MATH 6702, SPRING 2024

Tractor Connections

[DG] stands for Differential Geometry at https://people.math.osu.edu/derdzinski.1/courses/851-852-notes.pdf [AC] for Algebraic Curvature Tensors at https://people.math.osu.edu/derdzinski.1/courses/7711/ac.pdf [SB] for Consequences of the Second Bianchi Identity at https://people.math.osu.edu/derdzinski.1/courses/7711/sb.pdf [CF] for Conformal Flatness at https://people.math.osu.edu/derdzinski.1/courses/7711/cf.pdf

Given a torsion-free connection ∇ and a smooth vector field v on a manifold M, by contracting the Ricci identity $v_{,ij}^k - v_{,ji}^k = R_{ijl}^k v^l$ in j = k we see that

(1)
$$v^k_{\ ik} - v^k_{\ ki} = R_{ik}v^k$$

or, in coordinate-free notation, $\operatorname{div} \nabla v - d(\operatorname{div} v) = r(\cdot, v)$.

Lemma 1. Let smooth functions α and ψ on a pseudo-Riemannian manifold (M, g) of any dimension m with the Ricci tensor r satisfy the "Ricci-Hessian equation"

(2)
$$\nabla d\alpha + q\alpha r = \psi g$$

where q is a constant and ∇ denotes the Levi-Civita connection. Then

$$(m-1)d\psi = -(q+1)r(\nabla\alpha, \cdot) + qsd\alpha + q\alpha ds/2,$$

s being the scalar curvature, or, in coordinates,

(3)
$$(m-1)\psi_{i} = -(q+1)R_{ik}\alpha^{k} + qs\alpha_{i} + q\alpha_{i}/2.$$

Proof. The g-trace of (2) yields $m\psi = \alpha^{k}_{,k} + qs\alpha$. Differentiating this, we obtain

(4)
$$m\psi_{i} = \alpha_{ki}^{k} + qs\alpha_{i} + q\alpha_{i}$$

Applying div to the coordinate form $\psi g_{ij} = \alpha_{,ij} + q \alpha R_{ij}$ of (2) we get $\psi^{,k} g_{ik} = \alpha_{,ik}^{,k} + q R_{ik} \alpha^{,k} + q \alpha R_{ik}^{,k}$. As symmetry of the Hessian $\nabla d\alpha$ and (1) give $\alpha_{,ik}^{,k} = \alpha_{,ki}^{,k} = \alpha_{,ki}^{,k} = \alpha_{,ki}^{,k} + R_{ik} \alpha^{,k}$, while $2R_{ik}^{,k} = s_{,i}$ from the Bianchi identity for the Ricci tensor [**DG**, formula (38.13)], the last equality amounts to $\psi_{,i} = \alpha_{,ki}^{,k} + (q+1)R_{ik}\alpha^{,k} + q\alpha s_{,i}/2$, as $\psi^{,k} g_{ik} = \psi_{,i}$. Subtracted from (4), this yields (3).

Corollary 2. Under the assumptions of Lemma 1, $\overline{\nabla}_w(v, \alpha, \psi) = 0$ for $v = \nabla \alpha$ and any vector field w, where $\overline{\nabla}$ is the connection given by

$$\overline{\nabla}_{w}(v,\alpha,\psi) = \left(\nabla_{w}v - \psi w + q\alpha rw, d_{w}\alpha - g(w,v), d_{w}\psi + \frac{2(q+1)r(w,v) - 2qsg(w,v) - q\alpha d_{w}s}{2(m-1)} \right)$$

in the vector bundle $E = TM \oplus [M \times \mathbb{R}^2]$ over M obtained as the direct sum of TM and the product plane bundle $M \times \mathbb{R}^2$.

More precisely, α and ψ satisfy (2) if and only if $(v, \alpha, \psi) = 0$, with $v = \nabla \alpha$, is a $\overline{\nabla}$ -parallel section of E.

When $m \geq 3$ and q = 1/(m-2), we call $E = TM \oplus [M \times \mathbb{R}^2]$ the *tractor* bundle of the *m*-dimensional pseudo-Riemannian manifold (M,g), and refer to $\overline{\nabla}$ as the *tractor connection* in E. Explicitly, the tractor connection of (M,g) is the linear connection $\overline{\nabla}$ in E given by

(5)
$$\begin{aligned}
\nabla_{\!u}(v,\alpha,\psi) &= (\hat{v},\hat{\alpha},\psi) \quad \text{for any vector field } u, \text{ where} \\
\hat{v} &= \nabla_{\!u}v - \psi u + \frac{\alpha r u}{m-2}, \quad \hat{\alpha} = d_u \alpha - g(u,v), \\
\hat{\psi} &= d_u \psi + \frac{r(u,v)}{m-2} - \frac{2sg(u,v) + \alpha d_u s}{2(m-1)(m-2)}.
\end{aligned}$$

Lemma 3. For M, g, m as above and a smooth function α on M, one has

(6)
$$\nabla d\alpha + \frac{\alpha r}{m-2} = \psi g$$
 with some smooth function ψ

if and only if the triple $(\nabla \alpha, \alpha, \psi)$ is a $\overline{\nabla}$ -parallel section of the tractor bundle E.

