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Abstract

We prove the existence of compact pseudo-Riemannian manifolds with parallel
Weyl tensor which are neither conformally flat nor locally symmetric, and rep-
resent all indefinite metric signatures in all dimensions n ≥ 5. Until now such
manifolds were only known to exist in dimensions n = 3j + 2, where j is any
positive integer [1]. As in [1], our examples are diffeomorphic to nontrivial torus
bundles over the circle and arise from a quotient-manifold construction applied to
suitably chosen discrete isometry groups of diffeomorphically-Euclidean “model”
manifolds.
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Introduction

Essentially conformally symmetric (briefly, ECS ) manifolds [2] are those pseu-
do-Riemannian manifolds of dimensions n ≥ 4 which have parallel Weyl tensor
(∇W = 0) without being conformally flat (W = 0) or locally symmetric (∇R = 0).
Their existence, for every n ≥ 4, was established by Roter [3, Corollary 3], who also
showed that their metrics are all indefinite [4, Theorem 2]. A local description of all
ECS metrics is given in [5].

Manifolds with ∇W = 0 are often called conformally symmetric [6]. This class
represents one of the natural linear conditions imposed on ∇R, cf. [7, Chapter 16],
and due to its naturality it attracted the attention of other authors, including Cahen
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and Kerbrat [8], Hotloś [9], Mantica and Suh [10, Section 3], Schliebner [11], Deszcz
et al. [12, Sect. 4], [13, Theorem 6.1]. Results on ECS manifolds, as well as techniques
used in obtaining them have been applied to more general classes of manifolds [14,
Example 2.2], [15], [16, Theorem 3], [17], [18, Theorem 3.9], [19, Lemma 3], [20], [21,
proofs of Theorems 1.1 and 4.5] and, more recently, [22].

Every ECS manifold M carries a distinguished null parallel distribution D of
dimension d ∈ {1, 2}, discovered by Olszak [23]. See also [5, p. 119]. We will refer to
d as the rank of M. Explicitly, the sections of D are the vector fields corresponding
via the metric to 1-forms ξ such that ξ∧ [W (v, v′, · , · )] = 0 for all vector fields v, v′.

Compact rank-one ECS manifolds which are also geodesically complete and not
locally homogeneous are known to exist [1, Theorem 1.1] in all dimensions n ≥ 5 with
n ≡ 5 (mod 3). Quite recently [24] we constructed geodesically incomplete locally-ho-
mogeneous compact rank-one ECS manifolds of all odd dimensions n ≥ 5.

It still remains an open question whether a compact ECS manifold may be of rank
two, or of dimension four.

Our main result may be viewed as an improvement on [1, Theorem 1.1], since it
covers every dimension n ≥ 5, rather than just those congruent to 5 modulo 3.

Theorem A. There exist compact rank-one ECS manifolds of all dimensions n ≥ 5
and all indefinite metric signatures, diffeomorphic to nontrivial torus bundles over
the circle, geodesically complete, and not locally homogeneous. Their local-isometry
types, in each fixed dimension and metric signature, form – in a natural sense – an
infinite-dimensional moduli space.

The significance of the “model” manifolds (see Section 2) used to produce our
compact examples is twofold: in addition to representing all rank-one local isometry
types, they constitute the universal coverings of a large class of compact rank-one ECS
manifolds [25, Corollary D].

Finally, the bundle structure in Theorem A reflects a general principle: in [26] we
show that a non-locally-homogeneous compact rank-one ECS manifold, replaced if
necessary by a two-fold isometric covering, must be a bundle over the circle, having
D⊥ as the vertical distribution.

Outline of the construction

The paper is structured as follows. After preliminaries comes Section 2, presenting
rank-one ECS model manifolds, which exist in all dimensions n ≥ 4 (even though
our construction of their compact quotients requires assuming that n ≥ 5). The
purpose of Section 3 is to show that the particular model manifolds which we focus on
are geodesically complete, but not locally homogeneous, so that the same conclusion
holds for our compact quotients. In Section 4 we observe (Lemma 4.1) that, given an
integer m ≥ 3, there exists a GL(m,Z) polynomial with m distinct real positive
roots different from 1. The next two sections, crucial for our existence argument, are
devoted to proving, in Theorem 6.2, that all the m-element GL(m,Z)-spectra just
mentioned – and even a wider class characterized by condition (4.2) – arise via a
specific integral formula from periodic curves R 3 t 7→ B = B(t) of diagonal m×m
matrices satisfying an ordinary differential equation of the form Ḃ +B2 = f +A, with
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a function f and matrix A appearing in a suitable rank-one ECS model manifold
M̂ of dimension n = m + 2. Finally, Section 7 provides the existence proof: a curve
t 7→ B(t) realizing, for any given m ≥ 3, one of the GL(m,Z)-spectra of Lemma 4.1,

is used to construct a group Γ acting on the corresponding model M̂ freely and
properly discontinuously by isometries, with a compact quotient manifold M = M̂/Γ.

