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1. Introduction. An n-dimensional (n > 4) pseudo-Riemannian mani-
fold (M, g) is called conformally symmetric [1] if VC = 0, where V denotes
the Levi-Civitd connection and C is the Weyl conformal curvature tensor
of M given by

Ch{jk = ka —(n—2)"1 (945 e + Ik Sss — IngSir — 9ucSag) +
+K(n—1)""(n—2)" (g 9n — InsIixc) »

R, 8 and K = ¢¥8, = ¢ ¢" R, being the curvature tensor, the Ricci
tensor and the scalar curvature of (M, g), respectively. The manifold
(M, g) is said to be essentially conformally symmetric (shortly, e.c.s.) if
it satisfies V0 = 0, but is neither conformally flat (C = 0) nor locally sym-
metric (VR = 0). The existence of e.c.s. manifolds was proved first by Roter
in [10]. The aim of this paper is to investigate homogeneous e.c.s. mani-
folds (examples of which can be found in [3] and [4]).
In Section 3 we define homogeneous e.c.s. manifolds My, »,
#rr and Mp, ., which are universal in the sense that the pseudo-
Riemannian universal coverings of their homogeneous open submanifolds
exhaust, up to isometry, all simply connected homogeneous e.c.s. mani-
folds (Theorem 2). This, in particular, implies that a homogeneous e.c.s.
manifold must not be geodesically complete (Theorem 3).

Section 4 is devoted to certain remarks on the global structure of
simply connected homogeneous e.c.s. manifolds. We prove there
(Theorem 4) that such a manifold is always diffeomorphic to a product
R*x M or R®x M, M being flat and homogeneous. Moreover, if the metric
signature is (— — -+ ... +), then, in some cases, such a manifold must
be isometric to a universal model, hence topologically Euclidean (Corol-
lary 1). In general, however, a simply connected homogeneous e.c.s.
manifold need not be Euclidean (Theorem 5).
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Throughout this paper, by a manifold we shall mean a connected
paracompact manifold of class C* or analytic. Concerning pseudo-Rie-
mannian manifolds, we shall often write M instead of (M, g). The group
of all isometries of M will be denoted by I (M), while I°(M) will stand for
its identity component.

2. The universal models. Given a pseudo-Riemannian manifold (X, g),
by a local isometry of M we shall mean any isometry between open con-
nected subsets of M.

LEMMA 1. Let (M, g) and (M,, g,) be two homogeneous pseudo- Riemannian
manifolds, locally isometric to each other. If M 18 simply connected and M,
has the property

(1) any local isometry of M, can be extended to a global isometry of M,
onto itself,

then there exists an isometric immersion f: M — M, such that :
(i) the image f(M) ts homogencous (as an open submanifold of M o)
(ii) f: M —f(M) 48 a covering.

Proof. Fix p € M, p, € M, and their neighbourhoods U, U,, respec=
tively, together with an isometry h: U — U,. Since I(M,) acts on M,
transitively, so does its identity component @G, = I°(M,); hence we may
write M, = G,/H,, where H, is the isotropy subgroup of p, and the iden-
tification is given by G,/H,3 aH, — ap, € M,. Similarly, the universal
covering group G of I°(M) acts transitively on M via the covering homo-
morphism @ — I°(M) and we bave M = G/H, H c @ being the isotropy
subgroup of p. Note that the elements of the Lie algebra G’ of G (respec-
tively, @, of @,) can be viewed as complete Killing vector fields on M
(respectively, on M,) and (1) implies that any Killing field on U, can be
extended to a unique complete Killing field on M,. Therefore, the dif-
ferential h, of h defines a Lie algebra homomorphism h,: @ — @, (as it
asgigns a Killing field on U, to a Killing field on U), which sends H’
(complete Killing fields vanishing at p) into H,. Simple connectivity
of @ implies now that A, is the differential of a Lie group homomorphism
h: @ — G,. Moreover, H is connected, since it is the fibre of the bundle
projection G -~ G/H = M with n,M = 0. Hence h(H) < H,, and so &
defines a mapping f: G/H — G,/H,. The (0, 2) tensor fields ¢*, g; on G, G,
respectively, induced from the metrics by the projections G — M, G, —> M,,
are clearly left-invariant. Thus, since ¢, (X, ¥) = ¢g(X,, Y,) for Killing
fields X, Y € T,G = & (e being the unit of @), we have (h*g}), = ¢., and
hence h*g; = g* by left-invariance. This shows that f is an isometric
immersion. Next, for any ¢ € I(M), there exists ¢, e I(M,) such that
fop = @,0f (in fact, we can define such a ¢, locally and then extend it
by (1)). This, clearly, implies that f(M) is homogeneous. Finally, since
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he: @ — @, induces the isomorphism
fon: ¢ |H - @Q,/H,,

we have h;'(H,) = H', which shows that H is the identity component
of 2~1(H,). It is now clear that the composite

G _’-; Go—)‘Go/Ho

defines a diffeomorphism G/A~!(H,) - f(M), which makes the map
f: M — f(M) correspond to the natural mapping

n: G/H -Gk~ (H,).

