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Abstract. This is a final step in a local classification of pseudo-Riemannian
manifolds with parallel Weyl tensor that are neither conformally flat, nor locally
symmetric.

Introduction

The present paper provides a finishing touch in a local classification of essentially

conformally symmetric pseudo-Riemannian metrics.

A pseudo-Riemannian manifold of dimension n ≥ 4 is called essentially con-

formally symmetric if it is conformally symmetric [2] (in the sense that its Weyl

conformal tensor is parallel) without being conformally flat or locally symmetric.

The metric of an essentially conformally symmetric manifold is always indefinite

[4, Theorem 2]. Compact essentially conformally symmetric manifolds are known

to exist in all dimensions n ≥ 5 with n ≡ 5 (mod 3), where they represent all

indefinite metric signatures [8], while examples of essentially conformally symmetric

pseudo-Riemannian metrics on open manifolds of all dimensions n ≥ 4 were first

constructed in [16].

On every conformally symmetric manifold there is a naturally distinguished par-

allel distribution D, of some dimension d, which we call the Olszak distribution. As

shown by Olszak [13], for an essentially conformally symmetric manifold d ∈ {1, 2}.
In [7] we described the local structure of all conformally symmetric manifolds with

d = 2. See also Section 3. This paper establishes an analogous result (Theorem 4.1)

for the case d = 1.

In both cases, some of the metrics in question are locally symmetric. In Re-

mark 4.2 we explain why a similar classification result cannot be valid just for

essentially conformally symmetric manifolds.

Essentially conformally symmetric manifolds with d = 1 are all Ricci-recur-

rent, in the sense that, for every tangent vector field v, the Ricci tensor ρ and the

covariant derivative ∇vρ are linearly dependent at each point. The local structure of

essentially conformally symmetric Ricci-recurrent manifolds at points with ρ⊗∇ρ 6=
0 has already been determined by the second author [16]. Our new contribution
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settles the one case still left open in the local classification problem, namely, that of

essentially conformally symmetric manifolds with d = 1 at points where ρ⊗∇ρ = 0.

The literature dealing with conformally symmetric manifolds includes, among

others, [9, 10, 12, 15, 17, 18] and the papers cited above. A local classification of

homogeneous essentially conformally symmetric manifolds can be found in [3].

1. Preliminaries

Throughout this paper, all manifolds and bundles, along with sections and con-

nections, are assumed to be of class C∞. A manifold is, by definition, connected.

Unless stated otherwise, a mapping is always a C∞ mapping betweeen manifolds.

Given a connection ∇ in a vector bundle E over a manifold M , a section ψ of

E , and vector fields u, v tangent to M , we use the sign convention

(1) R(u, v)ψ = ∇v∇uψ − ∇u∇vψ + ∇[u,v]ψ

for the curvature tensor R = R∇.

The Levi-Civita connection of a given pseudo-Riemannian manifold (M, g) is

always denoted by ∇. We also use the symbol ∇ for connections induced by ∇, in

various ∇-parallel subbundles of TM and their quotients.

The Schouten tensor σ and Weyl conformal tensor W of a pseudo-Riemannian

manifold (M, g) of dimension n ≥ 4 are given by σ = ρ − (2n − 2)−1 sg, with ρ

denoting the Ricci tensor, s = trgρ standing for the scalar curvature, and

(2) W = R − (n− 2)−1g ∧ σ.

Here ∧ is the exterior multiplication of 1-forms valued in 1-forms, which uses the

ordinary ∧ as the valuewise multiplication; thus, g ∧ σ is a 2-form valued in 2-

forms.

Let (t, s) 7→ x(t, s) be a fixed variation of curves in a pseudo-Riemannian mani-

fold (M, g), that is, an M -valued C∞ mapping from a rectangle (product of inter-

vals) in the ts-plane. By a vector field w along the variation we mean, as usual, a

section of the pullback of TM to the rectangle (so that w(t, s) ∈ Tx(t,s)M). Exam-

ples are xs and xt, which assign to (t, s) the velocity of the curve t 7→ x(t, s) or

s 7→ x(t, s) at s or t. Further examples are provided by restrictions to the variation

of vector fields on M . The partial covariant derivatives of a vector field w along the

variation are the vector fields wt, ws along the variation, obtained by differentiating

w covariantly along the curves t 7→ x(t, s) or s 7→ x(t, s). Skipping parentheses, we

write wts, wstt, etc., rather than (wt)s, ((ws)t)t for higher-order derivatives, as well

as xss, xst instead of (xs)s, (xs)t. One always has wts = wst + R(xt, xs)w, cf. [11,

formula (5.29) on p. 460], and, since the Levi-Civita connection ∇ is torsionfree,

xst = xts. Thus, whenever (t, s) 7→ x(t, s) is a variation of curves in M ,

(3) xtss = xsst + R(xt, xs)xs .
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2. The Olszak distribution