The most important ingredient of the above argument is the GL(m,Z)-spectrum
property of the curve t 7→ B(t).

1 Preliminaries

By a lattice in a real vector space L with dimL = m < ∞ we mean, as usual, an
additive subgroup of L generated by some basis of L. Then

Λ is a discrete subset of L, (1.1)

as one sees identifying Λ and L with Zm and Rm.
Suppose that a group Γ acts on a manifold M̂ freely by diffeomorphisms. The

action of Γ on M̂ is called properly discontinuous if there exists a locally diffeomor-
phic surjective mapping M̂ →M onto some manifold M, the preimages of points of
M under which are precisely the orbits of the Γ action.

Remark 1.1. A free left action of a group Γ on a manifold M̂ is properly discon-
tinuous if and only if for any sequences aj in Γ and yj in M̂, with j ranging over

positive integers, such that both yj and ajyj converge, the sequence aj is constant
except for finitely many j. See [27, Exercise 12-19 on p. 337].

Remark 1.2. Any smooth submersion from a compact manifold into a connected
manifold is a (surjective) bundle projection. This is the compact case of Ehresmann’s
fibration theorem [28, Corollary 8.5.13].

2 The model manifolds

Let f, p, n, V , 〈·, ·〉 and A denote a nonconstant C∞ function f : R → R, periodic
of period p > 0, an integer n ≥ 4, a pseudo-Euclidean inner product 〈·, ·〉 on a real
vector space V of dimension n− 2, and a nonzero, traceless, 〈·, ·〉-self-adjoint linear
endomorphism A of V . Consider the pseudo-Riemannian metric [3]

κ dt2 + dt ds + δ (2.1)

on the manifold M̂ = R2 × V ≈ Rn. The products of differentials stand here for
symmetric products, t, s are the Cartesian coordinates on R2 treated, with the aid
of the projection M̂ → R2, as functions M̂ → R, and δ is the pullback to M̂ of the
flat (constant) pseudo-Riemannian metric on V arising from the inner product 〈·, ·〉,
while κ : M̂ → R is the function given by κ(t, s, x) = f(t)〈x, x〉+ 〈Ax, x〉.

The metric (2.1) turns M̂ into a rank-one ECS manifold [5, Theorem 4.1].
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We now define E to be the vector space of all C∞ solutions u : R → V to the
differential equation ü(t) = f(t)u(t) + Au(t), and set G = Z × R × E. Whenever
u,w ∈ E, the function Ω(u,w) = 〈u̇, w〉 − 〈u, ẇ〉 : R→ R is constant, giving rise to a
nondegenerate skew-symmetric bilinear form Ω on E. We also have a natural linear
isomorphism T : E → E with (Tu)(t) = u(t − p). Next, we turn G into a Lie group
by declaring the group operation to be

(k, q, u) · (`, r, w) = (k + `, q + r −Ω(u, T `w), T −`u+ w), (2.2)

and introduce a left action of the Lie group G on the manifold M̂, with

(k, q, u) · (t, s, v) = (t+ kp, s+ q − 〈u̇(t), 2v + u(t)〉, v + u(t)). (2.3)

With all triples assumed to be elements of G, one then has

(k, q, u) · (0, r, w) · (k, q, u)−1 = (0, r − 2Ω(u,w), T kw). (2.4)

Our G also acts on the manifold R2× E, diffeomorphic to R2n−2, by

(k, q, u) · (t, z, w) = (t+ kp, z + q −Ω(u,w), T k(w + u)), (2.5)

and the following mapping is equivariant relative to the G-actions (2.5) and (2.3):

R2× E 3 (t, z, w) 7→ (t, s, v) = (t, z − 〈ẇ(t), w(t)〉, w(t)) ∈ M̂ . (2.6)

All the above facts are established in [1, p. 77], where it is also shown that

the group G acts on M̂ by isometries of the metric (2.1). (2.7)

Remark 2.1. If, at the beginning of this section, f : I → R is just a nonconstant
C∞ function on an open interval I ⊆ R, rather than being defined on R and periodic,
while the remaining data n, V , 〈·, ·〉 and A are as before, I×R× V with the metric
(2.1) will still be a rank-one ECS manifold; conversely, in any n-dimensional rank-
one ECS manifold, every point at which the covariant derivative of the Ricci tensor is
nonzero has a neighborhood isometric to an open subset of a manifold of this type [5,
Theorem 4.1].

