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1. Introduction. By a conformally symmetric manifold [1] we mean
an n-dimensional (n > 4) manifold M with a (not necessarily definite)
Riemannian metric g, the Weyl conformal curvature tensor of which is
parallel, i.e., C;;.; = 0, where

Crie = Rusjn. — (1 —2) " (95 B + 9By — 9ns B — 9uBong) +
+R(n—1)""(n —2)" (gygn _ghjgt'l\c)y

Ry, By and B being the curvature tensor, Ricci tensor and scalar curva-
ture of M (more precisely, of (M, g)), respectively. Such a manifold is
said to be essentially conformally symmetric (shortly, e.c.s.) if it is neither
conformally flat (Ch = 0) nor locally symmetric (R ., = 0). Examples
of e.c.s. manifolds can be found in [8], [2], [7] and [3]. All e.c.s. metrics
are indefinite ([6], Theorem 2). '

By Theorem 3 of [7], every e.c.s. manifold M satisfies the relation

1) ByRuy — ByRy, = FChyyy,

for a certain function ¥, called the fundamental function of M. According
to Lemma 1 of [3], any e.c.s. manifold with constant fundamental function F
is either elliptic (F +# 0, R, semidefinite everywhere) or hyperbolic (F +# 0,
R, semidefinite nowhere), or parabolic (F = 0). The present, paper is
devoted to hyperbolic e.c.s. manifolds with F = const (for elliptic and
parabolic ones, see [3] and [4]). Our main results (Theorems 2 and 3)
consist in describing their local structure. We also deliver an example
-of a homogeneous hyperboli¢ e.c.s. manifold (Theorem 1).

By a manifold we shall mean in the sequel a connected, paracompact
manifold of class C* or analytic. We shall follow strictly the methods of [3].
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2. Preliminaries. The following theorem establishes the existence
of homogeneous hyperbolic e.c.s. manifolds (with fundamental function
constant in. view of homogeneity).

THEOREM 1. Let G denote the open subset of R* given by
G = {(u', v’y ¥, u*) | (u*)2+ (u?)? > 0}.

We can endow the set G with a Lie group structure by identifying
(u', u?, u?, u*) € @ with the matriz

u? u® 0 0
—u? w+ut 0 0

ud ut 1 o)

wt —ur—ut 0 1

8o that @ becomes tsomorphic to a closed subgroup of GL(4, R). Let g be the
left-invariant metric on G determined at the unit element 6= (1,0, 0, 0)e G by

gc(dly d,) = 2t, ge(dn d;) = —1, gc(du dy) =2,
9e(dy1y d) = go(dsy d5) = go(ds, d)) =1,
9e(ds, ds) = g.(ds, ds) = gc(ds, ;) = g.(dy, d,) =0,
where t i8 an arbitrary real number and d,, ..., d, are the vectors of the oa-
nonical frame of R* at e.
Then (G, g) is a hyperbolic e.c.s. manifold with fundamental function
F = —4,
Proof. Denoting by d; the left-invariant vector fields on & whose
values at ¢ are d;, 1 =1, ..., 4, we easily obtain
[Eu ‘72] =0, [‘717 Jx] = —‘_iu [d1, dc] = —Eu
[d., dy] = —(74, [ds, 34] = dy—d,, [ds, 34] = 0.
Define the left-invariant frame field e,,...,6, on @G by
61 =a‘, 63 =¢73—(74, 63 =ag’ é‘ =(71—¢72—(1-|-t)(_1‘3+(2+t){i“
so that we have
[e1y €] =0, [e1;,6] = —6, [e1,6]=e1¢.,
[62; 3] =61+ €2y [62y6] = —e1, [e5 6] = (L+t)e;+(2+10)e,.
Denoting now by g¢,;, I't;, Ry, etc. the components of the metric,
the Riemannian connection, the curvature tensor, etc., respectively,

in the frame field e,, ..., ¢,, it is easy to see that all g; vanish except
for g;3 = gs1 = 925 = 95, = 1. Using the above-given relations and the
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well-known formula
1
rf = gk ®(8:rCs; T+ 952C5:) + rY ij

(cf., e.g., [3], the proof of Theorem 1), where o{; are the structure constants.
given by [e;, ¢;] = cfe,, we obtain the following covariant derivative
expressions:

D.e, =D,y =D, 6, =D.e, =0, D,eg= —ey,, D6, =e,
D3 = €y, Do, = —e,,
D.e, =0, Dy, = —6,, Dyeg = —(1+t)es+e, D.e, = (1+1)e,
D6, = —€, D, e, =0, D.e; = —(2+1t)es, D,e, = (2+1)e;+ e,
These equalities, together with

(2) By = 9(exs -DehDe‘ De‘Dehej -D [eh.eglef)’

show that the only non-zero components of the curvature tensor, the-
Ricci tensor and the Weyl conformal tensor are those related to R,,,, = 1,
Ry = —1, Ry3y = —1, Ry, = —2 and C,,;, = —1. Making use of the
relation

Chijk,l = - lharijk - Fl;Chrjk - H;Chtrk o l’;cahijn

and similarly computing R,; ;, we can easily verify that (@, g) is e.c.s.
Hyperbolicity is obvious. Using (1) we now obtain F = —4, which com-
pletes the proof.

