients.

Exercise. Verify that the Euler class is a characteristic class according to our definition.

The following is then a direct consequence of 3.11.

Corollary 3.12. Let ζ and η be as in 3.11. Then the Euler class of the product is given by

χ(ζ × η) = χ(ζ)⊗ χ(η) ∈ Hn(X)⊗Hm(Y ) ↪→ Hn+m(X × Y ).

We will also need the following observation.

Proposition 3.13. Let η be an odd dimensional oriented vector bundle over a space X. Say
dim (η) = 2n+ 1. Then its Euler class has order two:

2χ(η) = 0 ∈ H2n+1(X).

Proof. Consider the bundle map

ν : η → η

v → −v.

Since η is odd dimensional, this bundle map is an orientation reversing automorphism of η. This
means that ν∗(u) = −u, where u ∈ H2n+1(T (η)) is the Thom class. By the definition of the Euler
class this in turn implies that ν∗(χ(η)) = −χ(η). But since the Euler class is a characteristic class
and ν is a bundle map, we must have ν∗(χ(η)) = χ(η). Thus χ(η) = −χ(η). �
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2.2. The Gysin sequence. We now input the Thom isomorphism theorem into the cohomol-
ogy exact sequence of the pair D(ζ), S(ζ)) in order to obtain an important calculational tool for
computing the homology of vector bundles and sphere bundles.

Namely, let ζ be an oriented n - dimensional oriented vector bundle over a space X, and consider
the exact sequence

· · · → Hq−1(S(ζ)) δ−−−−→ Hq(D(ζ), S(ζ))→ Hq(D(ζ))→ Hq(S(ζ))
δ−−−−→ Hq+1(D(ζ), S(ζ))→ Hq+1(D(ζ))→ · · ·

By identifying H∗(D(ζ), S(ζ)) = H̃∗(T (ζ)) and H∗(D(ζ)) ∼= H∗(X), this exact sequence becomes

· · · → Hq−1(S(ζ)) δ−−−−→ Hq(T (ζ))→ Hq(X)→ Hq(S(ζ))
δ−−−−→ Hq+1(T (ζ))→ Hq+1(X)→ · · ·

Finally, by inputting the Thom isomorphism, Hq−n(X) ∪u−−−−→∼= Hq(T (ζ)) we get the following
exact sequence known as the Gysin sequence:

(2.6)
· · · → Hq−1(S(ζ)) δ−−−−→ Hq−n(X)

χ−−−−→ Hq(X)→ Hq(S(ζ))
δ−−−−→ Hq−n+1(X)

χ−−−−→ Hq+1(X)→ · · ·

We now make the following observation about the homomorphism χ : Hq(X) → Hq+n(X) in
the Gysin sequence.

Proposition 3.14. The homomorphism χ : Hq(X) → Hq+n(X) is given by taking the cup
product with the Euler class,

χ : Hq(X)
∪χ−−−−→ Hq+n(X).

Proof. The theorem is true for q = 0, by definition. Now in general, the map χ was de-
fined in terms of the Thom isomorphism γ : Hr(X) ∪u−−−−→ Hr+n(T (ζ)), which, by definition is a
homomorphism of graded H∗(X) - modules. This will then imply that

χ : Hq(X)→ Hq+n(X)

is a homomorphism of graded H∗(X) - modules. Thus

χ(α) = χ(1 · α)

= χ(1) ∪ α since χ is an H∗(X) - module homomorphism

= χ(ζ) ∪ α

as claimed. �
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2.3. Proof of theorem 3.5. the goal of this section is to use the Gysin sequence to prove 3.5,
which we begin by restating:

Theorem 3.15. a. The ring of U(n) characteristic classes is a polynomial algebra on n -
generators,

CharU(n)(Z) ∼= H∗(BU(n); Z) ∼= Z[c1, c2, · · · , cn]

where ci ∈ H2i(BU(n); Z) is known as the ith - Chern class.

b.The ring of Z2 - valued O(n) characteristic classes is a polynomial algebra on n - generators,

CharO(n)(Z2) ∼= H∗(BO(n); Z2) ∼= Z2[w1, w2, · · · , wn]

where wi ∈ Hi(BO(n); Z2) is known as the ith - Stiefel - Whitney class.

Proof. We start by considering the Gysin sequence, applied to the universal bundle γn over
BU(n). We input the fact that the sphere bundle S(γn) is given by BU(n− 1) see 2.2:

(2.7)

· · · → Hq−1(BU(n− 1)) δ−−−−→ Hq−2n(BU(n))
∪χ(γn)−−−−−→ Hq(BU(n)) ι∗−−−−→ Hq(BU(n− 1))

δ−−−−→ Hq−2n+1(BU(n))
∪χ(γn)−−−−−→ Hq+1(BU(n))→ · · ·

and we get a similar exact sequence in the real case

(2.8)

· · · → Hq−1(BO(n− 1); Z2)
δ−−−−→ Hq−n(BO(n); Z2)

∪χ(γn)−−−−−→ Hq(BO(n); Z2)
ι∗−−−−→

Hq(BO(n− 1); Z2)
δ−−−−→ Hq−n+1(BO(n)); Z2)

∪χ(γn)−−−−−→ Hq+1(BO(n); Z2)→ · · ·

We use these exact sequences to prove the above theorem by induction on n. For n = 1 then
sequence 2.7 reduces to the short exact sequences,

0→ Hq−2(BU(1))
∪χ(γ1)−−−−→∼= Hq(BU(1))→ 0

for each q ≥ 2. We let c1 ∈ H2(BU(1)) = H2(CP∞) be the Euler class χ(γ1). These isomorphisms
imply that the ring structure of H∗(BU(1)) is that of a polynomial algebra on this single generator,

H∗(BU(1)) = H∗(CP∞) = Z[c1]

which is the statement of the theorem in this case.

In the real case when n = 1 the Gysin sequence 2.8 reduces to the short exact sequences,

0→ Hq−1(BO(1); Z2)
∪χ(γ1)−−−−→∼= Hq(BO(1); Z2)→ 0
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for each q ≥ 1. We let w1 ∈ H(BO(1); Z2) = H1(RP∞; Z2) be the Euler class χ(γ1). These
isomorphisms imply that the ring structure of H∗(BO(1); Z2) is that of a polynomial algebra on this
single generator,

H∗(BO(1); Z2) = H∗(RP∞; Z2) = Z2[w1]

which is the statement of the theorem in this case.

We now inductively assume the theorem is true for n− 1. That is,

H∗(BU(n− 1)) ∼= Z[c1, · · · , cn−1] and H∗(BO(n− 1); Z2) ∼= Z2[w1, · · · , wn−1].

We first consider the Gysin sequence 2.7, and observe that by exactness, for q ≤ 2(n − 1), the
homomorphism

ι∗ : Hq(BU(n))→ Hq(BU(n− 1))

is an isomorphism. That means there are unique classes, c1, · · · , cn−1 ∈ H∗(BU(n)) that map via ι∗

to the classes of the same name in H∗(BU(n− 1)). Furthermore, since ι∗ is a ring homomorphism,
every polynomial in c1, · · · , cn−1 in H∗(BU(n − 1)) is in the image under ι∗ of the corresponding
polynomial in the these classes in H∗(BU(n)). Hence by our inductive assumption,

ι∗ : H∗(BU(n))→ H∗(BU(n− 1)) = Z[c1, · · · , cn−1]

is a split surjection of rings. But by the exactness of the Gysin sequence 2.7 this implies that this
long exact splits into short exact sequences,

0→ H∗−2n(BU(n))
∪χ(γn)−−−−−→ H∗(BU(n)) ι∗−−−−→ H∗(BU(n− 1)) ∼= Z[c1, · · · cn−1]→ 0

Define cn ∈ H2n(BU(n)) to be the Euler class χ(γn). Then this sequence becomes

0→ H∗−2n(BU(n)) ∪cn−−−−→ H∗(BU(n)) ι∗−−−−→ Z[c1, · · · cn−1]→ 0

which implies that H∗(BU(n)) ∼= Z[c1, · · · , cn]. This completes the inductive step in this case.

In the real case now consider the Gysin sequence 2.8, and observe that by exactness, for q < n−1,
the homomorphism

ι∗ : Hq(BO(n); Z2)→ Hq(BO(n− 1); Z2)

is an isomorphism. That means there are unique classes, w1, · · · , wn−2 ∈ H∗(BO(n); Z2) that map
via ι∗ to the classes of the same name in H∗(BO(n− 1); Z2).

In dimension q = n − 1, the exactness of the Gysin sequence tells us that the homomorphism
ι∗Hn−1(BO(n); Z2) → Hn−1(BO(n − 1); Z2) is injective. Also by exactness we see that ι∗ is sur-
jective if and only if χ(γn) ∈ Hn(BO(n); Z2) is nonzero. But to see this, by the universal property
of γn, it suffices to prove that there exists some n -dimensional bundle ζ with Euler class χ(ζ) 6= 0.
Now by 3.12, the Euler class of the product

χ(γk × γn−k) = χ(γk)⊗ χ(γn−k) ∈ Hk(BO(k)×BO(n− k); Z2)

= wk ⊗ wn−k ∈ H∗(BO(k); Z2)⊗Hn−k(BO(n− k); Z2)
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which, by the inductive assumption is nonzero for k ≥ 1. Thus χ(γn) ∈ Hn(BO(n); Z2) is nonzero,
and we define it to be the nth Stiefel - Whitney class

wn = χ(γn) ∈ Hn(BO(n); Z2).

As observed above, the nontriviality of χ(γn) implies that ι∗Hn−1(BO(n); Z2)→ Hn−1(BO(n−
1); Z2) is an isomorphism, and hence there is a unique class wn−1 ∈ Hn−1(BO(n−1); Z2) (as well as
w1, · · ·wn−2) restricting to the inductively defined classes of the same names in H∗(BO(n− 1); Z2).

Furthermore, since ι∗ is a ring homomorphism, every polynomial in w1, · · · , wn−1 in H∗(BO(n−
1); Z2) is in the image under ι∗ of the corresponding polynomial in the these classes inH∗(BO(n); Z2).
Hence by our inductive assumption,

ι∗ : H∗(BO(n); Z2)→ H∗(BO(n− 1); Z2) = Z2[w1, · · · , wn−1]

is a split surjection of rings. But by the exactness of the Gysin sequence 2.8 this implies that this
long exact splits into short exact sequences,

0→ H∗−n(BO(n); Z2)
∪wn−−−−→ H∗(BO(n); Z2)

ι∗−−−−→ H∗(BO(n− 1); Z2) ∼= Z2[w1, · · ·wn−1]→ 0

which implies that H∗(BO(n); Z2) ∼= Z2[w1, · · · , wn]. This completes the inductive step and there-
fore the proof of the theorem. �

3. The product formula and the splitting principle

Perhaps the most important calculational tool for characteristic classes is the Whitney sum
formula, which we now state and prove.

Theorem 3.16. a. Let ζ and η be vector bundles over a space X. Then the Stiefel - Whitney
classes of the Whitney sum bundle ζ ⊕ η are given by

wk(ζ ⊕ η) =
k∑
j=0

wj(ζ) ∪ wk−j(η) ∈ Hk(X; Z2).

where by convention, w0 = 1 ∈ H0(X; Z2).

b. If ζ and η are complex vector bundles, then the Chern classes of the Whitney sum bundle
ζ ⊕ η are given by

ck(ζ ⊕ η) =
k∑
j=0

cj(ζ) ∪ ck−j(η) ∈ H2k(X).

Again, by convention, c0 = 1 ∈ H0(X).
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Proof. We prove the formula in the real case. The complex case is done the same way.

Let ζ be an n - dimensional vector bundle over X, and let η be an m - dimensional bundle.
Let N = n + m. Since we are computing wk(ζ ⊕ η), we may assume that k ≤ N , otherwise this
characteristic class is zero.

We prove the Whitney sum formula by induction on N ≥ k. We begin with the case N = k.
Since ζ ⊕ η is a k - dimensional bundle, the kth Stiefel - Whitney class, wk(ζ ⊕ η) is equal to the
Euler class χ(ζ ⊕ η). We then have

wk(ζ ⊕ η) = χ(ζ ⊕ η)

= χ(ζ) ∪ χ(η) by 3.12

= wn(ζ) ∪ wm(η).

This is the Whitney sum formula in this case as one sees by inputting the fact that for a bundle ρ
with j > dim (ρ), wj(ρ) = 0.

Now inductively assume that the Whitney sum formula holds for computing wk for any sum of
bundles whose sum of dimensions is ≤ N − 1 ≥ k. Let ζ have dimension n and η have dimension m
with n+m = N . To complete the inductive step we need to compute wk(ζ ⊕ η).

Suppose ζ is classified by a map fζ : X → BO(n), and η is classified by a map fη : X → BO(m).
Then ζ ⊕ η is classified by the composition

fζ⊕η : X
fζ×fη−−−−→ BO(n)×BO(m)

µ−−−−→ BO(n+m)

where µ is the map that classifies the product of the universal bundles γn×γm over BO(n)×BO(m).
Equivalently, µ is the map on classifying spaces induced by the inclusion of the subgroup O(n) ×
O(m) ↪→ O(n+m). Thus to prove the theorem we must show that the map µ : BO(n)×BO(m)→
BO(n+m) has the property that

(3.1) µ∗(wk) =
k∑
j=0

wj ⊗ wk−j ∈ H∗(BO(n); Z2)⊗H∗(BO(m); Z2).

For a fixed j ≤ k, let

pj : Hk(BO(n)×BO(m); Z2)→ Hj(BO(n); Z2)⊗Hk−j(BO(m); Z2)

be the projection onto the summand. So we need to show that pj(µ∗(wk)) = wj ⊗wk−j . Now since
n +m = N > k, then either j < n or k − j < m (or both). We assume without loss of generality
that j < n. Now by the proof of 3.5

ι∗ : Hj(BO(n); Z2)→ Hj(BO(j); Z2)

is an isomorophism. Moreover we have a commutative diagram:
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Hk(BO(N); Z2)
µ∗−−−−→ Hk(BO(n)×BO(m); Z2)

pj−−−−→ Hj(BO(n); Z2)⊗Hk−j(BO(m); Z2)

ι∗
y yι∗⊗1

Hk(BO(j +m); Z2) −−−−→
µ∗

Hk(BO(j)×BO(m); Z2) −−−−→
pj

Hj(BO(j); Z2)⊗Hk−j(BO(m); Z2).

Since j < n, j + m < n + m = N and ι∗(wk) = wk ∈ Hk(BO(j + m); Z2). This fact and the
commutativity of this diagram give,

(ι∗ ⊗ 1) ◦ pj ◦ µ∗(wk) = pj ◦ µ∗ ◦ ι∗(wk)

= pj ◦ µ∗(wk)

= wj ⊗ wk−j by the inductive assumption.

Since ι∗⊗ 1 is an isomorphism in this dimension, and since ι∗(wj ⊗wk−j) = wj ⊗wk−j we have that

pj ◦ µ∗(wk) = wj ⊗ wk−j .

As remarked above, this suffices to complete the inductive step in the proof of the theorem. �

We can restate the Whitney sum formula in the following convenient way. For an n - dimensional
bundle ζ, let

w(ζ) = 1 + w1(ζ) + w2(ζ) + · · ·+ wn(ζ) ∈ H∗(X; Z2)

This is called the total Stiefel - Whitney class. The total Chern class of a complex bundle is defined
similarly.

The Whitney sum formula can be interpreted as saying these total characteristic classes have
the “exponential property” that they take sums to products. That is, we have the following:

Corollary 3.17.
w(ζ ⊕ η) = w(ζ) ∪ w(η)

and
c(ζ ⊕ η) = c(ζ) ∪ c(η).

This implies that these characteristic classes are invariants of the stable isomorphism types of
bundles:

Corollary 3.18. If ζ and η are stably equivalent real vector bundles over a space X, then

w(ζ) = w(η) ∈ H∗(X; Z2),

Similarly if they are complex bundles,

c(ζ) = c(η) ∈ H∗(X).
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Proof. If ζ and η are stably equivalent, then

ζ ⊕ εm ∼= η ⊕ εr

for some m and r. So

w(ζ ⊕ εm) = w(η ⊕ εr).

But by 3.17

w(ζ ⊕ εm) = w(ζ)w(ε) = w(ζ) · 1 = w(ζ).

Similarly w(η⊕εr) = w(η). The statement follows. The complex case is proved in the same way. �

By our description of K - theory in chapter 2, we have that these characteristic classes define
invariants of K - theory.

Theorem 3.19. The Chern classes ci and the Stiefel - Whitney classes wi define natural trans-
formations

ci : K(X)→ H2i(X)

and

wi : KO(X)→ Hi(X; Z2).

The total characteristic classes

c : K(X)→ H̄∗(X)

and

w : KO(X)→ H̄∗(X; Z2)

are exponential in the sense that

c(α+ β) = c(α)c(β) and w(α+ β) = w(α)w(β).

Here H̄∗(X) is the direct product H̄∗(X) =
∏
qH

q(X).

As an immediate application of these product formulas, we can deduce a “splitting principle”
for characteristic classes. We now explain this principle.

Recall that an n - dimensional bundle ζ over X splits as a sum of n line bundles if and only if
its associated principal bundle has an O(1)×· · ·×O(1) - structure. That is, the classifying map fζ :
X → BO(n) lifts to the n -fold product, BO(1)n. The analogous observation also holds for complex
vector bundles. If we have such a lifting, then in cohomology, f∗ζ : H∗(BO(n); Z2) → H∗(X; Z2)
factors through ⊗nH∗(BO(1); Z2).

The “splitting principle” for characteristic classes says that this cohomological property always
happens.
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To state this more carefully, recall that H∗(BO(1); Z2) = Z2[w1]. Thus

H∗(BO(1)n; Z2) ∼= Z2[x1, · · · , xn]

where xj ∈ H1 is the generator of the cohomology of the jth factor in this product. Similarly,

H∗(BU(1)n) ∼= Z[y1, · · · , yn]

where yj ∈ H2 is the generator of the cohomology of the jth factor in this product.

Notice that the symmetric group Σn acts on these polynomial algebras by permuting the gen-
erators. The subalgebra consisting of polynomials fixed under this symmetric group action is called
the algebra of symmetric polynomials, Sym[x1, · · · , xn] or Sym[y1, · · · , yn].

Theorem 3.20. (Splitting Principle.) The maps

µ : BU(1)n → BU(n) and µ : BO(1)n → BO(n)

induce injections in cohomology

µ∗ : H∗(BU(n))→ H∗(BU(1)n) and µ∗ : H∗(BO(n); Z2)→ H∗(BO(1)n; Z2).

Furthermore the images of these monomorphisms are the symmetric polynomials

H∗(BU(n)) ∼= Sym[y1, · · · , yn] and H∗(BO(n); Z2) ∼= Sym[x1, · · · , xn].

Proof. By the Whitney sum formula,

µ∗(wj) =
∑

j1+···+jn=j

wj1 ⊗ · · · ⊗ wjn ∈ H∗(BO(1); Z2)⊗ · · · ⊗H∗(BO(1); Z2).

But wi(γ1) = 0 unless i = 0, 1. So

µ∗(wj) =
∑

1≤i1<···<ij≤n

xi1 · · ·xij ∈ Z2[x1, · · · , xn].

This is the jth - elementary symmetric polynomial, σj(x1, · · · , xn). Thus the image of Z2[w1, · · · , wn] =
H∗(BO(n); Z2) is the subalgebra of Z2[x1, · · · , xn] generated by the elementary symmetric polyno-
mials, Z[σ1, · · · , σn]. But it is well known that the elementary symmetric polynomials generate
Sym[x1, · · · , xn] (see [22]). The complex case is proved similarly. �

This result gives another way of producing characteristic classes which is particularly useful in
index theory.

Let p(x) be a power series in one variable, which is assumed to have a grading equal to one. Say

p(x) =
∑
i

aix
i.
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Consider the corresponding symmetric power series in n -variables,

p(x1, · · · , xn) = p(x1) · · · p(xn).

