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Abstract. Totally real immersions f of a closed real surface Σ in an almost

complex surface M are completely classified, up to homotopy through totally

real immersions, by suitably defined homotopy classes M(f) of mappings from
Σ into a specific real 5-manifold E(M), while M(f) themselves are subject

to a single cohomology constraint. This follows from Gromov’s observation

that totally real immersions satisfy the h-principle. For the receiving com-

plex surfaces C2, CP1×CP1, CP2 and CP2# mCP2, m = 1, 2, . . . , 7, and

all Σ (or, CP2#8CP2 and all orientable Σ), we illustrate the above non-

constructive result with explicit examples of immersions realizing all possible
equivalence classes. We also determine which equivalence classes contain to-

tally real embeddings, and provide examples of such embeddings for all classes

that contain them.
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0. Introduction

Given an almost complex surface, that is, an almost complex manifold M with
dimRM=4, we ask which closed real surfaces Σ admit totally real immersions/em-
beddings f in M , and how such f can be classified up to the equivalence relation
∼tri of being homotopic through totally real immersions.

We study these questions using a two-pronged approach. First, our Theorems 2.1
and 2.2 provide an answer for totally real immersions. Theorem 2.2 states that,
when M is simply connected, the ∼tri equivalence class of a totally real immersion
f : Σ → M is completely determined by the Maslov index i = i (f) and degree
d = d(f) of f , which in turn form an arbitrary element (i ,d) of a specific set
depending on M and Σ. Theorem 2.1 classifies such ∼tri equivalence classes for
arbitrary M , using the Maslov invariant M(f), valued in a certain set of homotopy
classes of mappings. Our definition of M(f) in Section 2 is based on that in [2].

What makes Theorems 2.1 and 2.2 less than completely satisfactory is the re-
liance of their proofs on Gromov’s observation [20, p. 192] that totally real im-
mersions satisfy the h-principle; see also [8, p. 176]. Consequently, those proofs
offer little information about how the immersions which are shown to exist might
actually be constructed. In addition, the two theorems deal only with the case of
totally real immersions, as opposed to embeddings.

To make up for such shortcomings, we devote most of this paper (starting from
Section 9) to our second approach, which deals with totally real immersions and
embeddings Σ → M of arbitrary closed real surfaces Σ in the “model” simply
connected complex surfaces

(0.1) C2 , CP2 , CP1×CP1 and CP2#mCP2, m ≥ 1,

CP2#mCP2 being obtained by blowing up any set of m points in CP2. For these
M , we provide explicit answers to the questions stated in the first paragraph. We
begin by settling the existence question for totally real immersions/embeddings in
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M . (Table 1 in Section 2 summarizes the results.) Next, we construct examples
of totally real immersions realizing all possible index-degree pairs (i ,d). When
m ≤ 7 in (0.1), or m = 8 and Σ is orientable, this also answers the question
about embeddings: some of our examples are embeddings, while, as an intersection
argument shows, none of the other pairs (i ,d) comes from a totally real embedding.

The constructions in question are summarized in Theorems 2.16 and 2.17.
In our second approach we make a point of not using Theorems 2.1 or 2.2.

Instead, we derive the nonexistence results directly from obstructions involving
either characteristic classes and cohomology operations (for totally real immersions)
or intersection numbers (for totally real embeddings). Our existence assertions are
in turn established by explicit constructions.

In the case where the real surface Σ is orientable, the nonexistence conclusions
just mentioned were originally due to Lai [22] and Eliashberg and Kharlamov [7].

To prove Theorem 2.17 for CP2#mCP2 with m = 6, 7, 8 we study a situation
where a totally real immersion/embedding Σ →M of a closed oriented real surface
Σ in an almost complex surface M can be obtained by deforming its exact opposite,
that is, a pseudoholomorphic immersion/embedding f : Σ → M . This turns out
to be possible if and only if the normal bundle ν of f and the tangent bundle
τ of Σ are anti-isomorphic as complex line bundles (Theorem 2.18), while the
required (small) deformation is achieved by moving in the direction of a section
ψ of ν such that ∂ψ 6= 0 everywhere, ∂ being a Cauchy-Riemann operator.
Although less constructive than the other existence proofs in the second part of the
paper, such a technique is still more explicit than a general h-principle argument:
it requires only finding a section ψ of ν such that ∂ψ trivializes the line bundle
HomC(τ , ν) (assumed trivial to begin with).

Our interest in the subject was sparked by Forstnerič’s paper [13]. We chose to
focus on (0.1) as the receiving complex surfaces and the relation ∼tri . However,
other compact simply connected complex surfaces and other equivalence relations
have been studied as well.

For instance, Slapar [26] proves the existence of totally real embeddings of closed
oriented real surfaces in K3 surfaces, their one-point blow-ups, and E(3) surfaces.
Borrelli [6] applies the h-principle to equivalence classes of totally real embed-
dings under the relation of being homotopic through totally real embeddings. As
shown by Fiedler [9], even for totally real embeddings T 2 → C2 this last rela-
tion is stronger than being isotopic. On the other hand, Forstnerič and Rosay
[16], Forstnerič [14], and Gong [17, 18] studied relations based on biholomorphic
equivalence. See also Forstnerič [15].

Much work has also been done on totally real embeddings of closed n-manifolds
in Cn, for any n ≥ 2. See [1, 4, 5, 11, 21, 27, 30] and [31].

Totally real immersions/embeddings may be viewed as a generalization of La-
grangian immersions/embeddings [4]. A detailed presentation of both categories
and the h-principle can be found in the monographs [20] and [8].

1. Preliminaries

By ‘planes’ and ‘lines’ we always mean vector spaces. All manifolds are of class
C∞ and connected, except when explicitly stated otherwise.

An almost complex manifold is a real manifold M with an almost complex struc-
ture (a C∞ bundle morphism J : TM → TM such that J2 = − Id). The tangent
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bundle TM then becomes a complex vector bundle, in which J is the multiplica-
tion by i. We usually write iv rather than Jv for v ∈ TxM and x ∈M .

A real vector subspace W of a complex vector space V is said to be totally real if
W ∩ iW = {0}. A totally real immersion/embedding of a real manifold Σ (with or
without boundary) in an almost complex manifold M is an immersion/embedding
f : Σ → M such that the image of the differential dfx at any x ∈ Σ is a totally
real subspace of Tf(x)M . If f is a totally real embedding, the image f(Σ) is called
a totally real submanifold of M . (See [30], [20] and Remark 1.3.)

Given an almost complex manifold M with dimCM = n, we define E+(M) and
E(M) to be the unit circle bundles of the determinant bundle detCTM = [TM ]∧n

and, respectively, of its square [detCTM ]⊗2. Thus, E(M) is the RP1 bundle over
M associated with detCTM . Both E = E(M) and E = E+(M) are the total
spaces of principal U(1)-bundles over M , leading to the homotopy exact sequences

(1.1) π2E
injective
−−−−−−→ π2M

connecting
−−−−−−−−→ π1[U(1)] = Z −→ π1E

onto
−−−→ π1M.

One also has an obvious twofold covering projection

(1.2) E+(M) → E(M) = E+(M)/Z2 ,

equivariant relative to the homomorphism U(1) 3 z 7→ z2 ∈ U(1). Thus,

(1.3) π1[E+(M)] ⊂ π1[E(M)] , π1[E(M)] / π1[E+(M)] = Z2 ,

If, in addition, M is simply connected, (1.3) and the exactness of (1.1) give

(1.4) π1[E(M)] = Zq for some q ∈ {2, 4, . . . ,∞}, where we set Z∞ = Z.

(More on q can be found in Section 27.) For any manifold Σ and any Abelian
group G, we have natural isomorphic identifications

(1.5) H1(Σ,G) = Hom(π1Σ,G) = Hom(H1(Σ,Z), G).

Thus, according to (1.5) with G = Z2,

(1.6) w1(Σ) ∈ H1(Σ,Z2) is the orientation homomorphism π1Σ → Z2 .

We will also use Wu’s formula [24], valid whenever Σ is a closed real surface:

(1.7) w1(Σ) ` w1(Σ) = [χ(Σ)mod 2] ∈ H2(Σ,Z2) = Z2 .

Remark 1.1. In terms of (1.5), the homomorphism H1(Σ,G) → H1(Σ,G′) of
coefficient reduction, corresponding to a homomorphism h : G → G′ of Abelian
groups, sends a homomorphism ϕ : H1(Σ,Z) → G to h ◦ ϕ.

Remark 1.2. The following properties of closed real surfaces Σ are both well known
and easily derived from Remark 25.1 and (25.3.i) in Section 25: the torsion subgroup
of H1(Σ,Z) is trivial when Σ is orientable, and isomorphic to Z2 otherwise; while,
if χ(Σ) is odd, the torsion subgroup is not contained in the kernel of w1(Σ).

Remark 1.3. Our definition of a totally real subspace W ⊂ V differs from that
in [20], where SpanCW is required to have the maximum possible dimension
min(k, n), for k = dimRW and n = dimCV . The two definitions agree if k ≤ n,
and are both devoid of content if k ≥ 2n − 1 (as one of them then makes every
subspace totally real, and the other allows no such subspace unless n = k = 1);
however, k ≤ n or k ≥ 2n− 1 when n = 2 (and k ≤ 2n), which is the case of our
main interest.
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2. Statement of the results

Let E(M) and E+(M) be as in Section 1 for an almost complex manifold M
with dimCM = n. In view of (1.3), there exists a unique homomorphism

(2.1) w1 : π1[E(M)] → Z2 with Ker w1 = π1[E+(M)] .

Thus (cf. (1.5)), w1 ∈ H1(E(M),Z2)r{0} is the first Stiefel-Whitney class of the
real line bundle over E(M) associated with the Z2 bundle (1.2).

If f : Σ →M now is a totally real immersion of a real manifold Σ in an almost
complex manifold M with dimRΣ = dimCM = n, we define the Maslov invariant
M(f) of f to be the homotopy class of the mapping Σ → E(M) that sends x ∈ Σ
to the real line in [Tf(x)M ]∧n spanned by the exterior product v1 ∧ . . . ∧ vn, where
vj = dfxej for any basis e1, . . . , en of TxΣ. (See also Section 3 and [2].)

Obviously, M(f) depends only on the ∼tri equivalence class of f , for ∼tri

defined in the Introduction. The following result is obtained in Section 4 by a
straightforward application of the h-principle:

Theorem 2.1. Given an almost complex surface M and a closed real surface Σ,
the assignment f 7→ M(f) establishes a one-to-one correspondence between the set
of all ∼tri equivalence classes of totally real immersions f : Σ → M and the set
of those homotopy classes of mappings Θ : Σ → E(M) for which

(2.2) Θ∗w1 = w1(Σ) in H1(Σ,Z2), with w1∈H1(E(M),Z2) as in (2.1).

If M in Theorem 2.1 happens to be simply connected, M(f) may be replaced
by a pair of more tangible invariants: the Maslov index i (f) of a totally real
immersion f : Σ →M , and its degree d(f), described below.

Specifically, discussing mappings f from a real n-manifold Σ into an almost
complex manifold M , we will assume that an orientation of Σ has been selected,
as long as one exists; that is, Σ is either oriented, or nonorientable. We then
define a group Z[2] associated with Σ by

(2.3) Z[2] = Z if Σ is oriented, Z[2] = Z2 if Σ is not orientable.

Let [Σ ] ∈ Hn(Σ,Z[2]) be the fundamental homology class of Σ. We set

(2.4) d(f) = f∗[Σ ] ∈ Hn(M,Z[2]) with n = dimRΣ and Z[2] as in (2.3).

Given a totally real immersion f of a real manifold Σ in an almost complex mani-
fold M such that dimRΣ = dimCM = n, we define i (f) to be the homomorphism
π1Σ → π1[E(M)] induced by M(f). Thus (cf. (1.4), (1.5)),

(2.5) i (f) ∈ H1(Σ, Zq) .

Rather than being arbitrary elements of the (co)homology groups in question,
i (f) and d(f) are both confined to specific subsets. Namely (see Lemma 7.1(b)),
for a totally real immersion f of a closed real surface Σ in a simply connected
almost complex surface M , and q as in (1.4),

(2.6) i (f) ∈ Iq(Σ) ⊂ H1(Σ,Zq) and d(f) ∈ Dε
±(M) ⊂ H2(M,Z[2]).

Here ε and ± are Z2-valued parameters, determined by Σ as follows:

(2.7) ε = 1 if Σ is orientable, ε = 0 if it is not, and (−1)χ(Σ) = ±1,
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while D0
±(M) ⊂ H2(M,Z2) and D1

±(M) ⊂ H2(M,Z) are defined by

(2.8)
D0

+(M) = Ker [w2(M)] , D0
−(M) = H2(M,Z2) r Ker [w2(M)],

D1
+(M) = Ker [c1(M)], D1

−(M) = Ø,

with c1(M) : H2(M,Z) → Z and w2(M) : H2(M,Z2) → Z2. Therefore, Dε
±(M),

if nonempty, is a coset of a subgroup in H2(M,Z2) or H2(M,Z). Finally, the
subset Iq(Σ) of H1(Σ,Zq) is given by

(2.9) Iq(Σ) = {λ ∈ H1(Σ,Zq) : [λ mod 2] = w1(Σ)} ,
where H1(Σ,Zq) 3 λ 7→ [λ mod 2] ∈ H1(Σ,Z2) denotes the mod 2 reduction
homomorphism corresponding to the unique nonzero homomorphism Zq → Z2.
(Recall that q ∈ {2, 4, 6, . . . ,∞} in (1.4).) In Sections 7 and 8 we establish the
following theorem.

Theorem 2.2. Given a simply connected almost complex surface M and a closed
real surface Σ, the assignment f 7→ (i (f), d(f)) defines a bijective correspondence
between the set of ∼tri equivalence classes of totally real immersions f : Σ →M
and a specific subset Z(Σ,M) of the Cartesian product Iq(Σ)×Dε

±(M), in the
notation of (1.4) and (2.7) – (2.9).

The set Z(Σ,M) coincides with Iq(Σ) × Dε
±(M) except in the case where,

simultaneously, Σ is nonorientable and χ(Σ) is even, while q is finite and divisible
by 4. In this latter case, Z(Σ,M) has half of the (finite) number of elements of
Iq(Σ) × Dε

±(M), and consists of those (i ,d) ∈ Iq(Σ) × Dε
±(M) which satisfy

the following condition: if the image of the unique torsion element in H1(Σ,Z)
under i : H1(Σ,Z) → Zq is zero (or, nonzero), then d ∈ H2(M,Z2) is (or,
respectively, is not) the mod 2 reduction of an element of Ker [c1(M)]. (Cf. (1.5)
and Remark 1.2.)

In contrast with Theorems 2.1 and 2.2, which make use of the h-principle, all the
results listed below are established by explicit geometric arguments (even though
one could also derive them from the h-principle). First, in Section 21 we prove the
following six statements.

Theorem 2.3. Let M be any almost complex surface. The class of closed real
surfaces Σ admitting a totally real embedding (or, immersion) in M then includes
the 2-torus T 2 and Klein bottle K2 (and, for immersions, also the 2-sphere S2),
and is closed under the mapping Σ 7→ Σ#T 2#K2 (and, for immersions, under
the connected-sum operation (Σ,Σ ′) 7→ Σ#Σ ′).

Corollary 2.4. Any closed real surface with an even Euler characteristic admits a
totally real immersion in every almost complex surface.

Corollary 2.5. The 2-torus T 2 and all nonorientable closed real surfaces Σ with
χ(Σ) ≡ 0 mod 4 admit totally real embeddings in every almost complex surface.

Corollary 2.6. Let M be an almost complex surface. If there exists a totally
real immersion RP2 → M , then every closed real surface Σ admits a totally real
immersion in M .

Corollary 2.7. Every closed real surface admits totally real immersions in CP2

and in all complex surfaces obtained from CP2 by blowing up any finite number of
points.
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Corollary 2.8. The torus T 2, sphere S2, and all nonorientable closed surfaces
admit totally real embeddings in CP2#mCP2 for every integer m ≥ 2.

Here and in the sequel, given a complex surfaceM, the connected sum M# sCP2

stands for any complex surface obtained by blowing up s distinct points in M .
Corollaries 2.4, 2.8 and Theorem 2.3 lead in turn to the following three results,

the detailed proofs of which are given in Section 21 and Section 22:

Corollary 2.9. For any almost complex surface M which is a spin manifold, the
closed real surfaces Σ that admit totally real immersions in M are precisely those
having even Euler characteristics. This is, for instance, the case for M = C2 and
M = CP1×CP1.

Corollary 2.10. The class of closed real surfaces admitting totally real embeddings
in CP1×CP1 consists of the torus T 2, the sphere S2, and all nonorientable closed
surfaces with even Euler characteristics.

Corollary 2.11. For any fixed m ∈ {2, 3, . . . , 9}, the class of closed real surfaces
admitting a totally real embedding in CP2#mCP2 consists of the torus T 2, the
sphere S2, and all nonorientable closed surfaces.

In each of the last three corollaries an existence statement based on an explicit
elementary construction is coupled with a nonexistence assertion that uses elemen-
tary topological obstructions: an intersection-number relation (5.4) or (5.5), and
a condition satisfied by either the first Chern class (for orientable surfaces Σ) or
Stiefel-Whitney classes (for nonorientable Σ).

The Stiefel-Whitney class obstruction in (5.3.a) fails, however, to detect that
some nonorientable closed surfaces Σ do not admit totally real embeddings in C2,
CP2 or CP2#CP2. Instead, following Audin [4] we use Massey’s formula (23.1),
which involves mod 4 intersection numbers and Pontryagin squares. This leads to
a proof, in Section 23, of the next three corollaries; the first of them is a special case
of a result of Audin [4, Corollaire 0.6], characterizing totally-real embeddability of
closed n-manifolds in Cn, for all even n ≥ 2.

Corollary 2.12. A closed real surface Σ admits a totally real embedding in C2 if
and only if either Σ is diffeomorphic to the torus T 2 or Σ is nonorientable and
χ(Σ) ≡ 0 mod 4.

That χ(Σ) ≡ 0 mod 4 for nonorientable Σ in Corollary 2.12 is also obvious
from the result of Whitney [33], according to which the Euler number of the normal
bundle of Σ (here equal to χ(Σ), by (5.1)) differs from 2χ(Σ) by a multiple of
4 whenever Σ is a nonorientable closed real surface embedded in C2. Rudin [25]
first showed that the Klein bottle admits a totally real embedding in C2.

Corollary 2.13. The class of closed real surfaces that admit a totally real embed-
ding in CP2 consists of the torus T 2 and all nonorientable closed surfaces Σ with
χ(Σ) ≡ 0 or χ(Σ) ≡ 1 mod 4.

Corollary 2.14. The closed real surfaces admitting totally real embeddings in the
complex surface CP2#CP2 are the torus T 2 and all nonorientable closed surfaces
whose Euler characteristics are odd or divisible by 4.
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Table 1. Totally-real immersibility/embeddability of closed real
surfaces Σ in the complex surfaces (0.1) with m ≤ 9. Here t.r.
means ‘totally real’ and χ4 ∈ {0, 1, 2, 3} stands for χ(Σ) mod 4.

the complex surface M=CP2 M=CP2# mCP2 M=CP1×CP1 M=C2

which orientable Σ are
T 2 only

T 2 only if m=1;
S2, T 2 only T 2 only

t.r. embeddable in M S2, T 2 if 2≤m≤ 9

t.r. embeddabil- χ4 6= 2 if m = 1; χ(Σ)

ity condition for χ4∈{0,1} all Σ t.r. embed- χ(Σ) even divisible
nonorientable Σ dable if 2≤m≤ 9 by 4

when a t.r. immer- exists for all Σ if and only if χ(Σ) is even
sion Σ→M exists (since it does for Σ =RP2) (just because M is spin)

Corollaries 2.7 and 2.9 – 2.14 are summarized in Table 1. For a conclusion similar
to but weaker than Corollaries 2.13 and 2.14, see Proposition 5.1.

Further such results can be derived from the following well-known existence
theorem, proved in Section 14 via another explicit argument.

Theorem 2.15. Let M ′ be the complex surface obtained by blowing up k distinct
points, k ≥ 1, in a given complex surface M . The class of closed real surfaces
admitting a totally real embedding in M ′ then includes

(a) the 2-sphere S2, if k ≥ 2,
(b) the connected sum Σ# sRP2, whenever s ∈ {0, 1, . . . , k} and Σ is any

totally real closed surface embedded in M that contains at least s of the
k blown-up points.

The next result, as stated, is a special case of Theorem 2.2; however, we establish
it separately in Section 30, using – in contrast with our proof of Theorem 2.2 in
Sections 7 and 8 – only explicit geometric constructions.

Theorem 2.16. If M is one of the complex surfaces (0.1) and Σ is a closed real
surface, then Z(Σ,M) defined in the lines following Theorem 2.2 coincides with
the set of all pairs (i ,d) such that i (f) = i and d(f) = d for some totally real
immersion f : Σ →M .

Geometric constructions are also used to prove, in Section 36, a similar theorem
about totally real embeddings. First, according to (5.5) and (23.2), we have the
well-known relations

(2.10)
i) d · d = −χ(Σ) ∈ Z , if Σ is orientable,

ii) d2 = [χ(Σ) mod 4] ∈ Z4 , if Σ is not orientable.

Here d = d(f) is the degree of any totally real embedding of a closed real sur-
face Σ in an almost complex surface M and · denotes the intersection form in
H2(M,Z). In (2.10.ii), M is assumed, in addition, to be either diffeomorphic
to C2 (and then d2 stands for 0 ∈ Z4) or compact and simply connected (and
then we set d2 = [ξ ` ξ mod 4] ∈ H4(M,Z4) = Z4 for any ξ ∈ H2(M,Z)
such that the mod 2 reduction of ξ is the class µ ∈ H2(M,Z2), Poincaré-dual to
d ∈ H2(M,Z2)).

