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1 , INTRODUCTION 

The present paper is a survey of results on manifolds with harmonic 

curvature, i.e., on those Riemannian manifolds for which the diver- 

gence of the curvature tensor vanishes identically. The curvatures 

of such manifolds occur as a special case of Yang-Mills fields. These 

manifolds also form a natural generalization of Einstein spaces and 

of conformally flat manifolds with constant scalar curvature. 

After describing the known examples of compact manifolds with har- 

monic curvature, we give, in Sect. 5, a review of theorems concerning 

such manifolds. Most of their proofs are either omitted or only brief- 

ly sketched. For a complete presentation of the results mentioned in 

this paper (except for Sect. 3, Sect. 7 and 4.4) the reader is refer- 

red to the forthcoming book [5], where one of the chapters deals with 

generalizations of Einstein spaces. 

The preparation of the present article was begun under the pro- 

gram SFB 40 in the Max Planck Institute of Mathematics in Bonn, and 

completed at the Mathematical Sciences Research Institute in Berkeley. 

The author is obliged to these institutions for their hospitality and 

assistance. He also wishes to thank Jerry Kazdan for helpful remarks 

concerning the topics discussed in 4.4. 

2 . PRELIMINARIES 

2 . 1 .  Given a Riemannian vector bundle E over a compact Riemannian 

manifold (M,g) , one studies the %ang-Mills potentials in E , i.e., 

those metric connections ? in E which are critical points for 

the Yang-Mills functional 

YM(V) = ½ I IRt ~ , 
M 

where R is the curvature of V and the integration is with respect 

to the Riemannian measure of (M~g) (see [8]). The obvious operator of 

exterior differentiation d as well as its formal adjoint, the diver- 
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gence d*, can be applied to differential forms on (M,g) valued in 

Riemannian vector bundles with fixed metric connections (cf. [6]). The 

Yang-Mil!s potentials in E now are characterized by d*R = 0. In 

view of the Bianchi identity dR = 0 for the 2-form R, this means 

that the curvature form of any Yang-Mills potential is harmonic. 

2.2. A Riemannian manifold (M,g) is said to have harmonic curvature 

if its Levi-Civita connection V in the tangent bundle IM satis- 

fies d*R = 0. If M is compact, this just means that ? is a Yang- 

Mills potential in IM (i.e., a critical point for the Yang-Mills func- 

tional in the space of all g-metric connections, where g is fixed). 

2.3. Let (M,g) be a Riemannian manifold, dim M = n ~ 3. Its curva- 

ture tensor R, Ricci tensor Ric, scalar curvature Seal and Weyl 

conformal tensor W can obviously be viewed as differential forms 

valued in suitable bundles of exterior forms : R,W ~ ~2(M,A2M), 

Ric £ ~I(M,AZM), Sca]= Scalg~ ~°(M,A°M). The second Bianchi identity 

dR = 0 now easily gives 

( i )  d * R  = - d R i c  

(in local coordinates : - vSRsijk = Vk(Ric)ij - Vj(RiC)ik), 

n - 3  d [ R i c  - 2 - ~ S e a l . g ]  (2) d*W - ~_-[ , 

( 3 )  d * R i c  = - ½ d S c a l ,  

( 4 )  d*W = - C o n ( d W )  , dW = - ( n - 3 ) - i g  ( ~ ) d * W  ( i f  n > 3 ) ,  

where, in (I) - (3), we identify ~i(M,AJM) with ~J(M,AiM), while, 

in (4), ~ is a natural bilinear pairing and Con is a suitable con- 

traction. 

2.4. Riemannian manifolds satisfying d*W = 0 are said to have harmo- 

nic Weyl tensor, which is justified by the fact that this condition 

implies dW = 0 (cf. (4)). These manifolds are studied here in order 

to simplify various arguments involving the equation d*R = 0. In par- 

ticular, all examples with d*R = 0 discussed below arise from natu- 

ral cZasses of manifolds having d*W = 0 by requiring that their sca- 

lar curvature be constant (cf. 2.6.ii). 

2.5. By a Codazzi tensor on a Riemannian manifold (M,g) we mean 

any symmetric C ~ tensor field b of type (0,2) on M which, viewed 

as a hZ-valued 1-form, satisfies the relation db = 0 ; this is clear- 

ly nothing else than the Codazzi equation Vibjk = ?jbik. 