A Riemannian manifold is said to be Ricci-recurrent if RyR, =
= R, R;;,. Examples show that e.c.s. manifolds may be Ricci-recurrent.
([8], Theorem 3) or not ([2] and [79, Theorem 6). Ricci-recurrency implies.
vanishing of the fundamental function ([7], Theorem 5).

LeMMA 1 ([7], Theorem 4). If M is a non-Ricci-recurrent e.c.8. mani-
fold, then GOy = Odwpwy,, where |8 =1 and o is a parallel, absolute
(2.e. determined at each point up to a sign) exterior 2-form on M such that
rankow =2 and o, =0.

LemMmA 2 ([3], Lemma 3). Let M be a non-Ricci-recurrent e.c.s. mani-
fold (e.g., a hyperbolic one with constant fundamental function) and let o
be the absolute 2-form defined in Lemma 1. Then

(i) The image imw of w, i.e. the set of all wvectors u of the type
u; = o0, 18 a parallel field of totally isotropic (2-dimensional) planes,
which contains all vectors u of the form w, = R,v’.

(ii) The orthogonal complement of imw coincides with the kernel ker o

of w (the set of all vectors v with wy»' = 0) and each v ekerw satisfies
By = o.
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(iii) Both imw and kerw are integrable. The tensor fields K,; and Ry,
.are parallel along the integral manifolds of ker w.

LeMMA 3. Suppose that we are given a manifold M with a symmetric
(0, 2) tensor field P on M such that rank P = 2 and P is not semidefinite
at any point. Then, for any p € M, there exists a covariant 2-frame field
a, b (i.e. a pair of C® covariant vector fields, linearly independent at each
point) in a neighbourhood U of p such that Py = ab;+ab; in U.

Proof. Choose covariant vector fields @, b spanning the image imP
of P in a neighbourhood U of p, so that

for some functions X, Y, Z. It is clear that there exists a pair ¢, d of C®
.contravariant vector fields, defined in U and such that ¢‘a;, = d'b, = 1
and ¢‘'b; = d'a; = 0. Sinee ¢, d and kerP span the tangent bundle of U,
‘the expressions

(3) P, (s +td) (se? +td?),

where s and ¢ run over real numbers, must assume both positive and nega-
tive values (for, otherwise, P would be semidefinite). Note that (3) is
equal to 8*X +2stY 41*Z. Hence, the matrix

[¥ 7]

-defines (for any fixed point of U) a hyperbolic quadratic form in R?
which implies XZ —Y? < 0. Therefore, the quadratic equation

Q@F - Y(@)Q@ + 5 X@Z(@) =0

has a non-zero solution Q(q) (at any point ¢ € U) and the solution function
Q:q —Q(q) can be chosen to be C®. Setting now a =Qa-+3Zb and
b = b+3XQ '@, we obtain our assertion.

Given an e.c.s. manifold M, we shall say that it is singular if
(4) Rm,ijz,m = Rhi.mRkl,j°
M will be called regular if (4) fails at some point.
In the sequel, we shall often assume the following hypotheses:

(B) (M, g)is an n-dimensional (n > 4) singular ﬁyperbolic e.c.s. Rieman-
nian manifold with fundamental function F = const # 0, and
p is a point of M such that R ,.(p) +# 0.
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(6) (M, g)is an n-dimensional (n > 4) regular hyperbolic e.c.s. manifold
with fundamental function F = const # 0, and p is a point of
M such that Ry (P)Bim(P) # Baim(P) By ;(P) (cf. (4)).

LemMMA 4. (i) Under the hypothesis (5), there exists a unique 2-frame
a, b at p suoh that

(7) Ry = aby+ by,
(8) Ry, = agn;0;.

Moreover, a, b can be extended to a unique C*-field of 2-frames in a neigh-
bourhood of p, satisfying (7) and (8) at each point. This field is parallel
along kerw (cf. Lemma 2).

(ii) Under the hypothesis (6), there exists a 2-frame a,b at p having
property (7) and such that there exist 8 = S(p) > 0 and ¢ = 41, satisfying

(9) R‘j.k = 288’(a¢a,ak + Gb‘bjbk) .

Such frames are exvactly two (the other one being just eb, ea). Either
of them has a unique C® local extension satisfying (7) and (9) (where 8 > 0
may vary) at any point near p. Both extensions are parallel along ker w.