Let M be one of the complex surfaces (0.1). If Σ is any closed real surface,
the index-degree pairs (i ,d) of totally real immersions Σ → M are precisely the
elements of Z(Σ,M). (See Theorem 2.16 or Theorem 2.2.) That is no more the
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case when ‘immersion’ is replaced by ‘embedding’ since, as we just saw, (2.10) then
must hold as well. For the surfaces (0.1) with 1 ≤ m ≤ 7, condition (2.10) is, in
fact, the only additional obstruction:

Theorem 2.17. Let M be one of the complex surfaces (0.1) for 1≤m≤ 8, and let
Σ be a closed real surface, orientable if m = 8. Any (i ,d) in the set Z(Σ,M)
described immediately after Theorem 2.2, such that d satisfies (2.10), then equals
(i (f),d(f)) for some totally real embedding f : Σ →M .

Our proof of Theorem 2.17 for CP2#mCP2 with m = 6, 7, 8 uses a fact,
appearing below as Corollary 2.21 and obtained by deforming pseudoholomorphic
immersions/embeddings to totally real ones (cf. the end of the Introduction). The
last four results, stated next, are proved in Sections 34 – 35.

Theorem 2.18. Given a pseudoholomorphic immersion/embedding f of a closed
oriented real surface Σ in an almost complex surface M , the following three con-
ditions are equivalent :

(a) the tangent bundle τ of Σ and the normal bundle ν of f are anti-
isomorphic as complex line bundles,

(b) f∗[detCTM ] is trivial ; that is, f∗c1(M) = 0 in H2(Σ,Z),
(c) f is homotopic through immersions/embeddings Σ → M to a totally real

immersion/embedding f ′ : Σ →M .
Moreover, f ′ in (c) then can be chosen arbitrarily C1-close to f .

Here we call an immersion f : Σ → M pseudoholomorphic [20] if, for each
x ∈ Σ, the image dfx(TxΣ) is a complex line in Tf(x)M and the isomorphism
dfx : TxΣ → dfx(TxΣ) is orientation-preserving.

Let M ′ be the complex surface obtained from a given complex surface M by
blowing up any (ordered) k-tuple of distinct points. We will use the isomorphic
identification

(2.11) H2(M ′,Z) = H2(M,Z)× Zk,

with the convention that, for any oriented closed real surface Σ embedded in M ′,
the Zk component of its homology class [Σ ] in the decomposition (2.11) consists
of the ordered k-tuple formed by the intersection numbers of Σ with the resulting
k exceptional divisors in M ′.

Theorem 2.19. Let Σ be a one-dimensional compact complex submanifold of a
complex surface M , and let c be the integral of c1(M) over Σ. If c ≥ 0 and M ′

is the complex surface obtained from M by blowing up any k-tuple of distinct points,
where k ≥ c, then Σ admits a totally real embedding f in M ′ such that, under
the identification (2.11), f∗[Σ ] = ([Σ ], 1, . . . , 1, 0, . . . , 0) with c ≥ 0 occurrences of
1 and k − c ≥ 0 occurrences of 0.

The identification H2(M ′,Z) = Zk+1 used in the next two corollaries is nothing
other than (2.11) for M = CP2, with H2(CP2,Z) = Z.

Theorem 2.19 has the following easy consequences (see Section 35):

Corollary 2.20. Given integers d, k with k ≥ 3d ≥ 3, let M ′ be the complex
surface obtained from CP2 by blowing up any ordered set of k points. Then the
closed orientable surface Σ of genus (d−1)(d−2)/2 admits a totally real embedding
f : Σ →M ′ with f∗[Σ ] = (d, 1, 1, . . . , 1, 0, . . . , 0), where 1 occurs 3d times and 0
occurs k − 3d ≥ 0 times.
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Corollary 2.21. Given positive integers d, j with j ≥ 2d + 2, let M be the
complex surface obtained from CP2 by blowing up any j-tuple of distinct points.
Then there exists a totally real oriented 2-sphere Σ embedded in M such that
[Σ ] = (d, d−1, 1, . . . , 1, 0, . . . , 0), with 1 occurring 2d + 1 times and 0 occurring
j − 2d− 2 times.

3. A Z2 cohomology constraint

Given a complex vector space V with dimCV = n ≥ 1, let TR(V ) (or TR+(V ))
denote the set of all totally real (or, respectively, oriented totally real) vector sub-
spaces of real dimension n in V . (See Section 1.) Also, let RP(W ) (or S(W )) be
the real projective space (or sphere) of all real lines through 0 (or, respectively, rays
emanating from 0) in any given real vector space W . We have natural mappings

(3.1) L : TR(V ) → RP(V ∧n) , L+ : TR+(V ) → S(V ∧n)

sending each W in TR(V ) or TR+(V ) to the real line/ray containing e1∧ . . .∧ en,
where e1, . . . , en is any basis (or positive-oriented basis) of W, and V ∧n is the nth
complex exterior power of V . Thus, V ∧n is a complex line, while RP(V ∧n) and
S(V ∧n) are circles. For a totally real immersion f of a real manifold Σ in an
almost complex manifold M with dimRΣ = dimCM = n, the Maslov invariant
M(f) ∈ [Σ,E(M)] was defined, in Section 2, to be the homotopy class of the
mapping

(3.2) Θ(f) : Σ → E(M)

which sends each x ∈ Σ to the real line L(dfx(TxΣ)) in [Tf(x)M ]∧n, with L as
in (3.1) for V = Tf(x)M . If, in addition, Σ is orientable, M(f) can be lifted
to E+(M); that is, there exists a homotopy class M+(f) ∈ [Σ , E+(M)], whose
composite with (1.2) is M(f). A representative Θ+(f) : Σ → E+(M) of M+(f) is
obtained by fixing an orientation of Σ, which does not affect the resulting homotopy
class, and then assigning to any x ∈ Σ the ray L+(dfx(TxΣ)) in [Tf(x)M ]∧n

(notation of (3.1)), with dfx(TxΣ) oriented via dfx.
Being a homotopy class of mappings, M(f) induces a homomorphism

(3.3) [Θ(f)]∗ : π1Σ → π1[E(M)]

of the fundamental groups (with fixed base points). Under the identifications (1.4)
and (1.5), the homomorphism (3.3) coincides with i (f) in (2.5).

We have the following easy fact.

Proposition 3.1. Let f : Σ → M be a totally real immersion of a real n-man-
ifold Σ in an almost complex manifold M with dimCM = n. Condition (2.2)
then holds for the mapping Θ = Θ(f) appearing in (3.2).

Proof. Let Γ = Ker [w1(Σ)], so that Γ is the subgroup of index 1 or 2 in π1Σ
formed by all homotopy classes of loops γ : S1 → Σ for which γ∗(TΣ) is orient-
able. Orientability of γ∗(TΣ) means that the composite Θ(f) ◦ γ can be lifted
to a loop in E+(M); that is, its homotopy class lies in π1[E+(M)] = Kerw1 (see
(2.1)). Thus, Γ = Ker (w1 ◦ [Θ(f)]∗). Hence w1 ◦ [Θ(f)]∗ = w1(Σ), and so (1.5)
gives (2.2) with Θ∗ = [M(f)]∗. �

Remark 3.2. Let Σ,M and E(M) be a closed real manifold, an almost complex
manifold and, respectively, the principal U(1)-bundle over M defined in Section 1.
Furthermore, let f : Σ →M be a continuous mapping.
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(i) Continuous lifts Θ : Σ → E(M) of f satisfying (2.2) are nothing other
than real-line subbundles of f∗[detCTM ] isomorphic to detRTΣ.

(ii) A lift as in (i) exists if and only if the complex line bundle f∗[detCTM ]
over Σ is isomorphic to the complexification [detRTΣ]C.

In fact, a lift Θ of f to E(M) selects a real line Θx in [detCTM ]f(x) for each
x ∈ Σ, that is, forms a real-line subbundle of f∗[detCTM ], while (2.2) states that
this subbundle is isomorphic to detRTΣ.

4. Proof of Theorem 2.1

Let H be the set of all homotopy classes of mappings Θ : Σ → E(M) with
(2.2). Given (x, ρ) ∈ Σ × E(M), let D[x, ρ] be the set of all injective real-linear
operators A : TxΣ → TyM such that y ∈ M is the image of ρ under the bundle
projection E(M) →M and the image A(TxΣ) is a totally real subspace of TyM
satisfying the condition L(A(TxΣ)) = ρ for L as in (3.1) with V = TyM . The Lie
group Gx,ρ of all complex automorphisms B of TyM with detCB ∈ R, for y
as above, now acts on D[x, ρ] simply transitively by the left multiplication, giving
rise to a homotopy equivalence D[x, ρ] ≈ SU(2)× Z2.

In view of Proposition 3.1, the assignment f 7→ M(f) descends to a mapping
T → H, where T is the set of all ∼tri equivalence classes of totally real immersions
Σ → M . To show that T → H is surjective, let Θ : Σ → E(M) be continuous
and satisfy (2.2), and let Λ be (the total space of) the bundle over Σ with the
fibres Λx = D[x,Θ(x)], for x ∈ Σ.

Then Λ has two connected components: they are bundles over Σ, and their
fibres, homotopy-equivalent to SU(2), are connected components of the fibres of
Λ. In fact, as stated at the very end of the last section, we may choose a vec-
tor-bundle isomorphism F between detRTΣ and Θ treated as a real-line bundle
over Σ. A selection of one connected component of Λx, varying continuously with
x ∈ Σ, consists of those A ∈ Λx inducing real-line isomorphisms [TxΣ ]∧2 → Θx

equal to Fx times a positive factor.
Using a CW-decomposition of the surface Σ we now see that (a connected

component of) Λ admits a continuous section, and so surjectivity of T → H
follows from the h-principle for totally real immersions [20, p. 192].

Finally, to show that T → H is injective, consider two totally real immersions
f, f ′ : Σ → M with M(f) = M(f ′), and choose a homotopy [0, 1] 3 t 7→ Θt

between the mappings Θ0 = Θ(f) and Θ1 = Θ(f ′) defined as in the line following
(3.2). If Ξ now is the bundle over Σ × [0, 1] with the fibres D[x,Θt(x)] for
all (x, t) ∈ Σ × [0, 1], a CW-decomposition argument shows, as before, that (a
connected component of) Ξ admits a continuous section which coincides with df
on Σ × {0} and with df ′ on Σ × {1}. More precisely, if an extension of df to a
section of Ξ thus obtained has a restriction to Σ×{1} lying in a different connected
component than that containing df ′, a correction can be made by extending the
original homotopy to one parametrized by t ∈ [0, 2], with Θt = e2(t−1)πiΘ1 for
t ∈ [1, 2] (multiplication in the principal U(1)-bundle E(M)).

Hence, according to the h-principle [20, p. 192], f and f ′ are homotopic through
totally real immersions, which proves Theorem 2.1.

Note that, as SU(3) is 2-connected, the surjectivity part of the above argument
is still valid when the dimension n = 2 is replaced by n = 3.
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5. Topological obstructions

All facts presented in this section are well known.
Every almost complex manifold carries a natural orientation. Specifically, an

n-dimensional complex vector space V (1 ≤ n < ∞) becomes an oriented real
vector space if one declares the real basis e1, ie1, . . . , en, ien to be positive oriented
for some (or any) complex basis e1, . . . , en. With this convention, the effect on the
orientation of the direct sum operation for complex spaces agrees with that for ori-
ented real spaces. For the oriented totally real subspace W = SpanR{e1, . . . , en}
of V, with the orientation of iW obtained using the direct-sum requirement (that
V = W ⊕ iW as oriented spaces), the isomorphism W → iW of multiplication by
i “multiplies” the orientation by the sign factor (−1)n(n−1)/2.

Let f now be a totally real immersion of a real n-manifold Σ in an almost
complex manifold M with dimCM = n. The multiplication by i provides an iso-
morphic identification between the tangent bundle τ of Σ (treated as a subbundle
of f∗TM) and the normal bundle ν of f . Thus,

(5.1) τ = (−1)n(n−1)/2ν , where τ = df(TΣ) and ν = [f∗TM ]/τ .

The factor (−1)n(n−1)/2 represents the orientation if Σ is oriented, and is to be
ignored otherwise. In the former case, the isomorphism τ ≈ ν in (5.1) is orienta-
tion-preserving if and only if n ≡ 0 or n ≡ 1 mod 4.

Let f : Σ →M be a totally real immersion of a k-dimensional real manifold Σ
in an almost complex manifold M with dimCM = n. Thus, k ≤ n, and we have
an obvious isomorphic identification SpanCτ = [TΣ]C of complex vector bundles
over Σ, with τ ⊂ f∗TM as in (5.1), and [ ]C denoting complexification. In fact,
since f is an immersion, τ is isomorphic to TΣ, while SpanCτ = τ ⊕ iτ ≈ τC

as f is totally real.
If, in addition, Σ is closed and dimRΣ = dimCM , we can rewrite the relation

SpanCτ = [TΣ]C as SpanC[df(TΣ)] = f∗TM , which, followed by the operation
detC, leads to natural isomorphic identifications:

(5.2) i) f∗TM = [TΣ]C, ii) f∗[detCTM ] = [detRTΣ]C.

Here and in the sequel, given a real manifold Σ with dimRΣ = n (or, an almost
complex manifold M with dimCM = n), we will denote by detRTΣ = [TΣ]∧n

or detCTM = [TM ]∧n the determinant bundle of the tangent bundle, that is, its
highest real/complex exterior power. Taking w2 (or c1) of both sides in (5.2.ii)
and noting that detRTΣ is trivial if Σ is orientable, we obtain

(5.3)
a) f∗[w2(M)] = w1(Σ) ` w1(Σ) in H2(Σ,Z2) ,

b) f∗[c1(M)] = 0 in H2(Σ,Z) whenever Σ is orientable.

If, in addition, f : Σ →M is a totally real embedding and the closed manifold Σ
with dimRΣ = dimCM = n is orientable, we have

(5.4) f∗[Σ ] · f∗[Σ ] = (−1)n(n−1)/2χ(Σ) ,

where f∗[Σ ] ∈ Hn(M,Z) corresponds to either fixed orientation of Σ and the
dot · denotes the Z-valued intersection form. In fact, the Euler class e(ν) of
the normal bundle ν = νf of any embedding f : Σ → M , integrated over Σ,
yields f∗[Σ ] · f∗[Σ ], while for totally real embeddings f , (5.1) gives

∫
Σ

e(ν) =
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(−1)n(n−1)/2χ(Σ). When Σ is not assumed orientable, instead of (5.4) the same
argument gives

(5.5) f∗[Σ ] · f∗[Σ ] = [χ(Σ) mod 2] ,

where, this time, f∗[Σ ] ∈ Hn(M,Z2) and · takes values in Z2.
Formula (5.4) has the following obvious consequences.

Proposition 5.1. Let a closed, orientable manifold Σ of even real dimension
n ≥ 2 admit a totally real embedding in M = CPn or in the complex manifold
M = CPn # CPn obtained from CPn by blowing up a point.

(i) If M = CPn, then (−1)n/2χ(Σ) ≥ 0 and either χ(Σ) ≡ 0 mod 4 or
χ(Σ) ≡ 1 mod 4.

(ii) If M = CPn # CPn, then χ(Σ) is either odd or divisible by 4.

Proof. The (quadratic) intersection form in Hn(M,Z) is algebraically equivalent
to Z 3 p 7→ p2 or Z⊕Z 3 (p, q) 7→ p2−q2. As p2 = pp and p2−q2 = (p+q)(p−q),
with both factors even or both odd, our claim follows from (5.4). �

Corollary 5.2. If n is even, Sn admits no totally real embedding in CPn or
CPn # CPn.

Finally, given a continuous mapping f : Σ →M of a closed real surface Σ into
an almost complex surface M , conditions (5.3) are not only necessary for f to be
homotopic to a totally real immersion Σ → M , but also sufficient. This is clear
from Theorem 2.1 and Remark 3.2, since c1 and w2 classify complex line bundles
over surfaces [32, p. 798].

6. Degrees modulo q for circle-valued mappings

Whenever Σ is a manifold, q ∈ {1, 2, 3, . . . ,∞}, and g : Σ → U(1) is a
continuous mapping, we define [gmod q ] ∈ H1(Σ,Zq) = Hom(π1Σ,Zq) to be the
composite homomorphism π1Σ → Z → Zq of the action of g on the fundamental
groups with the projection Z → Zq, where Z1 = {0} and Z∞ = Z.

(i) [gmod q ], as a homomorphism π1Σ → Zq, sends the homotopy class of any
loop S1 → Σ to the remainder modulo q of the degree of the composite
S1 → Σ → U(1), in which the loop is followed by g.

(ii) [gmod q ] = 0 if and only if either q = ∞ and g has a lift Σ → R to
the universal covering of U(1), or q < ∞ and the qth root of g treated
as a complex-valued function, with U(1) = S1 ⊂ C, has a single-valued
continuous branch Σ → U(1) ⊂ C.

In fact, (i) is obvious and easily implies (ii).
Let E now be any principal U(1)-bundle over a simply connected manifold M .

As (1.1) is exact, π1E = Zq for some q ∈ {1, 2, 3, . . . ,∞}, with Z1 = {0} and
Z∞ = Z. Given a manifold Σ and a continuous mapping Θ : Σ → E, let us define
j (Θ) ∈ H1(Σ,Zq) to be the homomorphism of the fundamental groups induced by
Θ (cf. (1.5)). Then, for any continuous mapping g : Σ → U(1), with [gmod q ] as
above, we have

(6.1) j (gΘ) = j (Θ) + [gmod q ],

gΘ being the valuewise product. (This is clear from (i) in Section 6, since a principal
U(1)-bundle over S1 is trivial.)
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7. Proof of Theorem 2.2: Surjectivity

In view of Theorem 2.1, the assertion of Theorem 2.2 amounts to bijectivity of
the assignment given, in the notation of Section 6 and (2.4), by

(7.1) [Θ] 7→ (i ,d) with i = j (Θ) and d = d(π ◦Θ).

Explicitly, (7.1) sends the homotopy class of any mapping Θ : Σ → E(M) with
(2.2) to the pair (i ,d) formed by i ∈ H1(Σ,Zq) = Hom(π1Σ,Zq) which is the
action of Θ on the fundamental groups, and d which is the image of the funda-
mental homology class [Σ ] ∈ H2(Σ,Z[2]) under π ◦Θ. (Here Z[2] is defined as in
(2.3), and π : E(M) → M stands for the bundle projection.) Recall that i and
d in (7.1) are the Maslov index and degree of a totally real immersion f of Σ in
M whose ∼tri equivalence class corresponds to [Θ] as in Theorem 2.1, since π ◦Θ
then is homotopic to f .

In this section we prove the surjectivity part of Theorem 2.2. Injectivity will be
established in Section 8. We begin with a lemma:

Lemma 7.1. Given a simply connected almost complex surface M and a closed
real surface Σ, let q, Iq(Σ),Dε

±(M), ε and ± be defined by (1.4) and (2.7) – (2.9).
(a) (i ,d) ∈ Iq(Σ)×Dε

±(M) if (i ,d) corresponds as in (7.1) to a continuous
mapping Θ : Σ → E(M) satisfying (2.2).

(b) i (f) ∈ Iq(Σ) ⊂ H1(Σ,Zq) and d(f) ∈ Dε
±(M) ⊂ H2(M,Z[2]) whenever

f : Σ →M is a totally real immersion and i (f), d(f) are its Maslov index
and degree.

Proof. As π1[E+(M)] = 2Zq ⊂ Zq by (1.3) – (1.4), w1 in (2.1) must be the unique
nonzero homomorphism Zq → Z2. For Θ as in (a), relation (2.2) states that
w1 ◦ Θ∗ = w1(Σ), and so w1(Σ) is the mod 2 reduction of i (see Remark 1.1).
Hence i ∈ Iq(Σ). Next, d(f) ∈ Dε

±(M) in view of Remark 3.2(ii) for f = π ◦Θ
and (1.7), which proves (a). Finally, (b) follows from (a) and Proposition 3.1,
completing the proof. �

Let Z be the image of the mapping (7.1). Thus, Z ⊂ Iq(Σ) × Dε
±(M) by

Lemma 7.1(a). To prove surjectivity in Theorem 2.2, we show that Z is the set
Z(Σ,M) defined immediately after Theorem 2.2. First, if Dε

±(M) = Ø, our claim
follows as Z = Iq(Σ)×Dε

±(M) = Ø.
From now on, we may thus assume that Dε

±(M) 6= Ø. Let us now fix any
d ∈ Dε

±(M) and describe the set of all i ∈ Iq(Σ) with (i ,d) ∈ Z.
Since M is simply connected, d (or, in fact, any class in H2(M,Z[2])) is realized

by a mapping S2 → M and, with the aid of a degree 1 map Σ → S2, also by a
mapping f : Σ → M . However, d = d(f) ∈ Dε

±(M), and so relations (2.8), (2.7)
and (1.7) show that either Σ is orientable and f∗[detCTM ] is trivial, or Σ is
nonorientable and the line bundles f∗[detCTM ] and [detRTΣ]C have the same
w2. Thus, in either case, f∗[detCTM ] and [detRTΣ]C are isomorphic [32, p. 798];
hence, by Remark 3.2(ii), f admits a continuous lift Θ : Σ → E(M) with (2.2).

Once such Θ is fixed, those i ∈ Iq(Σ) for which (i ,d) ∈ Z are precisely
the values j (gΘ) for all continuous mappings g : Σ → U(1) (notation of Sec-
tion 6) with the property that the homomorphism [gmod q ] : π1Σ → Zq defined
in Section 6 is valued in the even subgroup 2Zq of Zq. In fact, d determines the
homotopy class of f : Σ → M uniquely [35], which, combined with an obvious
homotopy-lifting argument, shows that the elements of Z having the form (i ,d)
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are images under (7.1) of products gΘ. However, since Θ satisfies (2.2), condition
(2.2) for gΘ (rather than Θ) is equivalent to even-valuedness of [gmod q ], as Θ∗

in (2.2) is dual to j (Θ).
The set {i ∈ Iq(Σ) : (i ,d) ∈ Z} is thus nonempty (as it contains j (Θ)), and

hence, by (6.1), it is a coset, in Hom(π1Σ, 2Zq), of the subgroup G consisting of
those elements of Hom(π1Σ, 2Zq) which have the form [gmod q ], with a continu-
ous mapping g : Σ → U(1). Therefore Iq(Σ) 6= Ø, and, by (2.9) and Remark 1.1,
Iq(Σ) is a coset of Hom(π1Σ, 2Zq) in Hom(π1Σ,Zq) = H1(Σ,Zq).