The Olszak distribution of a conformally symmetric manifold (M, g) is the parallel

subbundle D of TM , the sections of which are the vector fields u with the property

that ξ ∧ Ω = 0 for all vector fields v, v ′ and for the differential forms ξ = g(u, · )
and Ω = W (v, v ′, · , · ). The distribution D was introduced, in a more general

situation, by Olszak [13], who also proved the following lemma.

Lemma 2.1. The following conclusions hold for the dimension d of the Olszak

distribution D in any conformally symmetric manifold (M, g) with dimM = n ≥ 4.

(i) d ∈ {0, 1, 2, n}, and d = n if and only if (M, g) is conformally flat.

(ii) d ∈ {1, 2} if (M, g) is essentially conformally symmetric.

(iii) d = 2 if and only if rankW= 1, in the sense that W, as an operator acting

on exterior 2-forms, has rank 1 at each point.

(iv) If d = 2, the distribution D is spanned by all vector fields of the form

W (u, v)v′ for arbitrary vector fields u, v, v′ on M .

Proof. See Appendix I. �

In the next lemma, parts (a) and (d) are due to Olszak [13, 2o and 3o on p. 214].

Lemma 2.2. If d ∈ {1, 2}, where d is the dimension of the Olszak distribution

D of a given conformally symmetric manifold (M, g) with dimM = n ≥ 4, then

(a) D is a null parallel distribution,

(b) at any x ∈ M the space Dx contains the image of the Ricci tensor ρx

treated, with the aid of gx, as an endomorphism of TxM,

(c) the scalar curvature is identically zero and R = W + (n− 2)−1g ∧ ρ,
(d) W (u, · , · , · ) = 0 whenever u is a section of D,

(e) R(v, v ′, · , · ) = W (v, v ′, · , · ) = 0 for any sections v and v ′ of D⊥,

(f) of the connections in D and E = D⊥/D, induced by the Levi-Civita connec-

tion of g, the latter is always flat, and the former is flat if d = 1.

Proof. Assertion (e) for W is immediate from the definition of D. Namely, at any

point x ∈M , every 2-form Ωx in the image of Wx (for Wx acting on 2-forms at x) is

∧-divisible by ξ = gx(u, · ) for each u ∈ Dxr{0}, and so Ωx(v, v
′) = 0 if v, v ′ ∈ Dx

⊥.

We now proceed to prove (a), (b), (c) and (d).

First, let d = 2. By Lemma 2.1(iii), this amounts to the condition rankW= 1, so

that (a), (b) and (c) follow from Lemma 2.1(iv) combined with [7, Lemma 17.1(ii)

and Lemma 17.2]. Also, for a nonzero 2-form Ωx chosen as in the last paragraph,

Dx is the image of Ωx, that is, Ωx equals the exterior product of two vectors in Dx

(treated as 1-forms, with the aid of gx). Now (d) follows since, by (a), Ωx(ux, · ) = 0

if u is a section of D.
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Next, suppose that d = 1. Replacing M by a neighborhood of any given point,

we may assume that D is spanned by a vector field u. If u were not null, we

would have W (u, v, u, v ′) = 0 for any sections v, v ′ of D⊥, as one sees contracting

the twice-covariant tensor field W ( · , v, · , v ′) = 0, at any point x, in an orthogonal

basis containing the vector ux. (We have already established (e) for W.) Combined

with (e) for W and the symmetries of W, the relation W (u, v, u, v ′) = 0 for v, v ′

in D⊥ would then give W = 0, contrary to the assumption that d = 1. Thus, u is

null, which yields (a). Now

(4) we choose, locally, a null vector field u′ with g(u, u′) = 1.

For any section v of D⊥ one sees that W (u, · , u′, v) = 0 by contracting the tensor

field W ( · , · , · , v) = 0 in the first and third arguments, at any point x, in

(5) a basis of TxM formed by ux, u
′
x and n− 2 vectors orthogonal to them,

and using (e) for W, along with the inclusion D ⊂ D⊥, cf. (a). Since u′ and D⊥

span TM , assertion (e) for W thus implies (d).