Proof. In virtue of (iii) of Lemma 2 we infer that a, b are parallel
along kerw, since they are algebraically determined by R, and R,
with the aid of (7)-(9). By Lemma 3, there exists a (*-field a, b of 2-frames
in a neighbourhood of p such that Ry = @b;+b@,. It is clear that we
can find 0% vector fields o, d, defined near p and dual to @, b in the sense
that ¢'d, = d'b; =1 and b, = d'a; = 0. By Lemma 5 of [3], we have

Ry, = Aaga, +Bzizjbk + € (@b;be + Bayb; + bidyiay) +
+D(@a;b, +ab,a,+ baa,)
for some functions 4, B, C, D. Differentiating (1) covariantly, we obtain
Ry B+ ByRoim = RijmPBu+ BayRegm-

Transvecting this with d'‘d’¢*c*¢™ and with d*c’@*d*d™ we obtain
C =D =0, ie. _ -
R’U. k == Adﬁ,ﬁk+Bb‘bjbk.

 Clearly, A?+B?>0 in a neighbourhood of p, for R, ,(p) # 0.
We have now two cases:

(i) Assume (5). It is then easy to see that AB = 0. Interchanging
@ and b if necessary, we may assume A 3 0 and B = 0 near p. Setting
now ¢ = A3a and b = A3, we obtain (7) and (8), so that (i) is imme-
diate.

8 — Colloquium Mathematicum XLIV.1
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(ii) Suppose that (6) holds. Then AB = 0 in a neighbourhood of p
and, putting

a =¢@, b =¢'b, where ¢ = sign(B)4|'%B|YS,

we obtain (7) and (9) with ¢ = sign(4B), 8§ = }|AB|Y2. Since (7) deter-
mines the unordered pair of lines {Ra, Rb} completely, it is clear that (7)
and (9) hold only for the pairs a, b and &b, ¢a, which completes the proof,

Remark 1. The argument above implies that, given a hyperbolic
e.c.s. manifold M with constant fundamental function, it must admit
a field of unordered pairs of tangent isotropic lines. Using an arbitrary
positive definite metric on M, we can construct a finite isometric covering
M of M, admitting a C*-field a, b of 2-frames such that a’a;, = a'b; = b'd;
= 0. Therefore (see [3], Lemma 4), M admits a field of 4-frames.

Remark 2. From the uniqueness statement of (ii) it is clear that
the number 8§ = S(p) > 0 is a well-defined metric invariant (at any p
where R, .(p) # 0). Thus, by setting S(p) =0 whenever E;,(p) = 0,
we assign & function 8: M — [0, oo) (called the fundamental inmvariant)
to every regular hyperbolic e.c.s. manifold M with constant fundamental
function. Clearly, 8§ is of class C® wherever R, # 0. Similarly, the
number ¢ = 41 occurring in (9) is an invariant, defined on the set where
R, #0 and locally constant. Putting ¢ =0 wherever E,;; =0, we
define a function ¢ which will be called the sign of the regular hyperbolic
manifold M (with constant fundamental function).

LemMMA 5. (i) Under the notation and assumptions as in (i) of Lemma 4,
the frame field a, b determined by (7) and (8) satisfies

1
(10) Oy = By, by = o aa;—pbay

fJor some function u defined in a meighbourhood of p.
(ii) In the conditions of (ii) of Lemma 4, we have

a‘,j = O'a‘aj + ].a,‘b, + Sb‘bj, b", = eSa‘aj - o’b,a,— —lb‘bj ’

o and A being functions defined near p, while ¢ and S are the sign and the
SJundamental invariant of M, respectively (see Remark 2 and (9)).

Proof. In both cases, a and b are parallel along kerw (Lemma 4).
On the other hand, by (i) of Lemma 2, they span the parallel plane field
imw. Therefore, a, ; and b;; are combinations of tensor squares and prod-
ucts of a and b. The corresponding coefficient functions can be deter-
mined by differentiating (7) covariantly and comparing the result with (8)
(respectively, with (9)). Assertion (ii) is now immediate.
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As for (i), we obtain

1
a"j = ”aiaj —_ 'raib]- 9 b‘i._" = 'E a.ia'j — pbiaj + Tbibj

for some functions x4 and z. Thus, a;; = a,6;, where ¢ = ua —1b. The
expression Ry ;, = 3a;,a;a,¢; (cf. (8)) is symmetric in I, X by Theorem 9
of [6]. Hence a and ¢ are collinear, which implies v = 0. This completes
the proof.

Definition. Under the hypothesis (5) (respectively, (6)), a C*-field
¢y d, 63y ...96,_ 5,0, a of n-frames in a neighbourhood of p is called S-special
(respectively, R-special) if a and b satisfy (7) and (8) (respectively, (7)
and (9)) and

g(a, e;) = g(b, 6;) = g(c,6,) =g(d,e;) =0, gle;e) = &,0,,
gla,d) =g(b,e) =g(e,¢) =g(c,d) =g(d,d) =0,
(11) gla,0) =g(b,d) =1,
/ Dge, = Dye, = D,”e,, =0,
Dy = Dyo = D, ¢ = D8 =Dyd =D, d =0,

where D denotes the Riemannian covariant derivative and |¢,| = 1.
Here and in the sequel we adopt the convention that the indices z, v, 2z
range over the set {3,...,n —2} (empty if n = 4).