However, the discrete group A2 !(H,)/H acts on G/H on the right
by the formula

(aH,bmod H)—> abH, beh ™ '(H,)

(this is well defined, since H is normal in A~'(H,)). The action is clearly
free and its orbits coincide with the fibres of =», hence =x is a covering.
This completes the proof.

As shown in [6] (Theorems 3 and 5), every e.c.s. manifold M satis-
fies the relations rank 8 <2 and 88, — 8);8; = FCOyy, for some fune-
tion F, called the fundamental function of M. It is obvious that F' vanishes
exactly at the points where rank 8 < 1. If M is homogeneous, F is clearly
constant and either F = 0 (M is then called parabolic) or F is a non-
zero constant, i.e., rank 8 = 2. In the latter case, M is called elliptic or
hyperbolic according to whether § is semidefinite or is not at some (hence
each) point (c¢f. [3], Lemma 1).

Let us also note that there exist e.c.s. manifolds which are Riceci-
recurrent in the sense that 8, V;8,; = 8, V;8; ([10], Theorem 3), and
that each of them is parabolic ([6], proof of Theorem 5).

Now we formulate certain important examples of e.c.s. manifolds.
Fix an integer n» > 4. From now on we adopt the convention that the
final Roman letters «, y, 2 take on the values 3, ..., n —2, while the Greek
indices a, 8, ¥ vary in the range 2,...,n —1. Suppose we are given real
numbers F, g, €3y ...y &,_; With F' # 0 5 ¢, |¢,| = 1, and a non-zero sym-
metric (n—2) X (»—2)-matrix ¢ = [a,,] such that

(2) Zeaa“ =0.

a

We define the pseudo-Riemannian manifolds (M}, 7, §°), (M., r» g7)

and (M”.a,a,ngp) as
M.’i’r.F = M?I,r.F = Rn, -M?’,s,a,c = R:- = (0’ 00) X Rn_l?

while the essential non-zero metric components (in the Cartesian coordi-
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nates u*, ..., ") are given by

ge = 2u"e“+23"“2 e (U7} +(2F)'e®, gE = —2u"led,

z

g5 = —2uhe 42678 Yo (W) + (@), g = gfa = ¢,

z

0% = e o= —2uet, gL = —eV D (uf—Fle™,

z

g =2ue*, gh =gi., =¢", g0 =é&,
yﬁ = 8(“1)—22 Ga(ua)2+2 aap,uauﬁ, gf;l =1, gfa = &q,
a ap

where A = }log(2n—4), u = tlog(n—2), and r—2 (respectively, 8 —1)
is the number of minuses among the e, (respectively, among the ¢,). Thus
2<r<n—2and 1<s8<n—1. It is clear that r (respectively, 8) is equal
to the index of g or g7 (respectively, of gF).

Note that g is a particular case of the general formula for e.c.s.
Ricei-recurrent metrics given by Roter in [10].

LEMMA 2. In the Cartesian coordinates, any local isometry f = (f*,...,f™)
of (MP,p 0.0, 97) 8 of the form

ff=Tuw, =) Hju'+0%w),

3 . 4
) f*= =T ) e, 0%(ud) [2H;W’+}C"(u‘)]+1’“u“+z,
a B

where T > 0 and 2z are real numbers, H = [Hj] i8 a matriz such that

(4) D e, HIH) = 5,805, D apHLH} = T %ay,
»0

4

and the functions C° of u* > 0 form a solution of the system
(5) 0° = e(u))"20*+ T, D) 0,5C".
B

Conversely, given T > 0, z and Hg, C° satisfying (4) and (5), formulae (3)
define a global isometry of Mp , , . onto itself.

Proof. One can explicitly compute that (3) together with (4) and (5)
define a global isometry. Conversely, let f be a local isometry of (M, g)
= (M3 40 ¢°). Our assertion can now be obtained by proceeding
ag in [2] (proof of Theorem 2). We can sketch this argument as follows.
The differential du! is the unique (up to a factor) parallel covariant vector
field in M (cf. [10], p. 93). Hence f*du* = T'du? for some constant T # 0.
Raising indices, we obtain f,0/0u™ = T7'9/0u™ (i.e. 9,f* = T}, 0.f* =0
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for i < n). Moreover,
VS = —2&(n—2)(u*)"%(du?)?

