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Abstract. Special Ricci-Hessian equations on Kähler manifolds (M, g), as

defined by Maschler [Ann. Global Anal. Geom. 34 (2008), 367–380] involve

functions τ on M and state that, for some function α of the real variable
τ , the sum of α∇dτ and the Ricci tensor equals a functional multiple of the

metric g, while α∇dτ itself is nonzero almost everywhere. Three well-known

obvious cases are provided by (non-Einstein) gradient Kähler-Ricci solitons,
conformally-Einstein Kähler metrics, and special Kähler-Ricci potentials. We

show that, outside of these three cases, such an equation can only occur in
complex dimension two and, at generic points, it must then represent one of

three types, for which, up to normalizations, α = 2 cot τ , or α = 2 coth τ , or

α = 2 tanh τ . We also use the Cartan-Kähler theorem to prove that these
three types are actually realized.

Introduction

Following Maschler [17, p. 367], one says that functions τι, α, σ on a Riemann-
ian manifold (M, g) with the Ricci tensor r satisfy a Ricci-Hessian equation if

(0.1) α∇dτι + r = σg for some function σ : M → IR,

∇ being the Levi-Civita connection of g. We call equation (0.1) special when

(0.2) α∇dτι 6= 0 on a dense set, dimM = n > 2, and α is a C∞ function of τι.

Conditions (0.1) – (0.2) are satisfied in several situations that have been studied –
see below – raising a natural question: Which functions τι 7→ α can be realized in
this way? The present paper provides an answer in the Kähler case, outside of the
classes that are already well understood. See Theorems D and E.

There are three well-known classes of examples leading to (0.1) – (0.2).

(I) Non-Einstein gradient Ricci almost-solitons [20, 1], including (non-Ein-
stein) gradient Ricci solitons [15]. Here α is a nonzero constant.

(II) Conformally-Einstein metrics g, with τι > 0 and α = (n − 2)/τι, the
Einstein metric being ĝ = g/τι2. Cf. [11, formula (6.2)].

(III) Special Kähler-Ricci potentials τι on Kähler manifolds, at points where r
is not a multiple of g [11, Remark 7.4].
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2 A. DERDZINSKI AND P. PICCIONE

A special Kähler-Ricci potential [11, Sect. 7] on a Kähler manifold (M, g) with the
complex-structure tensor J is any nonconstant function τι on M having a real-
holomorphic gradient v = ∇τι for which, at points where v 6= 0, all nonzero vectors
orthogonal to v and Jv are eigenvectors of both ∇dτι and r. Such triples (M, g, τι)
are completely understood, both locally [11] and in the compact case [12].

The classes (I) – (III) are far from disjoint: for instance [11, Corollary 9.3], in
the Kähler category, if n > 4, (II) is a special case of (III).

We are interested in M, g, τι, α, σ satisfying (0.1) – (0.2) along with

(0.3) 2r(v, · ) = −dY,
where, throughout the paper, the notational conventions

(0.4) v = ∇τι, Q = g(v, v), Y = ∆τι, n = dimM

are used whenever τι : M → IR for a Riemannian manifold (M, g). As we point
out near at the end of Section 1, with J denoting the complex-structure tensor,

(0.5)
for Kähler metrics g, conditions (0.1)− (0.2) imply (0.3),
and the gradient v = ∇τι is a real holomorphic vector field
or, equivalently, Jv is a real holomorphic g Killing field.

Assuming (0.1) – (0.2), we may treat the derivatives α′ = dα/dτι and α′′ both as
functions of the real variable τι and as functions M → IR. In Sections 2 and 3 we
prove the following two results, as well as Theorem D, stated below.

Theorem A. Under the hypotheses (0.1) – (0.3), at points where α′′+αα′ 6= 0
and dτι 6= 0, both Q = g(∇τι,∇τι) and Y = ∆τι are, locally, functions of τι.

Theorem B. Let functions τι, α, σ satisfy a special Ricci-Hessian equation
(0.1), with (0.2), on a Kähler manifold (M, g) of real dimension n ≥ 4. If αdα
and dτι are nonzero at all points of an open submanifold U of M, and

(i) n > 4, or
(ii) n = 4 and dσ ∧ dτι = 0 identically in U or, finally,
(iii) dQ ∧ dτι = 0 everywhere in U, where Q = g(∇τι,∇τι),

then τι : U → IR is a special Kähler-Ricci potential on the Kähler manifold (U, g).

With v,Q, Y as in (0.4), a function τι on a Riemannian manifold (M, g) has
dQ∧dτι = 0 if and only if Q is locally, at points where dτι 6= 0, a function of τι. This
amounts to requiring the integral curves of v to be reparametrized geodesics (since,
due to formula (1.2) below, the latter condition means that ∇vv is a functional
multiple of v). Such functions τι, called transnormal, have been studied extensively
[21, 18, 3], and are referred to as isoparametric when, in addition, dY ∧ dτι = 0.

Theorem B renders the transnormal case dQ∧dτι = 0, as well as real dimensions
n > 4, rather uninteresting in the context of special Ricci-Hessian equations (0.1) –
(0.2) on Kähler manifolds, since at dα-generic points (see the end of Section 1) one
then ends up with examples (I) or (III) above, cf. Remark 3.3, of which the former
is the subject of a large existing literature, and the latter, as mentioned earlier, has
been completely described. This is why our next two results focus exclusively on
the real dimension four and functions τι with dQ ∧ dτι not identically zero.

Remark C. Equation (0.1), with (0.2), remains satisfied after τι and the func-
tion τι 7→ α = α(τι) have been subjected to an affine modification in the sense of
being replaced with τ̂ι and τ̂ι 7→ α̂(τ̂ι) given by τ̂ι = p+ τι/c and α̂(τ̂ι) = cα(cτ̂ι− cp)
for real constants c 6= 0 and p.
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Theorem D. If the special Ricci-Hessian equation (0.1) and (0.2) both hold
for functions τι, α, σ on a Kähler manifold (M, g) of real dimension four, while
dQ∧ dτι 6= 0 everywhere in an open connected set U ⊆M, then the function α of
the variable τι and its derivative α′ = dα/dτι satisfy, on U, the equation

(0.6) α′′ + αα′ = 0, that is, 2α′+ α2 = 4ε with a constant ε ∈ IR.

In addition, for Q and Y as in (0.4), the functions

(0.7) 2θ = αs + 4εY and κ = θψ + α−1Y − Q are both constant,

ψ being given by 4εψ = τι − 2/α, if ε 6= 0, or 3ψ = 2/α3, when ε = 0. Further-
more, σ in (0.1) and the function F of the variable τι characterized by

(0.8) 4εF = θ(2− τια) + 4εκα for ε 6= 0, and F = κα− 2θ/(3α2) if ε = 0,

and thus depending on the real constants θ, κ, satisfy the conditions

(0.9) a) Y −Qα = F, b) 2σ = −(Qα′+ F ′), c) ∆α = Fα′ = −F ′′.
Finally, up to affine modifications – see Remark C – the pair (α(τι), ε) is one of
the following five: (2, 1), (2/τι, 0), (2 tanh τι, 1), (2coth τι, 1), (2cot τι,−1).

Theorem E. Each of the five options listed in Theorem D, namely,

(2, 1), (2/τι, 0), (2 tanh τι, 1), (2coth τι, 1), (2cot τι,−1),

is realized by a special Ricci-Hessian equation (0.1) – (0.2) on a real-analytic Kähler
manifold (M, g) of real dimension four such that, with v = ∇τι and Q = g(v, v),
one has dQ∧ dτι 6= 0 somewhere in M and Jv lies in a two-dimensional Abelian
Lie algebra of Killing fields.