First, suppose that Σ is orientable, or q = ∞, or χ(Σ) is odd, or q is finite
but not divisible by 4. In these four cases, G = Hom(π1Σ, 2Zq) (and hence Z =
Iq(Σ)×Dε

±(M) according to the last paragraph). In fact, for every closed surface
Σ, continuous mappings g : Σ → U(1) realize all homomorphisms π1Σ → Z =
π1[U(1)], while, in each of the four cases, a homomorphism H1(Σ,Z) → Zq valued
in 2Zq is necessarily the composite H1(Σ,Z) → Z → Zq of some homomorphism
H1(Σ,Z) → Z and the projection Z → Zq. In the first two cases, this is obvious
since H1(Σ,Z) is free, or, respectively, Z∞ = Z. In the last two cases, Σ may thus
be assumed nonorientable, and q finite. Then H1(Σ,Z) has just one nontrivial
element ξ of finite order, namely, of order 2. (See Remark 1.2.) Case three now
implies case four: if χ(Σ) is odd, ξ /∈ Ker [w1(Σ)], and so the image of ξ under
any homomorphism that lies in Iq(Σ) necessarily equals q/2, due to its being odd
in Zq and of order two; hence q/2 is odd as Iq(Σ) 6= Ø. Next, in the fourth case,
any homomorphism H1(Σ,Z) → 2Zq sends ξ to 0, since q/2, the only nontrivial
element of order 2 in Zq, is odd.

Finally, let us assume that Σ is nonorientable, χ(Σ) is even, and q is a finite
multiple of 4. A homomorphism ϕ : H1(Σ,Z) → 2Zq sends the torsion element
ξ ∈ H1(Σ,Z) either to 0 or to q/2, and only those homomorphisms ϕ with
ϕ(ξ) = 0 have factorizations H1(Σ,Z) → Z → Zq as above, that is, lie in G. Hence
G is an index 2 subgroup of Hom(π1Σ, 2Zq), which shows that, in this case, Z
has half the number of elements of Iq(Σ) ×Dε

±(M). The relation Z = Z(Σ,M)
will now follow once we show that the image of ξ under some (or any) i with
(i ,d) ∈ Z equals 0 if and only if our d is the mod 2 reduction of an element of
Ker [c1(M)] ⊂ H2(M,Z).

To establish the ‘only if’ part of this last statement, let some such i send ξ
to 0. For a suitably chosen embedded circle Γ ⊂ Σ representing ξ in homology,
Σ r Γ is the interior of a compact orientable surface with a boundary formed by
two circles. (Cf. case (b) of Remark 25.1 in Section 25.) Capping the two circles
with two copies of a 2-disk D, we obtain a closed orientable surface Σ ′ such
that Σ is homeomorphic to Σ ′#K2, where K2 is the Klein bottle. A mapping
Θ : Σ → E(M) with (2.2) that realizes (i ,d) as in (7.1) now gives rise to a
mapping Θ ′ : Σ′ → E(M) equal to Θ on Σ r Γ and obtained on both copies
of D by extending Θ from Γ to D, which is possible as i sends ξ to 0. In
addition, Θ ′ still satisfies (2.2): every element of H1(Σ ′,Z) is represented by a
loop γ : S1 → Σ r Γ , for which γ∗(TΣ) is orientable (since so is γ∗(TΣ ′)), and,
therefore, Θ ′◦γ = Θ◦γ can be lifted to a loop in E+(M). Thus, by Lemma 7.1(a),
d ′ = d(π ◦ Θ) lies in D1

+(M) = Ker [c1(M)], and the mod 2 reduction of d ′ is
d , due to mutual cancellation of the contibutions from the two copies of D.

For the ‘if’ part, let d be the mod 2 reduction of d ′ ∈ Ker [c1(M)], and let
Σ ′ be a closed orientable real surface with Σ ′#K2 = Σ. For reasons given in
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the third paragraph after the proof of Lemma 7.1 (but now applied to d ′, Σ ′ and
D1

+(M) = Ker [c1(M)] rather than d , Σ and Dε
±(M)), one can realize d ′ by

a continuous mapping f ′ : Σ ′ → M , and any such f ′ admits a continuous lift
Θ ′ : Σ ′ → E(M) satisfying (2.2). Next, let a mapping Θ ′′ : K2 → E(M) from
the Klein bottle into E(M) be obtained as the composite of the bundle projection
K2 → S1 followed by a homeomorphism of S1 onto a fibre, intersecting Θ ′(Σ ′), of
the principal U(1)-bundle E(M). Without changing the homotopy class of Θ ′ or
Θ ′′, we may further assume that they map some small nonempty open sets U ′ ⊂ Σ ′

and U ′′ ⊂ K2 onto a single point of E(M). Modifying both mappings in closed
2-disks D ′ ⊂ U ′ and D ′′ ⊂ U ′′, we obtain a mapping Θ : Σ = Σ ′#K2 → E(M)
that is constant on the tube connecting Σ ′r D ′ to K2 r D ′′ in Σ ′#K2, while
Θ = Θ ′ on Σ ′rD ′ and Θ = Θ ′′ on K2rD ′′. It is now clear that Θ sends ξ to 0
and satisfies (2.2): ξ is represented by a fibre of the bundle projection K2 → S1,
on which Θ is constant, while ξ and the homology classes of loops lying in Σ ′rD ′

generate the kernel of w1(Σ) : H1(Σ,Z) → Z2, so that the Θ-images of these loops
can be lifted to loops in E+(M) due to orientability of Σ ′. However, no such lifts
exist for a circle in K2 forming a section of the bundle K2 → S1, as its Θ-image
is a fibre of E(M) (and so any lift is a semicircle in a fibre of E+(M)).

8. Proof of Theorem 2.2: Injectivity

To prove injectivity of (7.1), let two mappings Θ,Θ ′ : Σ → E(M), both sat-
isfying (2.2), have j (Θ) = j (Θ ′) = i and d(π ◦ Θ) = d(π ◦ Θ ′) = d . As
d(f) = f∗[Σ ] ∈ H2(M,Z[2]) uniquely determines the homotopy class of f : Σ →M
(see [35]), we can lift a fixed homotopy between f = π ◦ Θ and f ′ = π ◦ Θ ′ to
the principal U(1)-bundle E(M) over M , obtaining a homotopy between Θ ′ and
some lift gΘ of f = π ◦Θ to E(M), where g : Σ → U(1) is a suitable continuous
mapping. By (6.1), [gmod q ] = 0. It now suffices to show that Θ and gΘ are ho-
motopic. We may assume that q <∞, for otherwise g is homotopic to a constant
mapping ((ii) in Section 6).

The required homotopy Ξ : Σ×[0, 1] → E(M) with Ξ( · , 0) = Θ and Ξ( · , 1) =
gΘ will be built on successive skeleta of a specific CW-decomposition of Σ, namely,
one resulting from a surjective continuous mapping φ : D → Σ, where D is an
oriented 2-disk with the accordingly oriented boundary circle ∂D. We choose φ so
that ∂D is partitioned by some 2k-element subset, k ≥ 1, into 2k compact bound-
ary segments, and the only identifications of points of D under φ are those provided
by some k homeomorphisms between pairs of boundary segments. Replacing Ξ
by Ξ̂ : D × [0, 1] → E(M) with Ξ̂(z, t) = Ξ(φ(z), t) for all (z, t) ∈ D × [0, 1], we
see that, at any stage, instead of Ξ we may just construct Ξ̂, which depends on
(z, t) only through (φ(z), t).

First, we choose a single-valued continuous function h : Σ → U(1) ⊂ C with
hq = g. (See (ii) in Section 6.) Now, for any point x in the 0-skeleton of Σ
(the φ-image of the 2k-element partitioning set), we let tj = j/q and Ξ(x, t) =
[h(x)]jγx(t− tj)Θ(x) for t ∈ [tj , tj+1] and j ∈ {0, . . . , q− 1}, with any fixed curve
γx : [0, 1/q ] → U(1) joining 1 to h(x).

An extension of Ξ̂ from the 0-skeleton to the 1-skeleton is in turn obtained
separately on each rectangle R = S × [0, 1], where S ⊂ ∂D is one of the 2k
boundary segments. Our Ξ̂ is already defined on the (oriented) boundary ∂R of
R, so that Ξ̂ : ∂R→ E(M) represents a free homotopy class α of loops in E(M).
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As π1[E(M)] = Zq is Abelian, such free homotopy classes can be meaningfully
multiplied and form a group isomorphic to π1[E(M)]. We now show that α = βq

for the free homotopy class β of some loop Π, and so α is trivial, which provides
an extension of Ξ̂ from ∂R to R, thus concluding the 1-skeleton step. Specifically,
Π : ∂R′ → E(M) is defined on the boundary of R′ = S × [0, 1/q ] by Φ( · , 1/q) =
(hΘ) ◦ φ on S × {1/q} and Π = Ξ̂ everywhere else. Also, α = β0 . . . βq−1,
with βj denoting the free homotopy class of the loop Πj : ∂R′ → E(M) given by
Πj( · , t) = (hj ◦ φ)Π( · , t), as one sees noting that for each j ∈ {0, . . . , q − 2} the
contribution to βj from S×{1/q} cancels the contribution to βj+1 from S×{0}.
On the other hand, βj = β for all j, since the segment S is contractible, and so
we may choose a homotopy between the constant mapping 1 and h : S → U(1),
which leads to a free homotopy between Πj and Πj+1, j = 0, . . . , q − 2.

Now that Ξ̂ is already defined on the boundary ∂C of the solid cylinder C =
D × [0, 1], our 2-skeleton step amounts to extending it from ∂C to C. Let us
denote by σ ∈ π2[E(M)] and ξ ∈ H2(E(M),Z) the homotopy class with any fixed
base point, and, respectively, the homology class, of Ξ̂ : ∂C → E(M) (for the
standard orientation of the 2-sphere ∂C). There are two cases.

If Σ is orientable, σ = 0. In fact, ξ then equals the difference of the homology
classes of Θ and gΘ, for a suitable orientation of Σ. (Contributions from Ξ̂
restricted to ∂D× [0, 1] undergo pairwise cancellations, as all identifications, under
φ, of pairs of boundary segments in ∂D are orientation-reversing.) Since π ◦Θ =
π ◦ (gΘ), we thus get π∗ξ = 0 in H2(M,Z), so that, in view of the Hurewicz
isomorphism, π∗σ = 0 in π2M . Injectivity of the first homomorphism in (1.1) now
gives σ = 0, which provides the required extension of Ξ̂ from the 2-sphere ∂C to
the 3-disk C.

If Σ is not orientable, σ may depend on how one chose the extension on Ξ
from the 0-skeleton to the 1-skeleton of Σ. Namely, if we choose that extension
differently, we can modify the resulting σ so as to add to it any prescribed even
element of π2[E(M)], ‘even’ meaning divisible by 2 in π2[E(M)]. In fact, at least
one identification under φ of a pair S, S ′ of boundary segments in ∂D is now
orientation-preserving. Let us fix such S, S ′ ⊂ ∂D, with φ(S) = φ(S ′). Any given
element ρ of π2[E(M)] can be represented by a mapping F from the 2-sphere
obtained when two separate copies of the rectangle R = S×[0, 1] are glued together
by identifying their boundaries ∂R, and F may be chosen so that the restriction
of F to one copy of R is the extension of Ξ̂ from ∂R to R used in the 1-skeleton
step. If we now replace that extension by a new one, namely, by the restriction
of F to the other copy of R, the corresponding element σ of π2[E(M)] will be
replaced by σ + 2ρ. (As the identification of S with S ′ under φ is orientation-
preserving, the restriction of either version of Ξ̂ to S × [0, 1] contributes twice to
the homotopy or homology class.)

Therefore, to show that σ = 0 for a suitably chosen extension to the 1-skeleton,
we just need to verify that the original σ is an even element of π2[E(M)]. To
this end, first note that π∗ξ is even in H2(M,Z), since for some pairs S, S ′ of
boundary segments identified under φ the contributions of Ξ̂ : S× [0, 1] → E(M)
to homology count twice (namely, the pairs whose identification is orientation-pre-
serving), while for the remaining pairs the contributions cancel each other, which
is also the case for the contributions of π ◦ Ξ̂ : D × {t} →M for t = 0 and t = 1
(due to their having the same image, with opposite orientations). The Hurewicz
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isomorphism theorem now implies that π∗σ is even in π2M . If σ itself were not
even in π2[E(M)], an element of π2M whose double is π∗σ would project onto a
nontrivial element of order 2 in the quotient of π2M over the isomorphic image
of π2[E(M)] under π∗ (cf. (1.1)). This would contradict the fact that, in view
of exactness of (1.1), the quotient group in question is isomorphic to a subgroup
of π1[U(1)] = Z, and hence torsion-free. Thus, (7.1) is injective, which proves
Theorem 2.2.

9. The simplest examples

Here begins the second part of the paper, devoted to constructing explicit exam-
ples of totally real immersions and embeddings. The simplest such constructions
are described in this section. All of them are well known.

Example 9.1. A real subspace W of a complex vector space V with dimV <∞
is totally real if and only if SpanCW in V has the complex dimension dimRW .
This means that some (or every) R-basis of W is also linearly independent over
C in V . Thus, given complex-valued C1 functions f1, . . . , fn on a nonempty open
set U in Rn, the mapping f = (f1, . . . , fn) is a totally real immersion U → Cn

if and only if J (f1, . . . , fn) 6= 0 at every x ∈ U , where J (f1, . . . , fn) = det F for
the complex n× n Jacobian matrix F = F (x) with the entries ∂fj/∂xk.

Example 9.2. Obviously, an embedding f of a real manifold Σ in an almost
complex manifold M is totally real if and only if so is the image f(Σ) as a
submanifold of M .

Example 9.3. Let Σ = {(z, v) ∈ U×V : v = ϕ(z)} be the graph of a C∞ mapping
ϕ : U → V from a nonempty connected open set U ⊂ C into a complex vector
space V with dimV <∞. Then Σ is a totally real submanifold of U× V if and
only if ϕ satisfies, at each point of U , the Cauchy-Riemann inequality ϕz̄ 6= 0,
where ϕz̄ = (ϕx + iϕy)/2 with x = Re z, y = Im z, and the subscripts stand for
the partial derivatives.

In fact, Σ is totally real in U×V if and only if the graph embedding U → U×V
given by z 7→ (z, ϕ(z)) is totally real (Example 9.2), and our claim follows in view
of Example 9.1.

Example 9.4. Given a complex vector space V with dimCV = 2, any real sub-
space W ⊂ V with dimRW = 2 which is not totally real must, obviously, be a
complex 1-dimensional subspace of V . Suppose now that Σ is a submanifold of
an almost complex manifold M and dimRΣ = 2. Removing from Σ all complex
points, that is, those x ∈ Σ for which TxΣ is a complex line in TxM , we obtain
an open subset U of Σ and, if U is nonempty, its connected components are
totally real submanifolds of M .

Totally real submanifolds naturally arise in many other common situations. For
instance, a real submanifold Σ ⊂M of an almost complex manifold M is totally
real in each of the following obvious cases:

(i) dimΣ = 1.
(ii) Σ is a connected component of the fixed-point set {x ∈M : x = x} of any

C∞ involution M 3 x 7→ x ∈ M reversing the almost complex structure.
One then has dimRΣ = dimCM .
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(iii) N is an almost complex manifold admitting an involution x 7→ x that
reverses the almost complex structure and M is the product almost com-
plex manifold N × N , while Σ ⊂ M is the anti-diagonal submanifold
{(x, x) : x ∈ N}, diffeomorphic to N. (This is clear from (ii) applied to the
involution (x, y) 7→ (y, x) of N × N .)

(iv) Σ = Σ ′×Σ ′′, where Σ ′ ⊂M ′ and Σ ′′ ⊂M ′′ are totally real submanifolds,
and M = M ′ ×M ′′ is the product almost complex manifold. (For a more
general construction, see Lemma 29.4.)

(v) By (i) and (iv), embedded closed curves K,K ′ ⊂ C give rise to a Clifford-
like totally real embedded 2-torus Σ = K ×K ′ ⊂ M = C2. Iterating this
produces totally real embedded n-tori in Cn.

(vi) The standard real form Σ = RPn ⊂M = CPn is a totally real embedded
submanifold, which follows from (ii) applied to the involution of CPn given
by [x0, . . . , xn] 7→ [x0, . . . , xn ] in projective coordinates.

(vii) Denoting by x 7→ x any antiholomorphic involution of S2 = CP1 (e.g., the
complex conjugation in C extended to the Riemann sphere), we see that,
by (iii), the anti-diagonal 2-sphere Σ = {(x, x) : x ∈ S2} is totally real in
M = S2 × S2 = CP1×CP1.

10. Zooming

The following well-known fact might be called a zooming principle.

Proposition 10.1. If a compact manifold Σ admits a totally real immersion/em-
bedding f in Cn, then it admits a totally real immersion/embedding h in every
almost complex manifold M of complex dimension n. We may choose h to be
the composite of f with a suitable C∞-diffeomorphic embedding in M of an open
ball in Cn containing f(Σ).

Corollary 10.2. For every integer n ≥ 1, the n-torus Tn admits a totally real
embedding in every almost complex manifold of complex dimension n. Such an
embedding may be chosen so that its image lies in any prescribed open subset dif-
feomorphic to a ball.

Proposition 10.1 trivially follows from Lemma 10.4 below (as explained in Re-
mark 10.5), and Corollary 10.2 then is immediate from (v) in Section 9. First, we
need a definition and another lemma.

Given an immersion Φ : Σ → V of a real n-dimensional manifold Σ in a real
or complex vector space V, the Gauss mapping

(10.1) GΦ : Σ → Grn(V )

of Φ assigns to each x ∈ Σ the image dΦx(TxΣ). Here Grn(V ) is the Grassmann
manifold of all n-dimensional real vector subspaces of V .

Lemma 10.3. Let J be a complex structure in a real vector space V, that is, a
linear operator V → V with J2 = − Id, and let Y be some given set of J-totally
real subspaces of a fixed dimension n ≥ 0. If dim V < ∞ and Y is compact as
a subset of Grn(V ), then all W ∈ Y are totally real relative to every complex
structure that lies in a suitable neighborhood Ω of J in HomR(V, V ).

In fact, otherwise there would exist a sequence Jk ∈ HomR(V, V ) of complex
structures and sequences Wk ∈ Y and uk ∈ V such that Jk → J as k → ∞,
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while uk ∈Wk∩JkWk and |uk| = 1 for some fixed Euclidean norm | | in V . Using
compactness of Y and the unit sphere, we could pass to subsequences for which
Wk → W and uk → u with some W ∈ Y and u ∈ V, so that u ∈ W ∩ JW and
|u| = 1, contradicting the assumption that W ∩ JW = {0} for all W ∈ Y .

Lemma 10.4. Let there be given an almost complex manifold M , a point y in
M , a real manifold Σ, a neighborhood U ′ of 0 in TyM , as well as C∞ mappings
Φ : Σ → TyM and F : U ′ →M such that Φ is a totally real immersion/embedding
of Σ in the complex vector space TyM , while F (0) = y and dF0 is the identity
mapping of TyM . If, in addition, the image Y of the Gauss mapping (10.1),
with V = TyM , is compact, and ε : TyM → TyM denotes the multiplication by
ε ∈ R, then, for some neighborhood U of 0 in TyM contained in U ′, and all
sufficiently small ε > 0, the composite F ◦ ε ◦Φ : Φ−1(ε−1U) →M is a totally real
immersion/embedding in M of the open subset Φ−1(ε−1U) of Σ.

Proof. Let U ′ 3 x 7→ J(x) ∈ HomR(V, V ), with V = TyM , be the F -pullback
to U ′ of the original almost complex structure in M , and let U ⊂ U ′ be a neigh-
borhood of 0 in V such that J(x) ∈ Ω for all x ∈ U , with Ω obtained by
applying Lemma 10.3 to our Y and J = J(0). Obviously, dεv(W ) = W when-
ever ε 6= 0, v ∈ V and W is a real vector subspace of V = TvV = TεvV . Hence
ε◦Φ : Φ−1(ε−1U) → U is a totally real immersion/embedding relative to the almost
complex structure in the receiving manifold U, pulled back from M via F . �

Remark 10.5. Lemma 10.4 becomes particularly simple when Σ is compact (and
hence so is Y ), as one then has ε(Φ(Σ)) ⊂ U for sufficiently small ε > 0, and so
F ◦ ε ◦ Φ is a totally real immersion/embedding of Σ in M .

11. Immersions of spheres

The immersions described in Proposition 11.2 were found by Whitney [34] and
Weinstein [29]. Gromov [19] showed that no totally real embedding Sn→ Cn exists
unless n ∈ {1, 3}. (This was independently proved by Stout and Zame [28]; cf. also
[31, p. 430] and [21].) For n = 3 such embeddings do exist, which is a result of
Ahern and Rudin [3]; see also [12] and [10]. On the other hand, every embedding
S1→ C is totally real.

Lemma 11.1. Let | | be a fixed Euclidean norm in a totally real subspace W of
a complex vector space V with dimRW = dimCV, and let S denote the sphere
of some radius a > 0 in W, centered at 0. Furthermore, let K ⊂ C r {0} be an
embedded C∞ curve with 0 /∈ K +K, where K +K = {b+ c : b, c ∈ K}. Then the
mapping f : K× S → V , given by f(c, v) = cv, is a totally real embedding.