(see [10], p. 93), so that the relation f* V8 = V8 yields ' = utof = Tud.
As %! > 0, this implies T' > 0. Next, f leaves invariant the orthogonal
complement D of d/du", which is an integrable codimension one distri-
bution in M. Any leaf N of D is given by 4! = const and inherits from M
a symmetric connection (as a totally geodesic submanifold), which is
flat since du?, ..., du™ are parallel along N (so that u2, ..., 4" are affine
coordinates for N). Our local isometry f, wherever defined, sends (local)
leaves of D affinely into leaves. Thus, f* and f* are affine functions of
u?, ..., 4", namely

=D fw + 00wy,  f* =3 fiut)us+ T a4 0" (),
B a
with
(6) det [fz(u')] 0.
Wehave g,, = (f*¢),. and similarly for g.p and g,;, which easily implies

Zeyj",,f; =0
4
(hence f3 is constant by (6), say fa(u') = Hp), and
(7) P = —T7 Y e, 0"H,
7

D e, HiH) = 6,04, D a,HiH) = T %a,,
y8

?

(8) Tf2+T° Y ap, HIO? +e(ut)™2 3 e, HACP =0,
By B
and, finally,

(9)  2TC"+ D) ea(C) +e(u)? Y6 (0 +T* Y a,,0°0° = 0.
a a af

Combining now (7) with (8), we obtain (5). From (9) and (5) it follows

immediately that
1 .
d(0”+§T : ElsyC"C’)/dul ~o,

Y
whence

1 .
"= — 2T D e, 0707+
Y

for some real z. In view of (7), this completes the proof.
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Remark 1. By Lemma 2, homogeneity of Mp,,, is obviously
equivalent to the following algebraic condition on a = [a,]:

(10) For each T > 0 there exists a matrix H satisfying (4).

It is clear that (by using powers of H) (10) may equivalently be
formulated as follows:

“For each T sufficiently close to 1...”.

Therefore, local homogeneity of any particular open submanifold
of M3, , . implies homogeneity of Mp,,,. An example for (10) can be
formulated as follows:

Let ¢ = —eg =1 (g,...y6,_, of arbitrary signs). The matrix a
with the non-zero entries a,; = —a,3 = —ay; = agy = 1 satisfies (10).

In fact, given T > 0, (4) holds for the matrix H whose non-zero
components are ‘

H; = H} = (2T7)"'(T*+1), H;=H; = (2T)"'(I*-1),
Hi=1 for4<ig<n—1.

However, non-zero symmetric matrices a satisfying (10) are of a very
exceptional type. For such an a, set af = ¢ @q5, 8O that (4) yields HaH ™!
= T%a. It follows now easily that the characteristic polynomial P (&)
= det(@— &-Id) of @ is positively homogeneous of degree n—2. Hence
P(&) = (—1)""2& 2 In particular, det@ = 0 = deta and tr@d =0 (so
that (2) is a consequence of (10)). Consequently, the existence of a matrix a
satisfying (10) implies 2 < s < n»—2 (i.e., among the ¢, there must oceur
both plus and minus signs). In fact, in the case s =1 (or 8 =n—1),
the matrix @ # 0 is symmetric, and so it has a non-zero eigenvalue.

From now on, M% , r, M}, » and those M3, , , for which the matrix
a satisfies (10) will be referred to as (elliptic, hyperbolic or parabolic)
universal models.

In the following theorem we use the notation introduced above.

THEOREM 1. (i) Mg, (respectively, My ,r) 18 an n-dimensional
elliptic (respectively, hyperbolic) e.c.s. pseudo-Riemannian manifold with
the metric of index r and the fundamental function F.

(i) M%,rp and Mg, are homogeneous. More precisely, they admat
Lie group structures which make their metrics left-invariant.

(i) Mp,,. 98 Ricci-recurrent (hence parabolic) with the metric of
index 8. It i8 homogeneous if and only if a satisfies (10).

(iv) Bvery n-dimensional homogeneous elliptic (respectively, hyper-
bolic or parabolic) e.c.s. manifold M is locally isometric to M% , p (respec-
tively, My, p or Mg, ,.) for some r and F or 8, ¢ and a satisfying (10).
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Here r (respectively, s) is the metric index of M while (in the elliptic or hyperbolic
case) F is its fundamental function.

Proof. For M%,r and My, p, (i) and (iv) are stated explicitly
in [3] (Remark 5) and [4] (Remark 3). As for (ii), finding a Lie group
structure on M compatible with the metric g is equivalent (provided that
n, M = 0) to appointing a flat complete connection V on M with parallel
torsion and such that Eg = 0 ([7] and [8], p. 6). This in turn can be reduced

to constructing a V-parallel frame field on M, i.e., vector fields e, ..., e,
on M (n = dimM), linearly independent at each point, spanning an n-dimen-
sional Lie algebra, satisfying g(e;, ¢;) = const and such that their combi-
nations (with constant coefficients) are complete vector fields. Thus,
for M = M%, ywe can put