To obtain (b) and (c) when d = 1, we distinguish two cases: (M, g) is either es-

sentially conformally symmetric, or locally symmetric. For (c), it suffices to establish

vanishing of the scalar curvature s (cf. (2)). Now, in the former case, s = 0 accord-

ing to [5, Theorem 7], while (b) follows since, as shown in [6, Theorem 7 on p. 18],

for arbitrary vector fields v, v ′ and v ′′ on an essentially conformally symmetric pseu-

do-Riemannian manifold, ξ ∧ Ω = 0, where ξ = ρ(v, · ) and Ω = W (v ′, v ′′, · , · ).
In the case where g is locally symmetric, (b) and (c) are proved in Appendix II.

Assertion (e) for R is now obvious from (e) for W and (c), since, by (b), ρ(v, · ) =

0 for any section v of D⊥. The claim about E in (f) is in turn immediate from (1)

and (e) for R, which states that R(w,w ′)v, for arbitrary vector fields w,w ′ and any

section v of D⊥, is orthogonal to all sections of D⊥ (and hence must be a section

of D). Finally, to prove (f) for D, with d = 1, let us fix a section u of D, a vector

field v, and define a differential 2-form ζ by ζ(w,w ′) = (n−2)R(w,w ′, u, v) for any

vector fields w,w ′. By (c) and (e), ζ = g(u, · )∧ρ(v, · ), as D ⊂ D⊥ (cf. (a)), and so

ρ(u, · ) = 0 in view of (b) and symmetry of ρ. However, by (b), both g(u, · ) and

ρ(v, · ) are sections of the subbundle of T ∗M corresponding to D under the bundle

isomorphism TM → T ∗M induced by g, so that ζ = 0 since the distribution D is

one-dimensional. �

3. The case d = 2

For more details of the construction described below, we refer the reader to [7].

Let there be given a surface Σ, a projectively flat torsionfree connection D on Σ

with a D-parallel area form α, an integer n ≥ 4, a sign factor ε = ±1, a real vector

space V with dim V = n− 4, and a pseudo-Euclidean inner product 〈 , 〉 on V .



CONFORMALLY SYMMETRIC MANIFOLDS 5

We also assume the existence of a twice-contravariant symmetric tensor field T

on Σ with divD(divDT ) + (ρD, T ) = ε (in coordinates: T jk
,jk +T jkRjk = ε). Here

divD denotes the D-divergence, ρD is the Ricci tensor of D, and ( , ) stands for

the obvious pairing. Such T always exists locally in Σ. In fact, according to [7,

Theorem 10.2(i)] combined with [7, Lemma 11.2], T exists whenever Σ is simply

connected and noncompact.

For T chosen as above, we define a twice-covariant symmetric tensor field τ on

Σ, that is, a section of [T ∗Σ]�2, by requiring τ to correspond to the section T

of [TΣ]�2 under the vector-bundle isomorphism TΣ → T ∗Σ which acts on vector

fields v by v 7→ α(v, · ). In coordinates, τjk = αjlαkmT
lm.

Next, we denote by hD the Patterson-Walker Riemann extension metric [14] on

the total space T ∗Σ, obtained by requiring that all vertical and all D-horizontal

vectors be hD-null, while hD
x (ζ, w) = ζ(dπxw) for x ∈ T ∗Σ, any vector w ∈ TxT

∗Σ,

any vertical vector ζ ∈ Ker dπx = T ∗π(x)Σ, and the bundle projection π : T ∗Σ → Σ.

Finally, let γ and θ be the constant pseudo-Riemannian metric on V corre-

sponding to the inner product 〈 , 〉, and the function V → R with θ(v) = 〈v, v〉.
Our Σ, D, α, n, ε, V , 〈 , 〉 now give rise to the pseudo-Riemannian manifold

(6) (T ∗Σ × V, hD− 2τ + γ − θρD) ,

of dimension n, with the metric hD− 2τ + γ − θρD, where the function θ and

covariant tensor fields τ, ρD, hD, γ on Σ, T ∗Σ or V are identified with their pull-

backs to T ∗Σ × V . (Thus, for instance, hD− 2τ + γ is a product metric.)

We have the following local classification result, in which d stands for the dimen-

sion of Olszak distribution D.

Theorem 3.1. The pseudo-Riemannian manifold (6) obtained as above from any

data Σ, D, α, n, ε, V , 〈 , 〉 with the stated properties is conformally symmetric and has

d = 2. Conversely, in any conformally symmetric pseudo-Riemannian manifold such

that d = 2, every point has a connected neighborhood isometric to an open subset of

a manifold (6) constructed above from some data Σ, D, α, n, ε, V , 〈 , 〉.
The manifold (6) is never conformally flat, and it is locally symmetric if and only

if the Ricci tensor ρD is D-parallel.