For (2, 1) and (2/τι, 0) one can choose (M, g) to be compact and biholomor-
phic to the two-point blow-up of CP2, with g which is the Wang-Zhu toric Käh-
ler-Ricci soliton [22, Theorem 1.1] or, respectively, the Chen-LeBrun-Weber con-
formally-Einstein Kähler metric [6, Theorem A].

In contrast with the final clause of Theorem E, we do not know whether the
remaining three options, (2 tanh τι, 1), (2coth τι, 1) and (2cot τι,−1), may be real-
ized on a compact Kähler surface. An analytic-continuation phenomenon described
below (Section 11) suggests that it might make sense to try obtaining such compact
examples via small deformations of the Wang-Zhu or Chen-LeBrun-Weber metric,
combined with suitable affine modifications.

For the pairs (2, 1) and (2/τι, 0) in Theorem D, the constancy conclusions of
(0.7) are well known [7, p. 201], [9, p. 417, Prop. 3(i) and p. 419, formula (40)].

The paper is organized as follows. Section 1 contains the preliminaries. Con-
sequences of special Ricci-Hessian equations, leading to proofs of Theorems A, B
and D, are presented in the next two sections. Sections 4 through 10 are devoted
to proving Theorem E: we rephrase it as solvability of the system (5.1) – (5.2) of
quasi-linear first-order partial differential equations, which allows us to derive our
claim from the Cartan-Kähler theorem for exterior differential systems.

1. Preliminaries

All manifolds and Riemannian metrics are assumed to be of class C∞. By
definition, a manifold is connected. We use the symbol δ for divergence.

On a manifold with a torsion-free connection ∇, the Ricci tensor r satisfies
the Bochner identity r( · , v) = δ∇v − d[δv], where v is any vector field. Its
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coordinate form Rjkv
k = vk,jk−vk,kj arises via contraction from the Ricci identity

v l,jk−v l,kj = Rjkq
lvq. (We use the sign convention for R such that Rjk = Rjqk

q.)
Applied to the gradient v of a function τι on a Riemannian manifold, this yields

(1.1) δ[∇dτι] = r(v, · ) + dY , if v = ∇τι and Y = ∆τι.

On the other hand, given a function τι on a Riemannian manifold,

(1.2) 2[∇dτι](v, · ) = dQ, where v = ∇τι and Q = g(v, v),

as one sees noting that, in local coordinates, (τι,kτι
,k),j = 2τι,kjτι

,k. We can rewrite

relations (1.1) – (1.2) using the interior product ıv, obtaining

(1.3) a) δ[∇dτι] = ıvr + dY , b) 2ıv[∇dτι] = dQ, with (0.4).

Finally, for the Ricci tensor r and scalar curvature s of any Riemannian metric,

(1.4) 2δr = ds,

which is known as the Bianchi identity for the Ricci tensor. Its coordinate form
2gklRjk,l = s,j is immediate if one transvects with (“multiplies” by) gkl the equality

Rjkl
q
,q = Rjl,k −Rkl,j obtained by contracting the second Bianchi identity.

The harmonic-flow condition for a vector field v on a Riemannian manifold
(M, g), meaning that the flow of v consists of (local) harmonic diffeomorphisms, is
known [19] to be equivalent to the equation

(1.5) g(∆v, · ) = −r(v, · )

the vector field ∆v having the local components [∆v]j = vj,kk. See also [14,
Theorem 3.1]. When v = ∇τι is the gradient of a function τι : M → IR,

(1.6) the harmonic flow condition (1.5) amounts to (0.3).

In fact, by (1.1), 2r(v, · ) + dY = δ[∇dτι] + r(v, · ) = g(∆v, · ) + r(v, · ), as [∆v]j =

vj,k
k = τι,jk

k = τι,kj
k = τι,kjk = (δ[∇dτι])j .

On the other hand – see, e.g., [11, Lemma 5.2] – on a Kähler manifold (M, g),

(1.7)
conditions (0.1)−(0.2) imply real holomorphicity of the
gradient v =∇τι, while Jv is then a holomorphic Killing
field, due to the resulting Hermitian symmetry of ∇dτι.

Since holomorphic mappings between Kähler manifolds are harmonic, every holo-
morphic vector field on a Kähler manifold satisfies (1.5), cf. [14, Remark 3.2]. Now
(0.5) follows from (1.6). Note that, as also also observed by Calabi [5], on Kähler
manifolds one has

(1.8) equation (0.3), with (0.4), for all real holomorphic gradients v = ∇τι.

Given a tensor field Θ on a manifold M, we say that a point x ∈M is Θ-generic
if x has a neighborhood on which either Θ = 0 identically, or Θ 6= 0 everywhere.
Such points clearly form a dense open subset of M.
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2. Ricci-Hessian equations

As a consequence of (0.1), for the scalar curvature s, with (0.4),

(2.1) nσ = Yα + s, where n = dimM.

Applying 2ıv or 2δ to (0.1), we obtain, from (1.3) – (1.4) and (0.4),

(2.2)
i) αdQ + 2r(v, · ) = 2σdτι,
ii) 2[∇dτι](∇α, · ) + 2α[r(v, · ) + dY ] + ds = 2dσ.

In the case where (0.1) – (0.2) hold along with (0.3), one may rewrite (2.2) as

(2.3)
i) αdQ − dY = 2σdτι,
ii) 2[∇dτι](∇α, · ) + αdY + ds = 2dσ,

which, in view of (1.2) and (2.1), amounts to nothing else than

(2.4)
i) d(Qα − Y ) = (Qα′ + 2σ)dτι,
ii) d[Qα′ + (n− 2)σ] = (Qα′′ + Yα′)dτι,

as the assumption, in (0.2), that α is a C∞ function of τι allows us to write

(2.5) dα = α′dτι, ∇α = α′v, 2[∇dτι](∇α, · ) = α′dQ, where α′ = dα/dτι,

since (1.2) gives 2[∇dτι](∇α, · ) = 2α′[∇dτι](v, · ) = α′dQ. Due to (2.4), conditions
(0.1) – (0.3) imply that, locally, at points at which dτι 6= 0,

(2.6)
Qα − Y and Qα′ + (n− 2)σ are functions of τι, with
the respective τι derivatives Qα′ + 2σ and Qα′′ + Yα′

which, consequently, must themselves be functions of τι.

Proof of Theorem A. At the points in question, using (2.6) to equate both
Qα− Y and Qα′′+ Yα′ to some specific functions of τι, we obtain a system of two
linear equations with the nonzero determinant α′′+αα′, imposed on the unknowns
Q,Y , and our assertion follows since α′′+ αα′ is also a function of τι. �

Assuming only (0.1), for n = dimM, with the aid of (2.1) we rewrite (2.2) as

n[αdQ + 2r(v, · )] − 2(Yα + s)dτι = 0,
2n{[∇dτι](∇α, · ) +αr(v, · )}+ 2[(n− 1)αdY −Ydα] + (n− 2)ds = 0,

If (0.3) holds as well, replacing 2r(v, · ) here with −dY we obtain n(αdQ− dY )−
2(Yα+ s)dτι = 0 and 2n[∇dτι](∇α, · )+ (n− 2)(αdY + ds)−2Ydα = 0. Thus, when
(0.1) – (0.3) are all satisfied, (2.5) gives

(2.7)
a) n(αdQ − dY ) − 2(Yα + s)dτι = 0,
b) nα′dQ + (n− 2)(αdY + ds) − 2Yα′dτι = 0.