Note that, in view of (7) and (i) of Lemma 2, any 8-special (respec-
tively, R-special) frame field ¢, d, ¢3, ..., ¢, ,, b, a satisfies

(12) a‘a; = a'b; = b'h; = 0.

3. The local structure of singular hyperbolic manifolds.

LueMMA 6. Under the hypothesis (5), there ewisis an S-special frame
field 0, d, ¢35, ...,6,_;,b, a in a neighbourhood of p. Any such field satisfics
the covariant derivative relations

1 N
Do = &b —po—Ed—-Zs,A,e,, Dd = —ta+pd— D, &.Be,,
x x

D, = Aa+Bb+ D Opne,, Oy = —8,6,0,,
v

1
Db =—a—upb, Da = pua,

(13) 2

Dge = wb—ZSzExez’ Dgd = —ya— Zs:thez’

z
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D, = B,a+F b+ ZG:WBV’ Gy = —6,8,0,
v

.Ddb =0, .Dda =0, Dez"'::Db"':-Da“' =0,
where ... stands for amy frame vector, ©,y =3, ...,n—2, and §, v, A, B,,
E,, F,, Oy, G, are certain C*-functions in a neighbourhood of p, while u
8 the fumction determined in (i) of Lemma 5. Moreover, these functions
satisfy the following equations:
Dyp =Dy = DA, =D,B, = D,E, =D,F, = ‘Daosv
(14) = D,G,, =0,
-Da& = _(”—2)-17
Doy = Dyt = Dyd, = DB, = D,B, = D,F, = D,C,,

(15) = DG, =0,
Dy = (n—2)"",

(16) {De,,.“ = -Dcze = DezV’ = Dcha: = -Dcha: = Dezoyz = Dchys =0,
-Dcz-By = DccEy = —(n —2)-l§zézu’
(17) \ Dy = (n—2)7",
(18) Dy —Daé+ Y 6, (A,F,—B,B,) —pyp—F' =0,
_ 1 »

(19) Dyl DB, + )} (Coly—Grydy) — 5 F, =0,

'}

v )
(21) DGy — DO+ D) (GoeCoy —OsGoy) — Gy = 0.

Proof. The existence statement is an immediate consequence of
Lemma 6 of [3] and Lemma 4. Using (11), (12) and (i) of Lemma 6 together
with the Leibniz rule, it is easy to obtain (13). Since the scalar curvature
of any e.c.s. manifold vanishes ([6], Theorem 7), (1) implies (provided
F +# 0) that

Riyw = F(RyRy, _thR;k) + (n —2)" (g Raz +niBis — IR — GirBng) -

 Hence and in view of (11), (12) and (7), there are only % —1 essential
curvature components in our frame:

ijkc"d‘ojdk == F-l ’ .Rh{jkahO‘ojdk = —(” —2)-1,
Riyl'@’dk = (n—2)"' and Ryudeide = —(n—2)7s,.

On the other hand, curvature components can be computed by means
of (13) (cf. (2)). The comparison of both results yields our assertion. Thus,
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we can obtain (14) by caleulating R, = R(a,06)0 = —(n—2)"'b, R,
R, = R(a, 0)6, and Rz, (15) from R, , By, = (n —2)7'b, Ry, and Ry,
(16) from R,,,, R;,; and R, = (n—2)"'e,8,,b, B;,,, = (n —2)"'¢,8,,a, (17)
and (18) from R, = F~'b+(n —2)"'c. Finally, to obtain (19), (20) and
(21) it is sufficient to consider R,;. This completes the proof.

A Riemannian manifold M (the metric definite or not) is said to be
locally homogeneous if for any p, ¢ € M there exists an isometry of a neigh-
bourhood of p onto a neighbourhood of g, sending » onto ¢.

PROPOSITION 1. Let M be a singular hyperbolic e.c.s. mamifold with
constant fundamental function. Then M is not locally homogeneous.

Proof. If M were 80, then the function u of (i) of Lemma 5 would
be constant, as it is determined by (8) and (10). In view of Lemma 6,
this would contradict (17), which completes the proof.

Lemma 7. Under the hypothesis (B), there ewists an S-special frame
field o, @, 65, ..., €,_5, b, a in a neighbourhood of p such that, in the nota-
tion of Lemma 6,

(22) , Ory = Gy = 0,
(23) A, =F, =0, B,=2E,
(24)_ D.E, = D;E, =0,

1 1o .
D¢ = —.“5""?'/” Dyé= _F_I_E &by,
(26) z

1
Dy =.w+—2—2e,E:, Dy = 0.
. @x

Proof. We proceed by three steps.

(i) As in Lemma 6, choose an S8-special frame field o,d,e,,...
.ey€,_5,b,a near p. The system of differential equations

(26)  Ditm = — Y %l Datey = — ) Tl
2 2
D"TW = .Dbfw = .Dafu = 0

with unknown functiens 7, is completely integrable in view of (13)-(16)
and (21) (thus, e.g., the consistency relation D,D;z,,, — DD,7 .y — Dif, 41Ty =0
is immediate from (21)). Let -r,,,, be the solution of (26) with initial value
Ty(P) = 8,,. By (26), 2 8,T,47,s 18 constant, whence it must equal &,6,,.