Proof. See [7, Section 22]. Note that, in view of Lemma 2.1(iii), the condition

rankW= 1 used in [7] is equivalent to d = 2. �

The objects Σ, D, α, n, ε, V , 〈 , 〉 are treated as parameters of the above construc-

tion, while T is merely assumed to exist, even though the metric g in (6) clearly

depends on τ (and hence on T ). This is justified by the fact that, with fixed

Σ, D, α, n, ε, V , 〈 , 〉, the metrics corresponding to two choices of T are, locally, iso-

metric to each other, cf. [7, Remark 22.1].
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The metric signature of (6) is clearly given by −− . . .++, with the dots standing

for the sign pattern of 〈 , 〉.

4. The case d = 1

Let there be given an open interval I, a C∞ function f : I → R, an integer

n ≥ 4, a real vector space V of dimension n − 2 with a pseudo-Euclidean inner

product 〈 , 〉, and a nonzero traceless linear operator A : V → V , self-adjoint relative

to 〈 , 〉. As in [16], we then define an n-dimensional pseudo-Riemannian manifold

(7) (I ×R× V, κ dt2 + dt ds + γ) ,

where products of differentials represent symmetric products, t, s denote the Carte-

sian coordinates on the I ×R factor, γ stands for the pullback to I ×R × V of

the flat pseudo-Riemannian metric on V that corresponds to the inner product 〈 , 〉,
and the function κ : I ×R× V → R is given by κ(t, s, ψ) = f(t)〈ψ, ψ〉+ 〈Aψ,ψ〉.

The manifolds (7) are characterized by the following local classification result,

analogous to Theorem 3.1. As before, d is the dimension of the Olszak distribution.

Theorem 4.1. For any I, f, n, V , 〈 , 〉, A as above, the pseudo-Riemannian man-

ifold (7) is conformally symmetric and has d = 1. Conversely, in any conformally

symmetric pseudo-Riemannian manifold such that d = 1, every point has a con-

nected neighborhood isometric to an open subset of a manifold (7) constructed from

some such I, f, n, V , 〈 , 〉, A.

The manifold (7) is never conformally flat, and it is locally symmetric if and only

if f is constant.

A proof of Theorem 4.1 is given at the end of the next section.

Obviously, the metric κ dt2 + dt ds + γ in (7) has the sign pattern − . . .+,

where the dots stand for the sign pattern of 〈 , 〉.

Remark 4.2. A classification result of the same format as Theorem 4.1 cannot

be true just for essentially conformally symmetric manifolds with d = 1. Namely,

such manifolds do not satisfy a principle of unique continuation: formula (7) with f

which is nonconstant on I, but constant on some nonempty open subinterval I ′ of

I, defines an essentially conformally symmetric manifold with a locally symmetric

open submanifold U = I ′ × R × V . At points of U, the local structure of (7)

does not, therefore, arise from a construction that, locally, produces all essentially

conformally symmetric manifolds and nothing else.

As explained in [7, Section 24], an analogous situation arises when d = 2.

5. Proof of Theorem 4.1

The following assumptions will be used in Lemma 5.1.

(a) (M, g) is a conformally symmetric manifold of dimension n ≥ 4 and y ∈M .
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(b) The Olszak distribution D of (M, g) is one-dimensional.

(c) u is a global parallel vector field spanning D.

(d) t : M → R is a C∞ function with g(u, · ) = dt and t(y) = 0.

(e) dimV = n− 2 for the space V of all parallel sections of E = D⊥/D.

(f) ρ = (2−n)f(t) dt⊗dt for some C∞ function f : I ′→ R on an open interval

I ′, where ρ is the Ricci tensor and f(t) denotes the composite f ◦ t.
For local considerations, only (a) and (b) are essential. In fact, condition (e) (in

which ‘parallel’ refers to the connection in E induced by the Levi-Civita connection

of g), as well (c) and (d) for some u and t, follow from (a) – (b) if M is simply

connected. See Lemma 2.2(f). On the other hand, (c) – (d), Lemma 2.2(b) and

symmetry of ρ give ∇dt = 0 and ρ = χdt⊗ dt for some function χ : M → R, so

that ∇ρ = dχ⊗ dt⊗ dt. However, ∇ρ is totally symmetric (that is, ρ satisfies the

Codazzi equation): our assumption ∇W = 0 implies the condition divW = 0, well

known [11, formula (5.29) on p. 460] to be equivalent to the Codazzi equation for

the Schouten tensor σ, while σ = ρ by Lemma 2.2(c). Thus, dχ equals a function

times dt, and so χ is, locally, a function of t, which (locally) yields (f).