3. Ricci-Hessian equations on Kähler manifolds

The goal of this section is proving Theorems B and D.
In any complex manifold, dω = 0 and ω(J · , · ) is symmetric if ω = i∂∂τι, that

is, if 2ω = −d [J∗dτι] for a real-valued function τι, with the 1-form J∗dτι = (dτι)J ,
which sends any tangent vector field v to dJvτι. Our exterior-derivative and exte-
rior-product conventions, for 1-forms ξ, ξ′ and vector fields u, v, are

(3.1)
[dξ](u, v) = du[ξ(v)] − dv[ξ(u)] − ξ([u, v]),
[ξ ∧ ξ′](u, v) = ξ(u)ξ′(v) − ξ(v)ξ′(u).
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For a torsionfree connection ∇, (3.1) gives [dξ](u, v) = [∇uξ](v)− [∇vξ](u), so that,
if in addition ∇J = 0, on a complex manifold,

(3.2) 2i∂∂τι = [∇dτι](J · , · ) − [∇dτι]( · , J · ).
In the case of a Kähler metric g on a complex manifold M, (0.1) implies that

(3.3) iα∂∂τι + ρ = σω,

ω, ρ being the Kähler and Ricci forms, with both terms on the right-hand side of
(3.2) equal, as Hermitian symmetry of ∇dτι follows from those of ρ and ω.

Remark 3.1. As an obvious consequence of the last line in (1.7), if g is a
Kähler metric, conditions (0.1) – (0.2) are equivalent to (3.3) along with (0.2) and
real-holomorphicity of the gradient v = ∇τι.

Remark 3.2. For the Kähler form ω of a Kähler manifold (M, g) of real
dimension n ≥ 4, the operator ζ 7→ ζ ∧ ω acting on differential q-forms is injective
if q = 2 and n > 4, or q = 1. Namely, the contraction of ζ ∧ ω against ω yields a
nonzero constant times (n−4)ζ+2〈ω, ζ〉ω (if q = 2), or times (n−2)ζ (if q = 1).
In the former case, ζ with ζ ∧ ω = 0 is thus a multiple of ω, and hence 0.

Remark 3.3. Whenever (3.3) with a constant α holds on a Kähler manifold
of real dimension n ≥ 4, constancy of σ follows (from Remark 3.2, as dσ∧ ω = 0).

We have the following result, due to Maschler [17, Proposition 3.3].

Lemma 3.4. Condition (0.1) on a Kähler manifold (M, g) of real dimension
n > 4 implies that dσ ∧ dα = 0. Equivalently, wherever dα is nonzero, σ must,
locally, be a function of α.

Proof. By (3.3), 0 = dρ = dσ ∧ ω− dα∧ i ∂∂τι, so that dα∧ dσ ∧ ω = 0, and
our assertion is immediate from Remark 3.2. �

Proof of Theorem B. In all three cases (i) – (iii), dσ∧dτι = 0. For (i), this
follows from Lemma 3.4 while, when dQ ∧ dτι = 0 on U, we see that, in view of
the equality α′dQ+αdY = d(2σ− s) arising from (2.3.ii) and (2.5), Y and 2σ− s
are, locally, functions of τι, and hence so is σ, as a consequence of (2.1) with n ≥ 4.
Now [11, Corollary 9.2] yields our claim. �

Proof of Theorem D. As dQ ∧ dτι 6= 0 everywhere in U, Theorem A im-
plies (0.6) and, consequently, also the final clause about the five possible pairs.

Next, in (0.6), 4dθ = 2d[αs + (2α′ + α2)Y ] = 2[αds + sdα + (2α′ + α2)dY ]
which, as n = 4, equals, in view of (2.5),

α[nα′dQ+ (n− 2)(αdY + ds)− 2Yα′dτι] − α′[n(αdQ− dY )− 2(Yα+ s)dτι],

and hence vanishes due to (2.7). On the other hand, the function ψ of τι defined
in the theorem is an antiderivative of 1/α2, meaning that

(3.4) ψ′ = 1/α2.

Namely, by (0.6). 4εψ′ = 1 + 2α′/α2 = (2α′ + α2)/α2 = 4ε/α2 if ε 6= 0, and
3ψ′ = −6α′/α4 = 3/α2 when ε = 0, as 2α′ = −α2.

Furthermore, d(θψ+α−1Y −Q) = 0. In fact, dα = α′dτι in (2.5), and similarly
for ψ, so that, from (3.4), d(θψ) = θdψ = θψ′dτι = θα−2dτι, and αd(α−1Y ) =
dY − α−1Yα′dτι. Also, 2(θ − Yα′) = (Yα + s)α from (0.6) – (0.7). These relations
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yield −4αd(θψ+α−1Y − Q) = 4[(αdQ− dY )− (θ− Yα′)α−1dτι] = n(αdQ− dY )−
2(Yα+ s)dτι, with n = 4, which equals 0 by (2.7.a).

Finally, (0.8) and the second relation in (0.7) easily give (0.9-a). Thus, by (0.4)
and (2.5), (Qα′+F ′)Q = (Qα′+F ′)dvτι = Qdvα+dvF which, due to (0.9-a), equals
dvY−αdvQ. At the same time, −ıv applied to (2.3.i) yields dvY−αdvQ = −2Qσ.
We thus get (0.9-b). To obtain (0.9-c), note that, from (0.4), ∆α = Qα′′ + Yα′

which, by (0.6) and (0.9-a), equals (Y−Qα)α′ = Fα′ = −F ′′, where the last equality
trivially follows from (0.8) �

Theorem D has a partial converse: if a nonconstant function τι with real-hol-
omorphic gradient v = ∇τι on a Kähler surface (M, g) and a function α of the
real variable τι satisfy (0.6) and (0.7), then they must also satisfy the Ricci-Hessian
equation (0.1) with σ given by (2.1) for n = 4.

In fact, b(v, · ) = 0, where b denotes the traceless Hermitian symmetric 2-
tensor field α∇dτι + r − σg. Namely, (0.3) – (0.5) and (1.3-b) yield 4b(v, · ) =
2αdQ−2dY−4σdτι which, due to (2.1) and (2.5), equals 2αdQ−2dY−(Yα+s)dτι,
and so −4αb(v, · ) = 2α2d(θψ+α−1Y−Q)+(αs+4εY−2θ)dτι. (Note that, by (0.6)
and (3.4), 4ε = 2α′+ α2 and 2α2d(θψ) = 2θdτι.) Thus, b = 0, since b corresponds,
via g, to a complex-linear bundle morphism TM → TM.

4. The local Kähler potentials

This and the following six sections are devoted to proving Theorem E.
In an open set M ⊆ IR4 with the Cartesian coordinates x, x′, u, u′ arranged into

the complex coordinates (x+ ix′, u+ iu′) for the complex plane C2 = IR4 carrying
the standard complex structure J , one has J∗dx = −dx′ and J∗du = −du′, so that,
if a C∞ function f on M only depends on x and u, the relation 2i∂∂f = −d [J∗df ]
yields, with subscripts denoting partial differentiations, 2i∂∂f = fxxdx ∧ dx′ +
fxu(dx∧du′+ du∧dx′) + fuudu∧du′, since df = fxdx+ fudu. Furthermore, we set

(4.1) v = ∂x and w = ∂u (the real coordinate vector fields).