Let pj(x1, · · · , xn) be the homogeneous component of p(x1, · · · , xn) of grading j. So

pj(x1, · · · , xn) =
∑

i1+···+in=j

ai1 · · · ainx
i1
1 · · ·xinn .

Since pj is symmetric, by the splitting principle we can think of

pj ∈ Hj(BO(n); Z2)

and hence determines a characteristic class (i.e a polynomial in the Stiefel - Whitney classes).

Similarly if we give x grading 2, we can think of pj ∈ H2j(BU(n)) and so determines a polynomial
in the Chern classes.

In particular, given a real valued smooth function y = f(x), its Taylor series pf (x) =
∑
k
f(k)(0)
k! xk

determines characteristic classes fi ∈ Hi(BO(n); Z2) or fi ∈ H2i(BU(n); Z2).

Exercise. Consider the examples f(x) = ex, and f(x) = tanh(x). Write the low dimensional
characteristic classes fi in H∗(BU(n)) for i = 1, 2, 3, as explicit polynomials in the Chern classes.

4. Applications

In this section all cohomology will be taken with Z2 - coefficients, even if not explicitly written.

4.1. Characteristic classes of manifolds. We have seen that the characteristic classes of
trivial bundles are trivial. However the converse is not true, as we will now see, by examining the
characteristic classes of manifolds.

Definition 3.6. The characteristic classes of a manifold M , wj(M), ci(M), are defined to be
the characteristic classes of the tangent bundle, τM .

Theorem 3.21. wj(Sn) = 0 for all j, n > 0.

Proof. As we saw in chapter 1, the normal bundle of the standard embedding Sn ↪→ Rn+1 is
a trivial line bundle. Thus

τSn ⊕ ε1 ∼= εn+1

and so τSn+1 is stably trivial. The theorem follows. �
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Of course we know τS2 is nontrivial since it has no nowhere zero cross sections. Thus the Stiefel-
Whitney classes do not form a complete invariant of the bundle. However they do constitute a very
important class of invariants, as we will see below.

Write a ∈ H1(RPn; Z2) ∼= Z2 as the generator. Then the total Stiefel - Whitney class of the
canonical line bundle γ1 is

w(γ1) = 1 + a ∈ H∗(RPn).

This allows us to compute the Stiefel - Whitney classes of RPn (i.e of the tangent bundle τRPn).

Theorem 3.22. w(RPn) = (1 + a)n+1 ∈ H∗(RPn; Z2). So wj(RPn) =
(
n+1
j

)
aj ∈ Hj(RPn).

Note: Even though the polynomial (1 + a)n+1 has highest degree term an+1, this class is zero in
H∗(RPn) since Hn+1(RPn) = 0.

Proof. As seen in chapter 1,

τRPn ⊕ ε1 ∼= ⊕n+1γ1.

Thus

w(τRPn) = w(τRPn ⊕ ε1)

= w(⊕n+1γ1)

= w(γ1)n+1, by the Whitney sum formula

= (1 + a)n+1.

�

Observation. The same argument shows that the total Chern class of CPn is

(4.1) c(CPn) = (1 + a)n+1

where a ∈ H2(CPnZ) is the generator.

This calculation of the Stiefel - Whitney classes of RPn allows us to rule out the possibility that
many of these projective spaces are parallelizable.

Corollary 3.23. If RPn is parallelizable, then n is of the form n = 2k − 1 for some k.

Proof. We show that if n 6= 2k − 1 then there is some j > 0 such that wj(RPn) 6= 0. But
wj(RPn) =

(
n+1
j

)
aj , so we are reduced to verifying that if m is not a power of 2, then there

is a j ∈ {1, · · · ,m − 1} such that
(
m
j

)
≡ 1 mod2. This follows immediately from the following

combinatorial lemma, whose proof we leave to the reader.
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Lemma 3.24. Let j ∈ {1, · · · ,m− 1}. Write j and m in their binary representations,

m =
k∑
i=0

ai2i

j =
k∑
i=0

bi2i

where the ai’s and bi’s are either 0 or 1. Then(
m

j

)
≡

k∏
i=0

(
ai
bi

)
mod 2.

Note. Here we are adopting the usual conventions that
(
0
0

)
= 1 and

(
0
1

)
= 0.

�

Since we know that Lie groups are parallelizable, this result says that RPn can only have a Lie
group structure if n is of the form 2k − 1. However a famous theorem of Adams [1] says that the
only RPn’s that are parallelizable are RP1, RP3, and RP7.

Now as seen in chapter 2 an n - dimensional vector bundle ζn has k - linearly independent cross
sections if and only if

ζn ∼= ρn−k ⊕ εk
for some n−k dimensional bundle ρ. Moreover, having this structure is equivalent to the classifying
map

fζ : X → BO(n)

having a lift (up to homotopy) to a map fρ : X → BO(n− k).

Now the Stiefel - Whitney classes give natural obstructions to the existence of such a lift because
the map ι : BO(n− k)→ BO(n) induces the map of rings

ι∗ : Z2[w1, · · · , wn]→ Z2[w1, · · ·wn−k]

that maps wj to wj for j ≤ n− k, and wj to 0 for n ≥ j > n− k. We therefore have the following
result.

Theorem 3.25. Let ζ be an n -dimensional bundle over X. Suppose wk(ζ) is nonzero in
Hk(X; Z2). Then ζ has no more than n − k linearly independent cross sections. In particular, if
wn(ζ) 6= 0, then ζ does not have a nowhere zero cross section.

This result has applications to the existence of linearly independent vector fields on a manifold.
The following is an example.

Theorem 3.26. If m is even, RPm does not have a nowhere zero vector field.
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Proof. By 3.22

wm(RPm) =
(
m+ 1
m

)
am

= (m+ 1)am ∈ Hm(RPm; Z2).

For m even this is nonzero. Hence wm(RPm) 6= 0. �

4.2. Normal bundles and immersions. Theorem 3.25 has important applications to the
existence of immersions of a manifold M in Euclidean space, which we now discuss.

Let e : Mn # Rn+k be an immersion. Recall that this means that the derivative at each point,

De(x) : TxMn → Te(x)Rn+k = Rn+k

is injective. Recall also that the Inverse Function Theorem implies that an immersion is a local
embedding.

The immersion e defines a k - dimensional normal bundle νke whose fiber at x ∈ M is the
orthogonal complement of the image of TxMn in Rn+k under De(x). In particular we have

τMn ⊕ νke ∼= e∗τRnk
∼= εn+k.

Thus we have the Whitney sum relation among the Stiefel - Whitney classes

(4.2) w(Mn) · w(νke ) = 1.

So we can compute the Stiefel - Whitney clases of the normal bundle formally as the power
series

w(νke ) = 1/w(M) ∈ H̄∗(M ; Z2).

This proves the following:

Proposition 3.27. The Stiefel - Whitney classes of the normal bundle to an immersion e :
Mn # Rn+k are independent of the immersion. They are called the normal Stiefel - Whitney
classes, and are written w̄i(M). These classes are determined by the formula

w(M) · w̄(M) = 1.

Example. w̄(RPn) = 1/(1 + a)n+1 ∈ H̄∗(RPn; Z2).

So for example, when n = 2k, k > 0, w(RP2k

) = 1 + a + a2k

. This is true since by 3.24
(
2k+1
r

)
≡

1 mod 2 if and only if r = 0, 1, 2k. Thus the total normal Stiefel - Whitney class is given by

w̄(RP2k

) = 1/(1 + a+ a2k

) = 1 + a+ a2 + · · ·+ a2k−1.



106 3. CHARACTERISTIC CLASSES

Note. The reason this series is truncated a a2k−1 is because

(1 + a+ a2k

)(1 + a+ a2 + · · ·+ a2k−1) = 1 ∈ H∗(RPn; Z2)

since Hq(RPn) = 0 for q > n.

Corollary 3.28. There is no immersion of RP2k

in RN for N ≤ 2k+1 − 2.

Proof. The above calculation shows that w̄2k−1(RP2k

) 6= 0. Thus it cannot have a normal
bundle of dimension less than 2k − 1. The result follows. �

In the 1940’s, Whitney proved the following seminal result in the theory of embeddings and
immersions [45]

Theorem 3.29. Let Mn be a closed n - dimensional manifold. Then there is an embedding

e : Mn ↪→ R2n

and an immersion

ι : Mn # R2n−1.

Thus combining these results gives the following best immersion dimension for RP2k

.

Corollary 3.30. RP2k has an immersion in R2k+1−1 but not in R2k+1−2.

A natural question raised by Whitney’s theorem is to find the best possible immersion dimension
for other manifolds, or for some class of manifolds. In general this is a very difficult problem. However
by the following important result of Smale and Hirsch [17], this is purely a bundle theoretic question,
and ultimately a homotopy theoretic question (via classifying maps).

Theorem 3.31. Let Mn be a closed n - manifold. Then Mn immerses in Rn+k if and only if
there is a k - dimensional bundle νk over Mn with

τMn ⊕ νk ∼= εn+k.

Thus questions of immersions boil down to bundle theoretic questions. By classifying space
theory they can be viewed as homotopy theoretic questions. More specifically, let ν : M → BO

represent the element in K̃O(X) given by

[ν] = −[τM ] ∈ K̃O(X).
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Notice that if viewed with values in BO(N), for N large, ν classifies the normal bundle of an
embedding of Mn in Rn+N , and in particular

ν∗(wi) = w̄i(M) ∈ Hi(M ; Z2).

ν : M → BO is called the “stable normal bundle” map of M . The following is an interpretation of
the above theorem of Smale and Hirsch using classifying space theory.

Theorem 3.32. Mn admits an immersion in Rn+k if and only if the stable normal bundle map
ν : M → BO has a homotopy lifting to a map

νk : M → BO(k).

In the late 1950’s, Wu, in China, computed a formula for how the Steenrod square cohomology
operations are affected by Poincare duality in a manifold. W. Massey then used Wu’s formulas to
prove the following [25]:

Write an integer n in its binary expansion

n =
k∑
i=0

ai · 2i

where each ai is 0 or 1. Let

(4.3) α(n) =
k∑
i=0

ai.

So α(n) is the number of ones in the base 2 representation of n.

Theorem 3.33. Let Mn be a closed n - dimensional manifold. Then

w̄i(Mn) = 0

for i > n− α(n).

Thus Stiefel - Whitney classes give no obstruction to existence of immersions of n - manifolds
in R2n−α(n). The conjecture that every n - manifold does indeed immerse in this dimension became
known as the “Immersion Conjecture”, and was proved in [8].

Theorem 3.34. Every closed manifold Mn immerses in R2n−α(n)

This theorem was proved homotopy theoretically. Namely it was shown that the stable normal
bundle map ν : Mn → BO always has a lift (up to homotopy) to a map Mn → BO(n − α(n)).
The theorem then follows from the Hirsch - Smale theorem 3.31. The lifting to BO(n − α(n)) was
constructed in two steps. First, by work of Brown and Peterson [6] there is a “universal space for
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normal bundles” BO/In and a map ρ : BO/In → BO with the property that every stable normal
bundle map from an n - manifold ν : Mn → BO lifts to a map ν̃ : Mn → BO/In. Then the main
work in [8] was to develop an obstruction theory to analyze the homotopy types of BO/In and
BO(n − α(n)) to show that ρ : BO/In → BO lifts to a map ρ̃ : BO/In → BO(n − α(n)). The
composition

Mn ν̃−−−−→ BO/In
ρ̃−−−−→ BO(n− α(n))

then classifies the normal bundle of an immersion Mn # R2n−α(n).

This result, and indeed Massey’s theorem 3.33 are best possible, as can be seen by the following
example.

Let ej : RP2j

# R2j+1−1 be an immersion which is guaranteed by Whitney’s theorem. Now
write n in its binary expansion

n = 2j1 + 2j2 + · · ·+ 2jr

where the 0 ≤ j1 < · · · < jr and r = α(n). Consider the n - dimensional manifold

Mn = RP2j1 × · · · × RP2jr
.

Consider the product immersion

e : Mn = RP2j1 × · · · × RP2jr ej1×···×ejr−−−−−−−→ R2j1+1−1 × · · · × R2jr+1−1 = R2n−α(n).

Since Mn = RP2j1 × · · · × RP2jr , the Whitney sum formula will imply that

w̄n−α(n)(Mn) = w̄2j1−1(RP2j1 )⊗ · · · ⊗ w̄2jr−1(RP2jr
)

which, by the proof of 3.28 is nonzero. Hence Mn does not have an immersion in R2n−α(n)−1.

Other results along these lines includes a fair amount known about the best immersion dimen-
sions of projective spaces (see [10]). However the best immersion dimensions of all manifolds with
structure, say an orientation or an almost complex structure, is unknown. Also the best embedding
dimension for all n - manifolds is unknown.

5. Pontrjagin Classes

In this section we define and study Pontrjagin classes. These are integral characteristic classes
for real vector bundles and are defined in terms of the Chern classes of the complexification of the
bundle. We will then show that polynomials in Pontrjagin classes and the Euler class define all
possible characteristic classes for oriented, real vector bundles when the values of the characteristic
classes is cohomology with coefficients in an integral domain R which contains 1/2. By the classifi-
cation theorem,to deduce this we must compute H∗(BSO(n);R). For this calculation we follow the
treatment given in Milnor and Stasheff [31].
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5.1. Orientations and Complex Conjugates. We begin with a reexamination of certain
basic properties of complex vector bundles.

Let V be an n - dimensional C - vector space with basis {v1, · · · , vn}. By multiplication of these
basis vectors by the complex number i, we get a collection of 2n - vectors {v1, iv1, v2, iv2, · · · , vn, ivn}
which forms a basis for V as a real 2n - dimensional vector space. This basis then determines an
orientation of the underlying real vector space V .

Exercise. Show that the orientation of V that the basis {v1, iv1, v2, iv2, · · · , vn, ivn} determines is
independent of the choice of the original basis {v1, · · · , vn}

Thus every complex vector space V has a canonical orientation. By choosing this orientation for
every fiber of a complex vector bundle ζ, we see that every complex vector bundle has a canonical
orientation. By the results of section 2 this means that every n - dimensional complex vector bundle
ζ over a space X has a canonical choice of Thom class u ∈ H2n(T (ζ)) and hence Euler class

χ(ζ) = cn(ζ) ∈ H2n(X).

Now given a complex bundle ζ there exists a conjugate bundle ζ̄ which is equal to ζ as a real,
2n - dimensional bundle, but whose complex structure is conjugate. More specifically, recall that
a complex structure on a 2n - dimensional real bundle ζ determines and is determined by a linear
transformation

Jζ : ζ → ζ

with the property that J2
ζ = Jζ ◦ Jζ = −id. If ζ has a complex structure then Jζ is just scalar

multiplication by the complex number i on each fiber. If we replace Jζ by −Jζ we define a new
complex structure on ζ referred to as the conjugate complex structure. We write ζ̄ to denote ζ with
this structure. That is,

Jζ̄ = −Jη.

Notice that the identity map

id : ζ → ζ̄

is anti-complex linear (or conjugate complex linear) in the sense that

id(Jζ · v) = −Jζ̄ · id(v).

We note that the conjugate bundle ζ̄ is often not isomorphic to ζ as complex vector bundles.
For example, consider the two dimensional sphere as complex projective space

S2 = CP1 = C ∪∞.

The tangent bundle τCP1 has the induced structure as a complex line bundle.

Proposition 3.35. The complex line bundles τS2 and τ̄S2 are not isomorphic.
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Proof. Suppose φ : τS2 → τ̄S2 is a isomorphism as complex vector bundles. Then at every
tangent space

φx : TxS2 → TxS
2

is a an isomorphism that reverses the complex structure. Any such isomorphism is given by reflection
through a line `x in the tangent plane TxS2. Therefore for every x we have picked a line `x ⊂ TxS2.
This defines a (real) one dimensional subbundle ` of τS2 , which, by the classification theorem is
given by an element of

[S2, BO(1)] ∼= H1(S2,Z2) = 0.

Thus ` is a trivial subbundle of τS2 . Hence we can find a nowhere vanishing vector field on S2, which
gives us a contradiction. �

Exercise. Let γ̄n be the conjugate of the universal bundle γn over BU(n). By the classification
theorem, γ̄n is classified by a map

q : BU(n)→ BU(n)

having the property that q∗(γn) = γ̄n. Using the Grassmannian model of BU(n), find an explicit
description of a map q : BU(n)→ BU(n) with this property.

The following describes the effect of conjugating a vector bundle on its Chern classes.

Theorem 3.36. ck(ζ̄) = (−1)kck(ζ)

Proof. Suppose ζ is an n - dimensional bundle. By the classification theorem and the functorial
property of Chern classes it suffices to prove this theorem when ζ is the universal bundle γn over
BU(n). Now in our calculations of the cohomology of these classifying spaces, we proved that the
inclusion ι : BU(k)→ BU(n) induces an isomorphism in cohomology in dimension k,

ι∗ : H2k(BU(n))
∼=−−−−→ H2k(BU(k)).

Hence it suffices to prove this theorem for the universal k - dimensional bundle γk over BU(k).

Now ck(γk) = χ(γk) and similarly, ck(γ̄k) = χ(γ̄k). So it suffices to prove that

χ(γk) = (−1)−kχ(γ̄k).

But by the observations above, this is equivalent to showing that the canonical orientation of the
underlying real 2k - dimensional bundle from the complex structures of γk and γ̄k are the same if
k is even, and opposite if k is odd. To do this we only need to compare the orientations at a single
point. Let x ∈ BU(k) be given by Ck ⊂ C∞ as the first k - coordinates. If {e1, · · · , ek} forms the
standard basis for Ck, then the orientations of γk(x) determined by the complex structures of γk
and γ̄k are respectively represented by the real bases

{e1, ie1, · · · , ek, iek} and {e1,−ie1, · · · , ek,−iek}.
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The change of basis matrix between these two basis has determinant (−1)k. The theorem follows. �

Now suppose η is a real n - dimensional vector bundle over a space X, we then let ηC be its
complexification

ηC = η ⊗R C.

ηC has the obvious structure as an n - dimensional complex vector bundle.

Proposition 3.37. There is an isomorphism

φ : ηC
∼=−−−−→ η̄C.

Proof. Define

φ : ηC → η̄C

η × C→ η ⊗ C̄

v ⊗ z → v ⊗ z̄

for v ∈ η and z ∈ C. Clearly φ is an isomorphism of complex vector bundles. �

Corollary 3.38. For a real n - dimensional bundle η, then for k odd,

2ck(ηC) = 0.

Proof. By 3.36 and 3.37

ck(ηC) = (−1)kck(ηC).

Hence for k odd ck(ηC) has order 2. �

5.2. Pontrjagin classes. We now use these results to define Pontrjagin classes for real vector
bundles.

Definition 3.7. Let η be an n - dimensional real vector bundle over a space X. Then define
the ith - Pontrjagin class

pi(η) ∈ H4i(X; Z)

by the formula

pi(η) = (−1)ic2i(ηC).

Remark. The signs used in this definition are done to make calculations in the next section come
out easily.
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As we’ve done with Stiefel - Whitney and Chern classes, define the total Pontrjagin class

p(η) = 1 + p1(η) + · · ·+ pi(η) + · · · ∈ H̄∗(X,Z).

The following is the Whitney sum formula for Pontrjagin classes, and follows immediately for
the Whitney sum formula for Chern classes and 3.38.

Theorem 3.39. For real bundles η and ξ over X, we have

2(p(η ⊕ ξ)− p(η)p(ξ)) = 0 ∈ H∗(X; Z).

In particular if R is a commutative integral domain containing 1/2, then viewed as characteristic
classes with values in H∗(X;R), we have

p(η ⊕ ξ) = p(η)p(ξ) ∈ H̄∗(X : R).

Remark. Most often Pontryagin classes are viewed as having values in rational cohomology, and
so the formula p(η ⊕ ξ) = p(η)p(ξ) applies.

We now study the Pontrjagin classes of a complex vector bundle. Let ζ be a complex n -
dimensional bundle over a space X, and let ζC = ζ ⊗R C be the complexification of its underlying
real 2n - dimensional bundle. So ζC is a complex 2n - dimensional bundle. We leave the proof of
the following to the reader.