Q 3 R
e, = e td,+e Z u*d,+ (E V3¢~ 2 (u’)’—u""e"‘)dn_l_
x x

3
_ (u"e-“ +ooe D sz(u“)2+(4F)‘le°") d,,

z

b
e;. = ¢~ dy— V36~ % 2 g U d, -+ (e“"‘ u® — 5 6~ Z &, (u®)? —

z z

1
- (41?)“6“‘) a,_.+ (3'u —lg=31 _ 5 V3¢~ 2 (u’”)’) d,,

6y = dz+'/§3-uuz n—l—'sze_uuzdm by =dy_yy €, =dy,
while for M}, p it is sufficient to set

e, = e td,—e ¥ 2 ud,+ (e“"z e,(u’)z—u"“e"'""—u“e"“)d o+

1 :
+ (,un-le—slo — E e 5# Z & (uz)z) dm

— n, - 1 —
eg = ¢ “dg+e "‘Zz: u’d,—(u e+ 3¢ “‘Ze,(u’)2)d,,_,+
_l_(F—lesu_I_,unG—Sﬂ_l_u —le—sp_l_e—wzsx(uz.)z d“,

@®
e, = d,—e e utd,_,+e.e”vd,, e,_,=4d,_,, e,=4d,

(where d; = d/0w’). Finally, Mp,,, is Riceci-recurrent (hence para-
bolic) by Theorem 3 of [10], and (iii) is immediate from Remark 1. Consider
now an arbitrary homogeneous parabolic e.c.s. manifold (M, g), dimM = n,



174 A. DERDZINSKI

and fix p e M. By homogeneity, 8, #0 and VS8, # 0. Moreover, M
is Ricci-recurrent ([5], Proposition 1). Hence, in view of Theorem 3 of [10],
there exists a coordinate system u?, ..., 4" at p such that

g = gu(@u) + D) e (@u") +du' @ du" + du" @ du’

with
el =1 and gy, = A(W) ) e (u) + D) aute,
a af

where A is a non-constant function of «*and a = [a,] is a non-zero sym-
metric matrix satisfying (2). Since

S =(n—2)A(du')® and VS = (n—2)A4’'(du')
([10], p. 93), the codirectional covariant vector fields
v =[(n—2)|4|]"?du’ and w = [(n—2)A']du’

are invariant under all isometries of M (as they are determined by
S =499 VS = w®w®w), and hence their proportionality coefficient
(n—2)"Y6(A")%| 4|71 is constant. This clearly yields A (u') = e(u'+4b)~?
for some s % 0 and b. By an obvious change of coordinates (translation
of u! followed by reflection of «* and «", if necessary), we obtain for ¢
an expression of type gf with u!> 0, i.e., a neighbourhood of p is iso-
metric to an open subset of some My, ,,. This subset is locally homo-
geneous and so, by Remark 1, a satisfies (10), which completes the proof.

Going on to a further study of the universal models, let us investi-
gate the structure of their local isometries.

LEMMA 3. Any local isomelry of Mg,y or of My, p i8 of the form
Boh, where h = (h', ..., h") is given by

(W =o'y, B =% b= D+ D, ),
14

(11) * Al — un—l+ZD2—l(,ul’ u?)u? + G (u!, u?),
v

B =t ) D, wt)ut + 6" (, ),
v

ki being a constant matrix such that
(12) D) e bk = 5,4,
2

and the following conditions are satisfied:
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(i) For Mg, p,
(13) D*(u!, u?) = L exp(—2u'e~*)+ P exp(ule~? +utV3e ) +
+Q,exp (u'e~® —u?V3e~%),
(14) Dt = —6* Y 50, D%, D= —et ) 60,1,
> :

G = xpexp(—u'e ? +u2V3e~ ) + gpexp( —ule~ —utV3e~ %) —

1
-3 V3e~% 2 &, Plexp (2ule~? 4 2u?V3e~ ) +

1
+t3 V36~ 2 £,Q2exp (2ule~? — 202 V3e~%) —

T

- % V3¢~ % 2 8, L P, exXp(—ule™ +urV3e~%) +

z

2
+3 V3¢~ 3 2 £,0.Q,€xXp ( — ule~ —u?V/36~%) + roexp (2ute™ ),

z

G = x,V3exp(—u'e~? +uV3e~ ) — o, V3exp( —ule~? —u?V36 %) —

- -;— e 3 2 e, PLexp (2u' e~ + 2u? V36~ ) —
A
1
-3 e 2 e, Q2exp (2u'e™* —2u’V 367 —
x
—e ¥ ) g, P,Q.exp(2u'e™) 4673 » g, llexp(—4ule™ ),
2 2
and
5) B! = au'+8fu*+¢'y, B = —pu'+daut+e*, B =7,

B"! = $aqu™'—pu", B" = §pu""'+au",

where a = co8(2k=/3), p =s8in(2k=(3) for an integer k, |8] =1, and
ey ed(,,P,Q, (g =3,...,n—2), %, 6, T, are real paramelers.