Therefore, ¢,3,8,...,€,_,,b,a, where
(27) € = Z‘I{WG”,
v

is an S-special frame tield near p-and it is easily seen that it satisties (22).
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(ii) Now let ¢,d,e;,...,6,_,,b,a be an S-special frame field in
a neighbourhood of p, satisfying (22). Consider the system of differential
equations

1
DS, = _’2_ e —0s,—A,, Dy, = _Ez"l"‘z’

D,t. = Db, = Dyl =0,
Dy, = w,—B.+%, Dit,= —F, Dyt =Dy, =Dy, =0,
Djt, = —0 =27, Dy, = —(n—2)"s,
D, x, = —(n—2)""¢,8,,,
Dyx, = Dyx, =0

with indeterminates ¢,, ¢,, »,. Its integrability conditions follow imme-
diately from (13)-(17), (19), (20) and (22). Choosing a solution {,, ¢,, »,

and setting
1
c=¢— sa:cze.t o 83C:a,
(28) Z 2 ;‘
- 1 .
d=d— 2 €,4,6, — 3 2 e t2h — 2 elta, € =¢€.+Latb,
x z z

it is easy to verify that ¢, d, &, ..., &,_,, b, @ is an §-special frame field
satisfying (22) and (23). By (19) and (20), it must satisfy (24).

(iii) Given an S-special frame field satisfying (22)-(24), the system
of differential equations

Dh =a, Dj =8, D,_h=Dgh=Dh=0,

1
Dea = Dyé+u(§—a)+ 5 (B—v),

1
Dy = Dyt —(n—2)"'h+F ‘+§2er:,
z
D,za = .Dba = Daa = 0,

. 1
Dof = Diyp—(n—2)"htu(f—y)~5 D &:Fi;  Daf = Day,

x

D, =D =Dp =0
is completely integrable, which follows immediately from Lemma 6.
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Thus, e.g., (14)-(17) yield
Dcha —Dcha _'-D[c.d] a = ‘Dch£ —Dd'DcE -_ ('n —2)—15 —dee’

which vanishes since (v —2)7'&é+uDyé = D, 5 as [¢,d) = D,d— Dge.
Similarly,
D, D.a—D,Dya— Dy, qa = D, D& = DD, ¢+ Dy,_qé,

which vanishes by (23), etc. Given a solution h, a, f it is now easy to verify
that the formulae ¢ = ¢ —hb, d = d -+ ha define an S-special frame field
with the desired properties. This completes the proof.

We can now describe the local structure of singular hyperbolic e.c.s.
manifolds as follows:

THEOREM 2. (i) Let (M,g) be an n-dimensional (n > 4) singular
hyperbolic e.c.s. manifold with fundamental function F = const # 0. Given
a point p € M with R, ,(p)# 0, there exists a chart u', ..., u" in a neigh-
bourhood of p such that the metric components are given by

g = w" '+ 2F Y (n —2)*B(u') —F ' (u?)? 4 2(n —2)" utu" +
+2u%u" "' B(u') — (n —2)7*(u*)u" " 4 [2B (ut) —(n — 2)"* (w?)*] Z 8,(u”)?,

g1 = —(n—2)F' —(n—2)""*u"" —(n —2)" 2 &z (W),
(29) 1 )
J,n-1 =‘2‘('”—2)-l(’“'2)2—("—2)3(“1)’ Jin = J2,n—1 =1,

Iy = 8::6::117 Jiz = 922 = 922 = 9Yon = Gz,n—1 = Gzn = 07

In-1,n-1 = Gn-1,n = Gnn = 07
where |e,| = 1 and B i8 a function of the first variable u'.
(ii) Conversely, given a C™-function B of u' andreal numbers F and e,

with F +# 0 and |¢,| = 1, formulae (29) define a singular hyperbolic e.c.s.
indefinite metric with fundamental function F.

Proof. (i) Since (5) is satisfied, we may choose a frame field ¢, d, s, ...

eeey€y_z,b,a a8 in Lemma 7. In the notation of Lemma 6, it is easy to
verify that

(30) DDy = —(n—2)"'u, D, Dy = DyDpp = DyDpp = 0.

Defining now %' to be any solution of the completely integrable
system D' =1, D' = D, u' = Dyu' = D,u' =0 and setting

w=n—-2)u U =—-(nN—-2)ekE,x=3,...,0-2,

(31) y
Wl = (n-2)y, W= —(n—2)¢,
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one verifies immediately that «',...,«" is a coordinate system at p,
whose basic vector fields 9, = 9/du’ are given by

oy = o—(n—2)Dr-d—(n=2)up+ 7 3" o B2 b+

+(g =2y n—27D e+ 5 (n=2/Dx 3 e B —(n—2) ) o,

0y = d—(n'—zi(ﬁ’"%z s;Ei) a

az=ez, w=3,...,n—2, an_l=b’ an=ao
Relations (30) state now that the function D, satisfies -
03D s = —(n—2)""*, 8,Dp = 0, Doy = anDc!‘ =0,
i.e. that it is of the form

Dys = — = (n—2)" (&) + B(w) :

for some function B. Computing now g,; = g(9;, 9;) with the help of (11),
(12) and (31), we obtain (30), as desired.