3 Geodesic completeness

Later in this section, showing that local homogeneity implies relation (3.3), we use
much weaker assumptions than necessary for the purposes of the present paper. The
reason is that we need to cite such a general conclusion when proving a result in
another paper, namely, [26, Theorem 7.3].

For the manifold M̂ = R2× V ≈ Rn with the metric (2.1),

M̂ is geodesically complete, but not locally homogeneous. (3.1)
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To see this, we let i, j range over 2, . . . , n− 1, fix linear coordinates xi on V which,
along with x1 = t and xn = s/2, form a global coordinate system on M̂. The possi-
bly-nonzero components of (2.1), its reciprocal metric, and the Levi-Civita connection
∇ then are those algebraically related to

g11 = κ, g1n = 1, g1n = 1, gnn = −κ, (constants) gij and gij ,
Γ n11 = ∂1κ/2, Γ i11 = −gij∂jκ/2, Γ n1i = ∂iκ/2.

(3.2)

See [3, p. 93]. With ( )̇ referring to the geodesic parameter, the geodesic equations
read ẍ1 = 0 (and so c = ẋ1 is constant), ẍi = −c2Γ i11 and ẍn = −c2Γ n11 − 2cΓ n1i ẋ

i.
Note that κ has the form κ = f(t)gijx

ixj + aijx
ixj, with constants gij and aij .

Being linear in the parameter of a maximal geodesic, x1 is defined on R, and the same
follows for all xi (as they now satisfy a system of linear second-order equations) and
for xn (which then has a prescribed second derivative). Thus, completeness follows.
The second claim of (3.1) is a consequence of what we show later in this section:
namely, more generally, for any metric on I×R× V as in Remark 2.1, with an open
interval I ⊆ R, if (t, s, x) ∈ I×R×V has a product-type neighborhood U involving
a subinterval I′ of I with a Killing field v on U such that dv t 6= 0 everywhere in U
(or, equivalently, v1 6= 0 everywhere in U for the above coordinates x1, . . . , xn), then

(|f |−1/2)̇ is constant on every subinterval of I′ on which |f | > 0, (3.3)

( )̇ this time denoting d/dt, and (3.3) in turn easily yields

positivity of |f | and constancy of (|f |−1/2)̇ on I′, (3.4)

since a maximal open subinterval I′′ of I′ with |f | > 0 on I′′ must equal I′ (or else
I′′ would have a finite endpoint lying in I′, at which |f |−1/2, being a linear function,
would have a finite limit, contrary to maximality of I′′). Local homogeneity of (2.1) on

M̂ = R2× V would, by (3.4) for I′ = R, imply that the nonconstant periodic function
|f |−1/2 is linear. This contradiction proves (3.1).

We now establish (3.3), assuming what is stated in the five lines preceding (3.3),
and using the coordinates x1, . . . , xn on I × R × V mentioned there. (Thus – cf.
Remark 2.1 – we are looking at an arbitrary n-dimensional rank-one ECS manifold,
rather than just M̂ with the metric (2.1), where f is periodic.) First,

the function t = x1 is determined, uniquely up to affine substitu
tions, by the local geometry of the metric (2.1), while the assign
ment t 7→ f(t),modulo its replacements by t 7→ q2f(qt+ p), with
q, p ∈ R and q 6= 0, is a local geometric invariant of (2.1) as well.

(3.5)

In fact, by (3.2), the coordinate vector field ∂n is parallel. Hence so is the 1-form
dt = dx1 corresponding to ∂n via the metric (2.1). According to [3, p. 93], where the
convention about the sign of the curvature tensor is the opposite of ours,

the metric (2.1) has the Ricci tensor Ric = (2− n)f(t) dt⊗ dt, (3.6)
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and the only possibly-nonzero components of its Weyl tensor W are those algebraically
related to W1i1j . Thus, for any vector fields v, v′, the 2-form W (v, v′, · , · ) is ∧-di-

visible by dt = dx1 and, consequently, the parallel gradient ∂n = ∇t spans the
Olszak distribution D described in the Introduction. This yields the first claim of
(3.5), while the second one is then obvious from (3.6). By (3.5), the local flow of
our Killing field v on U, with dv t 6= 0, sends t to affine functions of t, and so
dv t = £v t = at + b, where a, b ∈ R and (a, b) 6= (0, 0). Thus, £vdt = d£v t = adt
and £v[f(t)] = dv[f(t)] = ḟ(t) dv t = (at + b)ḟ(t). From (3.6) and the Leibniz rule,
0 = £v[f(t) dt⊗ dt] = [(at+ b)ḟ(t) + 2af(t)] dt⊗ dt. As (a, b) 6= (0, 0), (3.3) follows.