For any section v of D⊥, we denote by v the image of v under the quotient-pro-

jection morphism D⊥→ E = D⊥/D.

The data for the construction in Section 4 consist of I, f, n, V appearing in (a)

– (f), of the pseudo-Euclidean inner product 〈 , 〉 in V , induced in an obvious way

by g (cf. Lemma 2.2(f)), and of A : V → V with 〈Aψ,ψ ′〉 = W (u′, v, v ′, u′), for

ψ, ψ ′ ∈ V , where a vector field u′ and sections v, v ′ of D⊥ are chosen, locally, so

that g(u, u′) = 1, ψ = v and ψ ′ = v ′. (The bilinear form (ψ, ψ ′) 7→ 〈Aψ,ψ ′〉
on V then is well-defined, that is, unaffected by the choices of u′, v or v ′, in

view of Lemma 2.2(d),(e), while the function W (u′, v, v ′, u′) is in fact constant,

by Lemma 2.2(d), as ones sees differentiating it via the Leibniz rule and noting

that, since v and v ′ are parallel, the covariant derivatives of v and v ′ in the direc-

tion of any vector field are sections of D.) That A is traceless and self-adjoint is

immediate from the symmetries of W. Finally, A 6= 0 since, otherwise, W would

vanish. (Namely, in view of Lemma 2.2(d),(e), W would yield 0 when evaluated

on any quadruple of vector fields, each of which is either u′ or a section of D⊥.)

Under the assumptions (a) – (f), with f = f(t), we then have

(8) R(u′, v)v ′ = [f g(v, v ′) + 〈Av, v ′〉]g(u′, u)u

for any sections v, v ′ of D⊥ and any vector field u′. In fact, ρ(v, · ) = ρ(v ′, · ) = 0

from symmetry of ρ and Lemma 2.2(b), so that, by Lemma 2.2(c), R(u′, v)v ′ =

W (u′, v)v ′ − (n − 2)−1g(v, v ′)ρu′, where ρu′ denotes the unique vector field with

g(ρu′, · ) = ρ(u′, · ). Now (8) follows: due to (d), (f) and the definition of A, both

sides have the same g-inner product with u′, and are orthogonal to u⊥ = D⊥ (since

R(u′, v)v ′ is orthogonal to D⊥ as a consequence of Lemma 2.2(e)).
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We fix an open subinterval I of I ′, containing 0, and a null geodesic I 3 t 7→ x(t)

in M with x(0) = y, parametrized by the function t (in the sense that the function

t restricted to the geodesic coincides with the geodesic parameter). Namely, since

∇dt = 0, the restriction of t to any geodesic is an affine function of the parameter;

thus, by (d), it suffices to prescribe the initial data formed by x(0) = y and a null

vector ẋ(0) ∈ TyM with g(ẋ(0), uy) = 1.

As g(ẋ(0), uy) = 1, the plane P in TyM , spanned by the null vectors ẋ(0) and

uy (cf. Lemma 2.2(a)) is gy-nondegenerate, and so TyM = P ⊕ Ṽ , for Ṽ = P⊥. Let

pr : TyM → Ṽ be the orthogonal projection. Since pr(Dy) = {0}, the restriction

of pr to Dy
⊥ descends to an isomorphism Ey = Dy

⊥/Dy → Ṽ , also denoted by pr.

Finally, for ψ ∈ V , we let t 7→ ψ̃(t) ∈ Tx(t)M be the parallel field with ψ̃(0) = pr ψy,

and set κ(t, s, ψ) = f(t)〈ψ, ψ〉+ 〈Aψ,ψ〉, as in Section 4.

The formula F (t, s, ψ) = expx(t)(ψ̃(t) + sux(t)/2) now defines a C∞ mapping F

from an open subset of R2× V into M .

Lemma 5.1. Under the above hypotheses, F ∗g = κ dt2 + dtds+ h.