Proof. The differential of f at (c, v) sends (ċ, v̇) ∈ TcK × TvS ⊂ C × W to
ċv + cv̇, and so it transforms an R-basis of TcK × TvS, each of whose vectors
(ċ, v̇) has either ċ = 0 or v̇ = 0, onto a C-basis of V . Thus, f is a totally real
immersion (see Example 9.1). Injectivity of f follows since the relation cv = bw
with b, c ∈ K and v, w ∈ S implies v = c−1bw, and so, as W is totally real and
|v| = |w| = a, we have b = ±c (cf. Example 9.1 again), while b 6= −c in view of
the assumption that 0 /∈ K +K. �

Any fixed Euclidean norm in a totally real subspace W of a complex vector space
V with dimRW = dimCV = n gives rise to the group SO(W ) ≈ SO(n) of all
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orientation-preserving linear isometries of W, with the inclusion SO(W ) ⊂ GL(V )
obtained by extending operators W →W complex-linearly to V .

Proposition 11.2. Let W and L be a totally real subspace and a complex subspace
of a complex vector space V with W ∩ L 6= {0}, dimRW = dimCV = n and
dimCL= 1. Next, let Γ ⊂ L be a compact set such that 0 ∈ Γ and Γ r {0} is a
1-dimensional C∞ submanifold of L with v + v ′ 6= 0 whenever v, v ′ ∈ Γ r {0},
while the intersection of Γ with some neighborhood of 0 in L consists of two non-
parallel real-line segments emanating from 0. Finally, let Q = SO(W )Γ , so that
Q is the set of all Ax with A ∈ SO(W ) and x ∈ Γ , where SO(W ) ⊂ GL(V ) is
defined as above for any fixed Euclidean norm | | in W .

Then Q is a totally real n-sphere immersed in V . It has just one self-intersec-
tion in the form of a double point at 0, and its two tangent spaces T, T ′ at 0 are
related by T ′ = zT for some z ∈ C r R.

Proof. Fix u ∈ W ∩ L r {0}. Now Γ r {0} = Ku for some embedded C∞ curve
K ⊂ C r {0} with 0 /∈ K +K, which approaches 0 along two real-line segments
(0, 1)b and (0, 1)c, where b, c ∈ Cr {0} and b/c /∈ R. For the sphere S of radius
|u| in W, centered at 0, we have Q r {0} = KS, as Q r {0} = SO(W )Ku =
K SO(W )u. Thus, in view of Lemma 11.1, Q r {0} is a totally real submanifold
of V, diffeomorphic to K × S, that is, to Sn minus two points. However, because
of how K approaches 0 in C, a neighborhood of 0 in Q is the union of two open
n-balls centered at 0 in the totally real subspaces T = bW and T ′ = cW spanned
by SO(W )bu and SO(W )cu. �

As an obvious consequence of Propositions 10.1 and 11.2, we obtain

Corollary 11.3. Given an almost complex manifold M with dimCM = n ≥ 2,
a point y ∈ M , and a neighborhood U of y in M , there exists a totally real
immersion of the n-sphere in U which has a double point with a transverse self-
intersection at y, and no other multiple points.

12. Totally real blow-ups

Let M ′ be the complex manifold, diffeomorphic to M#CPn, obtained by blow-
ing up a point in a given complex manifold M with n = dimCM.

Totally real immersions/embeddings in M lead to totally real immersions/em-
beddings in M ′. We discuss three such constructions, two of which are summarized
in the following lemma; the third one is presented, for n = 2 only, in Section 13
(see Remark 13.1).

Lemma 12.1. Given a complex manifold M , a point y ∈M , and a k-dimensional
totally real submanifold Σ ⊂M which is closed as a subset of M and carries the
subset topology, let the complex manifold M ′ = M # CPn, where n = dimCM , be
the result of blowing up y in M .

(a) If y /∈ Σ, then Σ is also totally real as a submanifold of M ′.
(b) If y ∈ Σ, then the closure Σ̂, in M ′, of the preimage of Σ r {y} under

the blow-down projection M ′ → M , is a totally real submanifold of M ′,
diffeomorphic to the manifold Σ ′ ≈ Σ # RPk obtained by the real blow-up
of y in Σ.
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(c) If n = k = 2 and y ∈ Σ, while P ⊂ M ′ is the divisor created by the
blow-up, then the surface Σ̂ in (b) can be deformed, by arbitrarily small
isotopies supported in any given open subset of M ′ containing P, to a
surface embedded in M ′ and having a single, transverse intersection with
the divisor P.

Proof. (a) is obvious. For (b), let us fix a point y ′ ∈ π−1(y) ⊂ Σ ′, where
π : Σ ′ → Σ is the real blow-down projection. We may choose holomorphic co-
ordinates za in M , a = 1, . . . , n, and C∞ coordinates xj in Σ, j = 1, . . . , k, both
defined near y, such that za = xj = 0 and ∂za/∂xj = δaj at y for all a, j, while
y ′, as a real line through 0 in TyΣ, is tangent to the x1 coordinate axis. (This is
easily achieved by an affine coordinate change; cf. Example 9.1.) In suitable local
coordinates x, ξ2, . . . , ξk and z, ζ2, . . . , ζn for Σ ′ and M ′, the blow-down projec-
tions Σ ′ → Σ and M ′ → M are given by (x1, . . . , xk) = (x, xξ2, . . . , xξk) and
(z1, . . . , zn) = (z, zζ2, . . . , zζn), with x ∈ R and z ∈ C both varying in neighbor-
hoods of 0. The integral form of the first-order Taylor formula now gives za =∑k

j=1 xjhaj(x1, . . . , xk) for some C∞ functions haj with haj = ∂za/∂xj = δaj at
x1 = . . . = xk = 0. In terms of x, ξ2, . . . , ξk this becomes z = z1 = xµ(x, ξ2, . . . , ξk)
for a C∞ function µ with µ(0, ξ2, . . . , ξk) = 1. Similarly, za/x is, for each
a = 2, . . . , n, a C∞ function of x, ξ2, . . . , ξk (where x varies around 0 in R).
Hence so is ζa = za/z = za/(xµ), while (z, ζ2, . . . , ζn) → (0, ξ2, . . . , ξk, 0, . . . , 0)
as x → 0, so that ∂ζa/∂ξj = δaj wherever x = 0. The inclusion mapping
Σ r {y} → M r {y} thus has a C∞ extension f : Σ ′ → M ′ represented by our
assignment (x, ξ2, . . . , ξk) 7→ (z, ζ2, . . . , ζn), which is again injective, as it acts by
(0, ξ2, . . . , ξk) 7→ (0, ξ2, . . . , ξk, 0, . . . , 0) on the added RPk−1 given by the equation
x = 0.

At x = 0 we have µ = 1 and hence ∂µ/∂ξj = 0, while, as we just saw,
∂ζa/∂ξj = δaj if x = 0. On the other hand, the relation z = xµ gives ∂z/∂x =
µ = 1 and ∂z/∂ξj = 0 when x = 0. Consequently, at points with x = 0, the
matrix A = [∂ζa/∂ξj ] with 1 ≤ a ≤ n and 1 ≤ j ≤ k (where ξ1 = x, ζ1 = z) has
a nonzero k×k subdeterminant obtained by restricting a to {1, . . . , k}. Therefore,
rank A = k, and so f is a totally real immersion (see Example 9.1), which proves
assertion (b).

Now let n = k = 2, and let f : Σ ′ → M ′ be the totally real embedding with
f(Σ ′) = Σ̂, described above. Thus, Γ = Σ̂ ∩P is the f-image of the circle RP1

in Σ ′ created by the real blow-up of y ∈ Σ. A tubular neighborhood U of Γ in
Σ̂ is diffeomorphic to the Möbius strip, so that we may fix ε > 0 and a two-fold
covering map F : S1× (−ε, ε) → U invariant under the involution of S1× (−ε, ε)
sending (z, t) to (−z,−t), with S1 = {z ∈ C : |z| = 1}. The push-forward under
F of the standard unit vector field on S1 × (−ε, ε) tangent to the (−ε, ε) factor
is a double-valued vector field ±v tangent to U, defined only up to a sign. If
ε is made sufficiently small and a Riemannian metric is chosen on M , the union
of suitable short geodesic segments emanating from points of U in the direction
of ±iv is a 3-dimensional open submanifold N of M , and F has an extension
to a two-fold covering map H : S1 × Dε → N, where Dε = {w ∈ C : |w| < ε},
such that H is invariant under the involution (z, w) 7→ (−z,−w). Making ε even
smaller, if necessary, we may also assume that H(S1 × Dε) intersects P only
along Γ . (In fact, since Σ̂ is totally real, at each point of Γ the complex line
spanned by ±v has a trivial intersection with the tangent complex line of P.)
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Finally, let us fix a C∞ function ϕ : [0,∞) → R equal to 1 near 0 and vanishing
outside the interval (−ε2/2, ε2/2). We now obtain the required small deformations
of Σ̂ by replacing U ⊂ Σ̂ with the H-image of the involution-invariant surface
{(z, t+ riϕ(t2) Re z) : z ∈ S1, t ∈ (−ε, ε)}, depending on a real parameter r close
to 0, and transverse to the curve S1 × {0}. �

In the following obvious corollary, by the nonorientable closed surface of genus
s ≥ 1 we mean, as usual, the connected sum sRP2 of s copies of RP2.

Corollary 12.2. The surface 3RP2 = RP2#RP2#RP2 admits totally real em-
beddings in CP2 # mCP2 for all m ≥ 1.

More generally, for any integers m, s with m ≥ s − 2 ≥ 0, the nonorientable
closed surface sRP2 of genus s admits a totally real embedding in the complex
surface CP2 # mCP2 obtained by blowing up the points of a suitable m-element
set in CP2.

This is clear if one blows up m distinct points of CP2, of which s − 2 lie in
a given totally real torus embedded in C2 ⊂ CP2 (cf. (v) in Section 9), and then
uses Lemma 12.1.

13. Removability of complex points by blow-up

Given a point y of a real surface Σ embedded in a complex surface M , we
will say that Σ contains y as a complex point removable by blow-up if, for some
neighborhood U of y in Σ and some totally real C∞ submanifold U ′ of the
complex surface M ′ obtained from M by blowing up the point y, the blow-down
projection π : M ′ → M maps U ′ diffeomorphically onto U . This amounts to
requiring that π−1(x) have a limit y′ ∈M ′ as x ∈ Ur{y} approaches y, and that
U ′ = {y′} ∪ π−1(U r {y}) be a totally real C∞ submanifold of M ′ transverse, at
y′, to the divisor π−1(y). Note that y then must actually be an (isolated) complex
point of Σ, since TyΣ coincides with the image of the differential of π at y′ (which
is the complex line in TyM corresponding to y′), while π : M ′rπ−1(y) →Mr{y}
is a biholomorphism (and so U r {y} = π(U ′ r {y′}) is totally real in M).

Remark 13.1. Removability by blow-up leads to our third blow-up procedure.
Namely, let a real surface Σ embedded in a complex surface M be totally real ex-
cept for a finite number of complex points removable by blow-up, and let M ′ be the
complex surface obtained from M by blowing up those points. Then M ′ contains a
totally real embedded surface Σ ′, which the blow-down projection M ′ →M maps
diffeomorphically onto Σ.

Example 13.2. Let Σ = {(z, w) ∈ U × C : w = h(z)} be the graph of a C∞

function h : U → C defined on a neighborhood U of 0 in C, and let y = (0, h(0)).
Then the following two conditions are equivalent:

(a) Σ treated as a real surface embedded in M = C2 contains y as a complex
point removable by blow-up, while Σ r {y} is totally real;

(b) h(z) = h(0) + zϕ(z) for all z ∈ U , where ϕ : U → C is a C∞ function
satisfying at each point the inequality ϕz̄ 6= 0 of Example 9.3.

In fact, let M ′ be the complex surface obtained from C2 by blowing up y. The
blow-down projection π : M ′ → C2 is given by (ζ, η) 7→ (z, w) = (ζ, ζη + h(0)) in
suitable holomorphic local coordinates (ζ, η) for M ′. The relation w = h(z) for
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z 6= 0 now reads η = [h(ζ) − h(0)]/ζ whenever ζ 6= 0. Thus, our claim follows
from Example 9.3; note that a limit L of [h(ζ) − h(0)]/ζ as ζ → 0, if it exists,
must be finite: using real values of ζ we get L = hx(0), with hx = ∂h/∂x and
x = Re z.

Example 13.3. The graph surface Σ = {(z, w) ∈ U × C : w = zz} ⊂ C2 is a
paraboloid of revolution in the real subspace C ×R, and y = (0,0) is its unique
complex point, as well as a complex point removable by blow-up. This is clear from
Example 13.2 with U = C and h(z) = zz.

Example 13.4. The embedded 2-sphere S ⊂ CP2 given by aa = bc in the
homogeneous coordinates [a, b, c] has just two complex points, x = [0, 0, 1] and
y = [0, 1, 0], both removable by blow-up. This is clear from Example 13.3: if one
removes x (or y) from S, by setting b = 1 (or c = 1), one gets the paraboloid
c = |a|2 (or b = |a|2) in the ac-plane (or, ab-plane).

Example 13.5. In C2 with the coordinates (a, b), the 2-sphere S of radius R > 0,
given by |a|2 + |b|2 = R2 and Im b = 0, has just two complex points x± = (0,±R),
both removable by blow-up. In fact, S r {x+, x−} is totally real since C × R
contains only one complex-line direction: that of the z axis C×{0}. Removability
of x± is clear from Example 13.2: in the new coordinates (z, w) = (a,R ∓ b),
the components of x± are (z, w) = (0,0), while S is, near x±, the graph of
w = h(z) for h(z) = R −

√
R2 − |z|2. Next, ϕ(z) = h(z)/z equals zF (zz),

where F (s) = [R − (R2 − s)1/2]/s is obviously real-analytic at s = 0. Finally,
ϕz̄(0) = F (0) = R/2 > 0.

14. Deformations involving complex points

The definition of removability by blow-up given in Section 13 has an immediate
extension to the case of immersions. Namely, if f is an immersion of a real surface
Σ in a complex surface M , by a complex point of f removable by blow-up we
mean any x ∈ Σ such that f(x) is a complex point, removable by blow-up, for the
surface f(Σ ′) ⊂M , where Σ ′ is some connected neighborhood of x in Σ with the
property that f restricted to Σ ′ is injective. As in Section 13, x then is a complex
point of f , that is, dfx(TxΣ) forms a complex line in Tf(x)M . Cf. Example 9.4.

The following lemma allows us to modify an immersion f by moving the images
of any number s of its complex points xj , removable by blow-up, to arbitrary
prescribed locations yj . This is achieved by replacing the f -image of a small
neighborhood of each xj with a thin protrusion or “tentacle” reaching all the way
to yj .

Lemma 14.1. Given s distinct points x1, . . . , xs in a real surface Σ, a com-
plex surface M , points y1, . . . , ys ∈ M , and an immersion f : Σ → M such
that x1, . . . , xs are complex points of f removable by blow-up, there exists an im-
mersion f ′ : Σ → M homotopic to f , with the same complex points as f , for
which x1, . . . , xs are complex points removable by blow-up and f ′(xj) = yj for
j = 1, . . . , s.

If, in addition, y1, . . . , ys are all distinct and lie in Mrf(Σ), the above assertion
also remains valid when instead of an immersion one speaks, in both instances, of
an embedding whose image is closed as a subset of M .
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Proof. We may assume that s = 1, since the case s ≥ 2 will then follow via
induction on s. Namely, f can be deformed to f ′ in two stages: first, using the
inductive assumption that our claim holds for xj , yj , j = 2, . . . , s, with M replaced
by M r {y1} if f is an embedding; then, applying our claim for s = 1 to the
resulting new immersion and the points x1, y1.

With s = 1, writing x, y for x1, y1 and p = f(x), let us also assume that

(∗) some biholomorphism (z, w) maps an open set in M containing p and y
onto a product D×D ′ of disks around 0 in C with 1 ∈ D ′, sending p to
(0,0) and y to (0, 1), while, if f is an embedding and f(Σ) is a closed
set in M , the (z, w)-preimage of {0} × (0, 1] does not intersect f(Σ).

To prove our assertion for s = 1, under the hypothesis (∗), we may further assume
dz at p, restricted to dfx(TxΣ), to be nonzero. (This is achieved by replacing
(z, w) with (z + µw(w − 1), w) for µ ∈ R close to 0, and making D smaller if
necessary.) Let U now be a neighborhood of x in Σ such that f : U → M
is a homeomorphic embedding. Thus, (z, w) maps some neighborhood of p in
f(U) onto a graph surface w = h(z) as in Example 13.2, with h(0) = 0. Next,
if D is made even smaller, we may in addition require that h be defined on the
whole disk D, and (after the coordinate z has been replaced by eiθz for a suitable
θ ∈ R), that also ϕz̄(0) /∈ R, for ϕ appearing in Example 13.2. (Notation of
Example 9.3.) Hence ϕz̄(z) /∈ R whenever z ∈ C and |z| < ε for some fixed
ε > 0 that is less than the radius of D. Let us now fix δ ∈ (0, ε) and a C∞

function α : R → [0, 1] with α = 1 on (−∞, δ ] and α = 0 on [ε,∞). Our
deformation of f consists in replacing the graph of h : D → D ′ by that of the
function h̃ : D → D ′ with h̃(z) = h(z)+α(r) for z ∈ D and r = |z|. This is clear
from Example 13.2, as h̃(z) = h̃(0) + zϕ̃(z) with ϕ̃(z) = ϕ(z) + [α(r) − 1]/z, so
that the relations 2ϕ̃z̄ = 2ϕz̄ + r−1dα/dr (immediate since zz̄ = 0 and (r2)z̄ = z,
that is, 2rz̄ = z/r), and ϕz̄(z) /∈ R whenever |z| < ε (see above) give ϕ̃z̄ 6= 0
everywhere in D, as required in Example 13.2(b).

Finally, to obtain our assertion for s = 1, it suffices to prove it, as we just
did, under the additional assumption (∗). In fact, as M is connected, there exist
p0, p1, . . . , pm ∈ M with p0 = f(x), pm = y and such that (∗) holds if p, y are
replaced by pl−1, pl, for any l = 1, . . . ,m. Specifically, f can be modified m
times in a row, leading to successive totally real immersions f0, f1, . . . , fm of Σ
in M , with fl(x) = pl for l = 0, . . . ,m, all homotopic to f0 = f , and we may
set f ′ = fm. The final clause of the lemma now follows as well, provided that
one chooses p1, . . . , pm−1 and the corresponding m biholomorphisms in (∗) more
carefully, requiring the m preimages of {0} × (0, 1] to be disjoint except for the
endpoints shared by the lth and (l + 1)st preimage, l = 1, . . . ,m, and not to
intersect f(Σ) except at p = f(x). (To guarantee such disjointness properties in
the case of an embedding, the disk D mentioned in the last paragraph needs to be
chosen sufficiently small at each stage.) This completes the proof. �

Proof of Theorem 2.15. Assertion (b) is obvious from Lemma 12.1. To establish
(a), let s ≥ 2 and let y1, y2 ∈ M be any two of the blown-up points (y1 6= y2).
A biholomorphic identification of an open set in M with a neighborhood of (0,0)
in C2 allows us to treat a small round sphere S of Example 13.5 as a real surface
in M r {y1, y2} having only two complex points x±, both removable by blow-up.
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Now (a) follows from the final clause of Lemma 14.1 applied to s = 1, the inclusion
mapping f : Σ →M of the sphere Σ = S, our y1, y2, and x1 = x+, x2 = x−. �

15. Other immersed two-spheres

The main result of this section, Corollary 15.3, establishes the existence of to-
tally real immersions f : S2 → CP2 # mCP2, for m ∈ {1, 3}, with some special
properties. We use such immersions in Sections 30 and 36.

Lemma 15.1. Let there be given the total space M of a holomorphic line bundle
L over a complex curve Σ, a holomorphic section φ of L, and a C∞ function
F : Σ → R. Then, for the product section Fφ treated as an embedding f of Σ
in the complex surface M ,

(i) the complex points of f are those x ∈ Σ at which φ = 0 or dF = 0.
A complex point x of f is removable by blow-up, cf. Section 13, if

(a) x is a simple zero of φ and dF 6= 0 at x, or
(b) φ(x) 6= 0, and there exists a holomorphic coordinate z on a neighborhood

of x in Σ with z = 0 at x and F = F (x) + zϕ for some C∞ function
ϕ such that ϕ(x) = 0.

Proof. Given x ∈ Σ, let us choose a holomorphic coordinate z on a neighborhood
U of x in Σ, with z = 0 at x, and a local holomorphic section ψ trivializing L on
U . In the resulting holomorphic local coordinates (z, w) for M , the image f(Σ)
becomes a graph surface w = h(z), with h = σF for the holomorphic function
σ such that φ = σψ on U . Example 9.3 now yields (i), since σz̄ = 0, and so
hz̄ = σFz̄ vanishes only where σ = 0 (that is, φ = 0) or Fz̄ = 0 (which, as F is
real-valued, amounts to dF = 0). Similarly, Example 13.2 gives removability of x
by blow-up, both in case (ii) (as σ/z is then holomorphic on U and Fz̄(x) 6= 0,
so that (σF/z)z̄ 6= 0 at x), and in case (iii) (since we may choose ψ = φ, that is,
σ = 1). This completes the proof. �

Proposition 15.2. An oriented 2-sphere Σ admits an immersion f in CP2 such
that, for some three-element set Y ⊂ Σ,

(a) f∗[Σ ] is a generator of H2(CP2,Z),
(b) Y consists of three complex points of f removable by blow-up,
(c) the immersion f : Σ r Y → CP2 is totally real.

Furthermore, such f and Y can be chosen so that either
(i) f is an embedding, or
(ii) Y is the f-preimage f−1(y) of a point y ∈ CP2.