For the Kähler metric g on M having the Kähler form ω = 2i∂∂φ, where the
function φ : M → IR is assumed to depend on x and u only, 2φ is a Kähler
potential [2, p. 85] of g, and the above formula for 2i∂∂f becomes

(4.2) ω = φxxdx ∧ dx′+ φxu(dx ∧ du′+ du ∧ dx′) + φuudu ∧ du′.

Generally, for a skew-Hermitian 2-form ζ = Qdx ∧ dx′+ S (dx ∧ du′+ du ∧ dx′) +
Bdu ∧ du′ and the Hermitian symmetric 2-tensor field a with ζ = a(J · , · ) one
has a = Q(dx⊗ dx+ dx′ ⊗ dx′) + S (dx⊗ du+ du⊗ dx+ dx′ ⊗ du′ + du′ ⊗ dx′) +
B(du ⊗ du + du′ ⊗ du′), due to (3.1), and so the components of a relative to the
coordinates (x, x′, u, u′) form the matrix

(4.3)


Q 0 S 0
0 Q 0 S
S 0 B 0
0 S 0 B

, with the determinant (QB − S2)2.

When a = g, (4.2) gives (Q,S,B) = (φxx, φxu, φuu). Thus,

(4.4) φxx > 0 and γ > 0, for γ = φxxφuu− φ2xu,
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which amounts to Sylvester’s criterion for positive definiteness of g, namely, posi-
tivity of the upper left subdeterminants of (4.3). From now on we set

(4.5)
(τι, λ,Q, S,B) = (φx, φu, φxx, φxu, φuu), so that
Q > 0 and γ = QB − S2 > 0 due to (4.4).

With div, ∆ denoting the g-divergence and g-Laplacian, for τι, λ,Q in (4.5),

(a) the functions τι, λ have the holomorphic g-gradients v = ∂x and w = ∂u,
(b) the other coordinate fields Jv and Jw are holomorphic g-Killing fields,
(c) Q = g(v, v) and ∆τι = div v = (log γ)x, while ∆λ = divw = (log γ)u.

Namely, (4.1) and (4.3) yield (a). Also, (b) follows since φ only depends on x and
u. Finally, (4.3) has the determinant γ2, and so γ dx∧ dx′∧ du∧ du′ is the volume
form of g, on which £v and £w act via partial differentiations ∂x, ∂u of the γ
factor. Thus, div v = (log γ)x and divw = (log γ)u, cf. [16, p. 281]. On the other
hand, by (a), (4.1) and (4.5), g(v, v) = dvτι = ∂xτι = ∂xφx = φxx = Q.

For our (τι, λ) = (φx, φu), the mapping (x, u) 7→ (τι, λ) is locally diffeomorphic
due to (4.4), which makes (Q,S,B) = (φxx, φxu, φuu), locally, a triple of real-val-
ued functions of the new variables τι, λ. With subscripts still denoting partial
differentiations, the integrability conditions Qu− Sx = Su−Bx = 0 and (4.5) give

(4.6) SQτι +BQλ = QSτι + SSλ, SSτι +BSλ = QBτι + SBλ, Q > 0, QB > S2.

Conversely, if functions Q,S,B of the variables τι, λ satisfy (4.6), then, locally,

(d) (Q,S,B) = (φxx, φxu, φuu) for a function φ, with (4.4), of the variables
x, u related to τι, λ via (τι, λ) = (φx, φu), and Q,S,B determine each of
φ, x, u uniquely up to additive constants.

In fact, the equalities in (4.6) state precisely that the vector fields Q∂τι + S∂λ and
S∂τι + B∂λ commute or, equivalently, the 1-forms (QB − S2)−1(Bdτι − Sdλ) and
(QB − S2)−1(Qdλ − Sdτι), dual to them, are closed, and we may declare these
vector fields (or, 1-forms) to be ∂x, ∂u or, respectively, dx, du. Now that, locally,
x, u are defined, up to additive constants, we obtain φ by solving the system
(φx, φu) = (τι, λ), where τι, λ are treated as functions of x, u via the resulting
locally diffeomorphic coordinate change (τι, λ) 7→ (x, u). Closedness of τι dx+ λ du
and the equality (Q,S,B) = (φxx, φxu, φuu) are obvious: our choice of dx and du
trivially gives (dτι, dλ) = (Qdx+ S du, S dx+B du) and dτι ∧ dx+ dλ ∧ du = 0.

The g-Laplacians of τι and λ can also be expressed as

(e) ∆τι = Qτι + Sλ and ∆λ = Sτι + Bλ.

To see this, first note that, from the chain and Leibniz rules, one gets (QB−S2)x =
Q(QB − S2)τι + S(QB − S2)λ = Q(QBτι + SBλ − SSτι) − S(QSτι + SSλ − BQλ) −
S2Sλ + QBQτι . Using (4.6) to replace the two three-term sums in parentheses by
BSλ and SQτι , we thus obtain (QB − S2)x = (Qτι + Sλ)(QB − S2). Similarly,
(QB−S2)u = S(QB−S2)τι +B(QB−S2)λ is rewritten as S(QBτι −BSλ−SSτι)−
S2Sτι +B(BQλ+SQτι −SSλ)+QBBλ, and analogous three-term replacements give
(QB − S2)u = (Sτι +Bλ)(QB − S2). Now (e) follows from (c) and (4.5).

Theorem 4.1. In C2 with the complex coordinates (x+ ix′, u+ iu′), given an
open subset M and a function φ : M → IR of the real variables x, u, having the
property (4.4), let g be the Kähler metric on M with the Kähler potential 2φ.
The following two conditions are equivalent.
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(i) The special Ricci-Hessian equation (0.1) – (0.2), holds on M for τι = φx,
and dQ ∧ dτι 6= 0 everywhere in M, with Q = g(∇τι,∇τι). Thus, by
Theorem D, one has (0.6) and (0.9-a), where Y = ∆τι and F is the
function of τι characterized by (0.8), for the constants θ, κ in (0.7).

(ii) The triple (Q,S,B) = (φxx, φxu, φuu) of functions of the new variables
(τι, λ) = (φx, φu) satisfies (4.6) with Qλ 6= 0 everywhere, as well as the
equations Sτι + Bλ = Sα − G, Qτι + Sλ = Qα + F, Gτι = Sα′, Gλ =
−(Qα′+ F ′) for some function G and ( )′ = d/dτι.

Proof. By (0.9-b), equation (0.1) is, in case (i), equivalent to

(4.7) 2α∇dτι + 2r = −(Qα′+ F ′)g,

where all the terms are Hermitian symmetric 2-tensor fields, and hence correspond,
via g, to complex-linear bundle morphisms TM → TM. Thus, (4.7) amounts to

(f) equalities of the images of both sides in (4.7) under ıv and ıw.

The equality of the ıv-images is, by (1.3-b) and (0.3), the result of applying d, via
(2.5), to the relation (0.9-a) in (i): Y − Qα = F. This last relation and (e), with
Y = ∆τι due to (0.4), show that (i) implies the equality Qτι + Sλ = Qα+ F in (ii).
Defining G to be Sα−Sτι −Bλ we get Sτι +Bλ = Sα−G. On the other hand, the
equality of the ıw-images in (4.7) reads

(4.8) αdS − d∆λ = −(Qα′+ F ′) dλ.