Remark 3.1. Let G be the group defined in Section 2, acting on M̂ via (2.3).
Due to (3.5), if a family of metrics arises from (2.1) on quotient manifolds M =

M̂/Γ of a fixed dimension n ≥ 5, for subgroups Γ ⊆ G acting on M̂ freely and
properly discontinuously, where f used in (2.1) ranges over an infinite-dimensional
manifold of C∞ functions of a given period p, then such a family of metrics forms
an infinite-dimensional moduli space of local-isometry types.

4 GL(m,Z) polynomials

By a GL(m,Z) polynomial we mean here any degree m polynomial with integer
coefficients, leading coefficient (−1)m, and constant term 1 or −1. It is well known,
cf. [1, p. 75], that these are precisely the characteristic polynomials of matrices in
GL(m,Z), the group of invertible elements in the ring of m×m matrices with integer
entries. Equivalently, the GL(m,Z) polynomials are

the characteristic polynomials of endomorphisms of an m dimen
sional real vector space V sending some lattice Λ in V onto itself.

(4.1)

On (λ1, . . . , λm) ∈ Rm one may impose the following condition:

{λ1, . . . , λm} is a subset of (0,∞) r {1}, not
of the form {λ} or {λ, λ−1} with any λ > 0.

(4.2)

This amounts to requiring that λ1, . . . , λm ∈ (0,∞) and the absolute values
| log λ1|, . . . , | log λm| be all positive, but not all equal. Clearly,

if {λ1, . . . , λm} ⊆ (0,∞) r {1} has more than two elements, (4.2) follows. (4.3)

Lemma 4.1. For every integer m ≥ 3 there exists a GL(m,Z) polynomial, the roots
λ1, . . . , λm of which are all real, positive, distinct, and different from 1.

Proof. For m = 3, according to [1, Lemma 2.1], whenever k, ` ∈ Z and 2 ≤ k < ` ≤
k2/4, the polynomial λ 7→ −λ3 + kλ2 − `λ + 1 has three distinct real roots λ, µ, ν
with 1/` < λ < 1 < µ < k/2 < ν < k, as required. Since the quadratic polynomial
λ 7→ λ2+kλ+1 with any integer k < −2 has one root in (0, 1) and another in (0,∞),
both of them depending on k via an injective function, products of such quadratic
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polynomials with different values of k realize our claim for all even m, while the
case of odd m is settled by the same products, further multiplied by the above cubic
polynomial.

The quartic polynomials obtained in the above proof have very special sets of roots,
of the form {λ, λ−1, µ, µ−1}. To obtain more diverse spectra, consider λ 7→ P (λ) =
λ4−mλ3 + `λ2− kλ+ 1, with k, `,m ∈ Z. The inequalities

P (2) ≤ 16P (1/2) < 0 < P (1)

sufficient for our conclusion will follow once k ≥ 7, as we may then choose m with
k ≤ m ≤ 2k − 7 (and so 16P (1/2) − P (2) = 6(m − k) ≥ 0). This also gives 2(k +
m)− 2 < 4k +m− 8, and hence 2(k +m)− 4 < 2` < 4k +m− 8 for some `, which
amounts to P (1) > 0 > 16P (1/2).

5 Smoothness-preserving retractions

The following fact will be needed in Section 6. A retraction from a set onto a subset is,
as usual, a mapping equal to the identity on the subset, and by the function component
of a pair (f,A) we mean the Ck function f.

Lemma 5.1. Let there be given an integer k ≥ 0, a compact smooth manifold Q,
finite-dimensional real vector spaces X and Z, an open set U′ ⊆ Ck(Q,R) × X, a
smooth mapping Φ : U′ → Z, and a point y ∈ U′. If the differential dΦy is surjective,
and z = Φ(y), then there exist a neighborhood U of y in U′ and a smooth retraction
π : U→ U∩Φ−1(z) such that, for every x ∈ U having a smooth function component,
the function component of π(x) is smooth as well.

Proof. Let x1, . . . , xm ∈ Ck(Q,R) × X be representatives of a basis of the quotient
space [Ck(Q,R)×X]/Ker dΦy ≈ Z, having smooth function components. The smooth

mapping F : Ck(Q,R) × X × Rm → Z sending (x, a1, . . . , am) to Φ(x + aixi ), with
x ∈ Ck(Q,R)×X and summation over i = 1, . . . ,m, has the value z at (y, 0, . . . , 0),
while the differential at (y, 0, . . . , 0) of the restriction of F to {y} × Rm, given by
(a1, . . . , am) 7→ dΦy(aixi ), is an isomorphism due to our choice of x1, . . . , xm as a
quotient basis. The implicit mapping theorem [29, p. 18] thus provides neighborhoods
U of y in U′ and U′′ of 0 in Rm such that every x ∈ U has F (x, a1(x), . . . , am(x)) =
z with a unique (a1(x), . . . , am(x)) ∈ U′′, which also depends smoothly on x. We may
now set π(x) = x+ ai(x)xi.