2.6. Given a Riemannian manifold (M,g), dim M > 4, it follows from 2.3 

that equation d*R = 0 for (M,g) is equivalent to either of the fol- 

lowing two conditions : 



76 

i) d Ric = O, i.e., Ric is a Codazzi tensor on (M,g) (hence, 

by (3), Seal is constant). 

ii) (M,g) has harmonic Weyl tensor and constant scalar curva- 

ture. 

If dim M = 3, d*R = 0 is still equivalent to i) and it characterizes 

conformally flat 3-manifolds with constant scalar curvature (cf. 2.7). 

2.7. In view of (2), a Riemannian manifold (M,g) with dim M = s ~ 4 

has harmonic Weyl tensor if and only if Ric - (2n-2)-Iscal.g is a 

Codazzi tensor. If n = 3, the latter condition means that (M,g) is 

conformally flat ([20], p. 306). 

2.8. THE SIMPLEST EXAMPLES. By 2.6 and 2.7, the manifolds listed in 

IW,2 W and 3 W (resp., IR,2 R and 3 R) of our table of examples actually 

have harmonic Weyl tensor (resp., harmonic curvature). The problem of 

finding metrics of type 3 R on compact conformally flat manifolds is 

obviously related to a special case of Yamabe's conjecture (see [17]). 

3. THE MODULI SPACE 

3. i. Consider a metric g on a compact manifold M, satisfying the 

condition d*R = O. The linearized version of this condition, restrict- 

ed to a slice through g (see [15]) in a suitable Sobolev space of met- 

rics implies that the corresponding slice vector lies in the kernel of 

a third order differential operator with injective symbol. Consequent- 

ly, the moduli space of all metrics with d*R = 0 modulo the group of 

diffeomorphisms of the underlying compact manifold is locally finite 

dimensional. 

3.2. The assertion of 3.1 fails to hold for the weaker condition d*W = 

= 0 ; counterexamples are provided by 3W,4W,5W,6W and 7 W of the table. 

4. FURTHER EXAMPLES 

4.1. For pointwise conformal metrics g and g = e2~g on a manifold 

M, the tensor d*W for g and the corresponding quantity d*W for 

g are related by 

( 5 )  d*W = d*W - ( n - 3 )  W ( V o , - , . , - )  , n : d im M ~ 3.  

4.2. For Riemannian products of Einstein manifolds like those described 

in 4 W and 5 W of the table, with any function o which is constant a- 

long the second factor, both terms on the right-hand side of (5) vanish, 

and so the conformally related metrics of 4 W and 5 W must also have har- 

monic Weyl tensor. In order that these metrics have constant scalar cur- 
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vature (and hence harmonic curvature, cf. 2.6.ii), the function F on 

the first factor manifold must satisfy a second order differential equa- 

tion, which admits a non-constant positive solution under the conditions 

stated in 4 R and 5 R (see [9], [12], [5]). If the (N,h) that we use are 

not of constant curvature, the examples in 4 R and 5 R obtained from this 

construction are neither locally isometric to those of IR, 2 R and 3R, 

nor to each other ([9], [12]). 

4.3. The Weyl tensor of any four-dimensional oriented Riemannian mani- 

fold (M,g) can be decomposed into its SO(4)-irreducible components: 

W = W + + W-, which corresponds to the decomposition A2M = ASM + A2M 

of A2M into the eigenspace bundles of the Hodge star operator ([2]). 

If, moreover, (M,g) is a K~hler manifold endowed with the natural 

orientation, the condition d*W + = 0 holds for the conformally related 

metric Sca]-2.g, defined wherever Sea] =Sca] ~ 0 ([i0]). Letting 
g 

(M,g) now be the Riemannian product of two orientable surfaces, we see 

that the example described in 6 W of the table has d*W = 0 (since g = 

= gl x g2 is a K~hler metric for two complex structures, corresponding 

to different orientations of M) . 