In fact, the first term equals αdS since, for two commuting gradients v = ∇τι
and w = ∇λ, one has 2∇wdτι = d[g(v, w)] or, in local coordinates, 2wkv,jk =
wkv,jk + vkw,jk = (vkwk),j , and S = φxu = g(v, w) by (4.3). The second term is

−d∆λ due to (a) and (1.8). By (e), G = Sα − Sτι − Bλ = Sα −∆λ, and so (4.8)
becomes αdS + d(G− Sα) = −(Qα′+ F ′) dλ, that is, according to (2.5),

dG = Sdα − (Qα′+ F ′) dλ = Sα′dτι − (Qα′+ F ′) dλ

or, in other words, Gτι = Sα′ and Gλ = −(Qα′+F ′). Consequently, (i) implies (ii),
since (4.6) arises as the integrability conditions Qu− Sx = Su−Bx = 0 combined
with (4.4), and the equality dQ = Qτι dτι +Qλdλ yields dQ ∧ dτι = −Qλdτι ∧ dλ.

Conversely, assuming (ii), we get (i) from (f). Namely, as we saw above, the
equality of the ıv-images in (4.7) arises by applying d to Y − Qα = F, that is –
cf. (e) – to Qτι +Sλ = Qα+F. Also, (4.8) follows from (ii) and (e): αdS− d∆λ =
αdS − d(Sτι +Bλ) = αdS − d(Sα−G) = dG−Sdα = dG−Sα′dτι = dG−Gτι dτι =
Gλdλ = −(Qα′+ F ′) dλ. �

5. Reduction of order

We now proceed to discuss the first-order system equivalent, as we saw in the
last section, to the Kähler-potential problem, the solution of which amounts to
proving Theorem E. The main result established here, Theorem 5.3, will lead –
in Section 7 – to a unique-extension property of integral lines, which results in
applicability of the Cartan-Kähler theorem to our situation.

Theorem 4.1 reduces constructing local examples of special Ricci-Hessian equa-
tions (0.1) – (0.2) with dQ ∧ dτι 6= 0, on Kähler surfaces, which is a fourth-order
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problem in the Kähler potential 2φ, to the following system of quasi-linear first-or-
der partial differential equations:

(5.1)
QSτι + SSλ = SQτι +BQλ, SSτι +BSλ = QBτι + SBλ,
Sτι +Bλ = Sα−G, Qτι + Sλ = Qα+ F, Gτι = Sα′, Gλ = −(Qα′+ F ′),

imposed on real-valued functions Q,S,B,G of the real variables τι, λ, with

(5.2) QB > S2, Q > 0, Qλ 6= 0 everywhere.

Subscripts denote here partial differentiations, α is a function of the variable τι
such that 2α′+ α2 = 4ε for a constant ε ∈ IR, where ( )′ = d/dτι, and F is the
function of τι, characterized by (0.8):

4εF = θ(2− τια) + 4εκα if ε 6= 0, or F = κα− 2θ/(3α2) when ε = 0,

which depends on two further real constants θ and κ. Consequently,

(5.3) α′′ + αα′ = 0, F ′′ = −Fα′.

We obviously also assume that

(5.4) τι ranges over the intersection of the domains of α and F.

Theorem 5.1. Real-analytic solutions Z = (Q,S,B,G) to (5.1) with (5.2) –
(5.3), exist, locally, on a neighborhood of any (τι, λ) ∈ IR2 as in (5.4).

More precisely, one obtains a locally-unique such solution Z by prescribing Z
and the partial derivatives Zτι ,Zλ real-analytically along an arbitrary real-analytic
embedding t 7→ (τι, λ) ∈ IR2 of an interval, so as to satisfy (5.1), (5.2), (5.4), and

the condition Ż = τ̇ιZτι + λ̇Zλ, where ( )˙ = d/dt.

We prove Theorem 5.1 at the end of Section 8. Note that it establishes the
existence of a solution defined on a neighborhood of the embedded interval, with the
image of t 7→ (τι, λ,Z,Zτι ,Zλ) ∈ N serving as initial data in a Cauchy initial-value
problem, to which the Cauchy-Kovalevskaya theorem is applied [4, p. 83].

Later we will also think of Q,S,B,G,Qτι , Sτι , Bτι , Gτι , Qλ, Sλ, Bλ, Gλ as new vari-
ables, rather than functions and their partial derivatives. Treating K = Qτι and
L = Qλ as parameters, we may solve (5.1) for the eight “subscripted” symbols:

(5.5)

Qτι = K, Qλ = L, Sλ = Qα+ F −K,
QSτι = (2K −Qα− F )S +BL,
Q2Bτι = [2(SK +BL) + (G− Sα)Q]S

+ (Qα+ F −K)(QB − 2S2),
QBλ = (2Qα+ F − 2K)S −BL−QG,
Gτι = Sα′, Gλ = −(Qα′+ F ′).

The next lemma, although completely trivial, is phrased in a rather convoluted way.
For reasons that will become clear in the next section, it is absolutely crucial not
to assume that the “subscripted” letters Zτι , Zλ stand for the partial derivatives of
Z = Q,S,B,G. At the same time, we use the symbol ≡, as if to pretend that,
nevertheless, dZ = Zτιdτι + Zλdλ.
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Lemma 5.2. Let functions Q,S,B,G,Qτι , Sτι , Bτι , Gτι , Qλ, Sλ, Bλ, Gλ,K, L of
the real variables τι, λ, and α, F depending only on τι, satisfy (5.5). Then

(5.6)

dQτι ∧ dτι = dK ∧ dτι, dQλ ∧ dλ = dL ∧ dλ,
dSλ ∧ dλ ≡ [(αQτι +Qα′+ F ′) dτι − dK] ∧ dλ,
QdSτι ∧ dτι ≡ [2SdK+BdL− (Sτι + Sα)Qλdλ] ∧ dτι,

+ [LBλ + (2K −Qα− F )Sλ] dλ ∧ dτι,
Q2dBτι ∧ dτι ≡ [(4S2−QB) dK + 2SBdL] ∧ dτι +QSGλdλ ∧ dτι

+ [2BL+ 4(2K −Qα− F )S + (G− 2Sα)Q]Sλdλ ∧ dτι
+ [(2Qα+ F −K)B + (G− 3Sα)S − 2QBτι ]Qλ dλ ∧ dτι
+ [2SL+ (Qα+ F −K)Q]Bλdλ ∧ dτι,

Q dBλ ∧ dλ ≡ [(2Qα+ F − 2K)Sτι + (2Sα−G−Bλ)Qτι ] dτι ∧ dλ
+ [(2Qα′+ F ′)S −QGτι − LBτι ] dτι ∧ dλ
− (2SdK +BdL) ∧ dλ,

where ( )′ = d/dτι and ≡ means that all occurrences of dZ, for Z = Q,S,B,G,
arising when d is applied to the right-hand sides in (5.5) – often via differentiation
by parts – have been replaced by Zτιdτι + Zλdλ.

Theorem 5.3. If one replaces all occurrences of Qτι and Qλ on the right-hand
sides in (5.6) by K and L, the combination of those six right-hand sides with the
respective coefficients QB,QB,−2QS,−2S, 1, Q equals 0.

Proof. In our combination, the occurrences of dK and dL undergo a total
cancellation, and the sum of the remaining terms equals dτι ∧ dλ times

(5.7)

BKL+ [(Sα−G)S − (2Qα+ F )B]L− (SF ′+GK)Q
+ [(2Qα+ F − 2K)Q− 2SL]Sτι
+ [2(2Qα+ F − 2K)S −QG− 2BL]Sλ
+ [LBτι − (Qα+ F )Bλ −QGτι − SGλ]Q.