(ii) The non-trivial contravariant metric components are g'* = g>"?
=1, "= —gyp1, 9% =&, §"" " = —¢,; and ¢"". We can now compute
fhe OChristoffel symbols

Iy = —(n—2)"" = —I,

Ik = —(n—2)B’—% —2u’B +(n —2)7(u?)?,

Iy =u*[(n—2)"(w*)? —2B], I =(n—2)""7,
. 1

IWlnl—l — _(n_z)—lun_un—lB+_§_(n _2)T2(u2)2un—l’

It = —(n—=2)eu,  Iil, = —(n—2)7,

Iy =TIy =I5 =I5 =0

tor pairs ¢, j not involved above. It is easy to verify that the only non-zero
components of the curvature tensor, Weyl tensor, Ricci tensor and its
covariant derivative are related to

Big = —F7' —2(n—2) %" —2(n —2)"* Y e, (w7,
z

1 _ .
-Rm,n—l = B—E(”—z) ?(u?)?, Ry = (0 —2) ' = —Rlzz,n—l’

Ry, = sz(2B —(n—2)"2(u?)?), Rz, = —(n—2)""¢,
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and
Cnn =F —17

Ry = —2(n—2)B+(n—2)"%(u?)?, R, =1 and R,,=1,

respectively. '

Now it is immediate that Oy, = 0, which completes the proof.

4. The local structure in the regular case..

LEMMA 8. Under. the hypothesis (6), there ewisls am R-special frame
field ¢, d, 65y ..., 6,5, b, a in a neighbourhood of p. For such a field, the
covariant derivatives of the frame vectors are given by

Do = fb—oc—eB8d— Y e, A, Dd = —fatod— Y B,

x

Do, = Aa+Bhb+ 3 Cppyy Cp = —2,5,0y, Db =eSa—ob,
v
Da =oa, Dg=yb—le— D eB,e,,
x

DA = —ya—Bo+id— ) &F,e,,

z

Do, = Ba+Fb+ Y @e, G, = —680,, Db=—b,
v

Dsa =ia+8b, D, ...=Dy...=D,...=0,

where ... stands for any frame vector and &,v, A, B,, E,, F,, C,, @,
are ocertain C™-functions, while A and o are determined by a, b ag in (ii) of
Lemma 5, 8 is the fundamental invariant of M, and e is its sign (cf. Remark 2).
Moreover, these functions satisfy the following equations:

o "DaE == —(""’_2)—17 )
(32) 1D,0 = D,8 =D,y = D,k =DaA:c=DaB,z =Dk, =0,
D,F, = D,C,, = D,G,,= 0,

(Dyy = (n—2)7", . .
(33) Dy¢ = Dyo = D8 = Dy = Dyd, = DB, = D,E, = 0,
'DbFz = .Dbsz == .Dwa = 0,.

34) =D,z$ ~D,06=DN8 =D, y=DA=D_A,=DF, =0,
-Desz = Dchy = —(n—2)"lezéw, 'D,xCW = .Dchyz = 0,

(35) D —Dyo+ e —20h+(n—2)"" =0,

(36) D,S—380 =0, D,8+384 =0,

(87)  Dy—Dat—it—op+ Y &, (A,F,—E,B,)—F =0,
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(38) DA, —D.E,+214, —e8F,+ > (Cpy B, —G,,A4,) =0,
v

(39) D,F,—D,B,—20F, —84,+ D) (G,B, —CpF,) =0,
v

(40) DGy — DiCoy— ACpy — Gy + D) (GuCry — Craly) = 0.

Proof. We proceed just as in the proof of Lemma 6, using (ii) of
Lemma 5. The essential curvature components are given again by the
same formulae which we may compare with those derived by means of (2).
‘Thus, we obtain (32) by computing R,;, = R(a, d)¢, R,,, = —(n—2)""b,
R, = B(a, 0)é;y By, (33) bY Byg, = (n —2)7'0, Rygey Rpoyy Rigyy (34) bY
Ry Rige = —(n—2)""¢,y, R, = (n—2)""e, 0,0, Ry, = (n—2)""¢,8,4,
(35)-(37) by R4, and R, (38)-(40) by R,;,. This completes the proof.

LeMMA 9. Under the hypothesis (6), there exists an R-special frame
Sield e, d, ey ...,€,_,, b, ain a neighbourhood of p such that, in the notation
of Lemma 8, we have (22)-(24) and

1 ’ 1
D& = —cé+oSy, Def = —15—5;'@:—51’-‘,

{(41)
1 1__
Dc'p = OW+EZSIE2+§F l, de = Sf-i-llp,

(42) £(p) = y(p) = E,(p) = 0.