Proof. To obtain (a) – (c) and (i), we define M ⊂ CP2 to be the complement
of a point in CP2, so that M is biholomorphic to the total space of the dual
tautological line bundle L of a projective line Σ ⊂ M . Our claim is now obvious
from Lemma 15.1 if we choose a holomorphic section φ of L with a unique, simple
zero and a C∞ function F : Σ → R having just two critical points, such that
either critical point x satisfies condition (b) in Lemma 15.1. Specifically, treating
Σ as the Riemann sphere C ∪ {∞}, we may set F = zz/(zz + 1) for z ∈ C ⊂ Σ.
The role of the coordinate z in Lemma 15.1(b) is now played by z at x = 0 ∈ C,
and by 1/z at x = ∞, while F becomes a standard height function if we identify
C ∪ {∞}, via the stereographic projection, with a sphere in R3 = C×R.
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To realize (a) – (c) and (ii), we fix f and Y with (a) – (c) and (i), and then
replace f by f ′ chosen as in Lemma 14.1 for M = CP2, our f,Σ, and s = 3, with
xj ∈ Y and yj = y, j = 1, 2, 3. �

Blowing up all points of Z = f(Y ) in Proposition 15.2, we obtain the following
obvious consequence.

Corollary 15.3. Given m ∈ {1, 3} and any m-element set Z ⊂CP2, let M be the
complex surface obtained from CP2 by blowing up all points of Z. The oriented
2-sphere S2 then admits a totally real immersion f : S2 →M with f∗[S2] · [L] = 1
for any projective line L ⊂ CP2 r Z treated as a submanifold of M , where · is
the intersection form in H2(M,Z). If, in addition, m = 3, we may choose f to
be an embedding.

16. Removal of transverse intersections

In this section we describe how, using infinitely many homotopically differrent
surgeries, one can remove a transverse self-intersection of a totally real surface
immersed in an almost complex surface.

Let P,Q be oriented real planes with P ∩ Q = {0} in a complex plane V .
We define the sign of the (transverse) intersection of P and Q to be positive, or
negative, if the direct-sum orientation of V = P ⊕Q does or, respectively, does not
agree with the standard orientation of V described at the beginning of Section 5.
The sign remains the same if P and Q are switched, or their orientations are
both reversed. This allows us to extend the concept of the sign to the case of
a double point y = f(x) = f(x′) representing a transverse self-intersection of an
immersion f : Σ →M , in an almost complex surface M , of a real surface Σ which
is orientable (though not necessarily oriented).

Lemma 16.1. Let P,Q and W be real vector spaces of dimension n ≥ 2, and let
γ : P ×Q→W be a bilinear mapping such that γ(u, v) 6= 0 whenever u ∈ P r{0}
and v ∈ Qr {0}. If uj and vk are fixed bases of P and Q, and Tξ is the n×n
matrix with the entries ξ(γ(uj , vk)), where ξ ∈ W ∗ and j, k ∈ {1, . . . , n}, then
either det Tξ > 0 for all ξ ∈W ∗r {0} or det Tξ < 0 for all ξ ∈W ∗r {0}.

In fact, det Tξ 6= 0 whenever ξ ∈ W ∗ r {0}, for otherwise there would exist
v ∈ Q r {0} such that the injective operator γ( · , v) sends P into the subspace
Ker ξ ⊂W of dimension n−1. Our claim now follows since W ∗r{0} is connected.

Lemma 16.2. Let totally real oriented planes P and Q in a complex plane V
have a negative transverse intersection at 0, and let Γ be the canonically-oriented
unit circle {x ∈ P : 〈x, x〉 = 1} for a fixed Euclidean inner product 〈 , 〉 in P . The
oriented cylinder R × Γ then admits a totally real embedding f in V such that
f(t, x) = |t|x if (t, x) ∈ (−∞,−r] × Γ and f(t, x) = tAx if (t, x) ∈ [r,∞)× Γ,
for some positive real number r and some orientation-preserving real-linear iso-
morphism A : P → Q.

Any f as above and x ∈ Γ give rise to the curve [−r, r] 3 t 7→ L+(Wt,x) in
the circle S(V ∧2), where L+ and S(V ∧2) are as in (3.1), while Wt,x denotes the
oriented plane tangent to f(R×Γ ) at f(t, x). The curves arising in this way from
all such f represent all fixed-endpoint homotopy classes of curves joining L+(P )
to −L+(Q) in S(V ∧2).
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We now proceed to discuss some consequences of Lemma 16.2 (a proof of which
is given in Section 17).

Suppose that a totally real immersed surface Σ in an almost complex surface
M has only one self-intersection, in the form of a transverse double point at some
y ∈ M , and either Σ is nonorientable, or it is orientable and the self-intersection
is negative (as defined above). Then a totally real surface Σ ′ smoothly embedded
in M and diffeomorphic to Σ#K2, where K2 is the Klein bottle, can be obtained
from Σ by replacing the disjoint union of disk-like neighborhoods of y in the
two branches of Σ through y with a cylinder contained in an open subset of M
diffeomorphic to R4.

To see this, let us identify a neighborhood of y in M with a neighborhood
U of 0 in a complex plane V in such a way that y = 0, the almost complex
structure J of M coincides at y = 0 with the standard complex structure of V ,
and Σ ∩ U = (P ∪ Q) ∩ U for some oriented totally real planes P,Q through 0
in V having a negative intersection at 0. If Σ is orientable, we fix an orientation
of Σ and require, in addition, that the orientations of P and Q agree with those
of the two branches of Σ through y. For f and r chosen as in Lemma 16.2, the
image Y of the Gauss mapping Gf (see (10.1)) is a compact subset of Gr2(V ), as
Gf ((−∞,−r]×Γ ) = {P} and Gf ([r,∞)×Γ ) = {Q}. Next, we choose an open set
U ′ ⊂ U diffeomorphic to R4 such that J(x) ∈ HomR(V, V ) lies in Ω whenever
x ∈ U ′, for Ω obtained by applying Lemma 10.3 to our Y and J = J(0). We
also select ε ∈ (0,∞) with εf([−r, r] × Γ ) ⊂ U ′. Our claim is now obvious, the
embedded cylinder being εf((−r, r)× Γ ).

In Section 36 we give another application of Lemma 16.2, which also uses the
assertion about homotopy classes.

17. Proof of Lemma 16.2

Totally real planes through 0 in V form an open set TR(V ) in the 4-manifold
Gr2(V ). The circle RP1 = U(1)/Z2 acts on TR(V ) freely by (±z,Q) 7→ zQ for
z ∈ U(1) ⊂ C and Q ∈ TR(V ). The quotient TR(V )/RP1 can be diffeomorphi-
cally identified, as described next, with the 3-manifold N of all plane circles in the
unit sphere S2 ⊂ R3 (that is, circles obtained by intersecting S2 with planes which
need not pass through 0). The corresponding principal RP1-bundle projection
π : TR(V ) → N sends Q ∈ TR(V ) to the image π(Q) of Q r {0} under the
standard projection V r {0} → P(V ) ≈ CP1 ≈ S2.

In fact, each such image π(Q) is a circle in the Riemann sphere S2 ≈ C∪{∞},
as one sees by choosing an isomorphic identification V = C2 under which Q = R2

(and so π(Q) = R ∪ {∞} ⊂ C ∪ {∞}). Furthermore, if Q,Q′ ∈ TR(V ) and
π(Q) = π(Q′), then zu, av, c(u + v) ∈ Q′ for any fixed basis u, v of Q and
some z, a, c ∈ C r {0}, so that, writing c(u + v) as a real combination of zu
and av (which span Q′ over R), we get a/z ∈ R, and hence Q′ = zQ. Finally,
π : TR(V ) → N has constant rank due to its equivariance relative to the transitive
actions of the linear group GL(V ) ≈ GL(2,C) on TR(V ) and of the complex
automorphism group Aut(S2) on N, for the standard surjective homomorphism
GL(V ) → Aut(S2) = PGL(V ).

Note that N = Ñ/Z2, where Ñ is the manifold of all oriented plane circles in
S2 (diffeomorphic to S2× (0, π) via the center-radius parametrization of oriented
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circles in the oriented 2-sphere), and the fixed-point free involution generating the
Z2 action reverses the circle orientations.

We begin by proving our assertion in the special case where the circles π(P ), π(Q)
in S2 are disjoint. We then choose a smoothly embedded curve segment joining
π(P ) to π(Q) in N, consisting of pairwise disjoint circles, and lift it: first to the
bundle space TR(V ) over N, and from there to the bundle over TR(V ) formed
by the manifold of all C-bases of V , which we identify with GL(V ) using a fixed
basis of P . This yields a C∞ embedding [−r, r] 3 t 7→ Bt ∈ GL(V ), with any
fixed r ∈ (0,∞), such that B−r = Id, BrP = Q, and the circles π(BtP ) are
pairwise disjoint for all t ∈ [−r, r].

Next, we replace the curve t 7→ Bt by a composite in which the original curve
is preceded by a C∞ function R → [−r, r] equal to −r on (−∞,−r], to r on
[r,∞), and having a positive derivative everywhere in (−r, r). The resulting new
curve, still written as t 7→ Bt (but now defined on R), leads to the required totally
real embedding f : R× Γ → V , given by f(t, x) = eϕ(t)Btx for a C∞ immersion
ϕ : R → C with ϕ(t) = log |t| whenever |t| ≥ r. The choice of ϕ on (−r, r) is
described below.

We denote by I the complex-linear operator V → V whose restriction to the
oriented Euclidean plane P is the positive rotation by the angle π/2. If f corre-
sponds as above to any given C∞ immersion ϕ : R → C, then

(17.1) df(t,x)(1, 0) = eϕ(ϕ̇B + Ḃ)x and df(t,x)(0, Ix) = eϕBIx

for the basis (1, 0), (0, Ix) of T(t,x)(R × Γ ). (We omit t in our notation, and
set ( )˙ = d/dt.) Thus, f is a totally real immersion if and only if, for every
(t, x) ∈ R× Γ, the (eϕB-images of the) vectors (ϕ̇+B−1Ḃ)x and Ix are linearly
independent over C. Since P is totally real, we may identify V ∧2 with C in such
a way that x ∧ Ix = 1 for some x ∈ Γ, and so the linear independence condition
will follow if ϕ̇ 6= −sB−1Ḃx ∧ Ix for all (s, t, x) ∈ [0, 1]× [−r, r]× Γ. (Note that
x ∧ Ix = 1 for every x ∈ Γ, as each pair x, Ix is a positive orthonormal basis of
P .) The condition holds if |t| ≥ r, since we then have ϕ̇ 6= 0 = Ḃ.

Such an immersion ϕ, with ϕ(t) = log |t| whenever |t| ≥ r, exists and may
be chosen so that ϕ̇ : [−r, r] → C r {0} belongs to any prescribed fixed-end-
point homotopy class of curves joining −1/r to 1/r in Cr{0}. In fact, as Ḃ = 0
whenever |t| ≥ r, there exist constants κ > 0 and δ ∈ (0, r) with |B−1Ḃx∧Ix| ≤ κ

for all (t, x) ∈ [−r, r] × Γ, and |B−1Ḃx ∧ Ix| < 1/r if, in addition, |t| ≥ δ. We
now select ϕ with ϕ(−t) = ϕ(t) and |ϕ̇(t)| > 1/r whenever |t| ∈ [δ, r), such that
one also has |ϕ̇| = µ on [−δ, δ] for a constant µ > κ. As a result, f is a totally
real immersion, and it is also injective due to pairwise disjointness of the circles
π(BtP ) for t ∈ [−r, r]. A curve ϕ : [−δ, δ] → C with the constant speed µ and
a fixed length can clearly be chosen so that, before returning at time t = δ to the
initial point ϕ(−δ) with the velocity −ϕ̇(−δ), it traverses any prescribed number
q of times, either clockwise or counterclockwise, some circle of radius depending
on q. This produces the required homotopy effect: using the definition of L+ (see
(3.1)), our identification V ∧2 = C with x ∧ Ix = 1 for all x ∈ Γ, and (17.1),
we see that the homotopy classes in question correspond to those of the curves
t 7→ eϕ(ϕ̇B + sḂ)x ∧ eϕBIx with s = 1, joining −r to r in C r {0}. However,
we may replace s = 1 by s = 0, since our choice of ϕ turns s ∈ [0, 1] into
a homotopy parameter. The resulting homotopy class of t 7→ e2ϕϕ̇ detB equals
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that of t 7→ ϕ̇ detB (we deform the factor e2ϕ to a constant in C r {0} by first
deforming ϕ in C). As the curve t 7→ Bt does not depend on ϕ, our claim about
homotopy classes follows.

Also, Br : P → Q is an orientation-preserving isomorphism. Namely, using
the original orientation of P , we now orient the planes Qt = BtP , t ∈ (−r, r],
by requiring that Bt : P → Qt be orientation-preserving. This might, possibly,
result in re-orienting Q = Qr, and we will prove that is does not, by showing
that at least one newly-oriented Qt, t ∈ (−r, r], has a negative intersection with
P at 0. (The words ‘at least one’ then may be replaced with ‘every’ by reasons
of continuity.) Let us fix t ∈ (−r, r]. The circles π(P ) and π(Qt) are disjoint,
so that γ : P × Qt → V ∧2 given by γ(u, v) = u ∧ v satisfies the hypotheses
of Lemma 16.1 for n = 2. Identifying V ∧2 with C as before, we may apply the
conclusion of Lemma 16.1 to the bases uj , vk with u1 = x, u2 = Ix (where x ∈ Γ ),
and vj = Btuj for j = 1, 2, along with ξ = Re and ξ = Im. Taking the limit
as t → r, we have Bt → Id, and so det Tξ > 0 for ξ = Im and t > r close
to r, since det Tξ → 1 as t → r when ξ = Re. (In fact, the limit, as t → r,
of the complex 2 × 2 matrix with the entries γ(uj , vk) has the rows [0 1] and
[−1 0].) Writing [v1 v2] = [u1 u2]B, where B is a complex 2 × 2 transition
matrix depending on t, we get the transition formula

[u1 u2 v1 v2] = [u1 u2 iu1 iu2]
[
Id Re B
0 Im B

]
with a real 4 × 4 matrix composed of four 2 × 2 blocks. As one easily verifies,
det TIm = det ImB, so that det ImB > 0. Negativity of the intersection follows:
the basis u1, u2, iu1, iu2 represents the opposite of the standard orientation of V ;
cf. Section 5.

Using ϕ as above, the corresponding f , and A = Br, we thus get our claim
under the additional assumption that π(P )∩π(Q) = Ø. The general assertion, for
an arbitrary pair P,Q, can now be derived from a reduction argument. Namely, to
prove it for the given P,Q, we just need to establish it for the pair R,Q with some
oriented Euclidean plane R satisfying the same hypotheses as P and such that
there exist a totally real embedding h : P → V, an orientation-preserving linear
isometry Ψ : P → R, and constants c, r′, for which r′ > c > r and h(P )∩Q = {0},
as well as

(a) h(y) = Ψ(y) whenever y ∈ P and |y| ≤ c,
(b) h(y) = y whenever y ∈ P and |y| ≥ r′,

where r, along with some A and f : R × Γ → V , satisfies the assertion of the
lemma for R,Q instead of P,Q. In fact, given such R, h, Ψ, c, r′, we define the
analogues of r,A, f for P and Q to be r′, AΨ , and the mapping f ′ given by
f ′(t, x) = h(|t|x) if t ≤ −r and f ′(t, x) = εf(t/ε, Ψx) if t ≥ −c, for suitable
ε > 0. Both formulae for f ′ clearly define V -valued totally real embeddings of
appropriate domains. They also agree, yielding |t|Ψx, when −c ≤ t ≤−r (and x
lies in the unit circle Γ ′ = Ψ−1(Γ ) ⊂ P ); thus, the only property of f ′ that we need
to verify is injectivity, which amounts to f ′((−∞,−r]×Γ ′)∩f ′((−r,∞)×Γ ′) = Ø.
However, if ε ∈ (0, 1), the definition of f ′ implies that f ′((−r,∞)×Γ ′) is contained
in the union of three sets: the radius r open disk D about 0 in R, the compact
set εS, where S = f([−r, r] × Γ ), and Q. None of the three sets intersects
Y = f ′((−∞,−r] × Γ ′) if ε is chosen so that εS ⊂ U for a neighborhood U of
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0 in V with U ∩ Y = Ø. In fact, D ∩ Y = Ø since D and Y are the h-im-
ages of Ψ−1(D) and P r Ψ−1(D), while Q ∩ Y = Ø as Y ⊂ h(P r {0}) and
h(P ) ∩ Q = {0}. Finally, such f ′ realize all the homotopy classes required in the
lemma, since we assume here that the same can be achieved by varying the choices
of f for the pair R,Q.

We apply the above reduction argument twice. In both cases, using arbitrary
c, r′ with r′ > c > r, we obtain R, h, Ψ by exhibiting a 3-dimensional real vector
subspace W ⊂ V containing both P and a plane R with P ∩R∩L = R∩W∩Q =
{0}, where L is (always) the unique complex line through 0 in V contained in
W. Note that dim(W ∩ Q) = 1, as Q intersects P trivially and so cannot be
contained in W. Also, if pr : W → Π denotes the quotient projection onto the
plane Π = W/(P ∩R), it is clear that pr(L) = Π, while Λ1 = pr(P ), Λ2 = pr(R)
and Λ3 = pr(W ∩Q) are three distinct lines in Π. We may thus choose a vector
v ∈ L r {0} such that pr v /∈ Λ1 ∪ Λ2 ∪ Λ3, while, for Λ4 = pr(Rv) and some
Euclidean norm in Π, an arc of the unit circle around 0 in Π intersects each of
the four lines Λj just once, in this order: Λ1, . . . , Λ4. Let us refer to the direction of
v in W as vertical. For every C∞ function ϕ : P → R, the embedding h : P → V
given by h(y) = y + ϕ(y)v is totally real, since so is the surface h(P ). (As L
contains the vertical vector v, it cannot be a tangent plane of a graph.) To get
(a), (b) and h(P ) ∩ Q = {0}, we now set ϕ = ϕ1ϕ2, where ϕ1 is a C∞ function
P → [0, 1] with ϕ1(y) = 1 whenever |y| ≤ c and ϕ1(y) = 0 whenever |y| ≥ r′,
while ϕ2 is a linear functional on P having the graph R. (Such ϕ2 exists since
the vertical vector v does not lie in R.) The condition h(P ) ∩ Q = {0} follows
as pr(h(P )) ∩ pr(W ∩ Q) = {0} in Π and pr : W ∩ Q → Π is injective, while
the orientation and inner product in R are chosen so as to make Ψ : P → R, with
Ψy = y + ϕ2(y), an orientation-preserving linear isometry, and the intersection of
R and Q then is negative due to our choice of v.

Using the fact that our claim holds when π(P ) ∩ π(Q) = Ø, we now establish
it under the weaker additional assumption π(P ) 6= π(Q). Specifically, W and R
required above are selected by fixing R ∈ TR(V ) for which π(R)∩π(Q) = Ø and
π(P ) ∩ π(R) has two elements. We may also assume that dim(P ∩R) = 1 (which
is achieved by replacing R with zR for a suitable complex number z 6= 0) and
then we set W = SpanR(P ∪R). Thus, P ∩R∩L = {0} for L ⊂W as above: one
element of π(P ) ∩ π(R) is SpanC(P ∩R), and so L must be its other element,
spanned over R by a line in P and a line in R different from P ∩R. In view of the
reduction argument, our assertion, valid for R and Q (since π(R) ∩ π(Q) = Ø),
hold for P,Q as well.

Similarly, using our conclusion for arbitrary P,Q with π(P ) 6= π(Q), we now
prove it in the remaining case π(P ) = π(Q). Namely, we choose W and R to
be any real 3-space in V containing P and, respectively, any plane in W with
P ∩R∩L = {0}, for the complex line L ⊂W. Thus, π(R) 6= π(P ) = π(Q), so that
our claim is true for R,Q (see the last paragraph), and, consequently, it holds for
P,Q as well.

18. Connected sums

The main result of this section is Theorem 18.1, which, essentially, establishes
the existence of a connected-sum operation in the category of totally real surfaces
immersed in a fixed almost complex surface M . The totally real immersed cylinder
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joining the two surfaces is of the type known as Whitney’s umbrella; it has a unique
self-intersection (which is transverse and negative, in the sense of Section 16). Since
there always exist arbitrarily many pairwise disjoint totally real tori embedded in
M (Corollary 10.2), a self-intersection cannot, in general, be avoided. Otherwise,
connected sums of such tori would constitute totally real closed orientable sur-
faces of all genera s ≥ 2, embedded in any given M , in patent contradiction to
Corollary 2.10.

Theorem 18.1. Let Σ± be two disjoint totally real surfaces embedded in an almost
complex surface M , both endowed with the subset topology and closed as subsets of
M . Also, let x± ∈ Σ±. Then, for any sufficiently small closed 2-disks D± dif-
feomorphically embedded in Σ± and containing x± as interior points, there exist
a totally real surface Σ immersed in M and an immersion h : [−1, 1]× S1 →M
such that

(i) Σ is the disjoint union of Σ+ rD+, Σ−rD− and the image of h,
(ii) h sends the circles {±1} × S1 onto ∂D±,
(iii) Σ has just one self-intersection: a double point of h in (−1, 1)× S1,
(iv) the self-intersection of Σ is transverse and negative, cf. Section 16,
(v) the union of D+∪ D− and the image of h is contained in an open subset

of M diffeomorphic to R4.

We prove Theorem 18.1 in Section 19. First, we need three lemmas, in which
( )˙ = d/dt, ( )′ = d/ds, ( )t = ∂/∂t and ( )s = ∂/∂s stand for ordinary or
partial derivatives with respect to real variables t and s.