Multiplying (5.7) by Q and replacing QSτι , Q
2Bτι , Gτι , Sλ, QBλ, Gλ with the right-

hand sides in (5.5), we get 0 via a tedious but straightforward calculation.
Unless one uses a symbolic computation software, such a calculation, done by

hand, can be considerably simplified if one proceeds by the following six steps. In
each step the terms containing a specific factor should be marked and then crossed
out (after one sees that they add up to zero). The six factors are, in this order, α′,
F ′, SL, BL, Q2G and, finally, (2K − 2Qα− F )QS. �

6. The relevant exterior differential systems

As a next step, we now present a first-prolongation version of the exterior
differential system associated with equations (5.1).

Let the open subset Y of IR6, with the coordinates τι, λ,Q, S,B,G, consist of
all y = (τι, λ,Q, S,B,G) ∈ IR6 such that Q and QB − S2 are both positive, while
τι lies in the domains of α and F. The set N of all 14-tuples

(6.1) (τι, λ,Q, S,B,G,Qτι , Sτι , Bτι , Gτι , Qλ, Sλ, Bλ, Gλ) ∈ Y × IR8 ⊆ IR14

satisfying (5.1) is an eight-dimensional submanifold of Y × IR8, diffeomorphic to
Y × IR2 via the diffeomorphic embedding Y × IR2 → N ⊆ Y × IR8 that sends
(τι, λ,Q, S,B,G,K,L) to (6.1) with the last eight components given by (5.5); the
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inverse diffeomorphism is the restriction to N of the projection assigning to the
14-tuple (6.1) the octuple (τι, λ,Q, S,B,G,Qτι , Qλ). Thus,

(6.2) (τι, λ,Q, S,B,G,K,L) is a global coordinate system for N .
By an exterior differential system on a manifold M one means an ideal I in the
graded algebra Ω∗M, closed under exterior differentiation; its integral manifolds
(or, integral elements) are those submanifolds of M (or, subspaces of its tangent
spaces) on which every form in I vanishes [4, pp. 16, 65]. When such objects have
dimension 1 or 2, we call them integral curves/surfaces or lines/planes.

If E ⊆ TzM is a p-dimensional integral element of I, one sets [4, pp. 67-68]:

(6.3)
H(E) = {v ∈ TzM : ζ(v, e1, . . . , ep) = 0 for all ζ ∈ I ∩Ωp+1M},
using a basis e1, . . . , ep of TzM, and r(E) = dimH(E)− (p+ 1),

so that H(E) is a vector subspace of TzM, not depending on e1, . . . , ep since

(6.4) H(E) = {v ∈ TzM : span(v,E) is an integral element of I}.
Letting the variable Z assume as “values” the symbols Q,S,B,G, we introduce

(6.5)
the exterior differential system on Y × IR8 generated by the
four 1 forms Zτιdτι + Zλdλ − dZ and their exterior deriva
tives dZτι ∧ dτι + dZλ ∧ dλ, where Z ranges over Q,S,B,G.

Restricting (6.5) to N, we obtain an exterior differential system I on N. (For
some context, see Remark 6.1.) As we show below, I is generated by

(6.6)
the restrictions to N of the four 1 forms in (6.5),
dQτι ∧ dτι + dQλ ∧ dλ, and dSτι ∧ dτι + dSλ ∧ dλ.

In other words, dGτι ∧ dτι + dGλ ∧ dλ and dBτι ∧ dτι + dBλ ∧ dλ are redundant for
defining I, that is, they lie in the ideal I ′ ⊆ Ω∗N generated by the four 1-forms
Zτιdτι + Zλdλ − dZ, where Z = Q,S,B,G, along with dQτι ∧ dτι + dQλ ∧ dλ and
dSτι ∧ dτι + dSλ ∧ dλ (all of them restricted to N ).

To verify redundancy of dGτι∧dτι+dGλ∧dλ, it suffices to note that it coincides,
on N, with the 2-form α′[(Qτι dτι +Qλdλ− dQ) ∧ dλ− (Sτι dτι + Sλdλ− dS) ∧ dτι],
since the equalities Gτι = Sα′ and Gλ = −(Qα′+ F ′) in (5.1) make the former, on
N, equal to the latter minus [Qα′′+ F ′′+ (Qτι + Sλ)α′] dτι ∧ dλ, while by (5.3), the
last expression in square brackets is nothing else than [Qτι +Sλ− (Qα+F )]α′, and
so it vanishes on N due to (5.1).

For dBτι ∧ dτι + dBλ ∧ dλ the redundancy claim follows since, by Theorem 5.3,

(6.7)
Q2(dBτι ∧ dτι + dBλ ∧ dλ) ≡ 2QS(dSτι ∧ dτι + dSλ ∧ dλ)

−QB(dQτι ∧ dτι + dQλ ∧ dλ),

on N, with ≡ now denoting congruence modulo I ′. (Note that Q > 0 in (5.2),
while ≡ in Theorem 5.3 implies ≡ as defined here.)

Remark 6.1. The following comment will not be used in our argument, and
may be ignored by the reader not interested in a broader context of the preceding
discussion. (We provide it just to point out where our approach fits within the
standard theory.) The exterior differential system naturally associated with (5.1) is
the one on our open set Y ⊆ IR6, generated by the 1-form dG−Sα′dτι+(Qα′+F ′) dλ,
the 2-form dS ∧ dλ + dτι ∧ dB+ (G − Sα) dτι ∧ dλ, their exterior derivatives, and
the exterior derivatives of (QB−S2)−1(Bdτι−Sdλ) and (QB−S2)−1(Qdλ−Sdτι).
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Our exterior differential system I, on N, defined in the lines following (6.5), is
its first prolongation [4, p. 147], using the independence condition [4, p. 103] for
which our dτι ∧ dλ serves as the form denoted by Ω in [4]. We refer to this
independence condition as horizontality (see (7.1) below). The need for the first
prolongation arises since the original system fails to satisfy the assumptions of the
Cartan-Kähler theorem. In agreement with [4, p. 147], our N may be identified
with an open subset of the Grassmann manifold Gr2Y of two-planes tangent to
Y. The identification in question associates with a horizontal plane at a point
(τι, λ,Q, S,B,G) of Y the 14-tuple (6.1) such that the vectors (1, 0, Qτι , Sτι , Bτι , Gτι)
and (0, 1, Qλ, Sλ, Bλ, Gλ) form a basis of the plane.

7. The unique-extension theorem

In this section we prove the result announced at the beginning of Section 5.
With the assumptions and notation of Section 6, for a subspace E ⊆ Y × IR8,

(7.1) we call E horizontal when (dτι, dλ) :E → IR2 is injective.

Due to (6.2), the four 1-forms in (6.5), restricted to N, remain linearly independent
at every point. Their simultaneous kernel in N thus constitutes a four-dimensional
distribution D on N.