4.4. Let (S2,gc) be the sphere of constant curvature c > 0 and sup- 

pose that we are given a compact Riemannian surface (N,h) with non- 

constant Gaussian curvature K such that K + c > 0 on N and 

(6) (K + c )  ~ - 3 (K  + c ) . A K  - 61dK l  2 13 : 0 

for some real I > 0, where the quantities A = - hiJv.v, and 1 1 2 
tO 

refer to the geometry of (N,h). Then the compact Riemannian 4-manifold 

(N × S 2, (K + c)-2.(h x go) ) has harmonic curvature (since it is of 

type 6 W and has constant scalar curvature by (6)). However, it is not 

clear whether this construction really gives new compact 4-manifolds 

with d*R = 0 : 

a) For any real c,h with c > I > 0, the torus T 2 admits a 

metric h with non-constant curvature K satisfying K + c > 0 and 

(6). Namely, we can define h first on ~2 (with coordinates t,y) 

by h = dt 2 + (K(t) + c)2dy 2, taking for K = K(t) any non-constant 

periodic solution to 3(dK/dt) 2 : -2K 3 - 3cK z + c 3 13 with K + c > 

> 0 (which is easily seen to exist), and then project it onto T 2 = 

= ~2/~2 with an appropriate action of ~2. Unfortunately, the metric 

with d*R = 0 on T 2 x 52 obtained as above with this h, 

turns out to be a Riemannian product (of S l and S z x S 2 with suit- 

able metrics) and hence it is nothing really new. (However, one easily 

shows that for compact surfaces (N,h) with non-constant K satisfy- 

ing K + c > 0 and (6) which are not locally isometric to a torus as 

above, the corresponding metrics with d*R = 0 on N × 52 are never 
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locally isometric to examples IR ,2  R or 3 R of the table.) 

b) Let 1 ° > 0 be a simple eigenvalue of the Laplace operator 

on a compact surface (N,h) of constant curvature -I. To any func- 
0 

tion X on N and to I E ~ we can assign the function f(x,l), de- 

TABLE OF EXAMPLES 

Known examples of compact Riemannian manifolds with d*W = 0 or d*R = 0 
(up to local isometry) 

with d*W = 0 with d*R = 0 

i W. Einstein spaces 

2 W . Riemannian products of mani- 
folds with d*R = 0 

3 W . Conformally flat manifolds 

4 W. Warped products (SZx N, 

5 W • 

F'(dt2x h)) , F any positive 

function on Sl, (N,h) any 

Einstein space 

1R. Einstein spaces 

2 R . Riemannian products of mani- 
folds with d*R = 0 

3 R . Conformally flat manifolds with 
constant scalar curvature 

4 R. As in 4 W, with Scal h > 0 and 

Warped products ( M x N , F - ( g x h ) ) ,  
(M,g)  of constant curvature K , 
(N,h)  Einste in with Scal.  = 
= -d im N . ( d i m N  - I ) K ,  n 
F any positive function on M 

-2 
6 W. (M IxM2 , (K I+K  2) ( g l x g 2 ) ) ,  

dim M i = 2, (Mi,gi) having 

Gaussian curvature K i (i=1,2) 

with I KI+K 21 > 0 

7W" (MIXM2 ' IK I+K212/ ( l -n) . (g lx  g2) ) , 

dim MI= 2 < dim M2= n,  (M1,gl) 
with non-constant curvature KI, 

(M2,g2) of constant curvature K 2 , 

IK 1 + K21 > 0 

for a suitable non-constant F 

(which always exists on S I of 

appropriate length). Also, 

twisted warped products 

(~×N)/Z , where ~xN has the 

pull-back metric and the ~-ac- 

tion involves an isometry of h 

R" As in 5 W , with K < 0 and dim N > 

> dim M - II/K, 11 being the 

lowest positive eigenvalue of A 

in (M,g) , for a suitable non-con- 

stant F (which must exist) 

6 R ? Not known whether 6 W contains 

new compact manifolds with d*R = 

= 0 (see 4.4) 

7 R ? Not known whether 7 W gives new 

compact manifolds with d*R = 0 
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fined to be the left-hand side of (6) formed with the metric h = 

= e2X.h0 and with c = I + 1 (so that f is a fourth order non-line- 

ar operator in x with parameter l). The equation f(x,l) = 0 has 

the curve of trivial solutions with x = 0 and any % . At x = 0 and 

= h O this equation has a bifurcation point, since the hypotheses of 

Theorem (4.1.12) of [3] (p. 155) are satisfied. Thus, there is a curve 

(x(c),h(e)) of non-trivial solutions through ×(0) = 0, ~(0) = hO, 

and for small c ~ 0 the metric h = e 2x(C) .h has non-constant cur- 
E 0 

vature K with K + c > 0 and (6) for c = l(e) + I. By the above 

construction, this would lead to new compact Riemannian 4-manifolds 

with d*R = 0 ; however, the author does not know whether the Laplace 

operator of any compact surface with constant negative curvature ad- 

mits a simple positive eigenvalue. 