6 Nearly-arbitrary positive spectra

Given p ∈ (0,∞) and an integer m ≥ 3, we denote by ∆m the space of all diagonal
m×m matrices with real entries. Let us consider the set Xm of all ordered (m+ 1)-
tuples (f, λ1, . . . , λm) formed by a nonconstant periodic C∞ function f : R→ R of
period p and positive real numbers λ1, . . . , λm such that, for some nonzero traceless
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matrix A ∈ ∆m and some C∞ curve R 3 t 7→ B = B(t) ∈ ∆m, periodic of period p,
one has

Ḃ + B2 = f + A and diag(log λ1, . . . , log λm) = −
∫ p

0

B(t) dt, (6.1)

where ( )̇ = d/dt and f stands for f times Id or, equivalently, for diag(f, . . . , f).
In the remainder of this section, we fix an integer k ≥ 1 and treat real or matrix-

valued functions of period p as mappings with the domain S1.

Remark 6.1. If c ∈ Rr {0}, the linear operator Ck(S1,R)→ Ck−1(S1,R) sending
y to ẏ + cy is an isomorphism: its kernel consists of multiples of t 7→ e−ct, while
solving the equation ẏ + cy = u with u ∈ Ck−1(S1,R) for y : R → R gives us
y(t+ p) = y(t) + ae−ct, where a ∈ R. Now t 7→ y(t) + (1− e−pc)−1ae−ct is the unique
periodic solution to ẏ + cy = u.

Theorem 6.2. If λ1, . . . , λm satisfy (4.2), then (f, λ1, . . . , λm) ∈ Xm for all f from
some infinite-dimensional manifold of C∞ functions.

Proof. At any nonsingular C = diag(c1, . . . , cm) ∈ ∆m such that |c1|, . . . , |cm| are
not all equal, viewed as a constant mapping C : S1 → ∆m, the C∞ mapping S :
Ck(S1,∆m) → Ck−1(S1,∆m) with S(B) = Ḃ + B2 has the differential given by
dSCY = Ẏ + 2CY , which is an isomorphism (Remark 6.1). Let C2 = h+ A, with h
a (constant) multiple of Id and (nonzero) traceless A. Due to the inverse mapping
theorem [29, p. 13], S has a local C∞ inverse from a Ck−1-neighborhood of h + A
onto a Ck-neighborhood of C. If f ∈ Ck−1(S1,R) is Ck−1-close to the constant
h, and E ∈ ∆m constant, traceless as well as close to A, applying to f + E this
local inverse followed by the mapping B 7→ (λ1, . . . , λm) ∈ Rm characterized by the
second part of (6.1), we get the composite f + E 7→ Φ(f + E) = (λ1, . . . , λm) ∈ Rm
of three mappings: first, the above local inverse of S (restricted to the set U′ of
f + E with f near h and constant traceless E near A), then the linear operator
B 7→ −

∫ p
0
B(t) dt ∈ ∆m and, finally, the entrywise exponentiation of diagonal m×m

matrices. The differential dΦh+A is thus the composite

f + E 7→ Y 7→ Z = −
∫ p

0

Y (t) dt 7→ e−pCZ (6.2)

of the differentials of our three mappings, at the points h+A, C and −
∫ p
0
C dt = −pC.

Note that the first arrow in (6.2) sends f + E to Y with Ẏ + 2CY = f + E, while
the entrywise exponentiation has at −pC the differential Z 7→ e−pCZ. Integrating
Ẏ + 2CY = f + E from 0 to p, we obtain 2C

∫ p
0
Y (t) dt =

∫ p
0
f(t) dt + pE due to

periodicity of Y and constancy of both C and E, so that the second arrow in (6.2)
takes Y to Z = −(2C)−1[

∫ p
0
f(t) dt+ pE]. Applying to this Z the last arrow of (6.2),

we see that dΦh+A(f+E) = −e−pC(2C)−1[
∫ p
0
f(t) dt+pE], and so dΦh+A is manifestly

surjective onto ∆m. The preimage Φ−1(e−pC) is thus an infinite-dimensional subman-
ifold of the manifold formed by our f + E, with the tangent space at h + A equal
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to Ker dΦh+A, and hence consisting of all f +E with E = 0 and
∫ p
0
f(t) dt = 0. See