It is convenient to rewrite (6.1) as (τι, λ,Z,Zτι ,Zλ) with Z,Zτι ,Zλ ∈ IR4. Now,

obviously, a vector (τ̇ι, λ̇,Ż ,Żτι ,Żλ) tangent to Y × IR8 at (τι, λ,Z,Zτι ,Zλ) lies in
the simultaneous kernel of the four 1-forms in (6.5) if and only if

(7.2) Ż = τ̇ιZτι + λ̇Zλ.
Our diffeomorphic embedding Y × IR2 → N ⊆ Y × IR8 now becomes

(7.3) (τι, λ,Z,K, L) 7→ (τι, λ,Z,Zτι ,Zλ) = (τι, λ,Z, W(τι,Z,K, L)),

with the IR8-valued function W representing the right-hand sides of (5.5), so that
W does not depend on λ, and its only dependence on τι is through α and F.

Lemma 7.1. The linear operator sending (τ̇ι, λ̇, K̇, L̇) to the vector

(7.4) (τ̇ι, λ̇, τ̇ιZτι + λ̇Zλ, dW(τι,z,K,L)(τ̇ι, τ̇ιZτι + λ̇Zλ, K̇, L̇))

is an isomorphism of IR4 onto the fibre Dc of D at the image C of (τι, λ,Z,K, L)
under the diffeomorphic embedding (7.3). Every horizontal plane at C, contained

in Dc, has a unique basis having, for some (K̇1, L̇1, K̇2, L̇2) ∈ IR4, the form

(7.5) (1, 0,Zτι , dW(τι,z,K,L)(1,Zτι , K̇1, L̇1)), (0, 1,Zλ, dW(τι,z,K,L)(0,Zλ, K̇2, L̇2)).

The span of (7.5) is an integral plane of I if and only if

(7.6)
K̇2 = L̇1 and QK̇1 + 2SK̇2 +BL̇2 = C for the expression C given by
C = (Qτια+ Qα′+ F ′)Q + (Sτι + Sα)Qλ + (Qα+ F − 2K)Sλ−LBλ ,

where the letter symbols come from (τι, λ,Z,Zτι ,Zλ) in (7.3) rewritten via (6.1).

Proof. The claims preceding and including (7.5) are immediate consequences
of (7.1) – (7.3). Next, as the vectors (7.5) have the τι and λ components 1, 0 or,
respectively, 0, 1, evaluating dZτι∧dτι+dZλ∧dλ on them, for Z = Q,S,B,G, yields,

by (3.1), the difference between the Zλ component of dW(τι,z,K,L)(1,Zτι , K̇1, L̇1) and

the Zτι component of dW(τι,z,K,L)(0,Zλ, K̇2, L̇2). When Z = Q or Z = S, these

differences are L̇1−K̇2 and Q−1 times C−(QK̇1+2SK̇2+BL̇2), with C as in (7.6).
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(By (5.2), Q > 0.) To see this, we apply ( )˙ formally to the first four equalities
in (5.5), using differentiation by parts (for QSτι only) along with the Leibniz rule.

We then replace α, F and each Ż, where Z = Q,S,B,G, by α′, F ′, Zτι for the first
vector of (7.5), and by 0, 0, Zλ for the second one, cf. (7.2). Combined with (6.6),
this completes the proof. �

As a consequence of the first claim in Lemma 7.1, at any (τι,Z,K, L),

(7.7) the operator IR2 3 (K̇, L̇) 7→ dW(τι,z,K,L)(0, 0, K̇, L̇) ∈ IR8 is injective,

Remark 7.2. If an integral line E of I lies within in a unique horizontal
integral plane E′, then E′ is the only integral plane containing E. Namely, another
such plane E′′, being nonhorizontal, would intersect the kernel of (dτι, dλ) along a
line. As D ⊆ H(E) for the vector subspace H(E) in (6.3) – (6.4) and the three-
dimensional span D of E′ and E′′, all planes in D containing the line E, other
than E′′, would be horizontal integral planes, contrary to the uniqueness of E′.

Theorem 7.3. Every horizontal integral line of I is contained in a unique
integral plane, and this unique plane is also horizontal.

Proof. Due to Remark 7.2, it suffices to show that, at each (τι, λ,Z,K, L),

with the corresponding (τι, λ,Z,Zτι ,Zλ) in (7.3), a vector (7.4) having (τ̇ι, λ̇) 6=
(0, 0) lies in in a unique horizontal integral plane or, in other words, (7.4) is a
linear combination of a unique pair (7.5) satisfying (7.6). Looking at the first two

components we see that the coefficients of the combination must be τ̇ι and λ̇. By
(7.2), this reduces our problem to the existence and uniqueness of (K̇1, L̇1, K̇2, L̇2)

in IR4 with dW(τι,z,K,L)(0, 0, K̇ − τ̇ιK̇1 − λ̇K̇2, L̇− τ̇ιL̇1 − λ̇L̇2) = 0, that is, cf. (7.7),

(K̇, L̇) = τ̇ι(K̇1, L̇1) + λ̇(K̇2, L̇2). Using (7.6) to eliminate K̇1 and K̇2, we rewrite
the last condition, with the first component multiplied by Q, as[

Qλ̇− 2Sτ̇ι −Bτ̇ι
τ̇ι λ̇

] [
L̇1

L̇2

]
=

[
QK̇ − Cτ̇ι

L̇

]
,

which has a unique solution (L̇1, L̇2), the determinant Bτ̇ι2− 2Sτ̇ιλ̇ + Qλ̇2 being,

by (5.2), a positive-definite quadratic form in (τ̇ι, λ̇). �

8. Existence of integral surfaces

The next fact – used below to derive our Theorem 5.1 – is a special case of the
celebrated Cartan-Kähler theorem [4, pp. 81–82]. Since our phrasing differs from
that of [4], we devote the next section to clarifying how our version amounts to
adapting the one in [4] to our particular case.

The symbols N,D and I stand here for more general objects that those in
Section 6. The definition (7.1) of horizontality, for integral elements, is used more
generally, as well as extended, in an obvious fashion, to integral manifolds.

Theorem 8.1. Let real-analytic functions τι, λ and 1-forms ξ1, . . . , ξq on a

manifold N, where 0 < q < dimN, have the property that dτι, dλ, ξ1, . . . , ξq are
linearly independent at every point. Denoting by D and I the distribution on
N arising as the simultaneous kernel of the 1-forms ξ1, . . . , ξq and, respectively,

the exterior differential system on N generated by ξ1, . . . , ξq and, possibly, some
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higher-degree forms, along with their exterior derivatives, let us suppose that

(8.1)
every horizontal integral line of I, at any point
of N, is contained in a unique integral plane of I.

Then every horizontal real-analytic integral curve of I is contained, locally, in
a locally-unique horizontal real-analytic integral surface. Examples of such curves
are provided by unparametrized integral curves of any horizontal real-analytic local
section, without zeros, of the vector bundle D over N. Furthermore,

(8.2) integral lines of I are the same as lines tangent to D.

Proof of Theorem 5.1. Due to (6.6), (6.2) and Theorem 7.3, our N,D and
I, introduced in Section 6, satisfy the hypotheses of Theorem 8.1, with q = 4, the
coordinate functions τι, λ in (6.2), and the four 1-forms Zτιdτι +Zλdλ− dZ, where
Z ranges over Z = Q,S,B,G. As an obvious consequence, one has (8.2).