4.5. For gl' g2 as in 7 W , one easily sees ([19]) that the metric 

gl × g2 satisfies 21WI2.VW = d(IW!2) ~ W. Together with (5) and with 

the fact that, for gl × g2 ' IWI is proportional to IKI + K21 , this 

implies that the conformally related metric described in 7 W really 

satisfies d*W = 0 . 

5 .  PROPERTIES OF MANIFOLDS WITH HARMONIC CURVATURE 

5.1. Most of the known results on manifolds with d*R = 0 are valid 

in more generality. From d*R = 0 it follows that d*W = 0 , which in 

turn implies the existence of a natural Codazzi tensor b on the ma- 

nifold (M,g) (b = Ric - (2n-2)-Iscal-g , n = dim M). On the other 

hand, d*R = 0 means that b = Ric is a Codazzi tensor with constant 

trace (see 2.7 , 2.8). The results presented in this section will be 

stated under appropriate weaker hypotheses, as described above. 

5.2. THEOREM (D. DeTurck - H. Goldschmidt, [14]). Every Riemannian ma- 

nifold with d*R = 0 is analytic in suitable local coordinates. 

5.3. THEOREM ([13]). Given a Codazzi tensor b on (M,g), x 6 M and 

eigenspaces V, V' of b(x), the curvature operator R(x) 6 End A2I×M 

leaves V ~ V' C A2T M invariant. 
x 

Proof. Assume det b ~ 0 near x (taking b + tg instead of b). 

Viewing b as a bundle automorphism of TM (near x), we easily con- 

clude from db = 0 that V = b*? is the Levi-Civita connection of 

= b*g ([16]). Hence g has the (0,4) curvature tensor R(X,Y,Z,U) = 

= R(X,Y,bZ,bU). Our assertion now follows from the first Bianchi iden- 

tity for R . 

5 .4 .  ~;OURGUIGNON'S COMMUTATION THEOREM ( [ 6 ] ) .  Any Codazzi tensor b 

on (M,g) commutes with Ric,  while the endomorphism g (~) b of A2M 
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commutes with R and W (here G is the bilinear pairing of symmet- 

ric 2-tensor fields, giving rise to algebraic curvature tensors). 

Proof. At x 6 M, decompose A2T M using a b(x)-eigenspace decompo- 
x 

sition of TxM and apply 5.3. 

5.5. THEOREM ([13]). Let b be a Codazzi tensor on (M,g), dim M = n. 

If b has n distinct eigenvalues almost everywhere in M, then all 

Pontryagin forms of (M,g) vanish identically. 

5.6. THEOREM (cf. [6], [13]). If (M,g) satisfies d*W = 0 and 

x 6 M, then the inner product g(x) and the algebraic curvature ten- 

sor R(x) in lxM cannot be completely arbitrary; in other words, 

condition d*W = 0 always imposes algebraic restrictions on the cur- 

vature. For instance, we have 

i) Rio(x) i~as a multiple eigenvalue, 

or 

ii) 

lizes R(X) 

R(x) 6 End A2TxM. This in turn implies that all Pontryagin forms of 

(M,g) vanish at x . 

P r o o f  o f  5 .5  and 5 . 6 .  If b ( x )  (resp., R i c ( x ) )  has n = d im M dis- 

tinct eigenvalues, 5.3 gives rise to 1-dimensional invariant subspaces 

and hence to eigenvectors of R(x). The assertion concerning the Pont- 

ryagin forms now follows immediately. 

5 . 7 .  COROLLARY. Let  (M ,g )  s a t i s f y  d*R = O.  I f ,  f o r  some x E M, 

all eigenvalues of R i c ( x )  are simple, then all real Pontryagin 

classes of M are zero. 

Proof. Immediate from 5.6 and 5.2. 

5.8. THEOREM (cf. [6], [13]). For a Codazzi tensor b on (M,g) with 

dim M = 4, we have P l ( ~  (b - ¼ t r  b - g )  = 0 , P1 being the (first) 

Pontryagin form of (M,9). More precisely, at any point x where b 

is not a multiple of g, the endomorphisms W+(x) of A~IxM and 

W-(x) of A~TxM have equal spectra. 