Proposition 3.40. As complex 2n - dimensional bundles,

ζC ∼= ζ ⊕ ζ̄.

This result, together with 3.36 and the definition of Pontrjagin classes imply the following.

Corollary 3.41. Let ζ be a complex n - dimensional bundle. Then its Pontryagin classes are
determined by its Chern classes according to the formula

1− p1 + p2 − · · · ± pn = (1− c1 + c2 − · · · ± cn)(1 + c1 + c2 + · · ·+ cn)

∈ H∗(X,Z).

Example. We will compute the Pontrjagin classes of the tangent bundle of projective space, τCPn .
Recall that the total Chern class is given by

c(τCPn) = (1 + a)n+1

where a ∈ H2(CPn) ∼= Z is the generator. Notice that this implies that for the conjugate, τ̄CPn we
have

c(τ̄CPn) = (1− a)n+1



5. PONTRJAGIN CLASSES 113

Thus by the above formula we have

1− p1 + p2 − · · · ± pn = (1 + a)n+1(1− a)n+1

= (1− a2)n+1.

We therefore have the formula

pk(CPn) =
(
n+ 1
k

)
a2k ∈ H4k(CPn).

Now let η be an oriented real n- dimensional vector bundle. Then the complexification ηC =
η ⊗ C = η ⊕ iη which is simply η ⊕ η as real vector bundles.

Lemma 3.42. The above isomorphism

ηC ∼= η ⊕ η

of real vector bundles takes the canonical orientation of ηC to (−1)
n(n−1)

2 times the orientation of
η ⊕ η induced from the given orientation of η.

Proof. Pick a particular fiber, ηx. Let {v1, · · · , vn} be a C - basis for V . Then the basis
{v1, iv1, · · · , vnivn} determines the orientation for ηx⊗C. However the basis {v1, · · · , vn, iv1, · · · ivn}
gives the natural basis for (η ⊕ iη)x. The change of basis matrix has determinant (−1)

n(n−1)
2 . �

Corollary 3.43. If η is an oriented 2k - dimensional real vector bundle, then

pk(η) = χ(η)2 ∈ H4k(X).

Proof.

pk(η) = (−1)kc2k(η × C)

= (−1)kχ(η ⊗ C)

= (−1)k(−1)k(2k−1)χ(η ⊕ η)

= χ(η ⊕ η)

= χ(η)2.

�
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5.3. Oriented characteristic classes. We now use the results above to show that Pontrjagin
classes and the Euler class yield all possible characteristic classes for oriented vector bundles, if the
coefficient ring contains 1/2. More specifically we prove the following.

Theorem 3.44. Let R be an integral domain containing 1/2. Then

H∗(BSO(2n+ 1);R) = R[p1, · · · , pn]

H∗(BSO(2n);R) = R[p1, · · · , pn−1, χ(γ2n)]

Remark. This theorem can be restated by saying that H(BSO(n);R) is generated by
{p1, · · · , p[n/2]} and χ, subject only to the relations

χ = 0 if n is odd

χ2 = p[n/2] if n is even.

Proof. In this proof all cohomology will be taken with R coefficients. We first observe that
since SO(1) is the trivial group, BSO(1) is contractible, and so H∗(BSO(1)) = 0. This will be the
first step in an inductive proof. So we assume the theorem has been proved for BSO(n− 1), and we
now compute H∗(BSO(n)) using the Gysin sequence:

(5.1)

· · · → Hq−1(BSO(n− 1)) δ−−−−→ Hq−n(BSO(n))
∪χ−−−−→ Hq(BSO(n)) ι∗−−−−→

Hq(BSO(n− 1)) δ−−−−→ Hq−n+1(BSO(n))
∪χ−−−−→ Hq+1(BSO(n))→ · · ·

Case 1. n is even.

Since the first n/2− 1 Pontrjagin classes are defined in H∗(BSO(n)) as well as in H∗(BSO(n− 1)),
the inductive assumption implies that ι∗ : H∗(BSO(n))→ H∗(BSO(n− 1)) is surjective. Thus the
Gysin sequence reduces to short exact sequences

0→ Hq(BSO(n))
∪χ−−−−→ Hq+n(BSO(n)) ι∗−−−−→ Hq+n(BSO(n− 1))→ 0.

The inductive step then follows.

Case 2. n is odd, say n = 2m+ 1.
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By 3.13 in this case the Euler class χ has order two in integral cohomology. Thus since R contains
1/2, in cohomology with R coefficients, the Euler class is zero. Thus the Gysin sequence reduces to
short exact sequences:

0→ Hj(BSO(2m+ 1)) ι∗−−−−→ H∗(BSO(2m))→ Hj−2m(BSO(2m+ 1))→ 0.

Thus the map ι∗ makesH∗(BSO(2m+1)) a subalgebra ofH∗(BSO(2m)). This subalgeabra contains
the Pontrjagin classes and hence it contains the graded algebra A∗ = R[p1, · · · pm]. By computing
ranks we will now show that this is the entire image of ι∗. This will complete the inductive step in
this case.

So inductively assume that the rank of Aj−1 is equal to the rank of Hj(BSO(2m+1)). Now we
know that every element of Hj(BSO(2m)) can be written uniquely as a sum a + χb where a ∈ Aj

and b ∈ Aj−2m. Thus

Hj(BSO(2m)) ∼= Aj ⊕Aj−2m

which implies that

rk(Hj(BSO(2m)) = rk(Aj) + rk(Aj−2m).

But by the exactness of the above sequence,

rk(Hj(BSO(2m)) = rk(Hj(BSO(2m+ 1)) + rk(Hj−2m(BSO(2m+ 1))).

Comparing these two equations, and using our inductive assumption, we conclude that

rk(Hj(BSO(2m+ 1)) = rk(Aj).

Thus Aj = ι∗(Hj(BSO(2m+ 1))), which completes the inductive argument. �

6. Connections, Curvature, and Characteristic Classes

In this section we describe how Chern and Pontrjagin classes can be defined using connections
(i.e covariant derivatives) on vector bundles. What we will describe is an introduction to the theory
of Chern and Weil that describe the cohomology of a classifying space of a compact Lie group in
terms of invariant polynomials on its Lie algebra. The treatment we will follow is from Milnor and
Stasheff [31].

Definition 3.8. Let Mn(C) be the ring of n×n matrices over C. Then an invariant polynomial

on Mn(C) is a function

P : Mn(C)→ C

which can be expressed as a complex polynomial in the entries of the matrix, and satisfies,

P (ABA−1) = P (B)

for every B ∈Mn(C) and A ∈ GL(n,C).
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Examples. The trace function (ai,j)→
∑n
j=1 aj,j and the determinant function are examples of

invariant polynomials on Mn(C).

Now let DA : Ω0(M ; ζ) → Ω1(M ; ζ) be a connection (or covariant derivative) on a complex n -
dimensional vector bundle ζ. Its curvature is a a two- form with values in the endomorphism bundle

FA ∈ Ω2(M ;End(ζ))

The endomorphism bundle can be described alternatively as follows. Let Eζ be the principal
GL(n,C) bundle associated to ζ. Then of course ζ = Eζ ⊗GL(n,C) Cn. The endomorphism bun-
dle can then be described as follows. The proof is an easy exercise that we leave to the reader.

Proposition 3.45.

End(ζ) ∼= ad(ζ) = Eζ ×GL(n,C) Mn(C)

where GL(n,C) acts on Mn(bc) by conjugation,

A ·B = ABA−1.

Let ω be a differential p - form on M with values in End(ζ),

ω ∈ Ωp(M ;End(ζ)) ∼= Ωp(M ; ad(ζ)) = Ωp(M ;Eζ ×GL(n,C) Mn(C)).

Then on a coordinate chart U ⊂ M with local trivialization ψ : ζ|U ∼= U × Cn for ζ, and hence the
induced coordinate chart and local trivialization for ad(ζ), ω can be viewed as an n× n matrix of p
-forms on M . We write

ω = (ωi,j).

Of course this description depends on the coordinate chart and local trivialization chosen, but at
any x ∈ U , then by the above proposition, two trivializations yield conjugate matrices. That is, if
(ωi,j(x)) and (ω′i,j(x)) are two matrix descriptions of ω(x) defined by two different local trivializations
of ζ|U , then there exists an A ∈ GL(n,C) with

A(ωi,j(x))A−1 = (ω′i,j(x)).

Now let P be an invariant polynomial on Mn(C) of degree d. Then using the wedge bracket we
can apply P to a matrix of p forms, and produce a differential form of top dimension pd on U ⊂M :
P (ωi,j) ∈ Ωpd(U). Now since the polynomial P is invariant under conjugation the form P (ωi,j) is
independent of the local trivialization of ζ|U . These forms therefore fit together to give a well defined
global form

(6.1) P (ω) ∈ Ω∗(M).

If P is homogeneous of degree d, then

(6.2) P (ω) ∈ Ωpd(M)
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An important example is when ω = FA ∈ Ω2(M ;End(ζ)) is the curvature form of a connection
DA on ζ. We have the following fundamental lemma, that will allow us to define characteristic
classes in terms of these forms and invariant polynomials.

Lemma 3.46. For any connection DA and invariant polynomial (or invariant power series) P ,
the differential form P (FA) is closed. That is,

dP (FA) = 0.

Proof. (following Milnor and Stasheff [31]) Let P be an invariant polynomial or power series.
We write P (A) = P (ai,j) where the ai,j ’s are the entries of the matrix. We can then consider the
matrix of partial derivatives (∂P/∂(xi,j)) where the xi,j ’s are indeterminates. Let FA = (ωi,j) be
the curvature matrix of two - forms on an open set U with a given trivialization. Then the exterior
derivative has the following local expression

(6.3) dP (FA) =
∑

(∂P/∂ωi,j)dωi,j .

In matrix notation this can be written as

dP (FA) = trace(P ′(FA)dFA)

Now as seen in chapter 1, on a trivial bundle, and hence on this local coordinate patch, a connection
DA can be viewed as a matrix valued one form,

DA = (αi,j)

and with respect to which the curvature FA has the formula

ωi,j = dαi,j −
∑
k

ωi,k ∧ ωk,j .

In matrix notation we write

FA = dα− α ∧ α.

Differentiating yields the following form of the Bianchi identity

(6.4) dFA = α ∧ FA − FA ∧ α.

We need the following observation.

Claim. The transpose of the matrix of first derivatives of an invariant polynomial (or power
series) P ′(A) commutes with A.
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Proof. Let Ej,i be the matrix with entry 1 in the (j, i)-th place and zeros in all other coordi-
nates. Now differentiate the equation

P ((I + tEj,i)A) = P (A(I + tEj,i))

with respect to t and then setting t = 0 yields∑
k

Ai,k(∂P/∂Aj,k) =
∑
k

(∂P/∂Ak,i)Ak,i.

Thus the matrix A commutes with the transpose of (∂P/∂Ai, j) as claimed. �

We now complete the proof of the lemma. Substituting FA for the matrix of indeterminates in
the above claim means we have

(6.5) FA ∧ P ′(FA) = P ′(FA) ∧ FA.

Now for notational convenience let X = P ′(FA) ∧ α. Then substituting the Bianchi identity 6.4
into 6.3 and using 6.5 we obtain

dP (FA) = trace (X ∧ FA − FA ∧X)

=
∑

(Xi,j ∧ ωj,i − ωj,i ∧Xi,j).

Since each Xi,j commutes with the 2 - form ωj,i, this sum is zero, which proves the lemma. �

Thus for any connection DA on the complex vector bundle ζ over M , and invariant polynomial
P , the form P (FA) represents a deRham cohomology class with complex coefficients. That is,

[P (FA)] ∈ H∗(M : C).

Theorem 3.47. The cohomology class [P (FA)] ∈ H∗(X,C) is independent of the connection
DA.

Proof. Let DA0 and DA1 be two connections on ζ. Pull back the bundle ζ over M ×R via the
projection map M × R → M . Call this pull - back bundle ζ̄ over M × R. We get the induced pull
back connections D̄Ai , i = 0, 1 as well. We can then form the linear combination of connections

DA = tD̄A1 + (1− t)DA0 .

Then P (FA) is a deRham cocycle on M × R. Now let i = 0 or 1 and consider the inclusions
ji : M = M × {i} ↪→ M × R. The induced connection j∗i (DA) = DAi on ζ. But since there is an
obvious homotopy between j0 and j1 and hence the cohomology classes

[j∗0 (P (FA)) = P (FA0)] = [j∗1 (P (FA)) = P (FA1)].

This proves the theorem. �
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Thus the invariant polynomial P determines a cohomology class given any bundle ζ over a
smooth manifold. It is immediate that these classes are preserved under pull - back, and are hence
characteristic classes for U(n) bundles, and hence are given by elements of

H∗(BU(n); C) ∼= C[c1, · · · , cn].

In order to see how an invariant polynomial corresponds to a polynomial in the Chern classes we
need the following bit of algebra.

Recall the elementary symmetric polynomials σ1, · · ·σn in n -variables, discussed in section 3.
If we view the n - variables as the eigenvalues of an n× n matrix, we can write

(6.6) det(I + tA) = 1 + tσ1(A) + · · ·+ tnσn(A).

Lemma 3.48. Any invariant polynomial on Mn(C) can be expressed as a polynomial of σ1, · · · , σn.

Proof. Given A ∈Mn(C), chose a B such that BAB−1 is in Jordan canonical form. Replacing
B with diag(ε, ε2, · · · , εn)B, we can make the off diagonal entries arbitrarily close to zero. By
continuity it follows that P (A) depends only on the diagonal entries of BAB−1, i,e the eigenvalues
of A. Since P (A) is invariant, it must be a symmetric polynomial of these eigenvalues. Hence it is
a polynomial in the elementary symmetric polynomials. �

So we now consider the elementary symmetric polynomials, viewed as invariant polynomials
in Mn(C). Hence by the above constructions they determine characteristic classes [σr(FA)] ∈
H2r(M ; C) where FA is a connection on a vector bundle ζ over M .

Now we’ve seen the elementary symmetric functions before in the context of characteristic
classes. Namely we’ve seen that H∗(BU(n)) can be viewed as the subalgebra of symmetric poly-
nomials in Z[x1, · · ·xn] = H∗(BU(1)× · · · ×BU(1)), with the Chern class Cr corresponding to the
elementary symmetric polynomial σr. This was the phenomenon of the splitting principle.

We will now use a splitting principle argument to prove the following.

Theorem 3.49. Let ζ be a complex n - dimensional vector bundle with connection DA. Then
the cohomology class [σr(FA)] ∈ H2r(X; C) is equal to (2πi)rcr(ζ), for r = 1, · · · , n.

Proof. We first prove this theorem for complex line bundles. That is, n = 1. In this case
σ1(FA) = FA which is a closed form in Ω2(M ; ad(ζ)) = Ω2(M ; C) because the adjoint action of
GL(1,C) is trivial since it is an abelian group. In particular FA is closed in this case by 3.46. Thus
FA represents a cohomology class in H2(M ; C). Moreover as seen above, this cohomology class [FA]
is a characteristic class for line bundles and hence is an element of H2(BU(1); C) ∼= C generated by
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the first Chern class c1 ∈ H2(BU(1)). So for this case we need to prove the following generalization
of the Gauss - Bonnet theorem.

Lemma 3.50. Let ζ be a complex line bundle over a manifold M with connection DA. Then the
curvature form FA is a closed two - form representing the cohomology class

[FA] = 2πic1(ζ) = 2πiχ(ζ).

Before we prove this lemma we show how this lemma can in fact be interpreted as a generalization
of the classical Gauss - Bonnet theorem. So let DA be a unitary connection on ζ. (That is, DA is
induced by a connection on an associated principal U(1) - bundle.) If we view ζ as a two dimensional,
oriented vector bundle which, to keep notation straight we refer to as ζR, then DA induces (and
is induced by) a connection DAR on the real bundle ζR. Notice that since SO(2) ∼= U(1) then
orthogonal connections on oriented real two dimensional bundes are equivalent to unitary connections
on complex line bundles.

Since SO(2) is abelian, the real adjoint bundle

ad(ζR) = EζR ×SO(2) M2(R)

is trivial. Hence the curvature FAR is then a 2× 2 matrix valued two - form.

FAR ∈ Ω2(M ;M2(R)).

Moreover, since the Lie algebra of SO(2) consists of skew symmetric 2 × 2 real matrices, then it
is straightforward to check the following relation between the original complex valued connection
FA ∈ Ω2(M ; C) and the real curvature form FAR ∈ Ω1(M ;M2(R)).

Claim. If FAR is written as the skew symmetric matrix of 2− forms

FAR =

(
0 ω

−ω 0

)
∈ Ω2(M ;M2(R))

then

FA = iω ∈ Ω2(M ; C).

When the original connection DAR is the Levi - Civita connection associated to a Riemannian metric
on the tangent bundle of a Riemann surface, the curvature form

ω ∈ Ω2(M,R)

is referred to as the “Gauss - Bonnet”” connection. If dA denotes the area form with respect to the
metric, then we can write

ω = κ dA
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then κ is a scalar valued function called the “Gaussian curvature” of the Riemann surface M . In
this case, by the claim we have [FA] = 2πiχ(τ(M)), and since

〈χ(τ(M)), [M ]〉 = χM ,

Where χM the Euler characteristic of M , we have

〈[FA], [M ]〉 =
∫
M

FA = i

∫
M

ω = i

∫
M

κ dA.

Thus the above lemma applied to this case, which states that

〈[FA], [M ]〉 = 2πiχM

is equivalent to the classical Gauss - Bonnet theorem which states that

(6.7)
∫
M

κ dA = 2πχM = 2π(2− 2g)

where g is the genus of the Riemann surface M .

We now prove the above lemma.

Proof. As mentioned above, since [FA] is a characteristic class for line bundles, and so it
is some multiple of the first Chern class, say [FA] = qc1(ζ). By the naturality, the coefficient q
is independent of the bundle. So to evaluate q it is enough to compute it on a specific bundle.
We choose the tangent bundle of the unit sphere τS2 , equipped with the Levi - Civita connection
DA corresponding to the usual round metric (or equivalently the metric coming from the complex
strucure S2 = CP1). In this case the Gaussian curvature is constant at one,

κ = 1.

Moreover since τS2 ⊕ ε1 ∼= γ1 ⊕ γ1, the Whitney sum formula yields

〈c1(S2), [S2]〉 = 2〈c1(γ1), [S2]〉 = 2.

Thus we have

〈[FA], [S2]〉 = q〈c1(S2), [S2]〉

= 2q.
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Putting these facts together yields that

2q = 〈[FA], [S2]〉

=
∫
S2
FA

= i

∫
S2
κ dA

= i

∫
S2

dA = i · surface area of S2

= i · 4π.

Hence q = 2πi, as claimed. �

We now proceed with the proof of theorem 3.49 in the case when the bundle is a sum of line
bundles. By the splitting principal we will then be able to conclude the theorem is true for all
bundles.

So let ζ = L1 ⊕ · · · ⊕ Ln where L1, · · · , Ln are complex line bundles over M . Let D1, · · · , Dn

be connections on L!, · · · , Ln respectively. Now let DA be the connection on ζ given by the sum of
these connections

DA = D1 ⊕ · · · ⊕Dn.

Notice that with respect to any local trivialization, the curvature matrix FA is the diagonal n×n
matrix with diagonal entries, the curvatures F1, · · · , Fn of the connections D1, · · ·Dn respectively.
Thus the invariant polynomial applied to the curvature form σr(FA) is given by the symmetric
polynomial in the diagonal entries,

σr(FA) = σr(F1, · · · , Fr).

Now since the curvatures Fi are closed 2 - forms on M , we have an equation of cohomology classes

[σr(FA)] = σr([F1], · · · , [Fr]).

By the above lemma we therefore have

[σr(FA)] = σr([F1], · · · , [Fn])

= σr((2πi)c1(L1), · · · , (2πi)c1(Ln))

= (2πi)rσr(c1(L), · · · , c1(Ln)) since σr is symmetric

= (2πi)rcr(L1 ⊕ · · · ⊕ Ln) by the splitting principal 3.20

= (2πi)rcr(ζ)

as claimed.