Proof. Our argument is a replica of the proof of Lemma 7. Given
an R-special frame field ¢,d,¢,,...,0,_,,b,a, system (26) (notation
-of Lemma 8) is again completely integrable, so that choosing its solution
T,y With initial value 7, (p) = 4,,, and setting (27), we obtaih an R-special
frame field ¢, d, &, ..., ¢,_,, b, a satisfying (22). Now, given any R-gpecial
frame field satisfying (22), consider the system (notation adapted to the
frame)

Di, = —ol,—88¢,—A,, D, = —Al,—E,+x,,
'Dcvcm = -Dbcz = Dyl, = 0’ Dy, = a‘z—Bz'I"‘z’
Dd‘z = l‘z_Scx_Fz’ Dc”‘x = Db"z = Da‘a: =0,
D, = —(n—2)"Y,,
-Dd“z = _(n_z)—l%, -Dey”a: = —(”_2)_131:631/7 Db"z = Da”a: = 07

‘which is completely integrable in view of Lemma 8 and (22). Choosing
its solution with initial value #x,(p) =0, we can define by (28)
- new R-special frame field whose coefficient functions satisfy 4, = F,=0,
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B, = E, = x, and, therefore, E (p) = 0. Finally, let ¢, d,e;, ..., €,_,,
b, a be any R-special frame field satisfying (22), (23) and E_(p) = 0.
Note that (38) and (39) imply then (24). The system of differential
equations

Dh =a, Dsh =8, D,h=Dh =Dh=0,

D, = D+ o(E—a)+eS(B—v),
1\ 1
Dya = Ddg_(n—z)-lh+z(e—a)+§; NS
D, a = Dya = Dya =0,
— 1 1
D§ = Dop—(n=2) b+ ob—y) =3 D eBi= 5 F,

Dy = Doy +8(a—&)+2A2(B—y), D, p =D =D =0,

with unknown functions %, a, §, is completely integrable in view of Lemma 8
and (22)-(24). Taking its solution k, a, # with initial values a(p) = &(p),
B(p) = y(p), and putting ¢ = ¢ —hb, d = d -+ ha, we obtain an R-special
frame field ¢, d, e,, ..., 6,_,, b, a satisfying our assertion, which completes
the proof.

We are now in a position to prove the local structure theorem for
regular hyperbolic e.c.s. manfolds with constant fundamental function.

THEOBREM 3. (i) Let (M,g) be an mn-dimensional (n>4) regular
hyperbolic e.c.s. mamifold with fundamental function F = const # 0.
Given a point p € M at which R, R, , +# E;; R ;, there exists a co-
ordinate system u',...,u" in a neighbourhood of p such that u'(p) = ...
=u"(p)= 0 and the components of g are the following functions of coordi-
nates:

gu = —2u"eT0,T + 2eu™ e~ 7T,
012 = u"eT3,T+u"'eTd, T —(n —2)‘18’1'2 &, (u%)? —(n —2) F 16?7,

(43) gz = 2ue”T —2u""'e70,T,

Gin =Gon-1=6"y Gn =08, 01z =00 ="0n1=29gm =20,

92,1 = Jzn = In-1,n—1 = Gn—-1,n = GInn = 07

where |e,| = 1, ¢ i8 the sign of M, and T is a function of the first two variables
u', u?, related to the fundamental invariant S of M (cf. Remark 2) by

(44) 8 = ¢7,
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and satisfying the quasi-linear hyperbolic pariial differential equation
(45) " 28,0,T + e67%T + (n —2)¢’T = 0.

(ii) Conversely, given real numbers F' + 0,e = +1,¢, = +1, and a funo-
tion T = T (u*, u?) satisfying (45), formulae (43) define an e.c.s. Riemann-
ian metric with fundamental fumction F which is regular and hyperbolic.
Moreover, its sign equals &,- while its fundamental invariant 8 is given
by (44).

Proof. (i) By Lemma 9, we may choose an R-special frame field
0,d,¢6gy...,6, 5,b,a in a neighbourhood of p, satisfying (22)-(24), (41)
and (42). Defining T by (44), from (32)-(34) and (36) we obtain

(46) DT = —¢, D =3 DT =DT=DT=0,
The systems of partial differential equations
Dut =¢ %, D' =D,ut =Du* =Du =0

and .
D2 =67, Dut=D,u*=Du? =Du*=0,

with unknown functions !, 2, are completely integrable in view of (46).
Choosing their solutions w«!, 4* with initial values w(p) = u2(p) =0
and setting

47) = —(n—2)eH,, u"'=(@n-2)y, ' =—(n—2)¢

we obtain a chart %!, ..., %" in a neighbourhood of », whose basic fields J;
are given by o
0, = (n—2)e"D & a—(n—2)e"Dy-b+e’c,
9y = (n—2)6TDzt-a—(n—2)eTDyy-b+é'd,
0 = €y, Op1=b, O, =0