[29, p. 30].
The hypotheses of Lemma 5.1 are now satisfied by the circle Q = S1, the space Z

of all diagonal m×m matrices, its subspace X consisting of traceless ones, the points
y = h+A and z = e−pC, and our Φ along with its domain U′, treated as a subset of
Ck(S1,R)×X via the identification of each f+E with the pair (f,E). For the smooth
retraction π arising from Lemma 5.1, ε near 0 in R, and any given f ∈ C∞(S1,R)
with

∫ p
0
f(t) dt = 0, the curve ε 7→ π(h + εf,A) lies in the preimage Φ−1(e−pC),

consists of function-matrix pairs having a smooth function component, and its velocity
vector at ε = 0 is f (as one sees applying d/dε and noting that the differential of π
at y = h+A equals the identity when restricted to the tangent space of Φ−1(e−pC)).
Since f was just any smooth function S1 → R with

∫ p
0
f(t) dt = 0, such curves

realize the infinite-dimensional manifold of C∞ functions named in our assertion. In
addition, the curve ε 7→ S−1(π(h+ εf,A)) consists of smooth matrix-valued functions
B due to regularity of solutions for the differential equation Ḃ + B2 = f + E. Since
(λ1, . . . , λm) = e−pC was an arbitrary m-tuple with (4.2), this completes the proof.

While, as we just showed, condition (4.2) is sufficient for (λ1, . . . , λm) to lie in the
image of Xm under the mapping (f, λ1, . . . , λm) 7→ (λ1, . . . , λm), a weaker version of
(4.2) is also necessary for it: this version, allowing some λi to equal 1, states that
{λ1, . . . , λm} ⊆ (0,∞) does not have the form {λ} or {λ, λ−1} with any λ > 0.
To see its necessity, write B = (b1, . . . , bm) and A = (a1, . . . , am), so that the first
equality in (6.1) amounts to ḃi + b2i = f + ai for i = 1, . . . ,m. Next,

if λi equals λj or λ−1j for some distinct i, j, then ai = aj . (6.3)

Namely, were this not the case, so that ai 6= aj , while the integrals from 0 to p

of bi and bj are equal (or, opposite), cf. (6.1), the difference bi − bj (or, the sum

bi + bj) would be the derivative χ̇ of some periodic function χ and the equality

(bi − bj )̇ + (bi + bj)(bi − bj) = ai − aj would give χ̈ = ai − aj wherever χ̇ = 0 or,

respectively, [(bi − bj)eχ ]̇ = (ai − aj)eχ. As ai − aj is now a nonzero constant, in
the former case the critical points of χ would all be strict local maxima, or strict
local minima, and in the latter (bi− bj)eχ would be strictly monotone, both of which
contradict periodicity, thus proving (6.3). Combining (6.3) with second equality in
(6.1), we now see that | log λ1|, . . . , | log λm| cannot be all equal, as that would give
a1 = . . . = am, whereas A in (6.1) is nonzero and traceless.

7 Proof of Theorem A: existence

The argument presented in this section proves a special case of an assertion established
in [1, Section 9]. For the reader’s convenience we chose to proceed as below, rather
than cite [1], since this simplifies the exposition.

Existence in Theorem A will follow once we show that, for suitable f, p, n,
V , 〈·, ·〉, A with the properties listed at the beginning of Section 2, where n ≥ 5 and
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the metric signature of 〈·, ·〉 are arbitrary, and for G, M̂ appearing in (2.7),

some subgroup Γ ⊆ G acts on M̂ freely and properly dis

continuously with a compact quotient manifold M = M̂/Γ.
(7.1)

To choose f, p, n, V , 〈·, ·〉, A satisfying the conditions named in Section 2, along with
additional objects θ,B,L,Λ,Σ,Γ needed for our argument, we let n ≥ 5 and p, θ ∈
(0,∞) be completely arbitrary, and denote by 〈·, ·〉 a pseudo-Euclidean inner product
of any signature in V = Rn−2, making the standard basis orthonormal. Lemma 4.1
allows us to fix a GL(m,Z) polynomial P, where m = n − 2, the complex roots
λ1, . . . , λm of which are all real, distinct, and satisfy (4.2). Theorem 6.2, for these
λ1, . . . , λm, yields f,A and a curve t 7→ B(t) ∈ ∆m ⊆ End(V ), with

infinite dimensional freedom of choosing f. (7.2)