Lemma 18.2. If c, ε ∈ (0,∞), while t 7→ ϕ(t) and s 7→ ψ(s) are C∞ functions
of t ∈ (−c, c) and s ∈ (−ε, ε), valued in a finite-dimensional vector space V, then
the following two conditions are equivalent :

(a) ϕ(t) = Fs(t, 0) and ψ(s) = Ft(0, s) for all (t, s) ∈ (−c, c) × (−ε, ε) and
some C∞ function F : (−c, c) × (−ε, ε) → V having the property that
F (t, 0) = F (0, s) = 0 whenever t ∈ (−c, c) and s ∈ (−ε, ε),

(b) ϕ(0) = ψ(0) = 0 and ϕ̇(0) = ψ ′(0).

In fact, (a) implies (b): ϕ̇(0) = Fst(0,0) = Fts(0,0) = ψ ′(0). Conversely,
assuming (b), we may set F (t, s) = ts[α(t) + β(s)− ϕ̇(0)] for C∞ functions α, β
with ϕ(t) = tα(t) and ψ(s) = sβ(s) (so that α(0) = β(0) = ϕ̇(0)).

Lemma 18.3. Given an almost complex surface M , a point y ∈M , and a vector
u ∈ TyM r {0}, there exists an M-valued C∞ embedding f of a neighborhood
of 0 in C such that, for all real t, s near 0, the differentials dft and dfis are
complex-linear, while f(0) = y and df0 sends the vectors 1, i ∈ C = T0C to u
and Ju.

Proof. Let us fix a complex plane V and a diffeomorphic identification of a neigh-
borhood of y in M with a neighborhood of 0 in V, under which y = 0 and
the almost complex structure J of M equals, at 0, the standard structure of V
(represented by the symbol i). Thus, u, iu ∈ V = TyM . For real t, s near 0
we now set f(t + is) = (t + is)u + t2v + F (t, s), where v ∈ V and F is a C∞

function (−c, c) × (−ε, ε) → V, with sufficiently small c, ε, such that F (t, s) = 0
whenever ts = 0. Clearly, dft (or, dfis) sends the real basis {1, i} of C = TtC
(or, C = TisC) to {u+ 2tv, iu+ Fs(t, 0)} (or, respectively, to {u+ Ft(0, s), iu}).
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Thus, to ensure complex-linearity of all dft and dfis, we need to choose F and v
so that Fs(t, 0) = ϕ(t) and Ft(0, s) = ψ(s) for all t, s, where ϕ(t) = Ju+2tJv−iu
and ψ(s) = −u − Jiu. Note that u, iu, v are vectors (i.e., constant vector fields
on V ), while here J denotes the real-linear operator Jx : V → V, depending
on x = f(t) or, respectively, x = f(is). Finally, F with Fs(t, 0) = ϕ(t) and
Ft(0, s) = ψ(s) exists, by Lemma 18.2, if and only if the sum du(Ju) + diu(Jiu)
of directional derivatives at 0 equals −2iv. With this choice of v, our assertion
follows. �

Let Σ be a totally real surface embedded in an almost complex surface M and
contained in a fixed 3-dimensional real submanifold N of M . The characteristic
foliation of Σ in N is the 1-dimensional foliation on Σ tangent, at every point
x ∈ Σ, to the characteristic direction Lx ∩TxΣ, for the unique complex line Lx in
TxM with 0 ∈ Lx ⊂ TxN. By a characteristic curve of Σ in N we mean any leaf
of its characteristic foliation.

Remark 18.4. Given M,N and Σ as above, let K be another real surface em-
bedded in M with K ⊂ N. If y ∈ K ∩ Σ, while TyΣ ∩ TyK is one-dimensional
and different from the characteristic direction, at y, of Σ in N, then K is totally
real at y, in the sense that y is not a complex point of K. (In fact, if TyK were
a complex line, the characteristic direction of Σ at y would, by definition, be
TyΣ ∩ TyK.)

Lemma 18.5. Let M,Σ±, x± satisfy the hypotheses of Theorem 18.1, and let Uε,
with ε ∈ (0,∞), be the set of (z, w) ∈ C2 such that |Re z| − 1, |Im z|, |Rew|
and |Imw| are all less than ε. If the sets N ⊂ Uε and Σt ⊂ N are given by
N = {(z, w) ∈ Uε : Imw = 0} and Σt = {(z, w) ∈ Uε : Re z = t and Imw = 0},
for any fixed t ∈ (−1−ε, 1+ε), then the following conclusions hold for some ε > 0
and some C∞-diffeomorphic identification of Uε with an open set in M :

(a) x± = (±1, 0) ∈ Uε ⊂ C2 and Σ± ∩ Uε = Σ±1.
(b) Each Σt is a totally real surface embedded in M, and its characteristic

foliation in the ambient 3-manifold N consists of line segments parallel to
the Im z coordinate direction.

(c) The surface Y = {(z, w) ∈ N : Im z = 0} is totally real in M, and its
characteristic foliation relative to N consists of line segments parallel to
the Re z coordinate direction.

(d) The almost complex structure J of M coincides with the standard complex
structure of the open set Uε ⊂ C2 at all points (z, w) ∈ Uε such that (i)
Im z = w = 0 or (ii) Re z = w = 0.

(e) The coordinate vector fields u and v corresponding to the Re z and Rew
directions are J-linearly independent at every point of Uε.

Proof. Let us fix a point y ∈M r (Σ+∪Σ−) and a nonzero vector u ∈ TyM . We
then choose an embedding f with the properties listed in Lemma 18.3 and three
coordinate systems, on neighborhoods of x+, x− and y, under which x+, x− and y
all have zero coordinates, while some neighborhoods of x± in Σ± correspond to
neighborhoods of (0,0,0,0) in the submanifold R2×{(0,0)} of R4, and f appears,
in the coordinates chosen at y, as the mapping C 3 z 7→ (z, 0) ∈ C2 = R4 restricted
to a neighborhood of 0 ∈ C.

Let exp now be the exponential mapping of a Riemannian metric on M chosen
so that, on some neighborhoods of x+, x− and y, the metric is flat and the above
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coordinate mappings are isometries onto neighborhoods of (0,0,0,0) in R4 with
the Euclidean metric. (Such a metric on M can easily be obtained using a finite
partition of unity.)

A C∞ diffeomorphism H : Uε → H(Uε) onto an open set H(Uε) ⊂M , provid-
ing the required diffeomorphic identification, will be constructed in four successive
steps, each of which consists in defining H just on some subset of Uε (and making
ε smaller, if necessary). The four subsets are: the interval Iε of all (t, 0) ∈ C2

such that t ∈ R and |t| < 1 + ε, the rectangle Rε formed by all (z, 0) ∈ C2 with
|Re z| < 1 + ε and |Im z| < ε, the 3-manifold Nε = {(z, w) ∈ Uε : Imw = 0}
(which is nothing other than the set N appearing in the lemma), and Uε itself.
Thus, Iε ⊂ Rε ⊂ Nε ⊂ Uε.

We begin by restricting f chosen earlier in this proof to a small neighborhood of
0 in R ⊂ C and then extending this restriction to a C∞ embedding t 7→ x(t) ∈M
defined for real t with |t| < 1 + ε, such that x(±1) = x± and Jẋ(±1) is, for
either sign ±, tangent to Σ± at x±. (To realize the latter condition, it suffices
to prescribe the velocity ẋ(±1) as a vector in J(Tx(±1)Σ

±).) We now choose
H : Iε →M by setting H(t, 0) = x(t).

Making ε smaller, we extend H from the interval Iε to the rectangle Rε by
setting H(z, 0) = expx(t) sJẋ(t), where t, s ∈ R and z = t + is. Note that H
is injective on Iε, and so is the differential of H : Rε → M at each point of Iε.
Hence H : Rε →M is, for small ε > 0, an embedding.

Next, we choose a C∞ vector field Iε 3 (t, 0) 7→ v(t) ∈ Tx(t)M , nowhere tangent
to the embedded surface H(Rε), and such that v(±1) is tangent to Σ± at x±. Its
C∞ extension Rε 3 (z, 0) 7→ ṽ(z, 0) ∈ TH(z,0)M , obtained using parallel transports
along the curves s 7→ H(t + is, 0), for t, s as before, gives rise to the mapping
H̃ : N → M with H̃(z, r) = expH(z,0) rṽ(z, 0), where N = Nε. As in the last
paragraph, H̃ is an embedding for sufficiently small ε > 0. Also, for small ε, the
H̃-images of the surfaces Y ⊂ N and Σt ⊂ N with |t| < 1 + ε, defined in the
lemma, are all totally real in M , while H̃(Iε) (or {H̃(is, 0) : s ∈ (−ε, ε)}) is a
characteristic curve of H̃(Y ) (or, respectively, of H̃(Σ0)) in H̃(N), and the H̃-
image of the Im z coordinate direction at (t, 0) ∈ N is, for each t with |t| < 1+ε,
the characteristic direction, at H̃(t, 0), of H̃(Σt) in H̃(N).

In fact, H̃ restricted to Rε coincides with H, while, if ε > 0 is sufficiently
small, the mapping z 7→ H(z, 0), defined for z ∈ C such that |Re z| < 1 + ε and
|Im z| < ε, has a complex-linear differential at every z with Re z = 0 or Im z = 0.
(This is clear from our definition of H(z, 0) and the complex-linearity assertion
in Lemma 18.3, since H(z, 0) = f(z) for z near 0 in C due to our choice of
coordinates and the metric on a neighborhood of y.) Each of the directions in
question, including those of the two curves, is characteristic, as it constitutes the
intersection of the plane tangent to the respective surface with the complex line
forming the image of one of the differentials just mentioned; the surfaces Y and
Σt, being totally real at the points of the two curves (since the tangent-plane
intersections are 1-dimensional), become totally real everywhere when ε is made
smaller.

Let pr : H̃(N) → H̃(Rε) be the mapping with pr(H̃(z, r)) = H̃(z, 0), for
N = Nε. If ε > 0 is sufficiently small, we extend H : Rε → M to an embedding
H :N →M by requiring that, for real t, s, r with |t| < 1+ ε and s, r ∈ (−ε, ε), the
image of the mapping t 7→H(t, r) (or, s 7→ H(t+ is, r)) be a characteristic curve
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of H̃(Y ) (or, respectively, of H̃(Σt)) in H̃(N), and pr(H(t+ is, r)) = H(t+ is, 0).
Such a C∞ extension of H exists: its defining conditions mean that t 7→H(t, r)
(or, s 7→H(t+ is, r)) is an integral curve of the unique vector field on H̃(Y ) (or,
on each H̃(Σt)) which is tangent to the characteristic foliation and projects under
pr onto the restriction to Y ∩ Rε of the coordinate vector field u for the Re z
direction (or, respectively, onto the restriction of iu to Σt ∩Rε).

Finally, we extend H : N →M to an embedding H : Uε →M , for small ε, by
setting H(z, w) = expH(z,Re w) [(Imw)Jv], which clearly yields (d) and (e). As the
remainder of our assertion is an obvious consequence of how we chose H on N,
this completes the proof. �

19. Proof of Theorem 18.1

We use the notation of Lemma 18.5, treating Uε as an open subset of both
M and C2. First, let us fix functions ρ and σ of the variable t ∈ [−1, 1] such
that: σ is of class C∞ on [−1, 1], has a compact support contained in (−1, 1),
and 0 ≤ σ ≤ σ(0) < ε on [−1, 1], with σ(0) > 0, while: ρ is even, continuous on
[−1, 1], of class C∞ on (−1, 1), with ρ̈(0) > 0 and ρ̇ > 0 on (0, 1), the inverse
of ρ : [0, 1] → [ρ(0), ρ(1)] has derivatives of all orders equal to 0 at ρ(1), and
0 < ρ(0) ≤ ρ ≤ ρ(1) < ε on [−1, 1]. (We write ( )˙ for d/dt, as well as ρ for ρ(t),
and similarly for other functions of t.) Let h : [−1, 1]× S1 → Uε be the mapping
given by

(19.1) h(t, eiθ) = (z, w) with (z, w) = (t+ iρ cos θ, tρ sin θ + icσ sin 2θ).

Thus, h depends on a parameter c ∈ [−1, 1] and has the partial derivatives

(19.2)
ht = (1 + iρ̇ cos θ, (ρ+ tρ̇) sin θ + icσ̇ sin 2θ),
hθ = (−iρ sin θ, tρ cos θ + 2icσ cos 2θ).

Also, h is injective except for one double point (0,0) = h(0,±i), when c > 0, or a
curve of double points h(0, e±iθ), 0 < θ < π, for c = 0. (By (19.1), t = Re z, and
eiθ = α/|α| for α = Im z + iRew/t, if t 6= 0.)

If c > 0, the self-intersection of h at (0,0) = h(0,±i) is transverse and negative,
as one easily sees using the bases, provided by (19.2), of the two real planes tangent
to the image of h at (0,0). (Note that ρ̇(0) = σ̇(0) = 0.)

If c = 0 and (t, eiθ) = (0,±1), while ρ, ρ̈ stand for ρ(0), ρ̈(0), then

(19.3)
i) ht = (1, 0), htt = (±iρ̈, 0), hθt = (0,±ρ), hθθ = (∓iρ, 0),
ii) hθ = hθtt = hθθt = hθθθ = (0,0)

from (19.2) with ρ̇(0) = 0. Also, by (19.1) – (19.2), for all (t, θ, c),

(19.4) ImJ = 2cσ + (ρ2 − 4cσ) sin2θ + tρρ̇, where J = ztwθ − zθwt .

(Thus, J is the Jacobian of h.) Hence ImJ ≥ 0 at any (t, θ) and for any
c ∈ [0, cmax], where cmax = min(1, [ρ(0)]2/[4σ(0)]). (In fact, the three terms
2cσ, (ρ2−4cσ) sin2θ and tρρ̇ are all nonnegative.) Moreover, the strict inequality
ImJ > 0 clearly holds unless c = t = 0 and θ ∈ Zπ.

Therefore (cf. Example 9.1), h with any fixed c ∈ (0, cmax] is a totally real
immersion for the standard complex structure of Uε ⊂ C2. This is also true if
c = 0, provided that one excludes the two points with t = 0 and θ ∈ Zπ (at which
dh is not even injective; cf. (19.3)). We will now show that the same conclusions
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hold for the original almost complex structure J of M , as long as one chooses ρ
more carefully and c is sufficiently small.

First, suppose that c = 0. As we just saw, at (t, eiθ) with t = 0 and θ /∈ Zπ
the vectors ht, hθ are linearly independent in C2. Hence, by Lemma 18.5(d) (case
(ii)), they are also J-linearly independent. Now let y = h(t, eiθ) with t 6= 0. The
(disconnected) surface K ⊂ M , formed by all such y, is contained in the 3-di-
mensional submanifold N defined in Lemma 18.5. Thus, K is J-totally real at
y in view of Remark 18.4 applied to a suitable totally real surface Σ ⊂ N, which
intersects K transversely in N at y along a noncharacteristic direction; namely,
Σ = Y if eiθ = ±i and Σ = Σt otherwise. (Notation of Lemma 18.5.) That the
intersection is noncharacteristic follows from (b) – (c) in Lemma 18.5: K ∩ Σt,
for each t 6= 0, is an ellipse in standard position relative to the Im z and Rew
coordinate axes, while the curve K ∩ Y is parametrized by t 7→ (z, w) = (t,±tρ),
with (tρ)˙> 0 as tρ̇ ≥ 0 and ρ > 0.

The next five paragraphs deal with the remaining case c > 0.
According to Lemma 18.5(e), the J-complex exterior product of u and v triv-

ializes the line bundle [TM ]∧2 restricted to Uε ⊂ M , allowing us to treat the
J-complex exterior product of any vector fields ξ, ξ′ on Uε as a function Uε → C.
The imaginary part B(ξ, ξ′) of that function depends on ξ and ξ′ only through
their values at points of Uε (since so does the function itself); we may therefore
view B as a differential 2-form on Uε, i.e., as a mapping B : Uε → X valued in the
space X of skew-symmetric bilinear forms C2×C2 → R. Note that B(u, v) = 0
everywhere in Uε.

Let us now set ∆ = B(ht, hθ), treating ∆ as a real-valued function of (t, θ, c)
(where ∆ depends on c since h does). If ρ, ρ̈, σ denote ρ(0), ρ̈(0) and σ(0),
then, for the value and partial derivatives of ∆ at the points o+, o− ∈ R3 that
have the (t, θ, c) coordinates (0, 0, 0) and (0, π, 0), we get

(19.5)
a) ∆ = ∆t = ∆θ = 0, ∆θt = ∓ρ(duB)(u, iu),
b) ∆c = 2σ > 0, ∆tt = 2ρρ̈ > 0, ∆θθ = 2ρ2 > 0,
c) Bθ = Bc = 0 and Bt = duB at o± .

Here Bt, Bθ, Bc are the X -valued partial derivatives of B ◦ h, while u denotes
the Re z coordinate vector field, duB : Uε → X is the corresponding directional
derivative of B : Uε → X , and i in iu refers to the complex structure of C2.

In fact, we have (19.5.c) and ∆ = 0 at o± as hθ = hc = 0 and ht = u at o± by
(19.3) and (19.1). Now let A be the analogue of B obtained by using, instead of
J , the complex structure of C2. Hence A is constant as a function Uε → X , while,
by Lemma 18.5(d), B = A at all points of Uε that have the form (t, 0) or (is, 0)
with t, s ∈ R, including, when c = 0, the h-images (0,±ρ(0)) of (t, eiθ) = (0,±1).
(Also, A(ht, hθ) = ImJ ; cf. (19.4).) To evaluate the partial derivatives of ∆ at o±
in (19.5), we differentiate the three-factor “product” B(ht, hθ) via the Leibniz rule.
The partial derivatives in question differ from those of A(ht, hθ) just by the extra
terms in which the B factor is differentiated. However, by (19.3.ii), such an extra
term can only be nonzero if exactly one differentiation falls on the hθ factor. This,
combined with (19.5.c), shows that the extra terms are all zero, except, possibly,
those in ∆tt and ∆θt, equal to ±2ρ(duB)(u, v) and, respectively, ∓ρ(duB)(u, iu).
(By (19.3.i), ht = u, hθt = ±ρv and hθθ = ∓ρiu at o±.) Now (19.5) follows,
since B(u, v) = 0 identically on Uε, and so (duB)(u, v) = du[B(u, v)] = 0, while
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the partial derivatives of A(ht, hθ) at o± are easily found using the Leibniz rule
and (19.3): for instance, [A(ht, hθ)]t = A(ht, hθt) = ±ρ(0)A(u, v) = 0.

Our functions ρ and σ have been so far subject to the specific conditions listed
above, but otherwise arbitrary. However, a special choice of ρ gives

(19.6) ∆tt∆θθ − (∆θt)2 > 0 at the two points (t, θ, c) = o± .

Namely, by (19.5), ∆tt∆θθ − (∆θt)2 = 4ρ3ρ̈− [ρ(duB)(u, iu)]2. Although the func-
tion (duB)(u, iu) : Uε → R does not depend on the choice of ρ, its value used here
does, as it is taken at the point h(0,±1) = (±iρ(0), 0). Modifying ρ so as to keep
ρ(0) > 0 unchanged while making ρ̈(0) so large that 4ρ(0)ρ̈(0) > [(duB)(u, iu)]2

at (±iρ(0), 0), we obtain (19.6).
As ∆c > 0 = ∆ at o± (see (19.5)), the implicit function theorem applied to

the function (t, θ, c) 7→ ∆ shows that, in some neighborhood of either point o± in
R3, the equation ∆ = 0 describes the graph of a C∞ function (t, θ) 7→ c, equal
to 0 at (0,0) or, respectively, at (0, π). Partial differentiations of the equality
∆ = 0 with respect to t, θ show that, as a consequence of (19.5) and (19.6), 0 is a
nondegenerate local-maximum value of the function (t, θ) 7→ c at (0,0) (or (0, π)).
Thus, we may choose neighborhoods of (0,0) and (0, π) on which ∆ = B(ht, hθ) is
nonzero everywhere for all sufficiently small c > 0. Due to the definition of B and
Example 9.1, this shows that h, with any such fixed c, is a J-totally real immersion
when restricted to the two corresponding neighborhoods of (0,±1) in [−1, 1]×S1.
On the other hand, removing the latter two neighborhoods from [−1, 1] × S1, we
are left with a compact set on which h is J-totally real for any small c > 0 (since
that is the case for c = 0, as we saw earlier).

Thus, our h, with any fixed c > 0 close to 0, is a J-totally real immersion with
a single, transverse, negative self-intersection, while Uε is an obvious choice of the
open subset required in (v). The only claim that still needs proving is smoothness of
the union S of the image of h with the complements of the disks D± of radius ρ(1),
centered at (±1, 0), in the Euclidean planes {(z, w) ∈ C2 : Re z ∓ 1 = Imw = 0}.
To this end, let us fix δ ∈ (0, 1) with suppσ ⊂ [−δ, δ ], and denote by N ′ the
disconnected 3-manifold formed by all (z, w) ∈ C2 with |Re z| > δ and Imw = 0.
Smoothness of S now follows from smoothness of the (disconnected) surface Σ ′ in
N ′ which consists of (z, w) ∈ N ′ such that, setting t = Re z and defining r ≥ 0
by r2 = (Im z)2 + (Rew)2, one has either |t| = 1 and r ≥ ρ(1) or δ < |t| < 1 and
r = ρ(t). In fact, Σ ′ is a smooth surface in the Euclidean 3-space C ×R ⊂ C2

with the coordinates Re z, Im z, Rew, since it is obtained by revolving, about the
Re z axis, a (disconnected) C∞ curve lying in the half-plane Im z > 0 = Rew.
The curve is the intersection of Σ ′ with the half-plane, so that its smoothness
becomes obvious if one parametrizes either of its components using r (the distance
from the Re z axis) as the parameter, and recalls the assumptions made earlier
about the derivatives of the inverse of ρ. Finally, the set S ′ = S ∩N ′ is relatively
open in S (as S ′ = {(z, w) ∈ S : |Re z| > δ}), while S ′ is also the image of Σ ′

under the diffeomorphism N ′→ N ′ sending (z, w) to (z, (Re z)w).
The proof of Theorem 18.1 is now complete.