(ll) For -Mz,r,F’
(16) D*(u',u®) = {,exp(—u'e 4 ule™ )+ [stin (-;— V3¢~ (u! + u’)) +
+@Q,cos (% V36~ (u! + u’))]exp (% e~ (u' — u’)) ,

(17) Dyt = —e7 Y e, M0, D, DI = —6" D 510,17,
2 2
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and @"! = @y +g"Y, G = QY+ g", where

g" ! = vpexp (e (u' —u?)) — % [(xo —V30,)cos (% V3¢ (u! + uz)) +

+ (09 + V3x,)sin (% V3 (ul + u’))]exp (%— 6~ (u? — u‘)) ,
(18) .
g" = Toexp (7 (u' —u’)) + [%0008 (5 V36~ (u! +u2)) +

+ go8in (% V3e~2# (u! + uz))]exp (% e (u* — u’)) ,

1
19) @ !'= ——2-6_3”2 e Clexp(—2u'e™* 4 2ute™ ) 4
x

+ % e (exp (672 (u' — u’))) [Z &,(Q2—P:—2V3P,Q,) X

z

X COS8 (Vge"“ (u' +u?)) +
+ D) 6(2P.Q,— V32 +V3Q)sin (Vo™ (u! + o) +

+2 e (P2 D]+

1
t3 e (exp- (% 6~ (u? — “1)» [ 22 &, (V3L,Q,— LP,) X
X 8in (% V3e 2 (u! + u’)) —

— Z &, (V3L,P,+£,Q,)cos (% V362 (ul + u’))],

1
(200 @r = Ee"”ZszC:exp( —2ulem 4 2ute)

1
+ ry e~ 3 (exp (e-zn(ul —_ uz))) [;‘ ez(l/gQ: - I/gP: —-2P,Q,) X
x sin (Y36~ (u' +u?)) +
+ 2 &, (P —@2—2V3P, Q,)cos (V362 (u! +u’))],
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and
B' =+ ({—-1)u*+e', B =((-1)u'+lu+c*, B® =7,

B! = w4 (L —-1)w", B* = ({—-1)u""'+{u",

where { =0 or { =1, and ¢%, ¢4 (., P,,Q, (¥ =3,...,n—2), %, 0y, T,
are real parameters.

Conversely, the transformations B and h of the above type (for any
e, 2 Loy Py @,y %oy Goy To with |8] =1, k an integer or { =0 or { =1)
are global isomeiries of My , p or of My . p, respectively, onto itself.

Proof. The connection and Ricei tensor components for My = Mg,
and My = My, p are calculated in [3] (proof of Theorem 4) and [4]
(proof of Theorem 3). Namely, the essential components of § and V8
are 8y = 8y = —€*, V8 = —2, Vo8 = V18, =2 for My and
8y =€, V8, = —2, V3833 =2 for Mzy. Thus, Lin(d,_,, d,) = im8
is invariant under any local isometry f = (f’, ..., f*) of Mz or My, and
80 is

(21)

Lin(ds, ..., d,) —ker§ (4, = 0/0u’).
However, f,dls = (0:f, ..., 9,f"),, so that we obtain
(22) Op_1f' = 0psf? = 0p_1f* = 0pf' = 0pf* = 0,f° = 0,f' = 0, f* = 0.
Fix a point p in the domain of f. The relation f*8 = 8 implies
(Oof) +(0.F*)* =1 = (0af')*+(0af*)?,  0uf+0af'+0.f*-0,f* = 0,
whence

0.f' = cosp, 0,f' = bsing, 4,f* = —sing,
0yf* = dcosp, 18] =1,

@ = @(u?, u?) being defined close to p (for My), while for My the cor-
responding relations are

01f 0,02 =0 = 0,11 0,f%, 0102 +0.f2- 0, =1,
which implies
0.f' = cos(mm[2)e’, B,f* = sin(mn/2)e°,
0.f* =sin(mn(2)e’, 0,f* = cos(mn/2)e’,
m being an integer, and 6 = 6(u?, u%). Now f*VS = V8§ yields, for M,
Sing(sin?p —3cos2p) =0 and cosgp(cos?p—3sin2g) = 1,
8o that ¢ = 2k=/3, ¥ — an integer, and, for M,

(cos®(mm/2) —sind(mm/[2))e® =1,

12 — Colloquium Mathematicum XL.1
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whence § = 0 and m =0 or m =3 (mod 4), i.e.,

Of' =8 0.f' =01 =0, 0, =¢,
where { = 0 or { = 1. In view of (22), this says that, for My,
f! = ulcos(2kw/3) + dusin (2k = /3) +-¢?,
f* = —wutsin(2k=/3) 4 du2cos (2kw/3) + ¢2,
and, for My,
fl=tw+(—-1ur+et, [ =(—-1)ur+lut+e?