Idea of proof (see [5] for details). We may assume that the number of 

distinct eigenvalues of b is locally constant at x . The assertion 

can now be obtained from 5.3 using the algebraic properties of W , 

except for the case of two double eigenvalues for b(×) , where an ar- 

gument involving differentiation is needed ([13], [5]). 

5.9. COROLLARY (J. p. Bourguignon, [6]). The signature T and the 

Euler characteristic X of any compact oriented Riemannian four-ma- 

TxM admits an orthonormal basis el, .... e n which diagona- 

in the sense that all e. ^ e, (i<j) are eigenvectors of 
J 
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nifold ( M , g )  with harmonic curvature satisfy 

(2× - 31~l).l~l ~ o 

More precisely, if T ~ O, (M,g) must be Einstein and so 2 X ~ 31T I 

by Thorpe's inequality ([22]). 

P r o o f .  I n u n e d i a t e  f r o m  5 . 8  a n d  5 . 2  . 

5.10. THEOREM (D. DeTurck - H. Goldschmidt, [14], cf. [5]). Let (M,g) 

satisfy d*W = 0 . If, for some point X ,  W(X) = 0 and all eigenva- 

lues of Rio(x) are simple, then W = 0 identically on M . 

Proof. Choose an orthonormal C ~ frame field diagonalizing Ric (and R, 

W) near x (cf. 5.6.ii). Equations d*W = 0 , dW = 0 (see (4)) mean 

that the components of W in this frame field satisfy a first order 

system of linear differential equations, solved for the directional 

derivatives. As W(x) = 0 , W = 0 near x . Since W is a solution 

to the elliptic system (dd* + d*d)W = 0 , W = 0 ever!r~here in view 

of! Aronszajn's unique continuation theorem (cf. [I]) . 

5.11. THEOREM (M. Berger, cf.[4] and [5]). Let b be a Codazzi tensor 

with constant trace on a compact Riemannian manifold with sectional 

curvature K > 0 . Then b is a constant multiple of the metric. Thus, 

a compact manifold (M,g) with d*R = 0 and K > 0 must be Einstein. 

Proof. See [4] or [5]. 

5.12. THEOREM (Y. Matsushima [18], S. Tanno [21]). Let b be a Hermi- 

tian Codazzi tensor on a K~hler manifold. Then b is parallel. In 

particular, a K~hler manifold with d*W = 0 must have ? Ri¢ = 0 . 

Proof. The expression (Vxb)(Y,JZ) , where J is the complex structure 

tensor, is symmetric in X~Y and skew-synunetric in Y,Z , so that it 

vanishes. 

5.13. THEOREM ([9], cf. [5]). Let (M,g) be compact and satisfy d*R = 

= 0 . If its Ricci tensor is not parallel and has, at each point, less 

than 3 distinct eigenvalues, then (M,g) admits a finite Riemannian 

covering by a manifold S z x N endowed with a twisted warped'product 

metric as described in 4 R of the table. Conversely, all examples of 4 R 

satisfy the above hypotheses. 

Proof. See [9] or [5]. 

5 . 1 4 .  THEOREM. Suppose we are given an oriented Riemannian four-mani- 

fold ( M , g )  with d*W : 0 , and a point X of M at which W ~ 0 

and 4 Ric ~ Sca].g . If the endomorphism W + of A~M has less than 

three distinct eigenvalues at every point, then, in a neighborhood of 
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x , g is obtained by a conformal deformation of a product of surface 

metrics as in 6 W of our table. 

Proo f .  See [5]. 

6. SOME OPEN QUESTIONS 

6.1. Does there exist a compact simply connected Riemannian manifold 

with d*R = 0 , the Ricci tensor of which is not parallel ? (cf. [7]). 

6.2. Are there compact Riemannian 4-manifolds satisfying d*R = 0 and 

not locally isometric to examples IR,2R,3 R of our table ([6]; cf. 4.4). 

6.3. Must a locally homogeneous Riemannian manifold with d*R : 0 

have parallel Ricci tensor ? 

6.4. Do the classes 6 W , 7 W of our table contain new compact Riemann- 

ian manifolds with harmonic curvature ? (cf. 4.4). 

7 .  THE CLASSIFICATION PROBLEM IN DIMENSION FOUR 

7.1. In this section we present some steps towards a classification 

of compact Riemannian 4-manifolds with harmonic curvature. By a classi- 

fication we mean a description of all Riemannian universal covering 

spaces of such manifolds which are different from the "classical" exam- 

ples (Einstein, conformally flat, products). The results we discuss 

below consist in excluding certain a priori possible cases. Their 

proofs, too long to be reproduced here, are available from the unpub- 

lished manuscript [ii]. 