20. Totally real tori and Klein bottles in C2

The torus T 2 and Klein bottle K2 both admit totally real embeddings in C2.
For T 2 this is obvious ((v) in Section 9). Rudin [25] first found such embeddings
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of K2. In this section we describe further examples of totally real immersions and
embeddings of T 2 and K2 in C2.

For C1 functions x, y : U → C on an open set U in the (t, s)-plane R2, we
define the function J (x, y) : U → C by J (x, y) = xsyt − xtys (cf. Example 9.1);
the subscripts stand for the partial derivatives.

Example 20.1. Let x, y, h : R2 → C be doubly 2π-periodic C1 functions of the
variables t, s such that |J (x, y)| is bounded on R2 and hs = 0 identically, while
|xsht| ≥ ε for some real number ε > 0. The mapping (x, y + ah) : R2 → C2, with
any constant a ∈ R, then descends to the torus T 2 = [R/2πZ] × [R/2πZ], and,
for large |a|, it produces a totally real immersion f : T 2 → C2. If, in addition,
x, y, h are all invariant under the transformation (t, s) 7→ (t+ π,−s) of R2, then
(x, y + ah) further descends to a totally real immersion f : K2 → C2 of the Klein
bottle K2 = R2/Γ = T 2/Z2, where Γ is the transformation group generated by Φ
and Ψ with Φ(t, s) = (t+ π,−s) and Ψ(t, s) = (t, s+ 2π).

In fact, (x, u) : R2 → C2 is a totally real immersion if and only if J (x, u) 6= 0
everywhere in R2 (see Example 9.1). Clearly, for any r ∈ R,

(20.1) J (x, y + ah) = J (x, y) + axsht ,

and so |J (x, y + ah)| → ∞ as a → ∞, uniformly on U . Therefore, if |a| is
sufficiently large, J (x, y + ah) 6= 0 everywhere in R2.

Example 20.2. The assumptions listed in Example 20.1 are obviously satisfied
by the functions x(t, s) = eikt(sin s + i sin 2s), y(t, s) = eilt cos s, h(t, s) = eilt,
where k and l are fixed integers with l 6= 0. The mapping (x, y+ ah) : R2 → C2

thus descends, for large a, to a totally real immersion f = fk,l : T 2 → C2 of the
2-torus. In the case where k is odd and l is even, it similarly descends to a totally
real immersion f = fk,l : K2 → C2 of the Klein bottle.

Furthermore, if k, l are integers and either

(a) l = 1, while Σ is the 2-torus T 2, or
(b) l = 2, while k is odd and Σ is the Klein bottle K2,

then, for all sufficiently large a > 1, the mapping fk,l : Σ → C2 defined above is
a totally real embedding.

In fact, injectivity of fk,l follows since (x, u) = (x(t, s), y(t, s) + ah(t, s)) de-
termines (α, β) = (eis, eit) either uniquely (case (a)) or up to the involution
(α, β) 7→ (α, −β) (case (b)). Specifically, cos s = |u| − a, eilt = u/|u| and
sin s = xe−ikt(1 + 2i cos s)−1.

21. Proofs of Theorem 2.3 and Corollaries 2.4 – 2.9

Let M be an almost complex surface. Corollary 11.3 implies that S2 admits a
totally real immersion in M , while totally real embeddings T 2 →M and K2 →M
exist in view of Proposition 10.1 combined with Example 20.2.

If real surfaces Σ and Σ ′ admit totally real immersions f and f ′ in M , then to-
tally-real immersibility of Σ#Σ ′ in M is an obvious consequence of Theorem 18.1
applied to M r [f(∂D) ∪ f ′(∂D ′)] rather than M , and x± ∈ M chosen so that
f(x) = x+ 6= x− = f ′(x′) for some x ∈Σ, x′ ∈Σ ′, along with Σ+ = f(IntD) and
Σ− = f ′(IntD ′), where D,D ′ are small closed disks embedded in Σ,Σ ′ so as to
contain x, x′ as interior points.
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Next, let Σ+ be a closed totally real surface embedded in M . A totally real 2-
torus Σ− embedded in M rΣ+ exists by Corollary 10.2; in view of Theorem 18.1,
Σ+#Σ− ≈ Σ#T 2 admits a totally real immersion in M with just one self-in-
tersection in the form of a double point at which the self-intersection is transverse
and, if Σ is orientable, also negative.

The statement following Lemma 16.2, applied to this immersed image of Σ#T 2

(rather than Σ), gives rise to a totally real embedding of Σ#T 2#K2 in M , thus
proving Theorem 2.3.

Corollaries 2.4 – 2.6 now follow, and Corollary 2.7 is easily derived from Corol-
lary 2.6 using a real form RP2 ⊂ CP2 (see (vi) in Section 9).

Corollary 2.8 for T 2 and S2 is clear from Theorem 2.3, Lemma 12.1(a) and Ex-
ample 13.4 (or, Example 13.5) combined with Remark 13.1. To prove Corollary 2.8
for nonorientable closed surfaces Σ, note that the operation Σ 7→ Σ#T 2#K2

(where K2 is the Klein bottle) reduces the Euler characteristic by 4, and so, in
view of Theorem 2.3, one need only to show the existence of a totally real embed-
ding in M = CP2 # mCP2, m ≥ 1, of any closed nonorientable surface Σ such
that χ(Σ) ∈ {−2,−1, 0, 1}. If χ(Σ) ∈ {−2, 0}, this follows from Theorem 2.3 and
embeddability of S2, as Σ = S2#T 2#K2. Now let χ(Σ) = ±1. Thus, Σ = RP2

or Σ = 3RP2, and our claim is obvious from (vi) in Section 9, Lemma 12.1(a) and
Corollary 12.2.

Finally, Corollary 2.9 is immediate from Corollary 2.4, (5.3.a) and (1.7).

22. Obstructions for embedded orientable surfaces

Let M be a compact almost complex surface. If a closed oriented real surface
Σ admits a totally real embedding f : Σ → M and µ ∈ H2(M,R) denotes the
(real) Poincaré dual of f∗[Σ ] ∈ H2(M,R), setting χ = χ(Σ) and c1 = c1(M) we
can rewrite (5.4), with n = 2, and (5.3.b) as

(22.1) µ ` µ = −χ , µ ` c1 = 0.

For any closed oriented 4-manifold M , the cup product ` is nondegenerate as a
real-valued symmetric bilinear form in H2(M,R), and its sign pattern consists of
b+ pluses and b− minuses, for some b±∈ Z with b2(M) = b++ b−.

We have the following easy result.

Proposition 22.1. Let M be a closed almost complex surface for which b+ = 1,
c1 ` c1 ≥ 0 and c1 6= 0 in H2(M,R), and let a closed orientable surface Σ admit
a totally real embedding f : Σ →M .

(a) Σ must then be diffeomorphic to the torus T 2 or the sphere S2.
(b) If, in addition, M has b− = 0, then Σ is diffeomorphic to T 2.
(c) If Σ is diffeomorphic to T 2, then either c1 ` c1 > 0 and f∗[Σ ] = 0 in

H2(M,R), or c1 ` c1 = 0 and f∗[Σ ] is a real multiple of the Poincaré
dual of c1 in H2(M,R).

Proof. If χ ≤ 0, relations (22.1) imply that the cup-product form ` is positive
semidefinite on the subspace W ⊂ H2(M,R) spanned by µ and c1. Since ` has
the Lorentzian sign pattern + − . . .−, this shows that dimW = 1. Using (22.1),
we now obtain (c). Also, as the inequality χ < 0 would, by (22.1), make µ and
c1 linearly independent (and hence yield dimW = 2), we see that χ = χ(Σ) ≥ 0,
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which proves (a). Finally, condition b− = 0 implies that c1 spans H2(M,R) so
that (22.1) gives µ = 0 and χ = 0, which yields (b). This completes the proof. �

Our next conclusion is an immediate consequence of Proposition 22.1.

Corollary 22.2. The torus T 2 is the only closed orientable real surface that admits
a totally real embedding in C2, CP2 or the complex surface obtained by blowing up
a point in CP2.

Proof. A totally real embedding of T 2 exists according to (v) in Section 9. Con-
cerning its nonexistence for other real surfaces, the case of C2 follows from that of
CP2 via the inclusion C2 ⊂ CP2 (or, directly from (5.4) with H2(C2,Z) = {0}).
As for M = CP2 or M = CP2 # CP2, the only other possibility left by Propo-
sition 22.1(a) is that of a totally real 2-sphere embedded in M . This in turn is
excluded by Corollary 5.2. (For CP2, we may also use Proposition 22.1(b).) �

Proofs of Corollaries 2.10 and 2.11. In both corollaries, the nonexistence part is
obvious from Proposition 22.1 and Corollary 2.9. (Note that condition m ≤ 9 in
Corollary 2.11 amounts to c1 ` c1 ≥ 0; cf. Section 30.) Corollary 2.11 is now
immediate from Corollary 2.8. As for Corollary 2.10, the existence assertion for T 2

is clear from (v) in Section 9, and for S2 it is provided by (vii) in Section 9. Finally,
let Σ be a nonorientable closed surface. Since the operation Σ 7→ Σ#T 2#K2

(where K2 is the Klein bottle) reduces the Euler characteristic of any closed surface
by 4, by Theorem 2.3 we just need to show the existence of a totally real embedding
Σ → M = CP1× CP1 under the additional assumption that χ(Σ) ∈ {−2, 0}.
Now, if χ(Σ) = 0, this follows from Corollary 2.5. For χ(Σ) = − 2, we have Σ =
S2#T 2#K2, and so we may use the embeddability of S2 along with Theorem 2.3.

23. Embeddings of nonorientable surfaces

The self-intersection formula (5.5) often fails to detect nonembeddability of non-
orientable surfaces. For instance, the genus 3 surface RP2#RP2#RP2 admits no
totally real embedding in CP2, yet this fact cannot be derived from (5.5). To obtain
useful obstructions for totally real embeddings of nonorientable closed manifolds
one needs more subtle intersection-theoretic tools, such as the Pontryagin square
operation, applicable to this case via a result of Massey described below. Our
presentation follows [23] and [4].

Given a manifold M and an integer k ≥ 0, the Pontryagin square [23] is a nat-
ural cohomology operation Hk(M,Z2) → H2k(M,Z4) which, applied to mod 2
reductions of integral classes, assigns the value [ξ ` ξ mod 4] to [ξmod 2], for any
ξ ∈ Hk(M,Z). We use the symbol µ2 for the Pontryagin square of µ ∈ Hn(M,Z2)
in the case of a closed oriented manifold M of dimension 2n (such as a closed al-
most complex manifold with dimCM = n). Thus, µ2 ∈ Z4. Also, by definition,
µ2 = 0 ∈ Z4 if M is diffeomorphic to Cn. We begin with the following special
case of a result of Massey [23, Theorem 1]:

Lemma 23.1. Given an embedding f : Σ →M of a closed manifold Σ in a closed
oriented manifold M with dimM = 2 dimΣ = 2n, where n is even and n ≥ 2,
let µ ∈ Hn(M,Z2) be the Poincaré dual of f∗[Σ ] ∈ Hn(M,Z2). If χ(ν) ∈ Z
and µ2 ∈ Z4 are the twisted Euler number of the normal bundle ν of f and the
Pontryagin square of µ, then

(23.1) µ2 = [χ(ν)mod 4] + 2 [w1 ` wn−1] ∈ Z4 , where wj = wj(Σ),
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2 [w1 ` wn−1] being the image of w1 ` wn−1 under the nontrivial coefficient ho-
momorphism Z2 → Z4.

Proof. Any embedding f : Σ → M gives rise to the associated mapping F
from M into the Thom space Th(ν) (that is, a one-point compactification) of
the normal bundle ν of f . The Thom space is an oriented pseudomanifold,
and with the usual orientation conventions, F induces the identity homomor-
phism between the top (co)homology groups. Moreover, µ is the F -pullback
of [U mod 2] ∈ Hn(Th(ν),Z2), that is, of the (well-defined) mod 2 reduction
of the Thom class U . (The Thom class itself lives in the cohomology of an-
other pair with twisted Z coefficients.) As shown by Massey [23, Theorem 1],
the Pontryagin square [U mod 2]2 is the image, under the Thom isomorphism, of
[e(ν) mod 4] + 2 [w1 ` wn−1], where [e(ν) mod 4 ] denotes the mod 4 reduction
of the twisted Euler class of ν. Now (23.1) follows since naturality of the Pontrya-
gin square allows us to compute the right-hand side of (23.1) in the cohomology of
either Th(ν) or M , with both sides treated as elements of Z4. �

Corollary 23.2. Let f : Σ → M be a totally real embedding of a closed real
manifold Σ in a closed almost complex manifold M with dimRΣ = dimCM = n,
where n is even, and let µ ∈ Hn(M,Z2) be the Poincaré dual of the homology
class f∗[Σ ] ∈ Hn(M,Z2). The Pontryagin square µ2 ∈ Z4 is then characterized by
(23.1). For n = 2, this becomes

(23.2) µ2 = [χ(Σ) mod 4] .

Equality (23.2) remains valid, with µ2 = 0, if M , rather than being compact, is
assumed diffeomorphic to C2.

This is obvious from (5.1) and Wu’s formula (1.7); if M ≈ C2, we may use
Lemma 23.1 with M replaced by its one-point compactification S4.

A further obvious consequence can be stated as follows.

Corollary 23.3. Suppose that a closed real surface Σ admits a totally real em-
bedding in the complex surface M = CP2 or M = CP2 # CP2. Defining
χ4 ∈ {0, 1, 2, 3} by χ4 ≡ χ(Σ) mod 4, we then have χ4 ∈ {0, 1} if M = CP2

and χ4 ∈ {0, 1, 3} if M = CP2 # CP2.

In fact, as in the argument for Proposition 5.1, this is immediate from (23.2),
since, for integers p, q, the mod 4 congruence class of p2 must contain 0 or 1,
while that of p2− q2 must contain 0, 1 or −1.

Proofs of Corollaries 2.12 – 2.14. The nonexistence assertion for orientable sur-
faces Σ other than T 2 is immediate from Corollary 22.2, while the case of T 2 is
settled by Corollary 2.5. Now, let the surface Σ be nonorientable. The operation
Σ 7→ Σ#T 2#K2 (with K2 denoting the Klein bottle) reduces χ(Σ) by 4. Thus,
by Theorem 2.3, for the existence assertions in Corollaries 2.12 – 2.14 it suffices to
show that a totally real embedding exists if χ(Σ) is zero, or χ(Σ) ∈ {0, 1} or,
respectively, χ(Σ) ∈ {−1, 0, 1}. For χ(Σ) = 0 in all three corollaries, or χ(Σ) = 1
in Corollary 2.13, or χ(Σ) = ±1 in Corollary 2.14, this existence statement is clear
from Corollary 2.5, or (vi) in Section 9 or, respectively, (vi) in Section 9 combined
with Corollary 12.2, as χ(Σ) = −1 for Σ = RP2#RP2#RP2.

Finally, the nonexistence statements for nonorientable Σ can be established as
follows. Let Σ admit a totally real embedding in M . Assume first that M = CP2
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or M = CP2 # CP2. By Corollary 23.3, χ(Σ) has the required remainder mod 4.
Next, if M = C2, this last fact yields χ(Σ) ≡ 0 mod 4, since C2 ⊂ CP2 and χ(Σ)
is even by Corollary 2.9. �

24. The sets Iq(Σ) and Dε
±(M) in special cases

Given a real manifold Σ and q ∈ {2, 4, . . . ,∞}, let Iq(Σ) be the set defined
by (2.9), with Z∞ = Z. Thus, as H1(Sn,Zq) = {0} for n ≥ 2,

(24.1) Iq(Sn) = {0} whenever n ≥ 2 and q ∈ {2, 4, 6, . . . ,∞}.
Since Iq(Σ) is either empty or forms a coset of the subgroup of H1(Σ,Zq) =
Hom(π1Σ,Zq) consisting of all homomorphisms valued in the even subgroup 2Zq

(the image of Zq under the homomorphism ξ 7→ 2ξ), we also have

(24.2) Iq(Tn) = (2Zq)n ⊂ (Zq)n = H1(Tn,Zq),

( )n in (2Zq)n, (Zq)n being the nth Cartesian power, with H1(Tn,Zq) = (Zq)n

due to the standard identification resulting from (1.5) (where π1T
n = Zn). Next,

one easily verifies that, for all q ∈ {2, 4, 6, . . . ,∞},

(24.3) Iq(RPn) =

{
{ϕ} if q/2 is finite and odd,
Ø if q = ∞ or q/2 is even,

where ϕ ∈ H1(RPn,Zq) = Hom(Z2,Zq) (cf. (1.5)) is the unique nonzero homo-
morphism Z2 → Zq. (Note that π1[RPn] = Z2, and w1(RPn) with (1.6) equals
Id : Z2 → Z2.)

For an almost complex manifold M , a fixed sign ±, and ε ∈ {0, 1}, let Dε
±(M)

now be defined by (2.8). If M = CP2, we thus have

(24.4) D1
−(CP2)= Ø, D1

+(CP2)= D0
+(CP2)={0}, D0

−(CP2)={[RP2]},

[RP2] being the Z2-homology class of Σ = RPn in (vi) of Section 9 for n =
2. (In fact, c1(M) : H2(M,Z) → Z and w2(M) : H2(M,Z2) → Z2 then are
isomorphisms.) Finally, since H2(C2,Z[2]) = 0,

(24.5) D1
+(C2) = {0} , D0

+(C2) = {0} , D0
−(C2) = D1

−(C2) = Ø .

25. Closed surfaces and cohomology

We begin with some known facts gathered here for easy reference. First, the
fundamental group Γ = π1K

2 of the Klein bottle K2 = RP2#RP2, treated as
a group of deck transformations in R2, has the generators Φ, Ψ described in Ex-
ample 20.1. Since Ψ2 = ΨΦΨ−1Φ−1, the Abelianization H1(K2,Z) of Γ may
from now on be identified with the direct product Z × Z2 (the factor groups
being generated by Φ and Ψ). As Ψ is orientation-preserving while Φ is not,
w1(K2) : π1K

2 → Z2 = {0, 1} sends Φ to 1 and Ψ to 0 (cf. (1.6)). The ho-
momorphism Z × Z2 → Z2, arising as w1(K2) descends to H1(K2,Z), therefore
sends (k, ε) to [k mod 2]. Finally, the transformation (t, s) 7→ (−t, s) in R2 com-
mutes with Ψ and conjugates Φ with Φ−1, so that it descends to a diffemorphism
K2 → K2 of K2 = R2/Γ, which acts in H1(K2,Z) = Z× Z2 by (k, ε) 7→ (−k, ε).

Remark 25.1. For a closed real surface Σ of genus s we have, up to a diffeomor-
phism, one of three cases:

(a) Σ = T 2# . . . #T 2 (s summands),
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(b) s is even and Σ = T 2# . . . #T 2#K2, with s/2 summands,
(c) s is odd and Σ = T 2# . . . #T 2#RP2, with (s+ 1)/2 summands.

This includes Σ = S2 (case (a), with s = 0), the Klein bottle Σ = K2 (case (b)
with s = 2), and Σ = RP2 (case (c), for s = 1).

Remark 25.2. Let G,G1, . . . , Gk be Abelian groups and let Σ be a manifold with
H1(Σ,Z) = G1 × . . .×Gk. Then, by (1.5) and Remark 1.1,

(i) H1(Σ,G) = Hom(G1, G)× . . .× Hom(Gk, G),
(ii) the coefficient-reduction homomorphism H1(Σ,G) → H1(Σ,G′) corre-

sponding to any homomorphism h : G → G′ of Abelian groups is the
Cartesian product of the composition homomorphisms for the factor groups,
with both H1(Σ,G) and H1(Σ,G′) decomposed as in (i).

Given an Abelian group G, we denote by Gord2 the subgroup of G consisting
of zero and all elements of order 2. Thus,

(25.1) H1(K2, G) = G×Gord2 ,

as one sees by combining Remark 25.2(i) with the relation H1(K2,Z) = Z×Z2 at
the beginning of this section. Obviously,

(25.2) (Zq)ord2 = {0, q/2} for any even positive integer q .

Also, given closed real surfaces Σ,Σ ′ such that Σ ′ is orientable,

(25.3)

i) H1(Σ#Σ ′,Z) = H1(Σ,Z)×H1(Σ ′,Z),

ii) H1(Σ#Σ ′, G) = H1(Σ,G)×H1(Σ ′, G),

iii) Iq(Σ#Σ ′) = Iq(Σ)× Iq(Σ ′) for q ∈ {2, 4, 6, . . . ,∞},

where Iq(Σ) is defined by (2.9), with Z∞ = Z. Namely, the well-known isomorphic
identification (25.3.i) combined with Remark 25.2(i) and (1.5) gives (25.3.ii). Next,
w1(Σ#Σ ′) = (w1(Σ), w1(Σ ′)) (in terms of (25.3.ii) with G = Z2), since, by (1.6),
w1(Σ#Σ ′), acting on H1( · ,Z) rather than π1( · ), coincides with the first-factor
projection in (25.3.i) followed by w1(Σ). Using Remark 25.2(ii) and (2.9), we now
get (25.3.iii).

On the other hand, for the Klein bottle K2 and q ∈ {2, 4, 6, . . . ,∞},

(25.4) Iq(K2) = (Zq r 2Zq)× [(Zq)ord2 ∩ 2Zq] .

In fact, combining the description of w1(K2) at the beginning of this section with
(25.1) for G = Z2, we get w1(K2) = (1, 0) ∈ Z2 × Z2 (as (Z2)ord2 = Z2). Now
(25.4) is immediate from Remark 25.2(ii) and (25.1).

For a closed manifold Σ and an even positive integer q, the mod q reduction
homomorphism H1(Σ,Z) → H1(Σ,Zq) sends the set I∞(Σ) into Iq(Σ). (Nota-
tion of (2.9), with Z∞ = Z.) This is clear from Remark 1.1: as q is even, reduction
mod q followed by reduction mod 2 results in reduction mod 2. We thus obtain
the mod q reduction mapping

(25.5) I∞(Σ)
mod q
−−−−−→ Iq(Σ) .