This proves the theorem when ζ is a sum of line bundles. As observed above, the splitting
principal implies that the theorem then must be true for all bundles. �
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We end this section by describing two corollaries of this important theorem.

Corollary 3.51. For any real vector bundle η, the deRham cocycle σ2k(FA) represent the
cohomology class (2π)2kpk(η) ∈ H4k(M ; R), while [σ2k+1(FA)] is zero in H4k+2(M ; R).

Proof. This just follows from the definition of the Pontrjagin classes in terms of the even Chern
classes of the complexification, and the fact that the odd Chern classes of the complexification have
order two and therefore represent the zero class in H∗(M ; R). �

Recall that a flat connection is one whose curvature is zero. The following is immediate form
the above theorem.

Corollary 3.52. If a real (or complex) vector bundle has a flat connection, then all its Pon-
trjagin (or Chern) classes with rational coefficients are zero.

We recall that a bundle has a flat connection if and only if its structure group can be reduced
to a discrete group. Thus a complex vector bundle with a discrete structure group has zero Chern
classes with rational coefficients. This can be interpreted as saying that if ι : G ⊂ GL(n,C) is the
inclusion of a discrete subgroup, then the map in cohomology,

Q[c1, · · · , cn] = H∗(BU(n); Q) = H∗(BGLn(C); Q) ι∗−−−−→ H∗(BG; Q)

is zero.





CHAPTER 4

Homotopy Theory of Fibrations

In this chapter we study the basic algebraic topological properties of fiber bundles, and their
generalizations, “Serre fibrations”. We begin with a discussion of homotopy groups and their basic
properties. We then show that fibrations yield long exact sequences in homotopy groups and use it
to show that the loop space of the classifying space of a group is homotopy equivalent to the group.
We then develop basic obstruction theory for liftings in fibrations, use it to interpret characteristic
classes as obstructions, and apply them in several geometric contexts, including vector fields, Spin
structures, and classification of SU(2) - bundles over four dimensional manifolds. We also use
obstruction theory to prove the existence of Eilenberg - MacLane spaces, and to prove their basic
property of classifying cohomology. We then develop the theory of spectral sequences and then
discuss the famous Leray - Serre spectral sequence of a fibration. We use it in several applications,
including a proof of the theorem relating homotopy groups and homology groups, a calculation of
the homology of the loop space ΩSn, and a calculation of the homology of the Lie groups U(n) and
O(n).

1. Homotopy Groups

We begin by adopting some conventions and notation. In this chapter, unless otherwise specified,
we will assume that all spaces are connected and come equipped with a basepoint. When we write
[X,Y ] we mean homotopy classes of basepoint preserving maps X → Y . Suppose x0 ∈ X and
y0 ∈ Y are the basepoints. Then a basepoint preserving homotopy between basepoint preserving
maps f0 and f1 : X → Y is a map

F : X × I → Y

such that each Ft : X × {t} → Y is a basepoint preserving map and F0 = f0 and F1 = f1. If
A ⊂ X and B ⊂ Y , are subspaces that contain the basepoints, (x0 ∈ A, and y0 ∈ B), we write
[X,A;Y,B] to mean homotopy classes of maps f : X → Y so that the restriction f|A maps A to B.
Moreover homotopies are assumed to preserve these subsets as well. That is, a homotopy defining
this equivalence relation is a map F : X × I → Y that restricts to a basepoint preserving homotopy
F : A× I → B. We can now give a strict definition of homotopy groups.

125
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Definition 4.1. The nth homotopy group of a space X with basepoint x0 ∈ X is defined to be
the set

πn(X) = πn(X,x0) = [Sn, X].

Equivalently, this is the set

πn(X) = [Dn, Sn−1;X,x0]

where Sn−1 = ∂Dn is the boundary sphere.

Exercise. Prove that these two definitions are in fact equivalent.

Remarks. 1. It will often helpful to us to use as our model of the disk Dn the n - cube
In = [0, 1]n. Notice that in this model the boundary ∂In consists of n - tuples (t1, · · · , tn) with
ti ∈ [0, 1] where at least one of the coordinates is either 0 or 1.

2. Notice that for n = 1, this definition of the first homotopy group is the usual definition of the
fundamental group.

So far the homotopy “groups” have only been defined as sets. We now examine the group
structure. To do this, we will define our homotopy groups via the cube In, which we give the
basepoint (0, · · · , 0). Let

f and g : (In, ∂In) −→ (X,x0)

be two maps representing elements [f ] and [g] ∈ πn(X,x0). Define

f · g : In −→ X

by

f · g(t1, t2, · · · , tn) =

f(2t1, t2, · · · , tn) for t1 ∈ [0, 1/2]

g(2t− 1, t2, · · · , tn) for t1 ∈ [1/2, 1]

The map f · g : (In, ∂In)→ (X,x0) represents the product of the classes

[f · g] = [f ] · [g] ∈ πn(X,x0).

Notice that in the case n = 1 this is precisely the definition of the product structure on the funda-
mental group π1(X,x0). The same proof that this product structure is well defined and gives the
fundamental group the structure of an associative group extends to prove that all of the homotopy
groups are in fact groups under this product structure. We leave the details of checking this to the
reader. We refer the reader to any introductory textbook on algebraic topology for the details.

As we know the fundamental group of a space can be quite complicated. Indeed any group
can be the fundamental group of a space. In particular fundamental groups can be very much
noncommutative. However we recall the relation of the fundamental group to the first homology
group, for which we again refer the reader to any introductory textbook:
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Theorem 4.1. Let X be a connected space. Then the abelianization of the fundamental group
is isomorphic to the first homology group,

π1(X)/[π1, π1] ∼= H1(X)

where [π1, π1] is the commutator subgroup of π1(X).

We also have the following basic result about higher homotopy groups.

Proposition 4.2. For n ≥ 2, the homotopy group πn(X) is abelian.

Proof. Let [f ] and [g] be elements of πn(X) represented by basepoint preserving maps f :
(In, ∂In)→ (X,x0) and g : (In, ∂In)→ (X,x0), respectively. We need to find a homotopy between
the product maps f · g and g · f defined above. The following schematic diagram suggests such a
homotopy. We leave it to the reader to make this into a well defined homotopy.

f           g
f

g
f

 g

f

 g

 f

g

g           f

�

Now assume A ⊂ X is a subspace containing the basepoint x0 ∈ A.

Definition 4.2. For n ≥ 1 we define the relative homotopy group πn(X,A) = πn(X,A, x0) to

be homotopy classes of maps of pairs

πn(X,A) = [(Dn, ∂Dn, t0); (X,A, x0)].

where t0 ∈ ∂Dn = Sn−1 and x0 ∈ A are the basepoints.
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Exercise. Show that for n > 1 the relative homotopy group πn(X,A) is in fact a group. Notice
here that the zero element is represented by any basepoint preserving map of
pairsf : (Dn, ∂In)→ (X,A) that is homotopic (through maps of pairs) to one whose image lies
entirely in A ⊂ X.

Again, let A ∈ X be a subset containing the basepoint x0 ∈ A, and let i : A ↪→ X be the
inclusion. This induces a homomorphism of homotopy groups

i∗ : πn(A, x0)→ πn(X,x0).

Also, by ignoring the subsets, a basepoint preserving map f : (Dn, ∂Dn) → (X,x0) defines a map
of pairs f : (Dn, ∂Dn, t0)→ (X,A, x0) which defines a homomorphism

j∗ : πn(X,x0)→ πn(X,A, x0).

Notice furthermore, that by construction, the composition

j∗ ◦ i∗ : πn(A)→ πn(X)→ πn(X,A)

is zero. Finally, if given a map of pairs g : (Dn, Sn−1, t0)→ (X,A, x0), then we can restrict g to the
boundary sphere Sn−1 to produce a basepoint preserving map

∂g : (Sn−1, t0)→ (A, x0).

This defines a homomorphism

∂∗ : πn(X,A, x0)→ πn−1(A, x0).

Notice here that the composition

∂∗ ◦ j∗ : πn(X)→ πn(X,A)→ πn−1(A)

is also zero, since the application of this composition to any representing map f : (Dn, Sn−1) →
(X,x0) yields the constant map Sn−1 → x0 ∈ A. We now have the following fundamental property
of homotopy groups. Compare with the analogous theorem in homology.

Theorem 4.3. Let A ⊂ X be a subspace containing the basepoint x0 ∈ A. Then we have a long
exact sequence in homotopy groups

· · · ∂∗−−−−→ πn(A) i∗−−−−→ πn(X)
j∗−−−−→ πn(X,A) ∂∗−−−−→ πn−1(A)→ · · · → π1(A) i∗−−−−→ π1(X)

Proof. We’ve already observed that j∗ ◦ i∗ and ∂∗ ◦j∗ are zero. Similarly, i∗ ◦∂∗ is zero because
an element in the image of ∂∗ is represented by a basepoint preserving map Sn−1 → A that extends
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to a map Dn → X. Thus the image under i∗, namely the composition Sn−1 → A ↪→ X has an
extension to Dn and is therefore null homotopic. We therefore have

image(∂∗) ⊂ kernel(i∗)

image(i∗) ⊂ kernel(j∗)

image(j∗) ⊂ kernel(∂∗).

To finish the proof we need to show that all of these inclusions are actually equalities. Consider
the kernel of (i∗). An element [f ] ∈ πn(A) is in ker(i∗) if and only if the basepoint preserving
composition f : Sn → A ⊂ X is null homotopic. Such a null - homotopy gives an extension of this
map to the disk F : Dn+1 → X. The induced map of pairs F : (Dn+1, Sn)→ (X,A) represents an
element in πn+1(X,A) whose image under ∂∗ is [f ]. This proves that image(∂∗) = kernel(i∗). The
other equalities are proved similarly, and we leave their verification to the reader. �

Remark. Even though this theorem is analogous to the existence of exact sequences for pairs in
homology, notice that its proof is much easier.

Notice that π0(X) is the set of path components of X. So a space is (path) - connected if and only
if π0(X) = 0 (i.e the set with one element). We generalize this notion as follows.

Definition 4.3. A space X is said to be m - connected if πq(X) = 0 for 0 ≤ q ≤ m.

We now do our first calculation.

Proposition 4.4. An n - sphere is n− 1 connected.

Proof. We need to show that any map Sk → Sn, where k < n is null homotopic. Now since
spheres can be given the structure of simplicial complexes, the simplicial approximation theorem
says that any map f : Sk → Sn is homotopic to a simplicial map (after suitable subdivisions). So we
assume without loss of generality that f is simplicial. But since k < n, the image of of f lies in the
k - skeleton of the n - dimensional simplicial complex Sn. In particular this means that f : Sk → Sn

is not surjective. Let y0 ∈ Sn be a point that is not in the image of f . Then f has image in Sn− y0
which is homeomorphic to the open disk Dn, and is therefore contractible. This implies that f is
null homotopic. �
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2. Fibrations

Recall that in chapter 2 we proved that locally trivial fiber bundles satisfy the Covering Homo-
topy Theorem 2.2. A generalization of the notion of a fiber bundle, due to Serre, is simply a map
that satisfies this type of lifting property.

Definition 4.4. A Serre fibration is a surjective, continuous map p : E → B that satisfies
the Homotopy Lifting Property for CW - complexes. That is, if X is any CW - complex and
F : X × I → B is any continuous homotopy so that F0 : X × {0} → B factors through a map
f0 : X → E, then there exists a lifting F̄ : X × I → E that extends f0 on X × {0}, and makes the
following diagram commute:

X × I F̄−−−−→ E

=

y yp
X × I −−−−→

F
B.

A Hurewicz fibration is a surjective, continuous map p : E → B that satisfies the homotopy lifting
property for all spaces.

Remarks. 1. Obviously every Hurewicz fibration is a Serre fibration. The converse is false. In
these notes, unless otherwise stated, we will deal with Serre fibrations, which we will simply refer
to as fibrations.

2. The Covering Homotopy Theorem implies that a fiber bundle is a fibration in this sense.

The following is an important example of a fibration.

Proposition 4.5. Let X be any connected space with basepoint x0 ∈ X. Let PX denote the
space of based paths in X. That is,

PX = {α : I → X : α(0) = x0}.

The path space PX is topologized using the compact - open function space topology. Define

p : PX → X

by p(α) = α(1). Then PX is a contractible space, and the map p : PX → X is a fibration, whose
fiber at x0, p−1(x0) is the loop space ΩX.

Proof. The fact that PX is contractible is straightforward. For a null homotopy of the identity
map one can take the map H : PX × I → PX, defined by H(α, s)(t) = α((1− s)t).
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To prove that p : PX → X is a fibration, we need to show it satisfies the Homotopy Lifting
Property. So let F : Y ×I → X and f0 : X → PX be maps making the following diagram commute:

Y × {0} f0−−−−→ PX

∩
y yp

Y × I −−−−→
F

X

Then we can define a homotopy lifting, F̄ : Y × I → PX by defining for (y, s) ∈ Y × I, the path

F̄ (y, s) : I → X

F̄ (y, s)(t) =

f0(y)( 2t
2−s ) for t ∈ [0, 2−s

2 ]

F (y, 2t− 2 + s) for t ∈ [ 2−s2 , 1]

One needs to check that this definition makes F̄ (y, s)(t) a well defined continous map and satisfies
the boundary conditions

F̄ (y, 0)(t) = f0(y, t)

F̄ (y, s)(0) = x0

F̄ (y, s)(1) = F (y, s)

These verifications are all straightforward. �

The following is just the observation that one can pull back the Homotopy Lifting Property.

Proposition 4.6. Let p : E → B be a fibration, and f : X → B a continuous map. Then the
pull back, pf : f∗(E)→ X is a fibration, where

f∗(E) = {(x, e) ∈ X × E such that f(x) = p(e)}

and pf (x, e) = x.

The following shows that in the setting of homotopy theory, every map can be viewed as a
fibration in this sense.

Theorem 4.7. Every continuous map f : X → Y is homotopic to a fibration in the sense that
there exists a fibration

f̃ : X̃ → Y

and a homotopy equivalence

h : X '−−−−→ X̃
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making the following diagram commute:

X
h−−−−→
'

X̃

f

y yf̃
Y = Y.

Proof. Define X̃ to be the space

X̃ = {(x, α) ∈ X × Y I such thatα(0) = x.}

where here Y I denotes the space of continuous maps α : [0, 1]→ Y given the compact open topology.
The map f̃ : X̃ → Y is defined by f̃(x, α) = α(1). The fact that f̃ : X̃ → Y is a fibration is proved
in the same manner as theorem 4.5, and so we leave it to the reader.

Define the map h : X → X̃ by h(x) = (x, εx) ∈ X̃, where εx(t) = x is the constant path at
x ∈ X. Clearly f̃ ◦ h = f so the diagram in the statement of the theorem commutes. Now define
g : X̃ → X by g(x, α) = x. Clearly g ◦ h is the identity map on X. To see that h ◦ g is homotopic to
the identity on X̃, consider the homotopy F : X̃ × I → X̃, defined by F ((x, α), s) = (x, αs), where
αs : I → X is the path αs(t) = α(st). So in particular α0 = εx and α1 = α. Thus F is a homotopy
between h ◦ g and the identity map on X̃. Thus h is a homotopy equivalence, which completes the
proof of the theorem. �

The homotopy fiber of a map f : X → Y , Ff , is defined to be the fiber of the fibration f̃ : X̃ → Y

defined in the proof of this theorem. That is,

Definition 4.5. The homotopy fiber Ff of a basepoint preserving map f : X → Y is defined
to be

Ff = {(x, α) ∈ X × Y I such thatα(0) = f(x) andα(1) = y0.}

where y0 ∈ Y is the basepoint.

So for example, the homotopy fiber of the inclusion of the basepoint y0 ↪→ Y is the loop space
ΩY . The homotopy fiber of the identity map id : Y → Y is the path space PY . The homotopy
fibers are important invariants of the map f : X → Y .

The following is the basic homotopy theoretic property of fibrations.

Theorem 4.8. Let p : E → B be a fibration over a connected space B with fiber F . So we are
assuming the basepoint of E, is contained in F , e0 ∈ F , and that p(e0) = b0 is the basepoint in B.
Let i : F ↪→ E be the inclusion of the fiber. Then there is a long exact sequence of homotopy groups:

· · · ∂∗−−−−→ πn(F ) i∗−−−−→ πn(E)
p∗−−−−→ πn(B) ∂∗−−−−→ πn−1(F )→

· · · → π1(F ) i∗−−−−→ π1(E)
p∗−−−−→ π1(B).
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Proof. Notice that the projection map p : E → B induces a map of pairs

p : (E,F )→ (B, b0).

By the exact sequence for the homotopy groups of the pair (E,F ), 4.3 it is sufficient to prove that
the induced map in homotopy groups

p∗ : πn(E,F )→ πn(B, b0)

is an isomorphism for all n ≥ 1. We first show that p∗ is surjective. So let f : (In, ∂In) → (B, b0)
represent an element of πn(B). We can think of a map from a cube as a homotopy of maps of cubes
of one lower dimension. Therefore by induction on n, the homotopy lifting property says that that
f : In → B has a basepoint preserving lifting f̄ : In → E. Since p ◦ f̄ = f , and since the restriction
of f to the boundary ∂In is constant at b0, then the image of the restriction of f̄ to the boundary
∂In has image in the fiber F . That is, f̄ induces a map of pairs

f̄ : (In, ∂In)→ (E,F )

which in turn represents an element [f̄ ] ∈ πn(E,F ) whose image under p∗ is [f ] ∈ πn(B, b0). This
proves that p∗ is surjective.

We now prove that p∗ : πn(E,F ) → πn(B, b0) is injective. So let f : (Dn, ∂Dn) → (E,F ) be a
map of pairs that represents an element in the kernel of p∗. That means p ◦ f : (Dn, ∂Dn)→ (B, b0)
is null homotopic. Let F : (Dn, ∂Dn) × I → (B, b0) be a null homotopy between F0 = f and the
constant map ε : Dn → b0. By the Homotopy Lifting Property there exists a basepoint preserving
lifting

F̄ : Dn × I → E

having the properties that p ◦ F̄ = F and F̄ : Dn × {0} → E is equal to f : (Dn, ∂Dn) → (E,F ).
Since p◦F̄ = F maps ∂Dn×I to the basepoint b0, we must have that F̄ maps ∂Dn×I to p−1(b0) = F .
Thus F̄ determines a homotopy of pairs,

F̄ : (Dn, ∂Dn)× I → (E,F )

with F̄0 = f . Now consider F̄1 : (Dn, ∂Dn) × {1} → E. Now p ◦ F̄1 = F1 = ε : Dn → b0. Thus the
image of F̄1 lies in p−1(b0) = F . Thus F̄ gives a homotopy of the map of pairs f : (Dn, ∂Dn) →
(E,F ) to a map of pairs whose image lies entirely in F . Such a map represents the zero element of
πn(E,F ). This completes the proof that p∗ is injective, and hence is an isomorphism. As observed
earlier, this is what was needed to prove the theorem. �

We now use this theorem to make several important calculations of homotopy groups. In par-
ticular, we prove the following seminal result of Hopf.
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Theorem 4.9.

π2(S2) ∼= π3(S3) ∼= Z.

πk(S3) ∼= πk(S2) for all k ≥ 3. In particular,

π3(S2) ∼= Z, generated by the Hopf map η : S3 → S2.

Proof. Consider the Hopf fibration η : S3 → S2 = CP1 with fiber S1. Recall that S1 is an
Eilenberg - MacLane space K(Z, 1) since it is the classifying space of bz. Thus

πq(S1) =

 Z for q = 1

0 for all other q.

(Remark. The fact that the classifying space Bπ of a discrete group π is an Eilenberg - MacLane
space K(π, 1) can now be given a simpler proof, using the exact sequence in homotopy groups of
the universal bundle Eπ → Bπ.)