(in a neighbourhood of p, ¢!, ¢? being real constants). Writing now f in
the form f = Boh, where the global isometry B is given by (15) or (21),
respectively, for the local isometry A thus defined we obtain A' = u!
and h® = u’. Evaluating the equality

(23) h'g =g

for the components gy, 91 n—1y J2.n—1) 92n (§ = g° 0or g = g7) and using (22),
we deduce

(24) OBV =0, h* =1, 0, k" =8,h"! =0.
Thus, in view of (22) and (23),

htdl = d1+{dm dn—l’ dn}" h.d, = ds‘l"{dz, dn-—l’ dn}’

hod, = 2 (0,hY0 b~ d, + (8 h" o k) d,_, + (0,h 0 h7)d,,
vy
h*dn—l = Gp_1y h*dn = dn’

where the bracket is to be read “a combination of”. Using the explicit
form of the connection components ([3] and [4], loc. cit.), we can observe
that V3, d, is a combination of d,_,, d, if ¢ > 2 or j > 2 and that it vanishes
if both 4, j > 2. Analogous relations hold for the fields h,d;. Thus, computing
Vha hedy and using (22) and det [0,h¥] # 0, we obtain

9,0,h° = 0,0,A"" = 9,0,k = 0.

Similarly, the d,-coefficient of V) g hed, vanishes for i <2, which
implies 0,0,hY = 0,0,k = 0. Hence, by (22), hY = d,h¥ is constant.
From the relations above it follows immediately that h is of form (11).
Relation (23) applied to the component g,, implies (12).

Evaluating now (23) for g, gazs 11y J13) Jasy We obtain certain
equalities between polynomials in variables 3, ..., w" and by comparing



PSEUDO-RIEMANNIAN MANIFOLDS

179

their coefficients we get, for My, (14) and
D2+267% Y&, B DY+ 69, D3 =0,
v
(25) 2D —¢*9, D% —e¥9, D! =0,
Dy—267% Y e, BDY— 69,05 =0,
Y
(20,G"+67* D) 6,(0, D7) +267% e, (D7) + 276" = 0,
x z
(26) 4 28-‘Gn—1— Ze,(alDz)O,D"—e‘azG"——e‘O,G"” = 0,

266" —267% 3V, (DF) — D 6,(3, D7) —26" 9,6 = 0,

\ T x

while the corresponding equalities for M, are (17) and
Dy '—e*0,D% =0, Di4e*9,D¥ ' =0,
(27)
0, D57 +0, D5 — 26" ¥ e, hiDY =0,
v

(20,G"+ 67" D' e,(0, D7) — 267G =0,

z

(28) (016" +0,0"+ 6" D16 (0,070, 0°— 6% e, (DF) =0,

z z

26 @™+ D6, (0, D7) +2¢"0,6"" = 0.
- P

\

Let us now treat M and My separately.
(i) For My, (14) turns (25) into
0,0, D = —e 0,D* 26 D?,
0,0,D° = €0, D%, 0,0,D° = ¢ %9, D" +26 D",

It is easy to verify that the general solution D of this system is given
by (13). Substituting (13) into (26), we obtain a system of partial differ-
ential equations with indeterminates G*~! and G*. For a fixed u?, the
first equation becomes an ordinary linear differential equation for G"
whose general solution is parametrized by a function of 2 Inserting
this solution into the third equation of (26), we can express @' by two
parameter functions, one depending on «* and the latter — on «2. Finally,
the second equation allows us to determine the parameter functions,

which leads to the desired formulae for G*~! and G".
(ii) For My, (17) and (27) yield

alal.Dz = 6—'2”6,1)3, alag.Dz = _e_‘”Dz, 6203 = —8—2"0117’.
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The solutions D* of this system are given by (16). Substituting (16)
into (28) we obtain a system of inhomogeneous linear partial differential
equations for @*~! and G™. Given any particular solution G3~!, G} (which
can be defined, e.g., by (19), (20)), every solution is of the form G*~! =G}~ +
+g" Y, @ = Q%4 ¢", where g"!, g" satisfy the associated homogeneous
system

0,4 = 67", 0,47+ 0.9" =0, 0,9" = —e g,
The latter is clearly equivalent to the completely integrable one

n—1

0,471 =y, 00" = —e7Mg", Oyt =g, Oug" = —v,
Oy =eMg", Oy = —e ¥

whose general solution is given by (18) and v = d,¢"'. This proves one
implication of the lemma.

As for the inverse one, we can immediately verify that (15) and (11)
(respectively, (21) and (11)) with the above-given data define global
isometries of My (respectively, of My) onto itself. This completes the
proof.

The name “universal models” for M%,rp, Mg,.r and Mp,,,
(with a satisfying (10)) can now be justified as follows.

THEOREM 2. Any simply connected homogeneous e.c.s. manifold is8
isometric to the pseudo-Riemannian universal covering of an open homoge-
neous submanifold of some universal model.

Proof. Any homogeneous e.c.s. manifold M with =, M = 0 is locally
isometric to a universal model M, (by (iv) of Theorem 1). Lemmas 2 and 3
imply clearly that M, has property (1). By Lemma 1, there exists an iso-
metric immersion f: M — f(M) = M, which is nothing but the universal
covering projection. This completes the proof.