Proof. The F -images w,w ′, F∗ψ of the constant vector fields (1, 0, 0), (0, 1, 0)

and (0, 0, ψ) in R2 × V , for ψ ∈ V , are vector fields tangent to M along F

(sections of F ∗TM). Since D⊥ is parallel, its leaves are totally geodesic and, by

Lemma 2.2(e), the Levi-Civita connection of g induces on each leaf a flat torsion-

free connection. Thus, w ′ and each F∗ψ are parallel along each leaf of D⊥, as

well as tangent to the leaf, and parallel along the geodesic t 7→ x(t). Therefore,

w ′ = u/2, while the functions g(w ′, F∗ψ) and g(F∗ψ, F∗ψ
′), for ψ, ψ ′ ∈ V , are

constant, and hence equal to their values at y, that is, 0 and 〈ψ, ψ ′〉. It now

remains to be shown that g(w,w) = κ ◦ F , g(w, u/2) = 1/2 and g(w,F∗ψ) = 0.

To this end, we consider the variation x(t, s) = F (t, sa, sψ) of curves in M , with

any fixed a ∈ R and ψ ∈ V . Clearly, w = xt along the variation (notation

of Section 1). Next, xts = xst is tangent to D⊥, since so is xs, while D⊥ is

parallel. Consequently, [g(xt, u)]s = 0, as u is parallel and tangent to D. Thus,

g(w, u) = g(xt, u) = 1. (Note that g(xt, u) = 1 at s = 0, due to (d), as the geodesic

t 7→ x(t) is parametrized by the function t.) However, xss = 0 and xs is tangent to

D⊥, so that (3) and (8) now give xtss = [fg(xs, xs) + 〈Axs, xs〉]u, which is parallel

in the s direction, while xts = xst = 0 at s = 0. Hence xts = s[fg(xs, xs) +

〈Axs, xs〉]u, and so g(xts, xts) = 0 (cf. (c) above and Lemma 2.2(a)). This further

yields [g(xt, xt)]ss/2 = g(xt, xtss) = fg(xs, xs) + 〈Axs, xs〉. The last function is

constant in the s direction, while g(xt, xt) = [g(xt, xt)]s = 0 at s = 0, and so

g(w,w) = g(xt, xt) = s2[fg(xs, xs) + 〈Axs, xs〉] = κ. Finally, being proportional

to u at each point, xts is orthogonal to D⊥, and hence to F∗ψ, which implies

that [g(xt, F∗ψ)]s = 0, and, as g(w,F∗ψ) = g(xt, F∗ψ) = 0 at s = 0, we get

g(w,F∗ψ) = 0 everywhere. �
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We are now in a position to prove Theorem 4.1. First, (7) is conformally symmetric

and has d = 1, as one can verify by a direct calculation, cf. [16, Theorem 3].

Conversely, if conditions (a) and (b) above are satisfied, we may also assume (c) – (f).

(See the comment following (f).) Our assertion is now immediate from Lemma 5.1.

Appendix I: Proof of Lemma 2.1

We prove Lemma 2.1 here, since Olszak’s paper [13] may be difficult to obtain.

The condition d = n is equivalent to conformal flatness of (M, g), since n > 2

and so Ω = 0 is the only 2-form ∧-divisible by all nonzero 1-forms ξ. At a fixed

point x, the metric gx allows us to treat the Ricci tensor ρx and any 2-form Ωx as

endomorphisms of TxM, so that we may consider their images (which are subspaces

of TxM). If W 6= 0, fixing a nonzero 2-form Ωx in the image of Wx acting on

2-forms at x we see that, for every u ∈ Dx, our Ωx is ∧-divisible by ξ = gx(u, · ),
and so the image of Ωx contains Dx. Thus, d ≤ 2, and (i) follows. (Being nonzero

and decomposable, Ωx has rank 2.) As shown in [6, Theorem 7 on p. 18], if (M, g)

is essentially conformally symmetric, the image of ρx is a subspace of Dx, so that

(i) yields (ii), since g in (ii) cannot be Ricci-flat. Next, if d = 2, the image of our

Ωx coincides with Dx (as rankΩx = 2). Every 2-form in the image of Wx thus is a

multiple of Ωx, being the exterior product of two vectors in Dx, identified, via gx,

with 1-forms. Hence rankW = 1. Conversely, if rankW = 1, all nonzero 2-forms

Ωx in the image of Wx are of rank 2, as Wx, being self-adjoint, is a multiple of

Ωx ⊗ Ωx, and so the Bianchi identity for W gives Ωx ∧ Ωx = 0. All such Ωx are

therefore ∧-divisible by ξ = gx(u, · ), for every nonzero vector u in the common

2-dimensional image of such Ωx, which shows that d = 2. Finally, (iv) follows if

one chooses Ωx 6= 0 equal to Wx(v, v
′, · , · ) for some v, v ′ ∈ TxM .