Using this fact in the exact sequence in homotopy groups for the Hopf fibration η : S3 → S2,
together with the fact that πq(S3) = 0 for q ≤ 2, one is led to the facts that π2(S2) ∼= π1(S1) = Z,
and that η∗ : πk(S3) → πk(S2) is an isomorphism for k ≥ 3. To examine the case k = 3, consider
the homomorphism (called the Hurewicz homomorphism)

h : π3(S3)→ H3(S3) = Z

defined by sending a class represented by a self map f : S3 → S3, to the image of the fundamental
class in homology, f∗([S3]) ∈ H3(S3) ∼= Z. Clearly this is a homomorphism (check this!). Moreover
it is surjective since the image of the identity map is the fundamental class, and thus generates,
H3(S3), H([id]) = [S3] ∈ H3(S3). Thus π3(S3) contains an integral summand generated by the
identity. In particular, since η∗ : π3(S3) → π3(S2) is an isomorphism, this implies that π3(S2)
contains an integral summand generated by the Hopf map [η] ∈ π3(S2). The fact that these integral
summands generate the entire groups π3(S3) ∼= π3(S2) will follow once we know that the Hurewicz
homomorphism is an isomorphism in this case. Later in this chapter we will prove the more general
“Hurewicz theorem” that says that for any k > 1, and any (k−1) - connected space X, the Hurewicz
homomorphism is an isomorphism in dimension k: h : πk(X) ∼= Hk(X). �

Remark. As we remarked earlier in these notes. these were the first nontrivial elements found in
the higher homotopy groups of spheres, πn+k(Sn), and Hopf’s proof of their nontriviality is
commonly viewed as the beginning of modern Homotopy Theory [43]

We end this section with an application to the “homotopy stability” of the orthogonal and
unitary groups, as well as their classifying spaces.



3. OBSTRUCTION THEORY 135

Theorem 4.10. The inclusion maps

ι : O(n) ↪→ O(n+ 1) and

U(n) ↪→ U(n+ 1)

induce isomorphisms in homotopy groups through dimensions n − 2 and 2n − 1 respectively. Also,
the induced maps on classifying spaces,

Bι : BO(n)→ BO(n+ 1) and

BU(n)→ BU(n+ 1)

induce isomorphisms in homotopy groups through dimensions n− 1 and 2n respectively.

Proof. The first two statements follow from the existence of fiber bundles

O(n) ↪→ O(n+ 1)→ Sn

and
U(n) ↪→ U(n+ 1)→ S2n+1,

the connectivity of spheres 4.4, and by applying the exact sequence in homotopy groups to these
fiber bundles. The second statement follows from the same considerations, after recalling from 2.28
the sphere bundles

Sn → BO(n)→ BO(n+ 1)

and
S2n+1 → BU(n)→ BU(n+ 1).

�

3. Obstruction Theory

In this section we discuss the obstructions to obtaining a lifting to the total space of a fibration
of a map to the basespace. As an application we prove the important “Whitehead theorem” in
homotopy theory, and we prove general results about the existence of cross sections of principal
O(n) or U(n) - bundles. We do not develop a formal theory here - we just develop what we will need
for our applications to fibrations. For a full development of obstruction theory we refer the reader
to [42].

Let X be a CW - complex. Recall that its cellular k - chains, Ck(X) is the free abelian group
generated by the k - dimensional cells in X. The co-chains with coefficients in a group G are defined
by

Ck(X,G) = Hom(Ck(X), G).
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Theorem 4.11. Let p : E → B be a fibration with fiber F . Let f : X → B be a continuous map,
where X is a CW - complex. Suppose there is a lifting of the (k− 1) - skeleton f̃k−1 : X(k−1) → E.
That is, the following diagram commutes:

X(k−1) f̃k−1−−−−→ E

∩
y yp
X −−−−→

f
B.

Then the obstruction to the existence of a lifting to the k -skeleton, f̃k : X(k) → E that extends f̃k−1,
is a cochain γ ∈ Ck(X;πk−1(F )). That is, γ = 0 if and only if such a lifting f̃k exists.

Proof. We will first consider the special case where X(k) is obtained from Xk−1) by adjoining
a single k -dimensional cell. So assume

X(k) = X(k−1) ∪α Dk

where α : ∂Dk = S(k−1) → Xk−1) is the attaching map. We therefore have the following commuta-
tive diagram:

Sk−1 α−−−−→ X(k−1) f̃k−1−−−−→ E

∩
y ∩

y yp
Dk −−−−→

⊂
X(k−1) ∪α Dk −−−−→

f
B

Notice that f̄k−1 has an extension to X(k−1) ∪α Dk = X(k) that lifts f , if and only if the
composition Dk ⊂ X(k−1) ∪α Dk f−−−−→ B lifts to E in such a way that it extends f̄k−1 ◦ α.

Now view the composition Dk ⊂ X(k−1) ∪α Dk f−−−−→ B as a a map from the cone on Sk−1 to
B, or in other words, as a null homotopyF : Sk−1×I → B from F0 = p◦ f̄k−1◦α : Sk−1 → X(k−1) →
E → B to the constant map F1 = ε : S(k−1) → b0 ∈ B. By the Homotopy Lifting Property, F lifts
to a homotopy

F̄ : S(k−1) × I → E

with F̄0 = f̄k−1 ◦ α. Thus the extension fk exists on X(k−1) ∪α Dk if and only if this lifting F̄ can
be chosen to be a null homotopy of f̄k−1 ◦ α. But we know F̄1 : Sk−1 × {1} → E lifts F1 which
is the constant map ε : Sk−1 → b0 ∈ B. Thus the image of F̄1 lies in the fiber F , and therefore
determines an element γ ∈ πk−1(F ). The homotopy F̄1 can be chosen to be a null homotopy if and
only if F̄1 : Sk−1 → F is null homotopic. (Because combining F̄ with a null homotopy of F̄1, i.e an
extension of F̄1 to a map Dk → F , is still a lifting of F , since the extension lives in a fiber over a
point.) But this is only true if the homotopy class γ = 0 ∈ πk−1(F ).
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This proves the theorem in the case when X(k) = X(k−1) ∪α Dk. In the general case, suppose
that X(k) is obtained from X(k−1) by attaching a collection of k - dimensional disks, indexed on a
set, say J . That is,

X(k) = X(k−1)
⋃
j∈J

∪αj
Dk.

The above procedure assigns to every j ∈ J an “obstruction” γj ∈ πk−1(F ). An extension f̄k exists
if and only if all these obstructions are zero. This assignment from the indexing set of the k - cells to
the homotopy group can be extended linear to give a homomorphism γ from the free abelian group
generated by the k - cells to the homotopy group πk−1(F ), which is zero if and only if the extension
f̄k exists. Such a homomorphism γ is a cochain, γ ∈ Ck(X;πk−1(F )). This completes the proof of
the theorem. �

We now discuss several applications of this obstruction theory.

Corollary 4.12. Any fibration p : E → B over a CW - complex with an aspherical fiber F
admits a cross section.

Proof. Since πq(F ) = 0 for all q, by the theorem, there are no obstructions to constructing a
cross section inductively on the skeleta of B. �

Proposition 4.13. Let X be an n - dimensional CW - complex, and let ζ be an m - dimensional
vector bundle over X, with m ≥ n. Then ζ has m− n linearly independent cross sections. If ξ is a
d - dimensional complex bundle over X, then ξ admits d− [n/2] linearly independent cross sections,
where [n/2] is the integral part of n/2.

.

Proof. Let ζ be classified by a map fm : X → BO(m). To prove the theorem we need to prove
that fm lifts (up to homotopy) to a map fnX → BO(n). We would then have that

ζ ∼= f∗m(γm) ∼= f∗n(γn)⊕ εm−n

where γk is the universal k - dimensional vector bundle over BO(k), and εj represents the j -
dimensional trivial bundle. These isomorphisms would then produce the m−n linearly independent
cross sections of ζ. over X. Now recall there is a fibration

O(m)/O(n)→ BO(n)→ BO(m).

That is, the fiber of p : BO(n) → BO(m) is the quotient space O(m)/O(n). Now by a sim-
ple induction argument using 4.10 shows that the fiber O(m)/O(n) is n − 1 connected. That is,
piq(O(m)/O(n)) = 0 for q ≤ n− 1. By 4.11 all obstructions vanish for lifting the n - skeleton of X
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to the total space BO(n). Since we are assuming X is n - dimensional, this completes the proof.
The complex case is proved similarly. �

Corollary 4.14. Let X be a compact, n - dimensional CW complex. Then every element of
the reduced real K - theory, K̃O(X) can be represented by a n - dimensional vector bundle. Every
element of the complex K - theory, K̃(X) can be represented by an [n/2] - dimensional complex
vector bundle.

Proof. By 2.32 we know

K̃O(X) ∼= [X,BO] and

K̃(X) ∼= [X,BU ].

But by the above proposition, any element α ∈ [X,BO] lifts to an element αn ∈ [X,BO(n)] which
in turn classifies an n - dimensional real vector bundle representing the K̃O - class α.

Similarly, any element β ∈ [X,BU ] lifts to an element αn ∈ [X,BU([n/2])] which in turn
classifies an [n/2] - dimensional complex vector bundle representing the K̃ - class β. �

We now use this obstruction theory to prove the well known “Whitehead Theorem”, one of the
most important foundational theorems in homotopy theory.

Theorem 4.15. Suppose X and Y are CW - complexes and f : X → Y a continuous map that
induces an isomorphism in homotopy groups,

f∗ : πk(X)
∼=−−−−→ πk(Y ) for all k ≥ 0

Then f : X → Y is a homotopy equivalence.

Proof. By 4.7 we can replace f : X → Y by a homotopy equivalent fibration

f̃ : X̃ → Y.

That is, there is a homotopy equivalence h : X → X̃ so that f̃ ◦ h = f . Since f induces an
isomorphism in homotopy groups, so does f̃ . By the exact sequence in homotopy groups for this
fibration, this means that the fiber of the fibration f̃ : X̃ → Y , i.e the homotopy fiber of f , is
aspherical. thus by 4.11 there are no obstructions to finding a lifting g̃ : Y → X̃ of the identity map
of Y . Thus g̃ is a section of the fibration, so that f̃ ◦ g̃ = id : Y → Y . Now let h−1 : X̃ → X denote
a homotopy inverse to the homotopy equivalence h. Then if we define

g = h−1 ◦ g̃ : Y → X
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we then have f ◦ g : Y → Y is given by

f ◦ g = f ◦ h−1 ◦ g̃

= f̃ ◦ h ◦ h−1 ◦ g̃

∼ f̃ ◦ g̃

= id : Y → Y.

Thus f ◦ g is homotopic to the identity of Y . To show that g ◦ f is homotopic to the identity of X,
we need to construct a homotopy X × I → X that lifts a homotopy X × I → Y from f ◦ g ◦ f to f .
This homotopy is constructed inductively on the skeleta of X, and like in the argument proving 4.11,
one finds that there are no obstructions in doing so because the homotopy fiber of f is aspherical.
We leave the details of this obstruction theory argument to the reader. Thus f and g are homotopy
inverse to each other, which proves the theorem. �

The following is an immediate corollary.

Corollary 4.16. An aspherical CW - complex is contractible.

Proof. If X is an aspherical CW - complex, then the constant map to a point, ε : X → pt

induces an isomorphism on homotopy groups, and is therefore, by the above theorem, a homotopy
equivalence. �

The Whitehead theorem will now allow us to prove the following important relationship between
the homotopy type of a topological group and its classifying space.

Theorem 4.17. Let G be a topological group with the homotopy type of a CW complex., and
BG its classiftying space. Then there is a homotopy equivalence between G and the loop space,

G ' ΩBG.

Proof. It was shown in chapter 2 that there is a model for a universal G - bundle, p : EG→ BG

with EG a G - equivariant CW - complex. In particular, EG is aspherical, and hence by the
Whitehead theorem, it is contractible. Let

H : EG× I → EG

be a contraction. That is, H0 : EG × {0} → EG is the constant map at the basepoint e0 ∈ EG, ,
and H1 : EG× {1} → EG is the identity. Composing with the projection map,

Φ = p ◦H : EG× I → BG
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is a homotopy between the constant map to the basepoint Φ0 : EG × {0} → b0 ∈ BG and the
projection map Φ1 = p : EG× {1} → BG. Consider the adjoint of Φ,

Φ̄ : EG→ P (BG) = {α : I → BG such thatα(0) = b0.}

defined by Φ̄(e)(t) = Φ(e, t) ∈ BG. Then by definition, the following diagram commutes:

EG
Φ̄−−−−→ (BG)

p

y yq
BG = BG

where q(α) = α(1), for α ∈ P (BG). Thus Φ is a map of fibrations that induces a map on fibers

φ : G→ ΩBG.

Comparing the exact sequences in homotopy groups of these two fibrations, we see that φ induces
an isomorphism in homotopy groups. A result of Milnor [29] that we will not prove says that if X
is a CW complex, then the loop space ΩX has the homotopy type of a CW - complex. Then the
Whitehead theorem implies that φ : G→ ΩBG is a homotopy equivalence. �

4. Eilenberg - MacLane Spaces

In this section we prove a classification theorem for cohomology. Recall that in chapter 2 we
proved that there are spaces BG that classify principal G - bundles over a space X, in the sense
that homotopy classes of basepoint preserving maps, [X,BG] are in bijective correspondence with
isomorphism classes of principal G - bundles. Similarly BO(n) and BU(n) classify real and complex
n - dimensional vector vector bundles in this same sense, and BO and BU classify K -theory. In this
section we show that there are classifying spaces K(G,n) that classify n - dimensional cohomology
with coefficients in G in this same sense. These are Eilenberg - MacLane spaces. We have discussed
these spaces earlier in these notes, but in this section we prove their existence and their classification
properties.

4.1. Obstruction theory and the existence of Eilenberg - MacLane spaces. In chapter
2 we proved that for any topological group G there is a space BG classifying G bundles. For G
discrete, we saw that BG = K(G, 1), an Eilenberg - MacLane space whose fundamental group is G,
and whose higher homotopy groups are all zero. In this section we generalize this existence theorem
as follows.



4. EILENBERG - MACLANE SPACES 141

Theorem 4.18. Let G be any abelian group and n an integer with n ≥ 2. Then there exists a
space K(G,n) with

πk(K(G,n)) =

 G, if k = n,

0, otherwise.

This theorem will basically be proven using obstruction theory. For this we will assume the
following famous theorem of Hurewicz, which we will prove later in this chapter. We first recall the
Hurewicz homomorphism from homotopy to homology.

Let f : (Dn, Sn−1)→ (X,A) represent an element [f ] ∈ πn(X,A). Let σn ∈ Hn(Dn, Sn−1) ∼= Z
be a preferred, fixed generator. Define h([f ]) = f∗(σn) ∈ Hn(X,A). The following is straightforward,
and we leave its verification to the reader.

Lemma 4.19. The above construction gives a well defined homomorphism

h∗ : πn(X,A)→ Hn(X,A)

called the “Hurewicz homomorphism”.

The following is the “Hurewicz theorem”.

Theorem 4.20. Let X be simply connected, and let A ⊂ X be a simply connected subspace.
Suppose that the pair (X,A) is (n− 1) - connected, for n > 2. That is,

πk(X,A) = 0 if k ≤ n− 1.

Then the Hurewicz homomorphism h∗ : πn(X,A)→ Hn(X,A) is an isomorphism.

We now prove the following basic building block type result concerning how the homotopy groups
change as we build a CW - complex cell by cell.

Theorem 4.21. Let X be a simply connected, CW - complex and let

f : Sk → X

be a map. Let X ′ be the mapping cone of f . That is,

X ′ = X ∪f Dn+1

which denotes the union of X with a disk Dn+1 glued along the boundary sphere Sk = ∂Dk+1 via f .
That is we identify t ∈ Sk with f(t) ∈ X. Let

ι : X ↪→ X ′

be the inclusion. Then
ι∗ : πk(X)→ πk(X ′)

is surjective, with kernel equal to the cyclic subgroup generated by [f ] ∈ πk(X).



142 4. HOMOTOPY THEORY OF FIBRATIONS

Proof. Let g : Sq → X ′ represent an element in πq(X ′) with q ≤ k. By the cellular approx-
imation theorem, g is homotopic to a cellular map, and therefore one whose image lies in the q -
skeleton of X ′. But for q ≤ k, the q - skeleton of X ′ is the q - skeleton of X. This implies that

ι∗ : πq(X)→ πq(X ′)

is surjective for q ≤ k. Now assume q ≤ k − 1, then if g : Sq → X ⊂ X ′ is null homotopic, any null
homotopy, i.e extension to the disk G : Dq+1 → X ′ can be assumed to be cellular, and hence has
image in X. This implies that for q ≤ k − 1, ι∗ : πq(X)→ πq(X ′) is an isomorphism. By the exact
sequence in homotopy groups of the pair (X ′, X), this implies that the pair (X ′, X) is k - connected.
By the Hurewicz theorem that says that

πk+1(X ′, X) ∼= Hk+1(X ′, X) = Hk+1(X ∪f Dk+1, X)

which, by analyzing the cellular chain complex for computing H∗(X ′) is Z if and only if f : Sk → X

is zero in homology, and zero otherwise. In particular, the generator γ ∈ πk+1(X ′, X) is represented
by the map of pairs given by the inclusion

γ : (Dk+1, Sk) ↪→ (X ∪f Dk+1, X)

and hence in the long exact sequence in homotopy groups of the pair (X ′, X),

· · · → πk+1(X ′, X) ∂∗−−−−→ πk(X) ι∗−−−−→ πk(X ′)→ · · ·

we have ∂∗(γ) = [f ] ∈ πk(X). Thus ι∗ : πk(X)→ πk(X ′) is surjective with kernel generated by [f ].
This proves the theorem. �

We will now use this basic homotopy theory result to establish the existence of Eilenberg -
MacLane spaces.

Proof. of 4.18 Fix the group G and the integer n ≥ 2. Let {γα : α ∈ A} be a set of generators
of G, where A denotes the indexing set for these generators. Let {θβ : β ∈ B} be a corresponding set
of relations. In other words G is isomorphic to the free abelian group FA generated by A, modulo
the subgroup RB generated by {θβ : β ∈ B}.

Consider the wedge of spheres
∨
A S

n indexed on the set A. Then by the Hurewicz theorem,

πn(
∨
A
Sn) ∼= Hn(

∨
A
Sn) ∼= FA.

Now the group RB is a subgroup of a free abelian group, and hence is itself free abelian. Let
∨
B S

n

be a wedge of spheres whose nth - homotopy group (which by the Hurewicz theorem is isomorphic
to its homology, which is free abelian) is RB. Moreover there is a natural map

j :
∨
B
Sn →

∨
A
Sn
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which, on the level of the homotopy group πn is the inclusion RB ⊂ FA. Let Xn+1 be the mapping
cone of j:

Xn+1 =
∨
A
Sn ∪j

⋃
B
Dn+1

where the disk Dn+1 corresponding to a generator in RB is attached via the map Sn →
∨
A S

n

giving the corresponding element in πn(
∨
A S

n) = FA. Then by using 4.21 one cell at a time, we see
that Xn+1 is an n− 1 - connected space and πn(Xn) is generated by FA modulo the subgroup RB.
In other words,

πn(Xn+1) ∼= G.

Now inductively assume we have constructed an space Xn+k with

πq(Xn+k) =


0 if q < n,

G if q = n and

0 if n < q ≤ n+ k − 1

Notice that we have begun the inductive argument with k = 1, by the construction of the space
Xn+1 above. So again, assume we have constructed Xn+k, and we need to show how to construct
Xn+k+1 with these properties. Once we have done this, by induction we let k →∞, and clearly X∞
will be a model for K(G,n).

Now suppose π = πn+k(Xn+k) is has a generating set {γu : u ∈ C}, where C is the indexing set.
Let FC be the free abelian group generated by the elements in this generating set. Let

∨
u∈C S

n+k
u

denote a wedge of spheres indexed by this indexing set. Then, like above, by applying the Hurewicz
theorem we see that

πn+k(
∨
u∈C

Sn+k
u ) ∼= Hn+k(

∨
C
Sn+k) ∼= FC .