Next, we let L be the (n − 2)-dimensional vector space of all solutions u : R → V
to the differential equation u̇(t) = B(t)u(t), with the translation operator T : L→ L

given by (Tu)(t) = u(t − p). Note that L ⊆ E for E which was defined in Section 2
along with a linear isomorphism T : E → E, and our T is the restriction of that
one to L. According to [1, Remark 4.2] and (6.1), our T : L → L has the spectrum
λ1, . . . , λm, so that P is its characteristic polynomial and, by (4.1), T (Λ) = Λ for
some lattice Λ in L. (As λ1, . . . , λm are all distinct, they uniquely determine the
algebraic equivalence type of T.) For later reference, let us also note that

T k 6= Id for all k ∈ Zr {0}, (7.3)

for T : L → L, as its spectrum {λ1, . . . , λm} is contained in (0,∞) r {1}. Now
Σ = {0}×Zθ×Λ is both a subset of G = Z×R×E and a lattice in the vector space
{0} ×R× L while, due to self-adjointness of each B(t),

Ω(u,w) = 0 whenever u,w ∈ L. (7.4)

Finally, we denote by Γ the subgroup of G generated by Σ and the element (1, 0, 0).
Then Γ, as a subset of G = Z×R× E, equals Z×Zθ × Λ, and

each (k, `θ, u) ∈ Γ = Z×Zθ × Λ acts on M̂ = R2× V by
(k, `θ, u) · (t, s, v) = (t+ kp, s+ `θ − 〈u̇(t), 2v + u(t)〉, v + u(t)).

(7.5)

In fact, due to (2.4) and T -invariance of Λ, the conjugation by (1, 0, 0) maps Σ
onto itself, and any element of Γ, being a finite product of factors from the set Σ ∪
{(1, 0, 0), (1, 0, 0)−1}, equals a power of (1, 0, 0) times an element of Σ. However, by
(2.2), (k, 0, 0) · (`, 0, 0) = (k + `, 0, 0), and so (1, 0, 0)k = (k, 0, 0) if k ∈ Z. The last
italicized phrase, combined with (2.2) and (2.3), now yields (7.5).

The action (7.5) is free: if (k, `θ, u) · (t, s, v) = (t, s, v), the resulting equalities
kp = `θ − 〈u̇(t), 2v + u(t)〉 = 0 and u(t) = 0 give k = 0, while the first-order linear
differential equation u̇ = Bu implies that u = 0, and so ` = 0 as well.
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In view of the regular-dependence theorem for ordinary differential equations,

R× L 3 (t, w) 7→ (t, w(t)) ∈ R× V is a diffeomorphism, (7.6)

since that theorem guarantees smoothness of the inverse of (7.6). We now use
Remark 1.1 to conclude that (7.5) is properly discontinuous: if the sequences (tj , sj , vj)

and (kj , j̀θ, uj) · (tj , sj , vj) both converge, (7.5) gives convergence of kj and uj(tj) .

The former makes kj eventually constant, the latter leads, by (7.6), to convergence of

uj , and hence its ultimate constancy (implying via (7.5) the same for j̀), as uj ∈ Λ
and the lattice Λ ⊆ L is discrete, cf. (1.1).

Finally, compactness of the quotient manifold M = M̂/Γ in (7.1) follows since

M̂ has a compact subset K intersecting every orbit of Γ. Namely, we may set K =
{(t, s, v) : s ∈ [0, θ ] and (t, v) ∈ K ′}, where K ′ is the image under (7.6) of [0, p]× K̂,

with a compact set K̂ ⊆ L chosen so as to intersect every orbit of the lattice Λ acting
on L by vector-space translations. Any (t, s, v) ∈ M̂ can be successively modified by
elements of Γ acting on it, so as to eventually end up in K. First, (k, 0, 0) ∈ Γ with
kp ∈ [−t, p − t], applied to (t, s, v), allows us to assume that t ∈ [0, p]. For the pair
(t, w) arising as the preimage under (7.6) of the (t, v) component of this new (t, s, v),

and suitably selected u ∈ Λ, one has w + u ∈ K̂, due to our choice of K̂. Now, by
(7.5) with v = w(t),

(0, 0, u) · (t, s, v) = (t, s− 〈u̇(t), 2v + u(t)〉, w(t) + u(t)),

that is, (0, 0, u) · (t, s, v) = (t′, s′, v′) for some (t′, v′) ∈ K ′ and s′ ∈ R. Choosing
` ∈ Z such that s′+ `θ ∈ [0, θ ], we obtain (0, `θ, 0) · (t′, s′, v′) ∈ K.

8 Proof of Theorem A: further conclusions

For M̂, p and Γ = Z × Zθ × Λ as in the last section, the surjective submersion
M̂ = R2×V → R sending (t, s, v) to t/p is, by (7.5), equivariant relative to the homo-

morphism Γ = Z× Zθ × Λ 3 (k, `θ, u) → k ∈ Z along with the actions of Γ on M̂

and Z on R, so that it descends to a surjective submersion M = M̂/Γ→ R/Z = S1

which, according to Remark 1.2, is a bundle projection. Since the homomorphism
Γ→ Z has the kernel Σ = {0}×Zθ×Λ, the fibre of this projection M → S1 over the

Z-coset of t/p may be identified with the quotient M̂t/Σ, where M̂t = {t} ×R× V .

