MATH 6702, SPRING 2024

Tractor Connections

[DG] stands for Differential Geometry at
https://people.math.osu.edu/derdzinski.1/courses/851-852-notes.pdf
[AC] for Algebraic Curvature Tensors at
https://people.math.osu.edu/derdzinski.1/courses/7711/ac.pdf
[SB] for Consequences of the Second Bianchi Identity at
https://people.math.osu.edu/derdzinski.1/courses/7711/sb.pdf
[CF] for Conformal Flatness at
https://people.math.osu.edu/derdzinski.1/courses/7711/cf.pdf

Given a torsion-free connection ∇ and a smooth vector field v on a manifold M, by contracting the Ricci identity $v^{k}{ }_{, i j}-v^{k}{ }_{, j i}=R_{i j l}^{k} v^{l}$ in $j=k$ we see that

$$
\begin{equation*}
v_{, i k}^{k}-v_{, k i}^{k}=R_{i k} v^{k} \tag{1}
\end{equation*}
$$

or, in coordinate-free notation, $\operatorname{div} \nabla v-d(\operatorname{div} v)=r(\cdot, v)$.
Lemma 1. Let smooth functions α and ψ on a pseudo-Riemannian manifold (M, g) of any dimension m with the Ricci tensor r satisfy the "Ricci-Hessian equation"

$$
\begin{equation*}
\nabla d \alpha+q \alpha r=\psi g \tag{2}
\end{equation*}
$$

where q is a constant and ∇ denotes the Levi-Civita connection. Then

$$
(m-1) d \psi=-(q+1) r(\nabla \alpha, \cdot)+q s d \alpha+q \alpha d s / 2
$$

s being the scalar curvature, or, in coordinates,

$$
\begin{equation*}
(m-1) \psi_{, i}=-(q+1) R_{i k} \alpha^{, k}+q s \alpha_{, i}+q \alpha s_{, i} / 2 . \tag{3}
\end{equation*}
$$

Proof. The g-trace of (2) yields $m \psi=\alpha^{, k}{ }_{, k}+q s \alpha$. Differentiating this, we obtain

$$
\begin{equation*}
m \psi_{, i}=\alpha_{k i}^{, k}+q s \alpha_{, i}+q \alpha s_{, i} \tag{4}
\end{equation*}
$$

Applying div to the coordinate form $\psi g_{i j}=\alpha_{, i j}+q \alpha R_{i j}$ of (2) we get $\psi^{, k} g_{i k}=$ $\alpha_{, i k}{ }^{k}+q R_{i k} \alpha^{, k}+q \alpha R_{i k}{ }^{, k}$. As symmetry of the Hessian $\nabla d \alpha$ and (1) give $\alpha_{, i k}{ }^{k}=$ $\alpha_{, k i}^{k}=\alpha^{, k}{ }_{, i k}=\alpha^{, k}{ }_{k i}+R_{i k} \alpha^{, k}$, while $2 R_{i k}{ }^{, k}=s_{, i}$ from the Bianchi identity for the Ricci tensor [DG, formula (38.13)], the last equality amounts to $\psi_{, i}=\alpha^{, k}{ }_{k i}+$ $(q+1) R_{i k} \alpha^{, k}+q \alpha s_{, i} / 2$, as $\psi^{, k} g_{i k}=\psi_{, i}$. Subtracted from (4), this yields (3).

Corollary 2. Under the assumptions of Lemma $1, \bar{\nabla}_{w}(v, \alpha, \psi)=0$ for $v=\nabla \alpha$ and any vector field w, where $\bar{\nabla}$ is the connection given by

$$
\begin{aligned}
& \bar{\nabla}_{w}(v, \alpha, \psi) \\
& =\left(\nabla_{w} v-\psi w+q \alpha r w, d_{w} \alpha-g(w, v), d_{w} \psi+\frac{2(q+1) r(w, v)-2 q s g(w, v)-q \alpha d_{w} s}{2(m-1)}\right)
\end{aligned}
$$

in the vector bundle $E=T M \oplus\left[M \times \mathbb{R}^{2}\right]$ over M obtained as the direct sum of $T M$ and the product plane bundle $M \times \mathbb{R}^{2}$.

More precisely, α and ψ satisfy (2) if and only if $(v, \alpha, \psi)=0$, with $v=\nabla \alpha$, is a $\bar{\nabla}$-parallel section of E.

When $m \geq 3$ and $q=1 /(m-2)$, we call $E=T M \oplus\left[M \times \mathbb{R}^{2}\right]$ the tractor bundle of the m-dimensional pseudo-Riemannian manifold (M, g), and refer to $\bar{\nabla}$ as the tractor connection in E. Explicitly, the tractor connection of (M, g) is the linear connection $\bar{\nabla}$ in E given by

$$
\begin{align*}
& \bar{\nabla}_{u}(v, \alpha, \psi)=(\hat{v}, \hat{\alpha}, \hat{\psi}) \quad \text { for any vector field } u \text {, where } \\
& \hat{v}=\nabla_{u} v-\psi u+\frac{\alpha r u}{m-2}, \quad \hat{\alpha}=d_{u} \alpha-g(u, v) \tag{5}\\
& \hat{\psi}=d_{u} \psi+\frac{r(u, v)}{m-2}-\frac{2 s g(u, v)+\alpha d_{u} s}{2(m-1)(m-2)}
\end{align*}
$$

Lemma 3. For M, g, m as above and a smooth function α on M, one has

$$
\begin{equation*}
\nabla d \alpha+\frac{\alpha r}{m-2}=\psi g \quad \text { with some smooth function } \psi \tag{6}
\end{equation*}
$$

if and only if the triple $(\nabla \alpha, \alpha, \psi)$ is $a \bar{\nabla}$-parallel section of the tractor bundle E.
Proof. Apply Lemma 1 and Corollary 2 to $q=1 /(m-2)$.
Lemma 4. Under the assumptions of Lemma 3, one has (6) if and only if $\tilde{g}=g / \alpha^{2}$, defined on the open subset on which $\alpha \neq 0$, is an Einstein metric.