As an immediate consequence, we obtain

THEOREM 3. A homogeneous e.c.s. manifold M is mever geodesically
complete.

Proof. If M were complete, so would be its universal covering M,
which in turn covers, by Theorem 2, an open homogeneous submanifold U
of a universal model M,. Hence U must be complete, and so is M, in view
of homogeneity. Thus, we must show that none of the universal models
is complete (by appointing an “incomplete” geodesic in. each model).
For My, r it is sufficient to use the connection components ([3], proof
of Theorem 4) to observe that u!(t) = —e**logt and u2(f) = 0 are the
first two components of a geodesic. Similarly, !(f) = —eé**logt and w?(t)
= ¢’*logt are the first two projections of a geodesic in M%, o (cf. [4],
proof of Theorem 3). Finally, ¢ — (¢, 0, ..., 0) defines a geodesic in Mp,,,
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(for the connection components, see [10], p. 93). All these geodesics cannot
be extended beyond the interval (0, oo) (as 4 > 0 for the parabolic model),
which shows that no universal model is complete. This completes the proof.

3. Global structure remarks. We start with the following auxiliary
fact:

LEMMA 4. Given real vector spaces V and W with a (not necessarily de-
findte) inner product in W, let @ be a Lie group of transformationsof VX W x V,
each of which is of the form

(29) (v, W, Vg) > ("71 +¢, Aw+D(v,), "o, + P (v,)w+ 8(1’1))

for some linear isometry A of W, a linear functional y on V,ceV and
C”-mappings D: V> W, P: V> L(W,V) and 8: V7.

Then

(i) any open orbit U of G is diffeomorphic to the product Vx Uyx V,
U, being an open subset of W on which a certain group @, of affine
18ometries actls transitively;

(ii) any open orbit of G coincides with V X W X V whenever the inner
product in W is definite.

Proof. Since U is open, the group homomorphism &:G— V, as-
signing o e V to transformation (29), sends G onto a neighbourhood of 0,
and hence is surjective. Therefore, the projection =, of VX W X ¥V onto
the first factor V satisfies =,(U) = V. Let y be a right inverse of §&,
defined in a neighbourhood Y of 0 e V. We assert that =,: U—>V is
a locally trivial bundle projection. In fact, given v, € V, the local triviality
map

(vo+ Y) X a7 ' (%) = 77 ' (Vo + X)
over v,+ Y can be defined by

('01 (%o, w, '01)) = ("/’(”—"vo))('vo’ W, V).

As V is contractible, we have a diffeomorphism U ~ V x@, where @
(any fibre of =,) has the following property :

It is an open subset of the product W x ¥V, homogeneous with respect
to the group H (a subgroup of @ keeping @ invariant) of transformations,
obtained by fixing v, in (29),

(3¢ (w, v) — (Zw, v+ Iw),

Z being an affine isometry of W, and L an affine mapping W — V.

The set of all Z occurring in transformations (30) of H forms a group G,
of affine isometries of W, acting transitively on U, = =(Q) (» being the
projection W XV — V). Fix w, € U, so that (w,, v,) € @ for some v,. Trans-
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formations of H can now be written as quadruples
(K,p, N, q): (w,v) » (Kw+p,v+Nw+tgq),

where Nw, = 0, Kw, = w,. The set @ of all ¢ € V such that (K,0, N, q) e H
for some K and N is an additive group (since H is a group) and con-
tains a neighbourhood of 0 (since, for g close to 0, (w,, v+ q) € @ is congruent
to (wy, v) modulo H). Hence @ = V, which clearly implies that the H-
orbit of (w,, v,) (i.e., @) must contain w, X V. Since w, € U, was arbitrary,
we have @ = U, X V. This yields (i).

Now, if the inner product in W is definite, then U, = W (as an open
homogeneous, hence complete, submanifold of the Riemannian manifold W),
which implies that any fibre @ of #,: U — V is equal to W xV, so that
U = V x W x V. This completes the proof.

Using Lemma 4, we ¢an obtain some information about the structure
of homogeneous e.c.s. manifolds.

THEOREM 4. Let (M, g) be an n-dimensional simply connected homo-
geneous e.c.s. manifold. Then M is diffeomorphic to R* x M, (if it is para-
bolic) or to R* x M, (if it is elliptic or hyperbolic), where M, (i = 1,2) is a
simply comwnected homogeneous flat pseudo-Riemannian manifold with
a metric of index k, k = indexg —1. '

Proof. By Theorem 2, M is the universal covering of an open homo-
geneous submanifold U of a universal model M,. Let G be a group of
isometries acting on U transitively. Without loss of generality, G may
be assumed to be connected. We are now in the conditions of Lemma 4.
In fact, we have the natural decomposition M, = R' xR * x R* (if M,
is parabolic, we set ¢ = 1 and identify (0, oo) with R using the logarithmic
function; otherwise, ¢ = 2) with the inner product 3 e,(du®)® or > s (du®)?

a z

in R"%*, and, by Lemmas 2 and 3, the transformations of G are of
form (29) (as G is connected, we suppress the “discrete parameters”, i.e., in
the notation of Lemma 3, ¥ = 0and 6 = 1 or { = 1). Thus, by Lemma 4,
U is diffeomorphic to R* x U,, U, being a flat homogeneous manifold with
a metric of index equal to (index g — ). Hence M is diffeomorphic to R* x M,,
M, being the universal covering of U,. This completes the proof.