Let

f :
∨
C
Sn+k → Xn+k

be a map which, when restricted to the sphere Sn+k
u represents the generator γu ∈ π = πn+k(Xn+k).

We define Xn+k+1 to be the mapping cone of f :

Xn+k+1 = Xn+k ∪f
⋃
u∈C

Dn+k+1.

Then by 4.21 we have that πq(Xn+k)→ πq(Xn+k+1) is an isomorphism for q < n+ k, and

πn+k(Xn+k)→ πn+k(Xn+k+1)

is surjective, with kernel the subgroup generated by {γu : u ∈ C}. But since this subgroup gener-
ates π = πn+k(Xn+k) we see that this homomorphism is zero. Since it is surjective, that implies
πn+k(Xn+k+1) = 0. Hence Xn+k+1 has the required properties on its homotopy groups, and so we
have completed our inductive argument. �
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4.2. The Hopf - Whitney theorem and the classification theorem for Eilenberg -

MacLane spaces. We now know that the Eilenberg - MacLane spaces K(G,n) exist for every n

and every abelian group G, and when n = 1 for every group G. Furthermore, by their construction
in the proof of 4.18 they can be chosen to be CW - complexes. In this section we prove their main
property, i.e they classify cohomology.

In order to state the classification theorem properly, we need to recall the universal coefficient
theorem, which says the following.

Theorem 4.22. (Universal Coefficient Theorem) Let G be an abelian group. Then there is a
split short exact sequence

0→ Ext(Hn−1(X);G)→ Hn(X;G)→ Hom(Hn(X), G)→ 0.

Corollary 4.23. If Y is (n− 1) - connected, and π = πn(Y ), then

Hn(Y ;π) ∼= Hom(π, π).

Proof. Since Y is (n−1) connected, Hn−1(Y ) = 0, so the universal coefficient theorem says that
Hn(Y ;π) ∼= Hom(Hn(Y ), π). But the Hurewicz theorem says that the Hurewicz homomorphism
h∗ : π = πn(Y ) → Hn(Y ) is an isomorphism. The corollary follows by combining these two
isomorphisms. �

For an (n− 1) - connected space Y as above, let ι ∈ Hn(Y ;π) be the class corresponding to the
identity map id ∈ Hom(π, π) under the isomorphism in this corollary. This is called the fundamental
class. Given any other space X, we therefore have a set map

φ : [X,Y ]→ Hn(X,π)

defined by φ([f ]) = f∗(ι) ∈ Hn(X;π). The classification theorem for Eilenberg - MacLane spaces is
the following.

Theorem 4.24. For n ≥ 2 and Gπ any abelian group, let K(π, n) denote an Eilenberg - MacLane
space with πn(K(π, n)) = π, and all other homotopy groups zero. Let ι ∈ Hn(K(π, n);π) be the
fundamental class. Then for any CW - complex X, the map

φ : [X,K(π, n)]→ Hn(X;π)

[f ]→ f∗(ι)

is a bijective correspondence.

We have the following immediate corollary, giving a uniqueness theorem regarding Eilenberg -
MacLane spaces.
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Corollary 4.25. Let K(π, n)1 and K(π, n)2 be CW - complexes that are both Eilenberg -
MacLane spaces with the same homotopy groups. Then there is a natural homotopy equivalence
between K(π, n)1 and K(π, n)2.

Proof. Let f : K(π, n)1 → K(π, n)2 be a map whose homotopy class is the inverse image of
the fundamental class under the bijection

φ : [K(π, n)1,K(π, n)2]
∼=−−−−→ Hn(K(π, n)1;π) ∼= Hom(π, π).

This means that f : K(π, n)1 → K(π, n)2 induces the identity map in Hom(π, π), and in particular
induces an isomorphism on πn. Since all other homotopy groups are zero in both of these complexes,
f induces an isomorphism in homotopy groups in all dimensions. Therefore by the Whitehead
theorem 4.15, f is a homotopy equivalence. �

We begin our proof of this classification theorem by proving a special case, known as the Hopf
- Whitney theorem. This predates knowledge of the existence of Eilenberg - MacLane spaces.

Theorem 4.26. (Hopf-Whitney theorem) Let Y be any (n−1) - connected space with π = πn(Y ).
Let X be any n - dimensional CW complex. Then the map

φ : [X,Y ]→ Hn(X;π)

[f ]→ f∗(ι)

is a bijective correspondence.

Remark. This theorem is most often used in the context of manifolds, where it implies that if Mn

is any closed, orientable manifold the correspondence

[Mn, Sn]→ Hn(Mn; Z) ∼= Z

is a bijection.

Exercise. Show that this correspondence can alternatively be described as assigning to a smooth
map f : Mn → Sn its degree, deg(f) ∈ Z.

Proof. (Hopf - Whitney theorem) We first set some notation. Let Y be (n − 1) - connected,
and have basepoint y0 ∈ Y . Let X(m) denote the m - skeleton of the n - dimensional complex X.
Let Ck(X) = Hk(X(k), X(k−1)) be the cellular k - chains in X. Alternatively, Ck(X) can be thought
of as the free abelian group on the k - dimensional cells in the CW - decomposition of X. Let Zk(X)
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and Bk(X) denote the subgroups of cocycles and coboundaries respectively. Let Jk be the indexing
set for the set of k - cells in this CW - structure. So that there are attaching maps

αk :
∨
j∈Jk

Skj → X(k)

so that the (k + 1) - skeleton X(k+1) is the mapping cone

X(k+1) = X(k) ∪αk

⋃
j∈Jk

Dk+1
j .

We prove this theorem in several steps, each translating between cellular cochain complexes or
cohomology on the one hand, and homotopy classes of maps on the other hand. The following is
the first step.

Step 1. There is a bijective correspondence between the following set of homotopy classes of
maps of pairs, and the cochain complex with values in π:

φ : [(X(n), X(n−1)), (Y, y0)]→ Cn(X;π).

Proof. A map of pairs f : (X(n), X(n−1))→ (Y, y0) is the same thing as a basepoint preserving
map from the quotient,

f : X(n)/X(n−1) =
∨
j∈Jn

Snj → Y.

So the homotopy class of f defines and is defined by an assignment to every j ∈ Jn, an element
[fj ] ∈ πn(Y ) = π. But by extending linearly, this is the same as a homomorphism from the free
abelian group generated by Jn, i.e the chain group Cn(X), to π. That is, this is the same thing as
a cochain [f ] ∈ Cn(X;π). �

Step 2. The map φ : [X,Y ]→ Hn(X;π) is surjective.

Proof. . Notice that since X is an n - dimensional CW - complex, all n - dimensional
cochains are cocycles, Cn(X;π) = Zn(X;π). So in particular there is a surjective homomorphism
µ : Cn(X;π) = Zn(X;π) → Zn(X;π)/Bn(X;π) = Hn(X;π). A check of the definitions of the
maps defined so far yields that the following diagram commutes:

[(X(n), X(n−1)), (Y, y0)]
φ−−−−→∼= Cn(X;π)

ρ

y yµ
[X,Y ] −−−−→

φ
Hn(X;π)

where ρ is the obvious restriction map. By the commutativity of this diagram, since µ is surjective
and φ : [(X(n), X(n−1)), (Y, y0)] → Cn(X;π) is bijective, then we must have that φ : [X,Y ] →
Hn(X;π) is surjective, as claimed. �
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In order to show that φ is injective, we will need to examine the coboundary map

δ : Cn−1(X;π)→ Cn(X;π)

from a homotopy point of view. To do this, recall that the boundary map on the chain level, ∂ :
Ck(X)→ Ck−1(X) is given by the connecting homomorphismHn(X(k), X(k−1))→ Hk−1(X(k−1), X(k−2))
from the long exact sequence in homology of the triple, (X(k), X(k−1), X(k−2)). This boundary map
can be realized homotopically as follows. Let c(X(k−1)) be the cone on the subcomplex X(k−1),

c(X(k−1)) = X(k−1) × I/(X(k−1) × {1} ∪ {x0} × I),

which is obviously a contractible space. Consider the mapping cone of the inclusion X(k−1) ↪→ X(k),
X(k) ∪ c(X(k−1). By projecting the cone to a point, there is a projection map

pk : X(k) ∪ c(X(k−1))→ X(k)/X(k−1) =
∨
j∈Jk

Skj

which is a homotopy equivalence. (Note. The fact that this map induces an isomorphism in
homology is straight forward by computing the homology exact sequence of the pair (X(k) ∪
c(X(k−1)), X(k)). The fact that this map is a homotopy equivalence is a basic point set topolog-
ical property of CW - complexes coming from the so - called “Homotopy Extension Property”.
However it can be proved directly, by hand, in this case. We leave its verification to the reader.) Let

uk : X(k) →
∨
j∈Jk

Skj

be the composition

X(k) ↪→ X(k) ∪ c(X(k−1))
pk−−−−→ X(k)/X(k−1) =

∨
j∈Jk

Skj .

Then the composition of uk with the attaching map

αk+1 :
∨

j∈Jk+1

Skj → X(k)

(whose mapping cone defines the (k+1) - skeleton X(k+1)), is a map between wedges of k - spheres,

dk+1 :
∨
j∈Jk+1

Skj
αk+1−−−−→ X(k) uk−−−−→

∨
j∈Jk

Skj .

The following is immediate from the definitions.

Step 3. The induced map in homology,

(dk+1)∗ : Hk(
∨

j∈Jk+1

Skj )→ Hk(
∨
j∈Jk

Skj )

Ck+1(X)→ Ck(X)

is the boundary homomorphism in the chain complex ∂k+1 : Ck+1(X)→ Ck(X).

Now consider the map

[(X(n), X(n−1)), (Y, y0)]
φ−−−−→∼= Cn(X;π) = Zn(X;π)

µ−−−−→ Hn(X;π).
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We then have the following corollary.

Step 4. A map f : X(n)/X(n−1) =
∨
j∈Jn

Snj → Y has the property that

µ ◦ φ([f ]) = 0 ∈ Hn(X;π)

if and only if there is a map

fn−1 :
∨

j∈J(n−1)

Snj → Y

so that f is homotopic to the composition∨
j∈Jn

Snj
dn−−−−→

∨
j∈Jn−1

Snj
fn−1−−−−→ Y.

Proof. Since φ : [(X(n), X(n−1)), (Y, y0)]→ Cn(X;π) = Zn(X;π) is a bijection, µ ◦ φ([f ]) = 0
if and only if φ([f ]) is in the image of the coboundary map. The result then follows from step 3. �

Step 5. The composition

X(n) un−−−−→
∨
j∈Jn

Snj
dn−−−−→

∨
j∈Jn−1

Snj

is null homotopic.

Proof. The map un was defined by the composition

X(n) ↪→ X(n) ∪ c(X(n−1)
pn−−−−→
'

∨
j∈Jn

Snj .

But notice that if we take the quotient X(n) ∪ c(X(n−1)/X(n) we get the suspension

X(n) ∪ c(X(n−1)/X(n) = ΣX(n−1).

Furthermore, the map between the wedges of the spheres, dn :
∨
j∈Jn

Snj →
∨
j∈Jn−1

Snj is directly
seen to be the composition

dn :
∨
j∈Jn

Snj ' X(n) ∪ c(X(n−1)
proj.−−−−→ X(n) ∪ c(X(n−1)/X(n) = ΣX(n−1) Σun−1−−−−→

∨
j∈Jn−1

Snj .

Thus the composition dn ◦ un : X(n) →
∨
j∈Jn

Snj →
∨
j∈Jn−1

Snj factors as the composition

X(n) ↪→ X(n) ∪ c(X(n−1)
proj.−−−−→ X(n) ∪ c(X(n−1)/X(n) = ΣX(n−1) Σun−1−−−−→

∨
j∈Jn−1

Snj .

But the composite of the first two terms in this composition,

X(n) ↪→ X(n) ∪ c(X(n−1)
proj.−−−−→ X(n) ∪ c(X(n−1)/X(n)

is clearly null homotopic, and hence so is dn ◦ un. �

We now complete the proof of the theorem by doing the following step.

Step. 6. The correspondence φ : [X,Y ]→ Hn(X;π) is injective.
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Proof. Let f, g : X → Y be maps with φ([f ]) = φ([g]) ∈ Hn(X;π). Since Y - is (n − 1) -
connected, given any map h : X → Y , the restriction to its (n − 1) - skeleton is null homotopic.
(Exercise. Check this!) Null homotopies define maps

f̃ , g̃ : X ∪ c(X(n−1))→ Y

given by f and g respectively on X, and by their respective null homotopies on the cones, c(X(n−1)).
Using the homotopy equivalence pn : X(n) ∪ c(X(n−1)) ' X(n)/X(n−1) =

∨
j∈Jn

Snj , we then have
maps

f̄ , ḡ : X(n)/X(n−1) → Y

which, when composed with the projection X = X(n) → X(n)/X(n−1) are homotopic to f and
g respectively. Now by the commutativity of the diagram in step 2, since φ([f ]) = φ([g]), then
µ ◦ φ([f̄ ]) = µ ◦ φ([ḡ]). Or equivalently,

µ ◦ φ([f̄ ]− [ḡ]) = 0

where we are using the fact that

[(X(n), X(n−1)), Y ] = [
∨
j∈Jn

Snj , Y ] = ⊕j∈Jn
πn(Y )

is a group, and maps to Cn(X;π) is a group isomorphism.

Let ψ : X(n)/X(n−1) → Y represent [f̄ ]− [ḡ] ∈ [
∨
j∈Jn

Snj , Y ]. Then µ ◦ φ(ψ) = 0. Then by step
4, there is a map ψn−1 :

∨
j∈Jn−1

Snj → Y so that ψn−1 ◦dn is homotopic to ψ. Thus the composition

X
proj.−−−−→ X/X(n−1) ψ−−−−→ Y

is homotopic to the composition

X → X(n)/Xn−1 =
∨
j∈Jn

Snj
dn−−−−→

∨
j∈Jn−1

Snj
ψn−1−−−−→ Y.

But by step 5, this compostion is null homotopic. Now since ψ represents [f̄ ]− [ḡ], a null homotopy
of the composition

X
proj.−−−−→ X/X(n−1) ψ−−−−→ Y

defines a homotopy between the compositions

X
proj.−−−−→ X/X(n−1) f̄−−−−→ Y and X

proj.−−−−→ X/X(n−1) ḡ−−−−→ Y.

The first of these maps is homotopic to f : X → Y , and the second is homotopic to g : X → Y .
Hence f ' g, which proves that φ is injective. �

We now know that the correspondence φ : [X,Y ]→ Hn(X;π) is surjective (step 2) and injective
(step 6). This completes the proof of this theorem. �

We now proceed with the proof of the main classification theorem for cohomology, using Eilen-
berg - MacLane spaces ( 4.24).
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Proof. The Hopf Whitney theorem proves this theorem when X is an n - dimensional CW -
complex. We split the proof for general CW - complexes into two cases.

Case 1. X is n+ 1 - dimensional.

Consider the following commutative diagram

(4.1)

[X,K(π, n)]
φ−−−−→ Hn(X;π)

ρ

y yρ
[X(n),K(π, n)]

φn−−−−→∼= Hn(X(n);π)

where the vertical maps ρ denote the obvious restriction maps, and φn denotes the restriction of the
correspondence φ to the n - skeleton, which is an isomorphism by the Hopf - Whitney theorem.

Now by considering the exact sequence for cohomology of the pair (X,X(n)) = (X(n+1), X(n)),
one sees that the restriction map ρ : Hn(X,π) → Hn(X(n), π) is injective. Using this together
with the fact that φn is an isomorphism and the commutativity of this diagram, one sees that to
show that φ : [X,K(π, n)]→ Hn(X;π) is surjective, it suffices to show that for γ ∈ Hn(X,π) with
ρ(γ) = φn([fn]), where fn : X(n) → K(π, n), then fn can be extended to a map f : X → K(π, n).

Using the same notation as was used in the proof of the Hopf - Whitney theorem, since X =
X(n+1), we can write

X = X(n) ∪αn+1

⋃
j∈Jn+1

D(n+1)

where αn+1 :
∨
j∈Jn+1

Snj → X(n) is the attaching map. Thus the obstruction to finding an extension
f : X → K(π, n) of the map fn : X(n) → K(π, n), is the compostion∨

j∈Jn+1
Snj

αn+1−−−−→ X(n) fn−−−−→ K(π, n).

Now since
∨
j∈Jn+1

Snj is n - dimensional, the Hopf - Whitney theorem says that this map is
determined by its image under φ,

φ([fn ◦ αn+1]) ∈ Hn(
∨

j∈Jn+1

Snj ;π).

But this class is α∗n+1(φ([fn])), which by assumption is α∗n+1(ρ(γ)). But the composition

Hn(X;π)
ρ−−−−→ Hn(X(n), π)

α∗n+1−−−−→ Hn(
∨
j∈Jn+1

Snj ;π)

are two successive terms in the long exact sequence in cohomology of the pair (X(n+1), X(n)) and is
therefore zero. Thus the obstruction to finding the extension f : X → K(π, n) is zero. As observed
above this proves that φ : [X,K(π, n)]→ Hn(X;π) is surjective.

We now show that φ is injective. So suppose φ([f ]) = φ([g]) for f, g : X → K(π, n). To prove
that φ is injective we need to show that this implies that f is homotopic to g. Let fn and gn be the
restrictions of f and g to X(n). That is,

fn = ρ([f ]) : X(n) → K(π, n) and gn = ρ([g]) : X(n) → K(π, n)
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Now by the commutativity of diagram 4.1 and the fact that φn is an isomorphism, we have that fn
and gn are homotopic maps. Let

Fn : X(n) × I → K(π, n)

be a homotopy between them. That is, F0 = fn : X(n)×{0} → K(π, n) and F1 = gn : X(n)×{1} →
K(π, n). This homotopy defines a map on the (n+ 1) -subcomplex of X × I defined to be

F̃ : (X × {0}) ∪ (X × {1}) ∪X(n) × I → K(π, n)

where F̃ is defined to be f and g on X × {0} and X × {1} respectively, and F on X(n) × I. But
since X is (n+ 1) - dimensional, X × I is (n+ 2) - dimensional, and this subcomplex is its (n+ 1)
- skeleton. So X × I is the union of this complex with (n + 2) - dimensional disks, attached via
maps from a wedge of (n + 1) - dimensional spheres. Hence the obstruction to extending F̃ to a
map F : X × I → K(π, n) is a cochain in Cn+2(X × I;πn+1(K(π, n)). But this group is zero since
πn+1(K(π, n)) = 0. Thus there is no obstruction to extending F̃ to a map F : X × I → K(π, n),
which is a homotopy between f and g. As observed before this proves that φ is injective. This
completes the proof of the theorem in this case.

General Case. Since, by case 1, we know the theorem for (n+1) - dimensional CW - complexes,
we assume that the dimension of X is ≥ n+ 2. Now consider the following commutative diagram:

[X,K(π, n)]
φ−−−−→ Hn(X;π)

ρ

y yρ
[X(n+1),K(π, n)]

φn+1−−−−→∼= Hn(X(n+1);π)

where, as earlier, the maps ρ denote the obvious restriction maps, and φn+1 denotes the restriction
of φ to the (n+ 1) skeleton, which we know is an isomorphism, by the result of case 1.