Proof. Use formula (8) in [CF] and Schur's theorem [DG, Section 41].
As in [SB], given a torsion-free connection ∇ and a (not necessarily symmetric) twice-covariant smooth tensor field b on a manifold M, we define the exterior derivative of b to be the $(0,3)$ tensor field $d b$ with $[d b]_{i j k}=b_{j k, i}-b_{i k, j}$. When ∇ is the Levi-Civita connection of a pseudo-Riemannian metric g on M, one also has the raised-index version of $d b$, here denoted by $D b$, for which

$$
\begin{equation*}
[D b]_{i j}^{k}=g^{k l}\left(b_{j l, i}-b_{i l, j}\right) \tag{7}
\end{equation*}
$$

Lemma 5. The curvature tensor \bar{R} of the tractor connection $\bar{\nabla}$ is given by

$$
\bar{R}\left(u, u^{\prime}\right)(v, \alpha, \psi)=(\tilde{v}, \tilde{\alpha}, \tilde{\psi})
$$

for any vector fields u, u^{\prime} tangent to M, where

$$
\tilde{v}=W\left(u, u^{\prime}\right) v-\frac{\alpha}{m-2}[D h]\left(u, u^{\prime}\right), \quad \tilde{\alpha}=0, \quad \tilde{\psi}=-\frac{g\left(v,[D h]\left(u, u^{\prime}\right)\right)}{m-2}
$$

with h denoting the Schouten tensor, and Dh as in (7).

Proof. We may assume that at the point x in question $d \alpha, d \psi$ and the covariant derivatives of u, u^{\prime}, v all vanish (and hence so does $\left[u, u^{\prime}\right]$). Thus,

$$
\bar{R}\left(u, u^{\prime}\right)(v, \alpha, \psi)=\bar{\nabla}_{u^{\prime}}(\hat{v}, \hat{\alpha}, \hat{\psi})-\ldots
$$

with $(\hat{v}, \hat{\alpha}, \hat{\psi})$ defined by (5) and ... standing for the result of switching u with u^{\prime} in the expression for $\bar{\nabla}_{u^{\prime}}(\hat{v}, \hat{\alpha}, \hat{\psi})$ at x obtained from (5). Consequently,

$$
\begin{aligned}
\tilde{v} & =R\left(u, u^{\prime}\right) v+\alpha \frac{\left[\nabla_{u^{\prime}} r\right] u-\left[\nabla_{u} r\right] u^{\prime}}{m-2}+\frac{r\left(u^{\prime}, v\right) u-r(u, v) u^{\prime}}{m-2} \\
& +\frac{s\left[g(u, v) u^{\prime}-g\left(u^{\prime}, v\right) u\right]}{(m-1)(m-2)}+\frac{\alpha\left[\left(d_{u} s\right) u^{\prime}-\left(d_{u^{\prime}} s\right) u\right]}{2(m-1)(m-2)}+\frac{g\left(u^{\prime}, v\right) r u-g(u, v) r u^{\prime}}{m-2},
\end{aligned}
$$

while $\tilde{\alpha}=0$ and

$$
\tilde{\psi}=\frac{\left[\nabla_{u^{\prime}} r\right](u, v)-\left[\nabla_{u} r\right]\left(u^{\prime}, v\right)}{m-2}+\frac{\left(d_{u} s\right) g\left(u^{\prime}, v\right)-\left(d_{u^{\prime}} s\right) g(u, v)}{2(m-1)(m-2)} .
$$

Our assertion is now immediate from the expressions for h and W in $[\mathbf{A C}$, the formula preceding (5)], combined with (7).

Lemma 6. For a pseudo-Riemannian manifold (M, g) of any dimension $m \geq 3$, the following four conditions are equivalent.
(a) The tractor connection $\bar{\nabla}$ is flat.
(b) The Weyl tensor W and dh, for the Schouten tensor h of g, vanish identically.
(c) The metric g is conformally flat.
(d) Either $m \geq 4$ and $W=0$, or $m=3$ and $d h=0$, everywhere in M.

Proof. From (a) we get $\tilde{\psi}=0$ and $\tilde{v}=0$ in Lemma 5, for any vector fields v, u, u^{\prime} tangent to M, so that $D h=0$ and, consequently, $W=0$, which implies (b). Lemma 5 clearly yields the converse implication. Assuming (c) we obtain (b): namely, $W=0$ due to conformal invariance of the type $(1,3)$ Weyl tensor $[\mathbf{C F}$, formula 6]; the conformally-Einstein property of the metric allows us - via Lemmas 3 and 4 - to choose, locally, $\bar{\nabla}$-parallel sections $(\nabla \alpha, \alpha, \psi)$ of the tractor bundle E having $\alpha \neq 0$, while, by $\bar{\nabla}$-parallelity, $\bar{R}(\cdot, \cdot)(v, \alpha, \psi)=0$, and so the formula for \tilde{v} (see Lemma 5) with $W=0$ and $\alpha \neq 0$ shows that $d h=0$. On the other hand, if (a) holds, (c) follows
(some text in preparation)

Finally, condition (b) trivially leads to (d), while (d) gives (b) as a consequence of $[\mathbf{A C}$, Remark 2] and the identity $(m-2) \operatorname{div} W=-(m-3) d h$ in $[\mathbf{S B}]$.