7.2. Let us recall the known examples of compact Riemannian four-mani- 

folds with d*R = 0. First, we have the types 1 R, 2 R and 3 R of our 

table (which obviously include many compact manifolds). Explicitly, 

these are 

I. Einstein spaces 

II. Conformally flat manifolds with constant scalar curvature 

Ill. Manifolds locally isometric to Riemannian products ~ x N , 

where N is a conformally flat 3-manifold with constant sca- 

lar curvature 

IV. Manifolds locally isometric to Riemannian products of sur- 

faces with constant curvatures 

Examples 4 R and 5 R of the table yield nothing new in dimension four. 

Finally, it seems convenient to list here also the examples of 6 R : 



83 

V. Manifolds locally isometric to (N x S 2, (K + c)-2(h x gc) ) 

as described in 4.4. 

Although we do not know if new examples with compact surfaces N real- 

ly occur in V., this is clearly true for non-compact N (just take N 

to be a surface of revolution, which reduces (6) to an ordinary diffe- 

rential equation). 

7.3. Let (M,g) now be an oriented Riemannian four-manifold with har-~ 

monic curvature. Denote by r O 6 {1,2,3,4} (resp., by w O 6 {1,2,3}) 

the maximal number of distinct eigenvalues of Ric (resp., of W + 

acting on A#M ) , both attained in an open dense subset of M (cf. 

5.2). The following cases are possible: 

Case A: r O = 1 , i.e., (M,g) is Einstein, as in 7.2.1. 

= . Case B: r 0 > 1 , w O 1 Then (M,g) must be as in 7.2 II. In fact, 

W + is always traceless in A~M , which now implies W + = 0 

and, by 5.8, also W = 0 . 

Case C: r 0 > 1 , w O = 2. Then (M,g) is as in 7.2.1V., or it is of 

type 7.2.V. (where N may be non-compact and c,h need not 

be positive). However, in the latter case c,h > 0 and N 

can be chosen compact, if so is M . See [II] for details. 

= , Case D: r 0 > 1 , w 0 3 In an open dense subset M 0 of M we can 

choose an orthonormal C ~ frame field el,...,e 4 diagonaliz- 

ing R in the sense of 5.6.ii. For 1 6 {1,2,3,4} we say 

that A l ¢ 0 if there exist i,j,k with {i,j,k,1} = {1,2, 

3,4} and g(Veiej,ek ) ~ 0 somewhere in the given connected 

component of M 0 . Define m 0 6 {0,1,2,3,4} to be the nunzber 

< 2 ([ii]) and so of 1 with A 1 ~ 0. It turns out that m 0 = 

three subcases can only occur: 

Case D.0 : m 0 = 0. See 7.5 below. 

Case D.I : m = i. Then (M,g) is as in 7.2.111. (see [II]). 
0 

Case D.2 : m = 2. If, moreover, (M,g) is complete, then 
0 
IdlRicl21 is unbounded on M . Thus, if M is 

compact, Case D.2 cannot occur. 

7.4. According to 7.3, our classification problem for compact Riemann- 

ian 4-manifolds with d*R = 0 (cf. 7.1) has been reduced to cases C 

and D.0, since cases A,B and D.I imply a "classical" situation (I.-IV. 

of 7.2), and Case D.2 is impossible. In Case C this problem amounts to 

the question of existence and classification for compact surfaces (N,h) 

having the properties stated in 4.4 (cf. 4.4.a,b). As for Case D.0 
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(which may occur for certain non-compact manifolds of type 7.2.111.), 

we do not know whether compact manifolds of this kind exist. 

7.5. Some local properties of Riemannian 4-manifolds (M,g) with d*R = 

= 0 in Case O.0 . Let e I ..... e 4 be the orthonormal C ~ frame field, 

defined at the "generic" points of M and diagonalizing R (and Rio). 