Now in this case the exact sequence for the cohomology of the pair (X,X(n+1)) yields that the
restriction map ρ : Hn(X;π)→ Hn(X(n+1), π) is an isomorphism. Therefore by the commutativity
of this diagram, to prove that φ : [X,K(π, n)] → Hn(X;π) is an isomorphism, it suffices to show
that the restriction map

ρ : [X,K(π, n)]→ [X(n+1),K(π, n)]

is a bijection. This is done by induction on the skeleta X(K) of X, with K ≥ n+1. To complete the
inductive step, one needs to analyze the obstructions to extending maps X(K) → K(π, n) to X(K+1)

or homotopies X(K)×I → K(π, n) to X(K+1)×I, like what was done in the proof of case 1. However
in these cases the obstructions will always lie is spaces of cochains with coefficients in πq(K(π, n))
with q = K orK + 1, and so q ≥ n + 1. But then πq(K(π, n)) = 0 and so these obstructions will
always vanish. We leave the details of carrying out this argument to the reader. �
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5. Spectral Sequences

One of the great achievements of Algebraic Topology was the development of spectral sequences.
They were originally invented by Leray in the late 1940’s and since that time have become funda-
mental calculational tools in many areas of Geometry, Topology, and Algebra. One of the earliest
and most important applications of spectral sequences was the work of Serre [36] for the calculation
of the homology of a fibration. We divide our discussion of spectral sequences in these notes into
three parts. In the first section we develop the notion of a spectral sequence of a filtration. In
the next section we discuss the Leray - Serre spectral sequence for a fibration. In the final two
sections we discuss applications: we prove the Hurewicz theorem, calculate the cohomology of the
Lie groups U(n), and O(n), and of the loop spaces ΩSn, and we discuss Spin and SpinC - structures
on manifolds.

5.1. The spectral sequence of a filtration. A spectral sequence is the algebraic machinery
for studying sequences of long exact sequences that are interelated in a particular way. We begin by
illustrating this with the example of a filtered complex.

Let C∗ be a chain complex, and let A∗ ⊂ C∗ be a subcomplex. The short exact sequence of
chain complexes

0 −→ A∗ ↪→ C∗ −→ C∗/A∗ −→ 0

leads to a long exact sequence in homology:

−→ · · · −→ Hq+1(C∗, A∗) −→ Hq(A∗) −→ Hq(C∗) −→ Hq(C∗, A∗) −→ Hq−1(A∗) −→ · · ·

This is useful in computing the homology of the big chain complex, H∗(C∗) in terms of the
homology of the subcomplex H∗(A∗) and the homology of the quotient complex H∗(C∗, A∗). A
spectral sequence is the machinery used to study the more general situation when one has a filtration

of a chain complex C∗ by subcomplexes

0 = F0(C∗) ↪→ F1(C∗) ↪→ · · · ↪→ Fk(C∗) ↪→ Fk+1(C∗) ↪→ · · · ↪→ C∗ =
⋃
k

Fk(C∗).

Let Dk
∗ be the subquotient complex Dk

∗ = Fk(C∗)/Fk−1(C∗) and so for each k there is a long
exact sequence in homology

−→ Hq+1(Dk
∗) −→ Hq(Fk−1(C∗)) −→ Hq(Fk(C∗)) −→ Hq(Dk

∗) −→ · · ·

By putting these long exact sequences together, in principle one should be able to use information
about ⊕kH∗(Dk

∗) in order to obtain information about

H∗(C∗) = lim−→
k

H∗(Fk(C∗)).
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A spectral sequence is the bookkeeping device that allows one to do this. To be more specific,
consider the following diagram.

(5.1)

0 0yi yi
Hq(F1(C∗)) Hq−1(F1(C∗))

=−−−−→ Hq−1(D1
∗)yi yi

...
...yi yi

Hq(Fk−p(C∗))
j−−−−→ Hq(D

k−p
∗ ) ∂−−−−→ Hq−1(Fk−p−1(C∗))

j−−−−→ Hq−1(D
k−p−1
∗ )yi yi

... Hq−1(Fk−p(C∗))
j−−−−→ Hq−1(D

k−p
∗ )yi yi

...
...yi yi

Hq(Fk−2(C∗)) Hq−1(Fk−3(C∗))yi yi
Hq(Fk−1(C∗))

j−−−−→ Hq(Dk−1
∗ ) ∂−−−−→ Hq−1(Fk−2(C∗))

j−−−−→ Hq−1(Dk−2
∗ ))yi yi

Hq(Fk(C∗))
j−−−−→ Hq(Dk

∗)
∂−−−−→ Hq−1(Fk−1(C∗))

j−−−−→ Hq−1(Dk−1
∗ ))yi yi

...
...yi yi

Hq(C∗) Hq−1(C∗)

The columns represent the homology filtration of H∗(C∗) and the three maps ∂, j, and i combine
to give long exact seqences at every level.

Let α ∈ Hq(C∗). We say that α has algebraic filtration k, if α is in the image of a class
αk ∈ Hq(Fk(C∗)) but is not in the image of Hq(Fk−1(C∗)). In such a case we say that the image
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j(αk) ∈ Hq(Dk
∗) is a representative of α. Notice that this representative is not unique. In particular

we can add any class in the image of

d1 = j ◦ ∂ : Hq+1(Dk+1
∗ ) −→ Hq(Dk

∗)

to j(αk) and we would still have a representative of α ∈ Hq(C∗) under the above definition.

Conversely, let us consider when an arbitrary class β ∈ Hq(Dk
∗) represents a class in Hq(C∗).

By the exact sequence this occurs if and only if the image ∂(β) = 0, for this is the obstruction to β
being in the image of j : Hq(Fk(C∗))→ Hq(Dk

∗) and if j(β̃) = β then β represents the image

i ◦ · · · ◦ i(β̃) ∈ Hq(C∗).

Now ∂(β) = 0 if and only if it lifts all the way up the second vertical tower in diagram 5.1 The
first obstruction to this lifting, (i.e the obstruction to lifting ∂(β) to Hq−1(Fk−2(C∗)) is that the
composition

d1 = j ◦ ∂ : Hq(Dk) −→ Hq−1D
k−1
∗ )

maps β to zero. That is elements of Hq(C∗) are represented by elements in the subquotient

ker(d1)/Im(d1)

of Hq(Dk
∗). We use the following notation to express this. We define

Er,s1 = Hr+s(Dr
∗)

and define

d1 = j ◦ ∂ : Er,s1 −→ Er−1,s
1 .

r is said to be the algebraic filtration of elements in Er,s1 and r+s is the total degree of elements
in Er,s1 . Since ∂ ◦ j = 0, we have that

d1 ◦ d1 = 0

and we let

Er,s2 = Ker(d1 : Er,s1 → Er−1,s
1 )/Im(d1 : Er+1,s

1 → Er,s1 )

be the resulting homology group. We can then say that the class α ∈ Hq(C∗) has as its representative,
the class αk ∈ Ek,q−k2 .

Now let us go back and consider further obstructions to an arbitrary class β ∈ Ek,q−k2 repre-
senting a class in Hq(C∗). Represent β as a cycle in E1: β ∈ Ker(d1 = j ◦ ∂ ∈ Hq(Dk

∗)). Again, β
represents a class in Hq(C∗) if and only if ∂(β) = 0. Now since j ◦∂(β) = 0, ∂(β) ∈ Hq−1(Fk−1(C∗))
lifts to a class, say β̃ ∈ Hq−1Fk−2(C∗). Remember that the goal was to lift ∂(β) all the way up the
vertical tower (so that it is zero). The obstruction to lifting it the next stage, i.e to Hq−1(Fk−3(C∗))
is that j(β̃) ∈ Hq−1(Dk−2

∗ ) is zero. Now the fact that a d1 cycle β has the property that ∂(β) lifts
to Hq−1Fk−2(C∗)) allows to define a map

d2 : Ek,q−k2 −→ Ek−2,q−k+1
2
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and more generally,

d2 : Er,s2 −→ Er−2,s+1
2

by composing this lifting with

j : Hs+r−1(Fr−2(C∗)) −→ Hs+r−1(Dr−2
∗ ).

That is, d2 = j◦i−1◦∂. It is straightforward to check that d2 : Er,s2 −→ Er−2,s+1
2 is well defined, and

that elements of Hq(C∗) are actually represented by elements in the subquotient homology groups
of E∗,∗2 :

Er,s3 = Ker(d2 : Er,s2 → Er−2,s+1
2 )/Im(d2 : Er+2,s−1

2 → Er,s1 )

Inductively, assume the subquotient homology groups Er,sj have been defined for j ≤ p− 1 and
differentials

dj : Er,sj −→ Er−j,s+j−1
j

defined on representative classes in Hr+s(Dr
∗) to be the composition

dj = j ◦ (ij−1 = i ◦ · · · ◦ i)−1 ◦ ∂

so that E∗,∗j+1 is the homology Ker(dj)/Im(dj). We then define

Er,sp = Ker(dp−1 : Er,sp−1 → Er−p+1,s+p−2
p−1 )/Im(dp−1 : Er+p−1,s−p+2

p−1 → Er,sp−1).

Thus Ek,q−kp is a subquotient of Hq(Dk
∗), represented by elements β so that ∂(β) lifts to

Hq(Fk−p(C∗)). That is, there is an element β̃ ∈ Hq(Fk−p(C∗)) so that

ip−1(β̃) = ∂(β) ∈ Hq−1(Fk−1(C∗)).

The obstruction to β̃ lifting to Hq−1(Fk−p−1(C∗)) is j(β) ∈ Hq(D
k−p
∗ ). This procedure yields a well

defined map

dp : Er,sp −→ Er−p,s+p−1
p

given by j ◦ (ip−1)−1 ◦ ∂ on representative classes in Hq(Dk
∗). This completes the inductive step.

Notice that if we let

Er,s∞ = lim−→
p

Er,sp

then Ek,q−k∞ is a subquotient of Hq(Dk
∗) consisting of precisely those classes represented by elements

β ∈ Hq(Dk
∗) so that ∂(β) lifts all the way up the vertical tower i.e ∂(β) is in the image of ip for all p.

This is equivalent to the condition that ∂(β) = 0 which as observed above is precisely the condition
necessary for β to represent a class in Hq(C∗). These observations can be made more precise as
follows.
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Theorem 4.27. Let Ir,s = Image(Hr+s(Fr(C∗)) −→ Hr+s(C∗)). Then Er,s∞ is isomorphic to
the quotient group

Er,s∞
∼= Ir,s/Ir−1,s+1.

Thus the E∗,∗∞ determines H∗(C∗) up to extensions. In particular, if all homology groups are taken
with field coefficients we have

Hq(C∗) ∼=
⊕
r+s=q

Er,s∞ .

In this case we say that {Er,sp , dp} is a spectral sequence starting at Er,s1 = Hr+s(Dr
∗), and

converging to Hr+s(C∗).

Often times a filtration of this type occurs when one has a topological space X filtered by
subspaces,

∗ = X0 ↪→ X1 ↪→ · · · ↪→ Xk ↪→ Xk+1 ↪→ · · · ↪→ X.

An important example is the filtration of a CW - complex X by its skeleta, Xk = X(k). We get
a spectral sequence as above by applying the homology of the chain complexes to this topological
filtration. This spectral sequence converges to H∗(X) with E1 term Er,s1 = Hr+s(Xr, Xr−1). From
the construction of this spectral sequence one notices that chain complexes are irrelevant in this
case; indeed all one needs is the fact that each inclusion Xk−1 ↪→ Xk induces a long exact sequence
in homology.

Exercise. Show that in the case of the filtration of a CW - complex X by its skeleta, that the E1

-term of the corresponding spectral sequence is the cellular chain complex, and the E2 - term is the
homology of X,

Er,s2 =

 Hr(X), if s = 0

0 otherwise

Furthermore, show that this spectral sequence “collapses” at the E2 level, in the sense that

Er,sp = Er,s2 for all p ≥ 2

and hence

Er,s∞ = Er,s2 .

Now if h∗(−) is any generalized homology theory (that is, a functor that obeys all the Eilenberg
- Steenrod axioms but dimension) then the inclusions of a filtration as above Xk−1 ↪→ Xk induce
long exact sequences in h∗(−), and one gets, by a procedure completely analogous to the above, a
spectral sequence converging to h∗(X) with E1 term

Er,s1 = hr+s(Xr, Xr−1).
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Again, for the skeletal filtration of a CW complex, this spectral sequence is called the Atiyah -
Hirzebruch spectral sequence for the generalized homology h∗.

Exercise. Show that the E2 -term of the Atiyah - Hirzebruch spectal sequence for the generalized
homology theory h∗ is

Er,s2 = hr+s(Sr)⊗Hr(X).

Particularly important examples of such generalized homology theories include stable homotopy
( ∼= framed bordism ), other bordism theories, and K - homology theory. Similar spectral sequences
also exist for cohomology theories. The reader is referred to [27] for a good general reference on
spectral sequences with many examples of those most relevant in Algebraic Topology.

5.2. The Leray - Serre spectral sequence for a fibration. The most important example
of a spectral sequence from the point of view of these notes is the Leray - Serre spectral sequence of
a fibration. Given a fibration F → E → B, the goal is to understand how the homology of the three
spaces (fiber, total space, base space) are related. In the case of a trivial fibration, E = B×F → B,
the answer to this question is given by the Kunneth formula, which says, that when taken with field
coefficients,

H∗(B × F ; k) ∼= H∗(B; k)⊗k H∗(F : k),

where k is the field.

When p : E → B is a nontrivial fibration, one needs a spectral sequence to study the homology.
The idea is to construct a filtration on a chain complex C∗(E) for computing the homology of the
total space E, in terms of the skeletal filtration of a CW - decomposition of the base space B.

Assume for the moment that p : E → B is a fiber bundle with fiber F . For the purposes of our
discussion we will assume that the base space B is simply connected. Let B(k) be the k - skeleton
of B, and define

E(k) = p−1(B(k)) ⊂ E.

We then have a filtration of the total space E by subspaces

∗ ↪→ E(0) ↪→ E(1) ↪→ · · · ↪→ E(k) ↪→ E(k + 1) ↪→ · · · ↪→ E.

To analyze the E1 - term of the associated homology spectral spectral sequence we need to compute
the E1 - term, Er,s1 = Hr+s(E(r), E(r − 1)). To do this, write the skeleta of B in the form

B(r) = B(r−1) ∪
⋃
j∈Jr

Dr
j .

Now since each cell Dr is contractible, the restriction of the fibration E to the cells is trivial, and so

E(r)− E(r − 1) ∼=
⋃
j∈Jr

Dr × F.
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Moreover the attaching maps are via the maps

α̃r :
∨
j∈Jr

Sr−1
j × F → E(r − 1)

induced by the cellular attaching maps αk :
∨
j∈Jk

Sk−1
j → B(k−1). Using the Mayer - Vietoris

sequence, one then computes that

Er,s1 = Hr+s(E(r), E(r − 1)) = Hr+s(
⋃
j∈Jr

Dr × F,
⋃
j∈Jr

Sr−1 × F )

= Hr+s(
∨
j∈Jr

Sr × F, F )

= Hr(
∨
j∈Jr

Sr)⊗Hs(F )

= Cr(B;Hs(F )).

These calculations indicate the following result, due to Serre in his thesis [36]. We refer the
reader to that paper for details. It is one of the great pieces of mathematics literature in the last 50
years.

Theorem 4.28. Let p : E → B be a fibration with fiber F . Assume that F is connected and B
is simply connected. Then there are chain complexes C∗(E) and C∗(B) computing the homology of
E and B respectively, and a filtation of C∗(E) leading to a spectral sequence converging to H∗(E)
with the following properties:

(1) Er,s1 = Cr(B)⊗Hs(F )

(2) Er,s2 = Hr(B;Hs(F ))

(3) The differential dj has bidegree (−j, j − 1) :

dj : Er,sj → Er−j,s+j−1
j .

(4) The inclusion of the fiber into the total space induces a homomorphism

i∗ : Hn(F )→ Hn(E)

which can be computed as follows:

i∗ : Hn(F ) = E0,n
2 → E0,n

∞ ⊂ Hn(E)

where E0,n
2 → E0,n

∞ is the projection map which exists because all the differentials dj are
zero on E0,n

j .
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(5) The projection map induces a homomorphism

p∗ : Hn(E)→ Hn(B)

which can be computed as follows:

Hn(E)→ En,0∞ ⊂ En,02 = Hn(B)

where En,0∞ includes into En,02 as the subspace consisting of those classes on which all
differentials are zero. This is well defined because no class in En,0j can be a boundary for
any j.

Remark. The theorem holds when the base space is not simply connected also. However in
that case the E2 -term is homology with “twisted coefficients”. This has important applications in
many situations, however we will not consider this issue in these notes. Again, we refer the reader
to Serre’s thesis [36] for details.

We will finish this chapter by describing several applications of this important spectal sequence.
The first, due to Serre himself [36], is the use of this spectral sequence to prove that even though
fibrations do not, in general, admit long exact sequences in homology, they do admit exact sequences
in homology through a range of dimensions depending on the connectivity of the base space and
fiber.

Theorem 4.29. Let p : E → B be a fibration with connected fiber F , where B is simply connected
and Hi(B) = 0 for 0 < i < n, and Hi(F ) = 0 for i < i < m. Then there is an exact sequence

Hn+m−1(F ) i∗−−−−→ Hn+m−1(E)
p∗−−−−→ Hn+m−1(B) τ−−−−→ Hn+m−2(F )→ · · · → H1(E)→ 0

Proof. The E2 -term of the Serre spectral sequence is given by

Er,s2 = Hr(B;Hs(F ))

which, by hypothesis is zero for 0 < r < n or 0 < j < m. Let q < n+m. Then this implies that the
composition series for Hq(E), given by the filtration defining the spectral sequence, reduces to the
short exact sequence

0→ E0,q
∞ → Hq(E)→ Eq,0∞ → 0.

Now in general, for these “edge terms”, we have

Eq,0∞ = kernel{dq : Eq,0q → E0,q−1
q } and

E0,q
∞ = coker{dq : Eq,0q → E0,q−1

q }.

But when q < n+m, we have Eq,0q = Eq,02 = Hq(B) and E0,q−1
q = E0,q−1

2 = Hq−1(F ) because there
can be no other differentials in this range. Thus if we define

τ : Hq(B)→ Hq−1(F )
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to be dq : Eq,0q → E0,q−1
q , for q < n+m, we then have that p∗ : Hq(E)→ Hq(B) maps surjectively

onto the kernel of τ , and if q < n+m−1, then the kernel of p∗ is the cokernel of τ : Hq+1(B)→ Hq(F ).
This establishes the existence of the long exact sequence in homology in this range. �

Remark. The homomorphism τ : Hq(B)→ Hq−1(F ) for q < n+m in the proof of this theorem
is called the “transgression” homomorphism.

5.3. Applications I: The Hurewicz theorem. As promised earlier in this chapter, we now
use the Serre spectral sequence to prove the Hurewicz theorem. The general theorem is a theorem
comparing relative homotopy groups with relative homology groups. We begin by proving the
theorem comparing homotopy groups and homology of a single space.

Theorem 4.30. Let X be an n− 1 - connected space, n ≥ 2. That is, we assume πq(X) = 0 for
q ≤ n− 1. Then Hq(X) = 0 for q ≤ n− 1 and the previously defined “Hurewicz homomorphism”

h : πn(X)→ Hn(X)

is an isomorphism.

Proof. We assume the reader is familiar with the analogue of the theorem when n = 1, which
says that for X connected, the first homology group H1(X) is given by the abelianization of the
fundamental group

h : π1(X)/[π1, π1] ∼= H1(X)

where [π1, π1] ⊂ π1(X) is the commutator subgroup. We use this preliminary result to begin
an induction argument to prove this theorem. Namely we assume that the theorem is true for
n − 1 replacing n in the statement of the theorem. We now complete the inductive step. By our
inductive hypotheses, Hi(X) = 0 for i ≤ n− 2 and πn−1(X) ∼= Hn−1(X). But we are assuming that
πn−1(X) = 0. Thus we need only show that h : πn(X)→ Hn(X) is an isomorphism.

Consider the path fibration p : PX → X with fiber the loop space ΩX. Now πi(ΩX) ∼= πi+1(X),
and so πi(ΩX) = 0 for i ≤ n− 2. So our inductive assumption applied to the loop space says that

h : πn−1(ΩX)→ Hn−1(ΩX)

is an isomorphism. But πn−1(ΩX) = πn(X). Also, by the Serre exact sequence applied to this
fibration, using the facts that

(1) the total space PX is contractible, and

(2) the fiber ΩX is n− 2 - connected and the base space X is (n− 1) - connected
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we then conclude that the transgression,

τ : Hn(X)→ Hn−1(ΩX)

is an isomorphism. Hence the Hurewicz map h : πn−1(ΩX) → Hn−1(ΩX) is the same as the
Hurewicz map h : πn(X)→ Hn(X), which is therefore an isomorphism. �

We are now ready to prove the more general relative version of this theorem 4.20

Theorem 4.31. Let X be simply connected, and let A ⊂ X be a simply connected subspace.
Suppose that the pair (X,A) is (n− 1) - connected, for n > 2. That is,

πk(X,A) = 0 if k ≤ n− 1.