The image of the embedding t 7→ (τι, λ,Z,Zτι ,Zλ) ∈ N arising under the hy-
potheses of Theorem 5.1 is a horizontal real-analytic integral curve of I. In fact,
horizontality follows since t 7→ (τι, λ) is an embedding, while the resulting tangent
directions are integral lines in view of (8.2), the definition of our D, and the relation

Ż = τ̇ιZτι + λ̇Zλ assumed in Theorem 5.1.
The integral surface arising in Theorem 8.1, being horizontal (Theorem 7.3),

forms, locally, the graph of a function (τι, λ) 7→ (Z,Zτι ,Zλ) ∈ IR12. Its Z component

(τι, λ) 7→ Z = (Q,S,B,G) is a solution to (5.1): t 7→ (τι, λ,Z,Zτι ,Zλ) takes values in
the manifold N defined by (5.1) while, as the graph is tangent to the simultaneous
kernel of the four 1-forms Zτιdτι+Zλdλ−dZ in (6.5), each of these Zτι , Zλ coincides
with the respective partial derivative of Z. �

Under the assumptions of Theorem 8.1, let k = dimN. For all p-dimen-
sional horizontal integral elements E = Ep of I, with p ∈ {0, 1}, the integer
r(E) = dimH(E)− (p+ 1) in (6.3) has a fixed nonnegative value, namely,

(8.3)
dimH(E0) = k − q and r(E0) = k − q − 1 if p = 0,
dimH(E1) = 2 and r(E1) = 0 in the case where p = 1.

This is obvious from (8.2) or, respectively, (8.1).

9. Where Theorem 8.1 comes from

Here is the Cartan-Kähler theorem, cited verbatim from [4, pp. 81–82]:
Let I ⊂ Ω∗(M) be a real analytic differential ideal. Let P ⊂M be a connected,

p-dimensional, real analytic, Kähler-regular integral manifold of I.
Suppose that r = r(P ) is a non-negative integer. Let R ⊂M be a real ana-

lytic submanifold of M which is of codimension r, which contains P, and which
satisfies the condition that TxR and H(TxR) are transverse in TxM or all x ∈ P.

Then there exists a real analytic integral manifold of I, X, which is connected
and (p+ 1)-dimensional and which satisfies P ⊂ X ⊂ R. This manifold is unique
in the sense that any other real analytic integral manifold of I with these properties
agrees with X on an open neighborhood of P.

As we verify in the following paragraphs, the hypotheses of our Theorem 8.1
imply those listed above, for (p, r) = (1, 0), the manifolds M,R above which are
both replaced by our N, and the same ideal I as ours. By our N and I we mean
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the “general” ones (see the three lines preceding Theorem 8.1), rather than the very
special choices of N and I made in Section 6.

Furthermore, P mentioned above is our (arbitrary) horizontal real-analytic
integral curve of I . The resulting manifold X corresponds to the horizontal real-
analytic integral surface of I claimed to exist in Theorem 8.1.

We now proceed to explain why our horizontal integral curve must automat-
ically be Kähler-regular [4, p. 81], meaning that its tangent lines are all Kähler-
regular in the sense of [4, p. 68, Definition 1.7]. To verify this last claim, we
first apply Cartan’s test [4, p. 74, Theorem 1.11]. Namely, in the notation of [4,
p. 74, Theorem 1.11], n = 1 (as we are dealing with tangent lines). Due to the
relation dimH(E0) = k − q in (8.3), and (8.2), H(E0) is of codimension q in the
tangent space of N containing it, the same as the codimension, in the Grassmann
manifold Gr1N of lines tangent to N, of the submanifold V1(I) formed by all
integral lines of I. Cartan’s test thus shows that every line E1 tangent to our hor-
izontal integral curve is ordinary [4, p. 73, Definition 1.9]. The Kähler-regularity of
E1 now trivially follows, r in [4, pp. 67-68] having the constant value 0 according
to (8.3). This is also the value r = r(P ) in the italicized statement cited above
from [4]. Cf. [4, pp. 81–82, the lines preceding Theorem 2.2].

10. Proof of Theorem E

Let ∇ (or, g) be a connection (or, a pseudo-Riemannian metric) on a C∞

manifold M. We call ∇ or g real-analytic if, in a suitable coordinate system
around every point of M, its components Γ ljk (or, gjk) are real-analytic functions
of the coordinates. The C∞ structure of M then contains a unique real-analytic
structure (maximal atlas) making ∇ or, g real-analytic. (The atlas consists of all
coordinate systems just mentioned; their mutual transition mappings are real-an-
alytic due to real-analyticity of affine mappings, or isometries, between manifolds
with real-analytic connections/metrics, which follows since such mappings appear
linear in geodesic coordinates.) Real-analyticity of a metric g obviously implies
that of its Levi-Civita connection ∇ (and vice versa, since ∇g = 0).

For a real-analytic (Riemannian) Kähler metric g on a complex manifold M,
the unique real-analytic structure described above coincides with the one induced by
the complex structure of M. In fact, local holomorphic coordinate functions, being
g-harmonic, must be real-analytic relative to the former structure, as a consequence
of the standard regularity theory of elliptic partial differential equations applied to
the g-Laplacian ∆.

Proof of Theorem E. Combining Theorems 5.1 and 4.1, we obtain the first
assertion of Theorem E.

For the second one we invoke the existence results of [22] and [6]. In both cases,
dQ∧ dτι 6= 0 somewhere, and the metric is real-analytic. The former claim follows,
for instance, since a compact Kähler surface with a nontrivial holomorphic gradient
∇τι having dQ∧dτι = 0 identically for Q = g(∇τι,∇τι) must necessarily [10, Sect. 1]
be biholomorphic to CP2 or a CP1 bundle over CP1 (rather than the two-point
blow-up of CP2). The latter, in the case of [22], is due to a general reason: all Ricci
solitons are real-analytic [8, Lemma 3.2]. So are, however, all Riemannian Einstein
metrics [13, Theorem 5.2], and the Chen-LeBrun-Weber metric of [6] is conformal
to an Einstein metric ĝ , while again, for a general reason [9, p. 417, Prop. 3(ii)],
the conformal change leading from ĝ to g has a canonical form (up to a constant
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factor, it is the multiplication by the cubic root of the norm-squared of the self-dual
Weyl tensor). This causes g to be real-analytic as well. �

11. The analytic-continuation phenomenon

We elaborate here on the plausibility of small deformations mentioned in the
lines following Theorem E, beginning with the coth-cot analytic continuation. The
real-analytic function IR 3 y 7→ y−1tanh y, with the value 1 at y = 0, being even,
has the form Σ(y2) for some real-analytic function Σ. Now (ε, τι) 7→ βε(τι) =
τιΣ(ετι2) is a real-analytic function on an open subset of IR2 and βε(τι) equals
ε−1/2 tanh(ε1/2τι), or τι, or |ε|−1/2 tan(|ε|1/2τι), depending on whether ε > 0, or
ε = 0, or ε < 0. For αε(τι) = 2/βε(τι) the analogous expressions are

2ε1/2 coth(ε1/2τι) (if ε > 0), 2/τι (if ε = 0), 2|ε|1/2 cot(|ε|1/2τι) (if ε < 0).

All αε with ε > 0, as well as those with ε < 0, are thus affine (in fact, linear)
modifications – see Remark C – of α1 or, respectively, α−1, and α0(τι) = 2/τι.

For a tanh-coth analytic-continuation argument we define (t, τι) 7→ αt(τι) by
αt(τι) = 2(eτι− te−τι)/(eτι + te−τι). Thus, with q such that 2q = log |t|, if t > 0 (or,
t < 0), αt(τι) = 2tanh(τι − q) or, respectively, αt(τι) = 2coth(τι − q). Again, all αt
for t > 0, or those with t < 0, are affine (this time, translational) modifications of
α1, or of α−1, while α0(τι) = 2.
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