= . = F..e. and [ei, - F ej Since m O 0 , we have Veie J J% % ej] = Fj ie i i j  
for i ~ j , with certain functions Fji (in particular, the generic 

subset of M admits local coordinates with mutually orthogonal coordi- 

nate lines). Set b = Ric - ¼ Scal.g , %i = b(ei,ei) , oij = 

= W(ei,ej,ei,ej) (i ~ j), so that Eih i = 0 and oij = oji = Okl 
if {i,j,k,1} = {1,2,3,4}. Conditions db = 0 , d*W = 0 and the fact 

that e I , .... e 4 diagonalizes R (and W) now imply Dkl ~ = (hk-li)Fki , 

Dk~ji = (Oki-aji)Fkj + (~kj-Oji)Fki and DkFji = Fki(Fjk-Fji) for 

i~j~k~i , D k being the directional derivative along e k . The integra- 

bility conditions for these systems impose certain alqebraic relations 

on the components h. , ~.. and F... 
sj ~j 

REFERENCES 

I. Aronszajn, N.: A unique continuation theorem for solutions of elliptic partial dif- 
ferential equations or inequalities of second order. J. Math. Pures Appl. 36, 235- 
-249 (1957) (Zbl. 84.304) 

2. Atiyah, M.F., Hitchin, N.J., Singer, I.M.: Self-duality in four-dimensional Riemann- 
ian geometry. Proc. Roy. Soc. London A362, 425-461 (1978) (Zbl. 389.53011) 

3. Berger, M.S.: Nonlinearity and Functional Analysis, Academic Press, 1977 (Zbi.368.47OO1) 
4. Berger, M., Ebin, D.: Some decompositions of the space of symmetric tensors on a 

Riemannian manifold. J. Differential Geometry 3, 379-392 (1969) (Zbl. 194,531) 
5. Besse, A.L.: Einstein Manifolds (to appear) 
6. Bourguignon, J.P.: Les vari~t4s de dimension 4 ~ signature non nulle dont la cour- 

bure est harmonique sont d'Einstein. Invent. math. 63, 263-286 (1981) (Zbl. 456.53033) 
7. Bourguignon, J.P.: Metrics with harmonic curvature. Global Riemannian Geometry (edit- 

ed by T.J. willmore and N.J. Hitchin), 18-26. Ellis Horwood, 1984 
8. Bourguignon, J.P., Lawson, H.B.,Jr.: Yang-Mills theory: Its physical origins and 

differential geometric aspects. Seminar on Differential Geometry (edited by S.T. Yau), 
Ann. of Math. Studies No. 102, 395-421 (1982) (Zbl. 482.58007) 

9. Derdzinski, A.: On compact Riemannian manifolds with harmonic curvature. Math. Ann. 
259, 145-152 (1982) (Zbl. 489.53042) 

i0. Derdzinski, A.: Self-dual K~hler manifolds and Einstein manifolds of dimension four. 
Compos. Math. 49, 405-433 (1983) (Zbl. 527.53030) 

ii. Derdzinski, A.: Preliminary notes on compact four-dimensional Riemannianmanifolds 
with harmonic curvature, 1983 (unpublished) 

12. Derdzinski, A.: An easy construction of new compact Riemannian manifolds with harmo- 
nic curvature (preliminary report). SFB/MPI 83-21, Bonn (1983) 

13. Derdzi~ski, A., Shen, C.L.: Codazzi tensor fields, curvature and Pontryagin forms. 
Proc. London Math. Soc. 47, 15-26 (1983) (Zbl. 519.53015) 

14. DeTurck, D.: private communication 
15. Ebin, D.G.: The manifold of Riemannian metrics. Proc. of Symposia in Pure Math. 15, 

11-40 (1970) (Zbl. 205,537) (Zbl. 135,225) 
16. Hicks, N.: Linear perturbations of connexions. Michigan Math. J. 12, 389-397 (1965) 
17. Lafontaine, J.: Remarques sur les vari4t4s conform4ment plates. Math. Ann. 259, 

313-319 (1982) (Zbl. 469.53036) 



85 

18. Matsushima, Y.: Remarks on K~hler-Einstein manifolds. Nagoya Math. J. 46, 161-173 
(1972) (Zbl. 249.53050) 

19. Roter, W. : private communication 
20. Sehouten, J.A.: Ricci Calculus. Springer-Verlag, 1954 
21. Tanno, S. : Curvature tensors and covariant derivatives. Ann. Mat. Pura Appl. 96, 

233-241 (1973) (Zbl. 277.53013) 
22. Thorpe, J. : Some remarks on the Gauss-Bonnet integral. J. of Math. Mech. 18, 779- 

-786 (1969) (Zbl. 183,505) 