Proof. Apply Lemma 1 and Corollary 2 to q = 1/(m-2).

Lemma 4. Under the assumptions of Lemma 3, one has (6) if and only if $\tilde{g} = g/\alpha^2$, defined on the open subset on which $\alpha \neq 0$, is an Einstein metric.

Proof. Use formula (8) in [CF] and Schur's theorem [DG, Section 41].

As in [SB], given a torsion-free connection ∇ and a (not necessarily symmetric) twice-covariant smooth tensor field b on a manifold M, we define the *exterior derivative* of b to be the (0,3) tensor field db with $[db]_{ijk} = b_{jk,i} - b_{ik,j}$. When ∇ is the Levi-Civita connection of a pseudo-Riemannian metric g on M, one also has the raised-index version of db, here denoted by Db, for which

(7)
$$[Db]_{ij}^k = g^{kl}(b_{jl,i} - b_{il,j}).$$

Lemma 5. The curvature tensor \overline{R} of the tractor connection $\overline{\nabla}$ is given by

$$\overline{R}(u,u')(v,\alpha,\psi) = (\tilde{v},\tilde{\alpha},\tilde{\psi}),$$

for any vector fields u, u' tangent to M, where

$$\tilde{v} = W(u, u')v - \frac{\alpha}{m-2}[Dh](u, u'), \qquad \tilde{\alpha} = 0, \qquad \tilde{\psi} = -\frac{g(v, [Dh](u, u'))}{m-2}$$

with h denoting the Schouten tensor, and Dh as in (7).

Proof. We may assume that at the point x in question $d\alpha$, $d\psi$ and the covariant derivatives of u, u', v all vanish (and hence so does [u, u']). Thus,

$$\overline{R}(u,u')(v,\alpha,\psi) = \overline{\nabla}_{u'}(\hat{v},\hat{\alpha},\hat{\psi}) - \dots,$$

with $(\hat{v}, \hat{\alpha}, \hat{\psi})$ defined by (5) and ... standing for the result of switching u with u' in the expression for $\overline{\nabla}_{u'}(\hat{v}, \hat{\alpha}, \hat{\psi})$ at x obtained from (5). Consequently,

$$\begin{split} \tilde{v} &= R(u,u')v + \alpha \frac{[\nabla_{\!\!u'} r]u - [\nabla_{\!\!u} r]u'}{m-2} + \frac{r(u'\!,v)u - r(u,v)u'}{m-2} \\ &+ \frac{s[g(u,v)u' - g(u'\!,v)u]}{(m-1)(m-2)} + \frac{\alpha[(d_u s)u' - (d_{u'} s)u]}{2(m-1)(m-2)} + \frac{g(u'\!,v)ru - g(u,v)ru'}{m-2}, \end{split}$$

while $\tilde{\alpha} = 0$ and

.

.

$$\tilde{\psi} = \frac{[\nabla_{\!\!u'} r](u,v) - [\nabla_{\!\!u} r](u',v)}{m-2} + \frac{(d_u s)g(u',v) - (d_{u'} s)g(u,v)}{2(m-1)(m-2)}.$$

Our assertion is now immediate from the expressions for h and W in [AC, the formula preceding (5)], combined with (7).

Lemma 6. For a pseudo-Riemannian manifold (M,g) of any dimension $m \ge 3$, the following four conditions are equivalent.

- (a) The tractor connection $\overline{\nabla}$ is flat.
- (b) The Weyl tensor W and dh, for the Schouten tensor h of g, vanish identically.
- (c) *The metric* g is conformally flat.
- (d) Either $m \ge 4$ and W = 0, or m = 3 and dh = 0, everywhere in M.

Proof. From (a) we get $\tilde{\psi} = 0$ and $\tilde{v} = 0$ in Lemma 5, for any vector fields v, u, u' tangent to M, so that Dh = 0 and, consequently, W = 0, which implies (b). Lemma 5 clearly yields the converse implication. Assuming (c) we obtain (b): namely, W = 0 due to conformal invariance of the type (1,3) Weyl tensor [**CF**, formula 6]; the conformally-Einstein property of the metric allows us – via Lemmas 3 and 4 – to choose, locally, $\overline{\nabla}$ -parallel sections $(\nabla \alpha, \alpha, \psi)$ of the tractor bundle E having $\alpha \neq 0$, while, by $\overline{\nabla}$ -parallelity, $\overline{R}(\cdot, \cdot)(v, \alpha, \psi) = 0$, and so the formula for \tilde{v} (see Lemma 5) with W = 0 and $\alpha \neq 0$ shows that dh = 0. On the other hand, if (a) holds, (c) follows

(some text in preparation)

Finally, condition (b) trivially leads to (d), while (d) gives (b) as a consequence of $[\mathbf{AC}, \text{Remark } 2]$ and the identity $(m-2) \operatorname{div} W = -(m-3) dh$ in $[\mathbf{SB}]$.