Then the Hurewicz homomorphism h∗ : πn(X,A)→ Hn(X,A) is an isomorphism.

Proof. . Replace the inclusion

ι : A ↪→ X.

by a homotopy equivalent fibration ι̃ : Ã → X as in 4.7. Let Fι be the fiber. Then πi(Fι) ∼=
πi+1(X,A), by comparing the long exact sequences of the pair (X,A) to the long exact sequence
in homotopy groups for the fibration Ã → X. So by the Hurewicz theorem 4.30 we know that
πi(F ) = Hi(F ) = 0 for i ≤ n− 2 and

h : πn−1(F )→ Hn−1(F )

is an isomorphism. But as mentioned, πn−1(F ) ∼= πn(X,A) and by comparing the homology long
exact sequence of the pair (X,A) to the Serre exact sequence for the fibration F → Ã→ B, one has
that Hn−1(F ) ∼= Hn(X,A). The theorem follows. �

As a corollary, we obtain the following strengthening of the Whitehead theorem 4.15 which is
quite useful in calculations.

Corollary 4.32. Suppose X and Y are simply connected CW - complexes and f : X → Y a
continuous map that induces an isomorphism in homology groups,

f∗ : Hk(X)
∼=−−−−→ Hk(Y ) for all k ≥ 0

Then f : X → Y is a homotopy equivalence.
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Proof. Replace f : X → Y by the inclusion into the mapping cylinder

f̄ : X ↪→ Ȳ

where Ȳ = Y ∪f X × I which is homotopy equivalent to Y , and f̄ includes X into Ȳ as X × {1}.

Since X and Y are simply connected, we have that π2(X) ∼= H2(X) and π2(Y ) ∼= H2(Y ). Thus
f∗ : π2(X) → π2(Y ) is an isomorphism. Again, since X and Y are simply connected, this implies
that πq(Ȳ ,X) = 0 for q = 1, 2. Thus we can apply the relative Hurewicz theorem. However since
f∗ : Hk(X) ∼= Hk(Y ) for all k ≥ 0, we have thatHk(Ȳ ,X) = 0 for all k ≥ 0. But then the Hurewicz
theorem implies that πk(Ȳ ,X) = 0 for all k, which in turn implies that f∗ : πk(X) → πk(Y ) is an
isomorphism for all k. The theorem follows from the Whitehead theorem 4.15. �

5.4. Applications II: H∗(ΩSn) and H∗(U(n)). In this section we will use the Serre spectral
sequence to compute the homology of the loop space ΩSn and the cohomology ring of the Lie groups,
H∗(U(n)).

Theorem 4.33.

Hq(ΩSn) =

 Z if q is a multiple of n− 1, i.e q = k(n− 1)

0 otherwise

Proof. ΩSn is the fiber of the path fibration p : PSn → Sn. Since the total space of this
fibration is contractible, the Serre spectral sequence converges to 0 in positive dimensions. That is,

Er,s∞ = 0

for all r, s, except that E0,0
∞ = Z. Now since the base space, Sn has nonzero homology only in

dimensions 0 and n (when it is Z), then

Er,s2 = Hr(Sn;Hs(ΩSn))

is zero unless r = 0 or n. In particular, since dq : Er,sq → Er−q,s+q−1
q , we must have that for q < n,

dq = 0. Thus Er,s2 = Er,sn and the only possible nonzero differential dn occurs in dimensions

dn : En,sn → E0,s+n−1
n .

It is helpful to picture this spectral sequence as in the following diagram, where a dot in the (r, s) -
entry denotes a copy of the integers in Er,sn = Hr(Sn;Hs(ΩSn)).

Notice that if the generator σn,0 ∈ En,0n is in the kernel of dn, then it would represent a nonzero
class in En,0n+1. But dn+1 and all higher differentials on En,0n+1 must be zero, for dimensional reasons.
That is, En,0n+1 = En,0∞ . But we saw that En,0∞ = 0. Thus we must conclude that dn(σn,0) 6= 0. For
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dn 
 

dn 
 

dn 
 

 

 n-1

2(n-1)

3(n-1)

r
 n

s
E

n
r,s

the same reasoning, (i.e the fact that En,0n+1 = 0) we must have that dn(kσn,0) 6= 0 for all integers k.
This means that the image of

dn : En,0n → E0,n−1
n

is Z ⊂ E0,n−1
n = Hn−1(ΩSn). On the other hand, we claim that dn : En,0n → E0,n−1

n must be
surjective. For if α ∈ E0,n−1

n is not in the image of dn, then it represents a nonzero class in
E0,n−1
n+1 = E0,n−1

∞ . But as mentioned earlier E0,n−1
∞ = 0. So dn is surjective as well. In fact we have

proven that

dn : Z = Hn(Sn) = En,0n → E0,n−1
n = E0,n−1

2 = Hn−1(ΩSn)

is an isomorphism. Hence Hn−1(ΩSn) ∼= Z, as claimed. Now notice this calculation implies a
calculation of En,n−1

2 , namely,

En,n−1
2 = Hn(Sn;Hn−1(ΩSn) = bz.

Repeating the above argument shows that En,n−1
2 = Enn, n− 1 and that

dn : En,n−1
n → E0,2(n−1)

n

must be an isomorphism. This yields that

Z = E
0,2(n−1)
2 = H2(n−1)(ΩSn).

Repeating this argument shows that for every q, Z = E
n,q(n−1)
2 = E

n,q(n−1)
n and that

dn : En,q(n−1)
n → En0, (q + 1)(n− 1) ∼= H(q+1)(n−1)(ΩSn)

is an isomorphism. And so Hk(n−1)(ΩSn) = Z for all k.
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We can also conclude that in dimensions j not a multiple of n− 1, then Hj(ΩSn) must be zero.
This is true by the following argument. Assume the contrary, so that there is a smallest j > 0 not
a multiple of n− 1 with Hj(ΩSn) = E0,j

2 6= 0. But for dimensional reasons, this group cannot be in
the image of any differential, because the only Er,sq that can be nonzero with r > 0 is when r = n.
So the only possibility for a class α ∈ E0,j

2 to represent a class which is in the image of a differential
is dn : En,sn → E0,s+n−1

n . So j = s+n−1. But since j is the smallest positive integer not of the form
a multiple of n − 1 with Hj(ΩSn) nonzero, then for s < j, En,sn = Hn(Sn,Hs(ΩSn)) = Hs(ΩSn)
can only be nonzero if s is a multiple of (n−1), and therefore so is s+n−1 = j. This contradiction
implies that if j is not a multiple of n− 1, then Hj((ΩSn)) is zero. This completes our calculation
ofH∗(ΩSn). �

We now use the cohomology version of the Serre spectral sequence to compute the cohomology
of the unitary groups. We first give the cohomological analogue of 4.28. Again, the reader should
consult [36] for details.

Theorem 4.34. Let p : E → B be a fibration with fiber F . Assume that F is connected and
B is simply connected. Then there is a cohomology spectral sequence converging to H∗(E), with
Er,s2 = Hr(B;Hs(F )), having the following properties.

(1) The differential dj has bidegree (j,−j + 1) :

dj : Er,sj → Er+j,s−j+1
j .

(2) For each j, E∗,∗j is a bigraded ring. The ring multiplication maps

Ep,qj ⊗ E
i,j
j → Ep+i,q+jj .

(3) The differential dj : Er,sj → Er+j,s−j+1
j . is an antiderivation in the sense that it satisfies

the product rule:

dj(ab) = dj(a) · b+ (−1)u+va · dj(b)

where a ∈ Eu,vj .

(4) The product in the ring Ej+1 is induced by the product in the ring Ej, and the product in
E∞ is induced by the cup product in H∗(E).

We apply this to the following calculation.
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Theorem 4.35. There is an isomorphism of graded rings,

H∗(U(n)) ∼= Λ[σ1, σ3, · · · , σ2n−1],

the graded exterior algebra on one generator σ2k−1 in every odd dimension 2k − 1 for 1 ≤ k ≤ n.

Proof. We prove this by induction on n. For n = 1, U(1) = S1 and we know the assertion is
correct. Now assume that H∗(U(n− 1)) ∼= Λ[σ1, · · ·σ2n−3]. Consider the Serre cohomology spectral
sequence for the fibration

U(n− 1) ⊂ U(n)→ U(n)/U(n− 1) ∼= S2n−1.

Then the E2 - term is given by

E∗,∗2
∼= H∗(S2n−1;H∗(U(n− 1)) = H∗(S2n−1)⊗H∗(U(n− 1))

and this isomorphism is an isomorphism of graded rings. But by our inductive assumption we have
that

H∗(S2n−1)⊗H∗(U(n− 1)) ∼= Λ[σ2n−1]⊗ Λ[σ1, · · ·σ2n−3]

∼= Λ[σ1, σ3, · · · , σ2n−1].

Thus
E∗∗2
∼= Λ[σ1, σ3, · · · , σ2n−1]

as graded algebras. Now since all the nonzero classes in E∗,∗2 have odd total degree (where the total
degree of a class α ∈ Er,s2 is r + s), and all differentials increase the total degree by one, we must
have that all differentials in this spectral sequence are zero. Thus

E∗,∗∞ = E∗,∗2
∼= Λ[σ1, σ3, · · · , σ2n−1].

We then conclude that H∗(U(n)) =∼= Λ[σ1, σ3, · · · , σ2n−1] which completes the inductive step in our
proof. �

5.5. Applications III: Spin and SpinC structures. In this section we describe the notions
of Spin and SpinC structures on vector bundles. We then use the Serre spectral sequence to identify
characteristic class conditions for the existence of these structures. These structures are particularly
important in geometry, geometric analysis, and geometric topology.

Recall from chapter 2 that an n - dimensional vector bundle ζ over a space X is orientable if and
only if it has a SO(n) - structure, which exists if and only if the classifying map fζ : X → BO(n)
has a homotopy lifting to BSO(n). In chapter 3 we proved the following property as well.

Proposition 4.36. The n - dimensional bundle ζ is orientable if and only if its first Stiefel -
Whitney class is zero,

w1(ζ) = 0 ∈ H1(X; Z2).
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A Spin structure on ζ is a refinement of an orientation. To define it we need to further study
the topology of SO(n).

The group O(n) has two path components, i.e π0(O(n)) ∼= Z2 and SO(n) is the path component
of the identity map. In particular SO(n) is connected, so π0(SO(n)) = 0. We have the following
information about π1(SO(n)).

Proposition 4.37. π1(SO(2)) = Z. For n ≥ 3, we have

π1(SO(n)) = Z2.

Proof. SO(2) is topologically a circle, so the first part of the theorem follows. SO(3) is
topologically the projective space

SO(3) ∼= RP3

which has a double cover Z2 → S3 → RP3. Since S3 is simply connected, this is the universal cover
of RP3 and hence Z2 = π1(RP3) = π1(SO(3)).

Now for n ≥ 3, consider the fiber bundle SO(n)→ SO(n+1)→ SO(n+1)/SO(n) = Sn. By the
long exact sequence in homotopy groups for this fibration we see that π1(SO(n))→ π1(SO(n+ 1))
is an isomorphism for n ≥ 3. The result follows by induction on n. �

Since π1(SO(n)) = Z2, the universal cover of SO(n) is a double covering. The group Spin(n) is
defined to be this universal double cover:

Z2 → Spin(n)→ SO(n).

Exercise. Show that Spin(n) is a group and that the projection map p : Spin(n)→ SO(n) is a
group homomorphism with kernel Z2.

Now the group Spin(n) has a natural Z2 action, since it is the double cover of SO(n). Define
the group SpinC(n) using this Z2 - action in the following way.

Definition 4.6. The group SpinC(n) is defined to be

SpinC(n) = Spin(n)×Z2 U(1).

where Z2 acts on U(1) by z → −z for z ∈ U(1) ⊂ C.

Notice that there is a principal U(1) - bundle,

U(1)→ SpinC(n) = Spin(n)×Z2 U(1)→ Spin(n)/Z2 = SO(n).

SpinC - structures have been recently shown to be quite important in the Seiberg - Witten
theory approach to the study of smooth structures on four dimensional manifolds [21].
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The main theorem of this section is the following:

Theorem 4.38. Let ζ be an oriented n - dimensional vector bundle over a CW - complex X.
Let w2(ζ) ∈ H2(X; Z2) be the second Stiefel - Whitney class of ζ. Then

(1) ζ has a Spin(n) structure if and only if w2(ζ) = 0.

(2) ζ has a SpinC(n) - structure if and only if w2(ζ) ∈ H2(X; Z2) comes from an integral
cohomology class. That is, if and only if there is a class c ∈ H2(X; Z) which maps to w2(ζ)
under the projection map

H2(X; Z)→ H2(X; Z2).

Proof. The question of the existence of a Spin or SpinC structure is equivalent to the exis-
tence of a homotopy lifting of the classifying map fζ : X → BSO(n) to BSpin(n) or BSpinC(n).
To examine the obstructions to obtaining such liftings we first make some observations about the
homotopy type of BSO(n).

We know that BSO(n) → BO(n) is a double covering (the orientation double cover of the
universal bundle). Furthermore π1(BO(n) = π0(O(n)) = Z2, so this is the universal cover of
BO(n). In particular this says that BSO(n) is simply connected and

πi(BSO(n))→ πi(BO(n))

is an isomorphism for i ≥ 2.

Recall that for n odd, say n = 2m+ 1, then there is an isomorphism of groups

SO(2m+ 1)× Z2
∼= O(2m+ 1).

Exercise. Prove this!

This establishes a homotopy equivalence

BSO(2m+ 1)×BZ2
∼= BO(2m+ 1).

The following is then immediate from our knowledge of H∗(BO(2m+ 1); Z2) ∼= Z2[w1, · · · , w2m+1]
and H∗(BZ2; Z2) ∼= Z2[w1].

Lemma 4.39.
H∗(BSO(2m+ 1); Z2) ∼= Z2[w2, · · · , w2m+1]

where wi ∈ Hi(BSO(2m+1); Z2) is the ith Stiefel - Whitney class of the universal oriented (2m+1)
- dimensional bundle classified by the natural map BSO(2m+ 1)→ BO(2m+ 1).

Corollary 4.40. For n ≥ 3, H2(BSO(n); Z2) ∼= Z2, with nonzero class w2.
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Proof. This follows from the lemma and the fact that for n ≥ 3 the inclusion BSO(n) →
BSO(n+1) induces an isomorphism in H2, which can be seen by looking at the Serre exact sequence
for the fibration Sn → BSO(n)→ BSO(n+ 1). �

This allows us to prove the following.

Lemma 4.41. The classifying space BSpin(n) is homotopy equivalent to the homotopy fiber Fw2

of the map

w2 : BSO(n)→ K(Z2, 2)

classifying the second Stiefel - Whitney class w2 ∈ H2(BSO(n); Z2).

Proof. The group Spin(n) is the universal cover of SO(n), and hence is simply connected. This
means thatBSpin(n) is 2 - connected. By the Hurewicz theorem this implies thatH2(BSpin(n); Z2) =
0. Thus the composition

BSpin(n)
p−−−−→ BSO(n) w2−−−−→ K(Z2, 2)

is null homotopic. Convert the map w2 to a homotopy equivalent fibration, w̃2 : B̃SO(n)→ K(Z2, 2).
The map p defines a map (up to homotopy) p̃ : BSpin(n)→ B̃SO(n), and the composition p̃ ◦w2 is
still null homotopic. A null homotopy Φ : BSpin(n)×I → K(Z2, 2) between p̃◦w2 and the constant
map at the basepoint, lifts, due to the homotopy lifting property, to a homotopy Φ̃ : BSpin(n)×I →
B̃SO(n) between p̃ and a map p̄ whose image lies entirely in the fiber over the basepont, Fw2 ,

p̄ : BSpin(n)→ Fw2 .

We claim that p̄ induces an isomorphism in homotopy groups. To see this, observe that the ho-
momorphism pq : πq(BSpin(n)) → πq(BSO(n)) is equal to the homomorphism πq−1(Spin(n)) →
πq−1(SO(n)) which is an isomorphism for q ≥ 3 because Spin(n) → SO(n) is the universal cover.
But similarly πq(Fw2)→ πq(BSO(n)) is also an isomorphism for q ≥ 3 by the exact sequence in ho-
motopy groups of the fibration Fw2 → BSO(n) w2−−−−→ K(Z2, 2), since w2 induces an isomorphism
on π2. BSpin(n) and Fw2 are also both 2 - connected. Thus they have the same homotopy groups,
and we have a commutative square for q ≥ 3,

πq(BSpin(n))
p̄∗−−−−→ πq(Fw2)

p

y∼= y∼=
πq(BSO(n)) −−−−→

=
πq(BSO(n)).

Thus p̄ : BSpin(n) → Fw2 induces an isomorphism in homotopy groups, and by the Whitehead
theorem is a homotopy equivalence. �
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Notice that we are now able to complete the proof of the first part of the theorem. If ζ is any
oriented, n - dimensional bundle with Spin(n) structure, its classifying mapfζ : X → BSO(n) lifts to
a map f̃ζ : X → BSpin(n), and hence by this lemma, w2(ζ) = f∗ζ (w2) = f∗ζ ◦p∗(w2) = 0. Conversely,
if w2(ζ) = 0, then the classifying map fζ : X → BSO(n) has the property that f∗ζ (w2) = 0. This
implies that the composition

X
fζ−−−−→ BSO(n) w2−−−−→ K(Z2, 2)

is null homotopic. A null homotopy lifts to give a homotopy between fζ and a map whose image lies
in the homotopy fiber Fw2 , which, by the above lemma is homotopy equivalent to BSpin(n). Thus
fζ : X → BSO(n) has a homotopy lift f̃ζ : X → BSpin(n), which implies that ζ has a Spin(n) -
structure.

We now turn our attentiona to SpinC - structures.

Consider the projection map

p : SpinC(n) = Spin(n)×Z2 U(1)→ U(1)/Z2 = U(1).

p is a group homomorpism with kernel Spin(n). p therefore induces a map on classifying spaces,
which we call c,

c : BSpinC(n)→ BU(1) = K(Z, 2)

which has homotopy fiber BSpin(n). But clearly we have the following commutative diagram

BSpin(n) ⊂−−−−→ B(Spin(n)×bz2 U(1)) =−−−−→ BSpinC(n)

=

y y yp
BSpin(n) −−−−→ B(Spin(n)/Z2) −−−−→

=
BSO(n)

Therefore we have the following diagram between homotopy fibrations

BSpin(n) −−−−→ BSpinC(n) c−−−−→ K(Z, 2)

=

y y yp
BSpin(n) −−−−→ BSO(n) w2−−−−→ K(Z2, 2)

where p : K(Z, 2) → K(Z2, 2) is induced by the projection Z → Z2. As we’ve done before we
can assume that p : K(Z, 2) → K(Z2, 2) and w2 : BSO(n) → K(Z2, 2) have been modified to be
fibrations. Then this means that BSpinC(n) is homotopy equivalent to the pull - back along w2 of
the fibration p : K(Z, 2)→ K(Z2, 2):

BSpinC(n) ' w∗2(K(Z, 2)).

But this implies that the map fζ : X → BSO(n) homotopy lifts to BSpinC(n) if and only if there
is a map u : X → K(Z, 2) such that p ◦ u : X → K(Z2, 2) is homotopic to w2 ◦ fζ : X → K(Z2, 2).
Interpreting these as cohomology classes, this says that fζ lifts to BSpinC(n) (i.e ζ has a SpinC(n)
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- structure) if and only if there is a class u ∈ H2(X; Z) so that the Z2 reduction of u, p∗(u) is equal
to w2(ζ) ∈ H2(X; Z2). This is the statement of the theorem. �
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