(which can easily be verified with the aid of (32)-(34) and (24)). Clearly,
uw'(p) = 0. Now (46) yields'

(48) 0,T = —e¥a, 0,T =¢%A, 9,7 =0, ,T =2¢,T =0,

and (456) is an immediate consequence of (35), (44) and (48). Finally,
since g,; = g(d;, 9;), formulae (41), (44), (47), (48), (11) and (12) imply (43),
a8 desired. "

(ii) The non-zero contravariant metric components are given by

gln — gz,n—l — 6-—T’ gzz = &,

-1,n—1 — —-1,n —2T : —_ —2T
gl = —e Mg, gV = —e" gy, ¢ = —€¢ gu-
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Now we can compute the following connection components:
I, =20,T, Il =—e, I} = —e T, I =28,T,
s =@m—-2%*?f, Iy =I}=I%=TI% =0,
Iy =Ty =I5 =0 whenever i >2 or j> 2,
I’ = 2u™(0,0,T + ee~*T) +u™1[0,0,T — (0,T)* —ee~*T0,T1],
It = —ue o, T —u -l(aIT-a,T+ 8,0,T),
It = —(n—2)"""g,u", Tne1 = 0.1, =0,
It = —4ume 20, T +u™ ' [3(0,T)* — 020,T + ¢ 70, T] —
—(n—2)"1"T 2 e, (u"): —(n—2)F 7,

IZ;“ =0, Im-ll = —0d,T, I?;l = G—QT’
I? = w*[3(0,T)* — 0,0,T + ¢ *Te0,T] — 4eu™"'6~2T9,T —
—(n—2)""e6™T ) 6, (u) —(n—2)F a6,
z

It = —u™(8,0,T+ 0,T3,T) —ew" ‘¢~ 2T3,T,

I, =0, Ln—1 = 86 2T1 n = —6,.’1’ ry, = —(”—2)_13T3z“27
Ig:n-l=07 I3, = 0,T, ij Ft’j— if 4,5 > 2.
This implies

Ris' = —20,0,T —e6™*T, Ryy* =0,
Ry ! = (u"20,T 4+ u™0,T')(20,0,T + ce™*T + (n —2)~'¢*”) —
— U168, [20,0,T + c6~*T + (1 —2)"e*T] — w3, [20,0,T + ee~*T +
+(n —2)" '] —(n —2)"26*T Z & (W) +(n —2)" 1T (u™~10,T + u™0,T).
z
Using now (45), we infer that the only non-zero components of Ry,
Ry, By, and Oy, are related to
Byns = 207(n —2)7670,T + 20" Yn —2)173,T —
—2(n —2)" 2T 2 &, (U%)? _F—leu',

By = —RByggn-1 = (n—2)"T, Ry, = —(n—2)"e, e,
R,y = €7, Ry, =28, Ry =2, Chge= FlefT,

It is easy to verify that Cpy,; = 0. Our assertion is now immediate
((7) and (9) are satisfied by a = 0,, b = 0,._;). This completes the proof.
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THEOREM 4. Let M be a hyperbolic e.c.s. manifold with constant funda-
mental function. Then the following two conditions are equivalent:

(i) M 8 locally homogeneous.

(i) M s regular and its fundamental inveriant (see Remark 2) 48
constant.

Proof. Assume (i). As the fundamental invariant 8 is determined
by R; and E;, in an algebraic manner (sec (7) and (9)), (i) follows im-
mediately from Proposition 1. Now let § be constant. In the notation
of Theorem 3, (44) and (45) imply

(49) S8 =¢3T =(n—-2)"", &= —1.

For p, ge M choose charts centered at p and gas in (i) of Theorem 3.
The expressions for the metric so obtained are identical (the number
of minuses among the ¢, is an algebraic invariant of the metric), which
defines a local isometry sending p onto ¢. This completes the proof.

Remark 3. Theorems 3 and 4 imply the following local description
of locally homogeneous hyperbolic e.c.s. manifolds. For any point p
of such a manifold M, there exists a local coordinate system u?,..., u"
in a neighbourhood of p such that «*(p) = 0,4 =1,...,n(n = dimM > 4),
and the only non-zero components of the metric are

gn = =207, g = —(n—2)7"¢" Y g, (u) —(n—2)F ¢,

T

_ n,—T _ s s
gzz - 2“ (- ’ yln - gz,n—l =€ ’ ggy - 8:«:6:1:11,

where T = {log(n —2), |¢,] =1 and F = 0 is the (constant) fundamental
function of M.

Conversely, the metric so defined is locally homogeneous, e.c.s.,
hyperbolic, and its fundamental function equals F.

Remark 3 implies, in particular, that two locally homogeneous hyper-
bolic e.c.s. manifolds of equal dimensions, metric signatures and funda-
mental functions must be locally isometric to each other. Since a homo-
thetic change of the metric changes the fundamental function in an ob-
vious manner, the preceding statement allows us to deduce that two locally
homogeneous hyperbolic e.c.s. manifolds of equal dimensions and signa-
tures are locally homothetic.
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