Combining the argument above with (ii) of Lemma 4, we easily obtain

COROLLARY 1. Let M be a simply connected homogeneous e.c.s. mani-
fold with a metric of index r. If M i3 not parabolic and r = 2 or r = dimM — 2,
then M 18 isometric to a universal model.

We are now going to deliver examples of homotopically non-trivial

simply connected homogeneous e.c.s. manifolds by using suitable non-
contractible simply connected flat homogeneous manifolds.
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LEMMA 5. Let W be a real vector space with an indefintte inner product
and suppose that we have an orthogonal direct sum decomposition

W = Whox W1 x ... X Wkm
(dimensions marked by superscripts) with ko= 0 and k; > 1 for i > 1. If the
index of the inner product restricted to W, i8 k, and V, is a totally isotropic
k;-dimensional subspace of W, (i =1, ..., m), then the open subset
Uy = Wo X (W NV X oo X (W,\NV,)

of W i8 homogeneous with respect to a certain group G of affine isometries
of W. Moreover, the group G may be chosen as a semidirect product TG,
of a linear group G, with a vector space T, of translations.

Proof. Consider first a single space W of dimension 2k with an inner
product (denoted in the sequel by a dot) of index % (k> 1) and let V be
any totally isotropic k-dimensional subspace of W. We assert that the
semidirect product V@, of the group @, of all linear isometries leaving V
invariant with the additive group V acts on W\V transitively. In fact,
choose a basis X,, ..., X, for V. Given X, Y ¢ W\V = W\V1, we have

D IX-X|#0 + ) 1Y-X,,
3 3

so that there exists a regular (¥ X k)-matrix C,; such that
D04(Y-X,) = X-X,.
]

Setting
Y‘ = 2 0“ X 'R
J

we obtain a new basis Y,,..., ¥, of V and, by Witt’s theorem (see [9],
Chapter XTIV, §5), there exists a linear isometry Z of W such that
ZX, =Y; (i =1,...,k). Thus

(Y—2X) Y, =0, ie, p=Y—-ZXeVi=7.

Hence Y =ZX+p, ZV =V, p € V, as required. Going now to the
general case, it is sufficient to observe that the Cartesian product of
transitive group actions is again transitive. This completes the proof.

THEOREM 5. Let m, 7y Dy, ..., Py (M > 1) be non-negative integers such
that n >4, 2<r<n-—2. If

(31) m=+p+ ... +Pp <min(r—2,n—r—2),
then every conmnected component of the product
Q=R""17"Pm x 8P1x ... X §%m

admits an elliptic (as well as hyperbolic) homogeneous e.c.8. pseudo-Rie-
mannian metric of index r.
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Proof. For a universal model M = M3, or My, p, the under-
lying set can be written as R" = R*x B" % x R’ and we can endow the
middle factor W = R"~* with the indefinite inner product ) e, (du”)® of

z

index r—2. Now (31) implies that W admits a totally isotropic vector
subspace which can be decomposed into a direct sum V1t ... 4 VPmtl
(with superscripts denoting dimensions). Choosing a suitable basis for
this subspace and completing it appropriately (using, e.g., Witt’s the-
orem), we get the hypothesis of Lemma 5 (with k; = p;+1and ky, = n—2p, —
eee —2p,,—2m —4). Lemma 5 implies now the existence of an open
subset U, of W, homogeneous with respect to a group T,@,, T, being a vector
subspace of W = R" % The subset U = R®Xx Uyx R* of M is clearly
diffeomorphic to Q. To prove that U is homogeneous, fix 4, % € U and choose
h = [hy] € Gy, (L3y ...y Cy—z) € Ty such that

Z hyu¥ 4+ D% (ul, u?) = %°
v

(D® defined by (13) or (16) with P, = @, = 0). It is now clear how to
choose the auxiliary parameters cl, c% x,, g, 7, (notation of Lemma 3)
which together with ¥ =0, d =1 or { =1 should define an isometry f
of M sending % to @. We have f(U) = U in view of (13) or (16), since T,
is a vector space and T,G, leaves U, invariant. This completes the proof.

Remark 2. According to (ii) of Theorem 1, certain simply connected
homogeneous e.c.s. manifolds admit Lie group structures compatible
with their metrics. However, it is not so in general. In fact, by Theorem 5
such manifolds may have the homotopy type of spheres, which almost
never admit homotopically group-like structures (see, e.g., [11],
Chapter 5, §8).
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