Restricted to Σ and M̂t, (7.5) is given by

(0, `θ, u) · (t, s, v) = (t, s+ `θ − 〈u̇(t), 2v + u(t)〉, v + u(t)), (8.1)

with fixed t ∈ R. By (7.6), the restriction of (2.6) to {t}×R×L is a diffeomorphism

onto M̂t, and so its Σ-equivariance, immediate from G-equivariance, means that, when

we use it to identify M̂t with {t} ×R×L, and hence also with H′ = {0} ×R×L (a

subgroup of G containing Σ), the restriction of (2.3) to H′× M̂t becomes the action
of H′ on itself via left translations. By (2.2) with k = ` = 0 and (7.4), H′ is an Abel-
ian subgroup of G, and the resulting group operation in H′ coincides with addition
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in the vector space {0}×R×L. Since Σ = {0}×Zθ×Λ is a lattice in {0}×R×L,

cf. the lines preceding (7.4), this shows that the fibre M̂t/Σ is a torus, which makes
M, with the projection M → S1 described above, a torus bundle over the circle.

The torus bundle M → S1 is nontrivial: (7.3) combined with [1, Theorem 5.1(f)],
implies that Γ has no Abelian subgroup of finite index, so that M cannot be diffeo-
morphic to a torus, or even covered by a torus.

Geodesic completeness of M, and its lack of local homogeneity, are immediate from
(3.1), while the claim about an infinite-dimensional moduli space of the local-isometry
types is an obvious consequence of Remark 3.1 and (7.2).
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Nauk. Politech. Śl., Mat.-Fiz. 68(68), 213–225 (1993)

[24] Derdzinski, A., Terek, I.: Compact locally homogeneous manifolds with parallel
Weyl tensor. Preprint available at https://arxiv.org/pdf/2306.01600, 2023.

13

https://arxiv.org/abs/1204.5907
https://doi.org/10.1007/s10998-014-0081-9
https://doi.org/10.36890/iejg.1273631
https://doi.org/10.5486/pmd.1998.1866
https://doi.org/10.1016/j.geomphys.2005.05.005
https://doi.org/10.1016/j.geomphys.2005.05.005
https://doi.org/10.1016/j.geomphys.2011.07.005
https://doi.org/10.1007/s10231-013-0349-3
https://doi.org/10.1017/S0308210513001480
https://doi.org/10.1007/s00208-015-1270-4
https://doi.org/10.1007/s00208-015-1270-4
https://doi.org/10.1142/S0219887816500535
https://doi.org/10.1016/j.aim.2017.10.030
https://arxiv.org/pdf/2306.01600


[25] Derdzinski, A., Terek, I.: The metric structure of compact rank-one ECS
manifolds. Ann. Global Anal. Geom., to appear

[26] Derdzinski, A., Terek, I.: The topology of compact rank-one ECS mani-
folds. Proc. Edinb. Math. Soc. 66(3), 789–809 (2023) https://doi.org/10.1017/
S0013091523000408

[27] Lee, J.M.: Introduction to Topological Manifolds, 2nd edn. Graduate Texts in
Mathematics, vol. 202, p. 433. Springer, ??? (2011). https://doi.org/10.1007/
978-1-4419-7940-7

[28] Dundas, B.I.: A Short Course in Differential Topology. Cambridge Mathematical
Textbooks, p. 251. Cambridge University Press, Cambridge, ??? (2018). https:
//doi.org/10.1017/9781108349130

[29] Lang, S.: Differential Manifolds, 2nd edn., p. 230. Springer, ??? (1985). https:
//doi.org/10.1007/978-1-4684-0265-0

14

https://doi.org/10.1017/S0013091523000408
https://doi.org/10.1017/S0013091523000408
https://doi.org/10.1007/978-1-4419-7940-7
https://doi.org/10.1007/978-1-4419-7940-7
https://doi.org/10.1017/9781108349130
https://doi.org/10.1017/9781108349130
https://doi.org/10.1007/978-1-4684-0265-0
https://doi.org/10.1007/978-1-4684-0265-0

	Preliminaries
	The model manifolds
	Geodesic completeness
	GL(m,Z) polynomials
	Smoothness-preserving retractions
	Nearly-arbitrary positive spectra
	Proof of Theorem A: existence
	Proof of Theorem A: further conclusions