Appendix II: Lemma 2.2(b),(c) in the locally symmetric case

Parts (b) and (c) of Lemma 2.2 for locally symmetric manifolds with d = 1

could, in principle, be derived from Cahen and Parker’s classification [1] of pseu-

do-Riemannian symmetric manifolds. We prove them here directly, for the reader’s

convenience. Our argument uses assertions (a), (d) in Lemma 2.2, along with (e)

for W, which were established in the proof of Lemma 2.2 before Appendix II was

mentioned.

Suppose that ∇R = 0 and d = 1. Replacing M by an open subset, we also

assume that the Olszak distribution D is spanned by a vector field u. By (1),

(9) i) R( · , · )u = Ω ⊗ u or, in coordinates, ii) ulRjkl
s = Ωjku

s,

for some differential 2-form Ω, which obviously does not depend on the choice of

u. (It is also clear from (1) that Ω is the curvature form of the connection in the

line bundle D, induced by the Levi-Civita connection of g.) Being unique, Ω is
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parallel, and so are ρ and W, which implies the Ricci identities R ·Ω = 0, R ·ρ = 0,

and R ·W = 0. Equivalently, Rmlj
sτsk +Rmlk

sτjs = 0 for τ = Ω or τ = ρ, and

(10) Rqpj
sWsklm + Rqpk

sWjslm + Rqpl
sWjksm + Rqpk

sWjkls = 0.

Summing Rmlj
sΩsk + Rmlk

sΩjs = 0 against ul, we obtain Ω ◦ Ω = 0, where the

metric g is used to treat Ω as a bundle morphism TM → TM that sends each

vector field v to the vector field Ωv with g(Ωv, v ′) = Ω(v, v ′) for all vector fields

v ′. Lemma 2.2(d) and (9.i) give W ( · , · , u, v) = R( · , · , u, v) = 0 for our fixed vector

field u, spanning D, and any section v of D⊥. Hence, by (2), g(u, · ) ∧ σ(v, · ) =

g(v, · ) ∧ σ(u, · ). Thus, σu = cu for the Schouten tensor σ and some constant c,

with σu defined analogously to Ωv. (Otherwise, choosing v such that u, σu and

v are linearly independent at a given point x, we would obtain a contradiction with

the equality between planes in TxM , corresponding to the above equality between

exterior products.) Consequently, g(u, · ) ∧ (σ + cg)(v, · ) = 0, and so σv + cv is a

section of D whenever v is a section of D⊥. Let us now fix u′ as in (4). Symmetry

of σ gives g(σu′, u) = c. In a suitably ordered basis with (5), at any point x, the

endomorphism of TxM corresponding to σx thus has an upper triangular matrix

with the diagonal entries c,−c, . . . ,−c, c, so that trgσ = (4 − n)c. Consequently,

(n − 2) s = 2(n − 1)(4 − n)c, for the scalar curvature s, and (n − 2)ρu = 2cu.

However, contracting (9.ii) in k = s, we get ρu = −Ωu, and so (n−2)Ωu = −2cu.

The equality Ω ◦ Ω = 0 that we derived from the Ricci identity R · Ω = 0 now

gives c = 0. Hence s = 0 (which yields Lemma 2.2(c)), and ρu = 0.

As c = 0 and σ = ρ, the assertion about σv + cv obtained above means that

ρv is a section of D whenever v is a section of D⊥. Let λ, µ, ξ be the 1-forms

with λ = g(u, · ), µ = g(u′, · ), ξ(u′) = 0, and ρv = ξ(v)u for sections v of D⊥.

Transvecting (9.ii) with µs, we get Ω = R( · , · , u, u′) = (n− 2)−1λ ∧ ρ(u′, · ) from

Lemma 2.2(c) with ρu = 0 and Lemma 2.2(d). However, evaluating ρ(u′, · ) on

u′, u and sections v of D⊥, we see that ρ(u′, · ) = hλ+ ξ, with h = ρ(u′, u′). (Note

that ξ(u) = 0 since ρu = 0, while D ⊂ D⊥ by Lemma 2.2(a).) Therefore,

(11) i) (n− 2)Ω = λ ∧ ξ , ii) ρ = hλ⊗ λ + λ⊗ ξ + ξ ⊗ λ.

In addition, if v ′ denotes the unique vector field with g(v ′, · ) = ξ, then u and v ′

are null and orthogonal, or, equivalently,

(12) the 1-forms λ and ξ are null and mutually orthogonal.

In fact, g(u, u) = 0 by Lemma 2.2(a), g(u, v ′) = 0 as ξ(u) = 0, and v ′ is null since

(11) yields (n − 2)[ρ(Ωu′) − Ω(ρu′)] = 2g(v ′, v ′)u, while, transvecting the Ricci

identity Rmlj
sRsk + Rmlk

sRjs = 0 with ul and using (9.ii), we see that ρ and Ω

commute as bundle morphisms TM → TM .

Furthermore, transvecting with µkµm the coordinate form Rmlj
sτsk+Rmlk

sτjs = 0

of the Ricci identity R · τ = 0 for the parallel tensor field τ = (n − 2)Ω + ρ =
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hλ⊗ λ+ 2λ⊗ ξ (cf. (11)), we get 2λjblsξ
s = 0, where b = W (u′, · , u′, · ). Namely,

R = W + (n− 2)−1g ∧ ρ by Lemma 2.2(c), Wmlj
sτsk = 0 in view of Lemma 2.2(d),

µkµmWmlk
sτjs = 2λjblsξ

s since b(u, · ) = 0 (again from Lemma 2.2(d)), and the

remaining terms, related to g ∧ ρ, add up to 0 as a consequence of (12), (11.ii)

and the formula for τ . (Note that (12) gives Rj
sτsk = Rj

sτks = 0, and so four out

of the eight remaining terms vanish individually.) However, u 6= 0, and so λ 6= 0,

which gives b( · , v ′) = 0, where v ′ is the vector field with g(v ′, · ) = ξ. Thus,

W (u′, · , u′, v ′) = 0. As a result, the 3-tensor W ( · , · , · , v ′) must vanish: it yields

the value 0 whenever each of the three arguments is either u′ or a section of D⊥.

(Lemma 2.2(e) for W is already established.)

The relation W ( · , · , · , v ′) = 0 implies in turn that W ( · , · , · , ρv) = 0 (in

coordinates: Wjkl
sRsp = 0). In fact, by (11.ii), the image of ρ is spanned by u and

v ′, while W ( · , · , · , u) = 0 according to Lemma 2.2(d).

As in [13, 1o on p. 214], we have W = (λ ⊗ λ) ∧ b (notation of (2)), where,

again, b = W (u′, · , u′, · ). Namely, by Lemma 2.2(e) for W, both sides agree on any

quadruple of vector fields, each of which is either u′ or a section of D⊥.

Finally, transvecting (10) with µkµm and replacing R by W + (n − 2)−1g ∧ ρ,
we obtain two contributions, one from W and one from g ∧ ρ, the sum of which is

zero. Since W = (λ⊗ λ) ∧ b, the W contribution vanishes: its first two terms add

up to 0, and so do its other two terms. (As we saw, b(u, · ) = 0, while, obviously,

b(u′, · ) = 0.) Out of the sixteen terms forming the g ∧ ρ contribution, eight are

separately equal to zero since Wjkl
sRsp = 0, and so, in view of (11.ii) and the

relation W = (λ⊗ λ)∧ b, vanishing of the g ∧ ρ contribution gives λpSjlq = λqSjlp,

for Sjlq = 2bjlξq−bqlξj−bqjξl. Thus, Sjlq = ηjlλq for some twice-covariant symmetric

tensor field η, which, summed cyclically over j, l, q, yields 0 (due to the definition

of Sjlq and symmetry of b). As λ 6= 0 and the symmetric product has no zero

divisors, we get η = 0 and Sjlq = 0. The expression bjlξq− bqlξj is, therefore, skew-

symmetric in j, l. As it is also, clearly, skew-symmetric in j, q, it must be totally

skew-symmetric and hence equal to one-third of its cyclic sum over j, l, q. That

cyclic sum, however, is 0 in view of symmetry of b, so that bjlξq = bqlξj. Thus,

ξ = 0, for otherwise the last equality would yield b = ϕξ ⊗ ξ for some function

ϕ, and hence W = (λ ⊗ λ) ∧ b = ϕ(λ ⊗ λ) ∧ (ξ ⊗ ξ), which would clearly imply

that the vector field v ′ with g(v ′, · ) = ξ is a section of the Olszak distribution D,

not equal to a function times u (as ξ(u′) = 0, while g(u, u′) = 1), contradicting

one-dimensionality of D. Therefore, ρ = hλ⊗λ by (11.ii) with ξ = 0, which proves

assertion (b) of Lemma 2.2 in our case.
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