Lemma 25.3. Given a closed real surface Σ and an even integer q > 0,
(i) the mapping (25.5) is surjective if and only if either Σ is orientable, or

Σ is nonorientable and χ(Σ)− q/2 is odd,
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(ii) if q = 4 and Σ is the Klein bottle K2, the image of (25.5) is the 2-ele-
ment subset {1, 3} × {0} of the 4-element set

(25.6) I4(K2) = {1, 3} × {0, 2} ,

which itself is a subset of H1(K2,Z4) = {0, 1, 2, 3} × {0, 2} ⊂ Z4 ×Z4, cf.
(25.1), with Z4 = {0, 1, 2, 3}.

Proof. Succesively applying (25.3.iii) we obtain, from (24.1) – (24.3) and (25.4),
with superscripts denoting Cartesian powers, Iq(Σ) = (2Zq)2g in case (a) of Re-
mark 25.1, Iq(Σ) = (2Zq)g−2 × (Zq r 2Zq) × [(Zq)ord2 ∩ 2Zq] in case (b), and
Iq(Σ) = (2Zq)g−1 × [(Zq)ord2 r 2Zq] in case (c) (as Iq(RPn) = (Zq)ord2 r 2Zq

for q ∈ {2, 4, 6, . . . ,∞}; cf. (24.3) and (25.2)). In view of Remark 25.2(ii), the
mapping (25.5) acts by mod q reduction in each Cartesian factor set just listed.
Also, since q is even, the reduction mappings Z → Zq and Zr2Z → Zq r2Zq are
surjective. Therefore, surjectivity of (25.5) always holds in case (a) of Remark 25.1,
while in case (b) or (c) it is equivalent to (Zq)ord2 ∩ 2Zq = {0} or, respectively,
(Zq)ord2 r 2Zq = Ø. Now (i) is immediate from (25.2), as χ(Σ) = 2 − g in cases
(b) and (c). Finally, (25.1) – (25.2) give H1(K2,Z4) = {0, 1, 2, 3} × {0, 2}, so that
(25.6) follows from (25.4) for q = 4, and (ii) is immediate as Zord2∩ 2Z = {0}. �

26. More on tori and Klein bottles in C2

We will now evaluate the Maslov index i and degree d for the totally real
immersions fk,l constructed in Example 20.2.

When Σ is the torus T 2 or the Klein bottle K2, (24.2) and (25.4) with n = 2
and q = ∞ become I∞(T 2) = 2Z × 2Z ⊂ Z × Z = H1(T 2,Z) and I∞(K2) =
(Z r 2Z)× {0} ⊂ Z× {0} = H1(K2,Z) (cf. (25.1), (25.2)).

A totally real immersion (x, u) : R2 → C2 which is doubly 2π-periodic (or, in
addition, also invariant under the transformation Φ of Example 20.1) descends to
a totally real immersion f : Σ → C2 with Σ = T 2 (or, respectively, Σ = K2). Let
us now set, for φ = J (x, u) defined as in Example 9.1,

(26.1) p =
1

2πi

∫ 2π

0

φs

φ
ds, r =

1
2πi

∫ 2π

0

φt

φ
dt, m =

1
πi

∫ π

0

[
φt

φ

]
s=0

dt,

where the subscripts represent partial derivatives. Thus, p, r,m ∈ Z and the
Maslov index of f (see Section 2) is

(26.2) i (f) =

{
(2p, 2r) ∈ 2Z× 2Z = I∞(Σ) if Σ = T 2,

(m, 0) ∈ (Z r 2Z)× {0} = I∞(K2) if Σ = K2.

The following two propositions are easy consequences of the preceding discussion.

Proposition 26.1. Let Σ stand for the 2-torus T 2 or the Klein bottle K2, and
let f : Σ → C2 be a totally real immersion obtained as in Example 20.1 from some
x(t, s), y(t, s) and h(t) satisfying the hypotheses of Example 20.1. Then f has the
Maslov index (26.2) with p = (2πi)−1

∫ 2π

0
(xss/xs) ds, r = (2πi)−1

∫ 2π

0
[(xst/xs) +

(htt/ht)] dt, and m = (πi)−1
∫ π

0
[(xst/xs)+(htt/ht)]s=0 dt, the subscripts being par-

tial derivatives.

In fact, (26.1) holds for φ = φ[a] with φ[a] = a−1 J (x, y + ah) and large a > 0
(notation of Example 9.1). Homotopy invariance of the degree then guarantees that
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the integrals (26.1) do not depend on a. Taking their limits as a→∞, we obtain
our assertion, since lim a→∞ φ[a] = xsht by (20.1).

Proposition 26.2. There exist totally real embeddings of the 2-torus T 2 and the
Klein bottle K2 in C2 which realize any prescribed Maslov index i (f) with (26.2).

Proof. To exhibit such embeddings, we first apply Proposition 26.1 to the totally
real embeddings fk,1 : T 2 → C2 for k ∈ Z and fk,2 : K2 → C2 for odd k,
described in Example 20.2. The mapping F : R/2πZ → S1 defined by the
assignment R 3 s 7→ xs/|xs| (with any fixed t) now is of degree zero (since
xs(t, s + π) = −xs(t, s), and so F is homotopic to its composite with the con-
jugation). Therefore, by Proposition 26.1, we have p = 0; that is, fk,1 and fk,2

have the Maslov indices (2p, 2r) = (0, 2k+2) and, respectively, (m, 0) = (k+2, 0).
We thus have realized all index values for the Klein bottle. To obtain an arbitrary
Maslov index (2p, 2r) for the torus, we set k = −1 (when p = r = 0) or, when
(p, r) 6= (0,0), use the composite of our f , for k = d− 1, with the group automor-
phism of T 2 corresponding to a suitable matrix A ∈ SL(2,Z). Specifically, we fix
b, c ∈ Z such that br − cp = d, where d is the greatest common factor of p and
r, and then choose A to have the rows [b c] and [p/d r/d]. �

27. The integer q in (1.4)

For a simply connected almost complex manifold M , let q be as in (1.4).

(a) w2(M) is the mod 2 reduction of c1(M).
(b) The connecting homomorphism in (1.1) for E = E+(M) is, up to a sign,

the composite π2M →H2(M,Z)→ Z of the Hurewicz isomorphism with
c1(M), and so its image, that is, the kernel of Z → π1E in (1.1), is trivial
if q = ∞, and generated by q/2 if q <∞.

(c) M is spin if and only if q = ∞ or q is finite and divisible by 4. Similarly,
q = ∞ if and only if c1(M) = 0.

(d) If M is not spin, or c1(M) = 0, the mod 2 reduction homomorphism
H2(M,Z) → H2(M,Z2) maps Ker [c1(M)] onto Ker [w2(M)].

(e) If M = C2, or M = CP2, or M = CP1×CP1, then q = ∞, or q = 6, or,
respectively, q = 4.

(f) q = 2 whenever M is obtained by blowing up a point in a simply connected
complex surface.

In fact, (a) and (b) are well known, while (c) follows from (a), (b) and Remark 1.1.
As H2(M,Z) → H2(M,Z2) is surjective, (a) yields (d) in the case where c1(M) =
0 (cf. Remark 1.1). Again by (a), if M is not spin, c1(M) : H2(M,Z) → Z must
assume some odd values; the homomorphism sending H2(M,Z)/Ker [c1(M)] ≈ Z
into H2(M,Z2)/Ker [w2(M)] ≈ Z2, induced by the mod 2 reduction, is therefore
surjective. Every element of Ker [w2(M)] thus has a preimage in H2(M,Z) with
an even image in H2(M,Z)/Ker [c1(M)], which proves (d). Next, (a) implies (e),
as the values assigned by c1(M) to the standard generator(s) of H2(M,Z) for
M = CP2 or M = CP1×CP1 are 3 or, respectively, 2 and 2. Finally, (f) follows
from (a), since c1(M) yields the value 1 when integrated over the exceptional
divisor resulting from the blow-up (cf. also formula (30.1)).
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28. Index and degree after modifications

We now determine how the zooming and connected-sum operations of Sections 10
and 18 affect the Maslov index and degree.

Lemma 28.1. Given a totally real immersion/embedding f of a closed real surface
Σ in C2, and a simply connected almost complex surface M , let a totally real
immersion/embedding f ′ : Σ → M be obtained from f by a zooming procedure
described in Proposition 10.1. Its Maslov index and degree, introduced in Section 2,
then are

(28.1) i (f ′) = [i (f) mod q ] ∈ Iq(Σ) ⊂ H1(Σ,Zq), d(f ′) = 0 ,

where q is determined by M via (1.4) and [i (f) mod q ] denotes the mod q re-
duction of i (f) ∈ H1(Σ,Z), that is, its image under the mapping (25.5).

Proof. Let U ⊂ C2 be a ball containing f(Σ). Since U is contractible, d(f ′) = 0.
Also, i (f ′) is the homomorphism (3.3) of fundamental groups induced by M(f ′).
Thus, i (f ′) equals i (f) followed by the homomorphism π1[E(U)] → π1[E(M)]
induced by an embedding U → M . As the fibre inclusion U(1) → E(M) repre-
sents a generator of π1[E(M), the latter homomorphism is nothing other than the
projection Z → Zq. �

Lemma 28.1 can be modified when M is a complex surface. Rather than by
zooming, f ′ may then be obtained as the composite of f with a holomorphic
embedding in M of an open ball in C2 containing f(Σ).

The following corollary is an immediate consequence of Lemma 28.1, Proposi-
tion 26.2 and Lemma 25.3. We use it later to prove Theorems 28.6, 2.16 and 2.17,
Proposition 29.1, and the claim made in Example 36.1.

Corollary 28.2. Given a simply connected almost complex surface M , let us con-
sider the following condition imposed on a closed real surface Σ and an element
i ∈ Iq(Σ), with q and Iq(Σ) defined by (1.4) and (2.9):

(∗) some totally real embedding f : Σ →M has i (f) = i and d(f) = 0.
Condition (∗) is satisfied by

(a) the torus Σ = T 2 and every i ∈ Iq(Σ),
(b) the Klein bottle Σ = K2 and every i ∈ Iq(Σ), provided that q/2 is either

infinite, or finite and odd,
(c) the Klein bottle Σ = K2 and every i in the subset {1, 3}×{0} of I4(Σ),

cf. (25.6), provided that q = 4.

Lemma 28.3. Let f, f ′ be totally real immersions of closed real surfaces Σ,Σ ′ in
a simply connected almost complex surface M . If Σ ′ is orientable, then a totally
real immersion Σ#Σ ′ →M of the connected sum, obtained from f and f ′ as in
Theorem 18.1, has the Maslov index and degree

(28.2) i = (i (f), i (f ′)) , d = d(f) + d(f ′) ∈ H2(M,Z[2]) .

We use here the notational conventions of (25.3.iii) and (2.3), while adding an
element of H2(M,Z) to an element of H2(M,Z2) is to be preceded by mod 2
reduction of the former, so that the sum lies in H2(M,Z2).

In fact, (28.2) follows from (25.3.i), since the new immersion coincides with f or
f ′ except on the boundary of a solid cylinder immersed in M (Theorem 18.1(v)).

Next, for Z(Σ,M) defined in the lines following Theorem 2.2, we have
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Lemma 28.4. Given a simply connected almost complex surface M , let E be
the class of diffeomorphism types of closed real surfaces Σ such that for every
(i ,d) ∈ Z(Σ,M) there exists a totally real immersion f : Σ → M with i (f) = i
and d(f) = d. Then E is closed under the connected-sum operation applied to
two surfaces, of which at least one is orientable.

Proof. Let (i ,d) ∈ Z(Σ#Σ ′,M), where Σ,Σ ′ belong to E and Σ ′ is orientable.
By (25.3.iii), i = (i 0, i ′) with i 0 ∈ Iq(Σ) and i ′ ∈ Iq(Σ ′), for q as in (1.4), so
that (i 0,d) ∈ Z(Σ,M) due to the definition of Z(Σ,M). Similarly, (i ′, 0) is an
element of Iq(Σ ′)×{0} ⊂ Iq(Σ ′)×D1

+(M) = Z(Σ ′,M). Thus, (i 0,d) and (i ′, 0)
are realized as the index-degree pairs of some totally real immersions Σ →M and
Σ ′ →M . Realizability of (i ,d) now follows from Lemma 28.3. �

For a simply connected almost complex surface M, consider the condition

(28.3) q/2 is infinite, or finite and even, or, finally, RP2 admits
a totally real immersion in M, while q/2 is finite and odd,

with q defined by (1.4). Further conditions imposed on M are:

(28.4)
totally real immersions S2 →M realize every degree d
in some set generating the group Ker [c1(M)]⊂H2(M,Z)

(Ø is such a set when Ker [c1(M)] = {0}), and, for a closed real surface Σ,

(28.5)
every i ∈ Iq(Σ), with q as in (1.4), equals the Maslov
index i (f) of some totally real immersion f : Σ →M.

Here we use the notation of Section 2.

Lemma 28.5. Suppose that Σ is a closed real surface and M is a simply con-
nected almost complex surface such that either M is not spin, or c1(M) = 0. If
conditions (28.4) and (28.5) are satisfied, then Σ belongs to the class E defined
in Lemma 28.4.

Proof. Let (i ,d) ∈ Z(Σ,M) = Iq(Σ) × Dε
±(M). (Cf. (c) in Section 27 and the

definition of Z(Σ,M) in the lines following Theorem 2.2.) Choose f for this i
as in (28.5). As d, d(f) ∈ Dε

±(M) (Lemma 7.1(b)), the difference d ′ = d − d(f)
lies in Ker [c1(M)] (if Σ is orientable) or in Ker [w2(M)] (if Σ is not orientable).
Thus, even in the nonorientable case, d ′ is the mod 2 reduction of an element of
Ker [c1(M)] (see (d) in Section 27).

Hence, in view of (28.4) combined with Lemma 28.3 and Corollary 11.3, (i ,d)
is the index-degree pair of a totally real immersion Σ →M . �

The following result, proved below by a direct elementary argument, can also be
derived from the h-principle (via Theorem 2.2).

Theorem 28.6. Let a simply connected almost complex surface M satisfy condi-
tions (28.3) and (28.4). If the class E defined in Lemma 28.4 contains the Klein
bottle Σ = K2, then E contains every closed real surface.

Proof. Every closed surface either is one of S2, T 2,RP2,K2, or can be obtained by
iterated connected summation in which all intermediate summands, except (pos-
sibly) the last one, are orientable. (Cf. Remark 25.1.) Thus, by Lemma 28.4, it
suffices to show that E contains S2, T 2 and RP2. This will in turn follow from
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Lemma 28.5, once we show that condition (28.5) holds when Σ is any of these
three real surfaces.

First, (28.5) is obvious for Σ = RP2, since, by (24.3), Iq(RP2) is a one-element
set when q/2 is finite and odd, and empty otherwise. Similarly, (28.5) for Σ = S2

is immediate since Iq(S2) always has just one element (see (24.1)), and a totally
real immersion S2 → M exists by Corollary 11.3. Finally, (28.5) for Σ = T 2 is
obvious from Corollary 28.2(a). �

29. Totally real Klein bottles in CP1×CP1

Let M = CP1×CP1. The standard isomorphic identification

(29.1) H2(CP1×CP1,Z[2]) = Z[2] × Z[2] , with Z[2] as in (2.3),

in which the generators (1, 0), (0, 1) of Z[2]×Z[2] correspond to cycles of the form
CP1 × {y} and {x} ×CP1, gives

(29.2) (a, b) · (a′, b′) = ab′ + ba′ for a, b, a′, b′ ∈ Z[2] ,

with · denoting the Z[2]-valued intersection form in H2(M,Z[2]). In terms of the
identification (29.1),

(29.3) Ker [c1(M)] = {(a, b) ∈ Z× Z : a+ b = 0} ⊂ H2(M,Z).

In fact, c1(M) treated as a homomorphism Z × Z = H2(M,Z) → Z acts by
(a, b) 7→ 2(a+ b), since it sends both (1, 0) and (0, 1) to 2.

For the Klein bottle Σ = K2 and M = CP1× CP1, one now easily sees
that [{(1, 0), (3, 0)} × {(0,0), (1, 1)}] ∪ [{(1, 2), (3, 2)} × {(1, 0), (0, 1)}] is the set
Z(Σ,M) defined in the lines following Theorem 2.2. (This is clear from (25.6) with
H1(K2,Z) = Z× Z2; cf. Section 25, and (29.3).) Thus, Z(Σ,M) is an 8-element
subset of the 16-element set I4(Σ) × D0

+(M). Here I4(Σ) = {1, 3} × {0, 2} by
(25.6), q = 4 ((e) in Section 27), and D0

+(M) = H2(M,Z2) = {0, 1} × {0, 1} for
M = CP1×CP1, by (2.8).

The following result will be proved at the end of this section.

Proposition 29.1. Let M = CP1×CP1 and Σ = K2. Every element (i ,d) of
Z(Σ,M) then equals (i (f),d(f)) for some totally real immersion f : Σ →M. If,
in addition, d 6= (1, 1), then (i ,d) = (i (f),d(f)) for some totally real embedding
f : Σ →M.

Remark 29.2. An anti-diagonal totally real 2-sphere Σ ⊂ CP1× CP1 (see (vii)
in Section 9), suitably oriented, has the degree d = (1,−1) ∈ Z × Z; cf. (29.1).
In fact, writing d = (a, b) we get b = ∓1, as the composite of the mapping
x 7→ (x, x) followed by the projection onto the second factor is Id : CP1 → CP1.
Hence a = ±1 due to relations (5.3.b) and (29.3).

Remark 29.3. Given a totally real immersion f : Σ → M of a closed real sur-
face Σ in a simply connected almost complex surface M and a diffeomorphism
h : M →M preserving the almost complex structure, we have i (h◦f) = i (f). The
reason is that h, when naturally lifted to E(M), acts trivially on π1[E(M)], as it
commutes with the U(1) action which provides a generator of π1[E(M)].

The next lemma is similar to a result of Stout and Zame [27, Theorem 1], who
prove, given compact manifolds Σ and Σ ′ of dimensions n and k, with χ(Σ) = 0,
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admitting totally real immersions in Cn and, respectively, Ck, that the product
manifold Σ ×Σ ′ must admit a totally real embedding in Cn+k.

Lemma 29.4. Suppose that N,P are almost complex manifolds, Σ is the total
space, pr : Σ → Q is the projection of a locally trivial fibre bundle over a real
manifold Q, and h : Q → N is a totally real immersion/embedding. Moreover,
let Φ : Σ → P be a C∞ mapping whose restriction to each fibre Σy, y ∈ Q, is a
totally real immersion/embedding. Then f given by f(x) = (h(pr(x)), Φ(x)), for
x ∈ Σ, is a totally real immersion/embedding of Σ in the product almost complex
manifold M = N × P .

In fact, nonzero horizontal and vertical vectors in Σ have df -images that are
linearly independent over C.

Proof of Proposition 29.1. Again, let M = CP1×CP1 and Σ = K2. It suffices to
show that every d = (a, b) ∈ {0, 1} × {0, 1} = Z2 ×Z2 = H2(M,Z2) is realized as
the degree d(f) of some totally real immersion f : Σ →M , injective if d 6= (1, 1),
and having the Maslov index i (f) ∈ I4(Σ) = {1, 3} × {0, 2} with the required
second component 2|a−b|. Namely, when f is replaced by its composite f ′ with the
diffeomorphism K2 → K2 described immediately before Remark 25.1, the possible
values 1, 3 of the first component of i (f) become interchanged, while the second
component and the degree remain the same. (In fact, that diffeomorphism acts by
(a, b) 7→ (−a, b) in H1(K2, G) = G ×Gord2, cf. (25.1), for any Abelian group G,
due to the way it operates on H1(K2,Z), as described before Remark 25.1. On the
other hand, 3 is the opposite of 1 in Z4.)

First, Corollary 28.2(c) and Remark 29.2 allow us to choose totally real embed-
dings f : Σ → M and f ′ : S2 → M with d(f) = (0,0) (proving realizability
of d = (0,0)) and d(f ′) = (1,−1) ∈ Z × Z. Lemma 28.3 now provides a totally
real immersion Σ = Σ#S2 → M with the degree d = (1, 1) ∈ Z2 × Z2 and
the Maslov index i = i (f) ∈ I4(Σ) (where i (f ′) = 0 by (24.1), and we identify
I4(Σ)× {0} with I4(Σ)). Thus, d = (1, 1) is realized as well.

Next, to realize the degree d = (0, 1), let us identify CP1 with the unit sphere
S2 centered at zero in R3, and define a totally real embedding f : Σ → M as
in Lemma 29.4, choosing the base Q to be any circle embedded in CP1 and the
fibres to be the family of all great circles in S2 = CP1 that contain a fixed pair
of antipodal points u,−u ∈ S2. As a point y traverses the base circle Q, we
require the corresponding fibre Σy to vary by being rotated about the axis Ru in
R3 in such a way that, after y has gone all the way around Q, the fibre circle
will have undergone a rotation by the angle π. That the resulting embedding
f : K2 → M = CP1× CP1 is totally real follows from Lemma 29.4 (the total-
reality assumptions being satisfied for dimensional reasons; cf. (i) in Section 9).
That d(f) = (0, 1) is in turn clear if one considers the images of d(f) under the
factor projections: the projection of f onto the first CP1 factor is not surjective,
while f projected onto the second factor is the blow-down projection K2 → CP1

(with K2 treated as a two-point real blow-up of CP1 = S2).
Finally, for f chosen as above, with d(f) = (0, 1), let f ′ be the composite of

f with the switch mapping M 3 (y, z) 7→ (z, y) ∈ M . The totally real embedding
f ′ : Σ →M obviously has d(f ′) = (1, 0). As i (f ′) = i (f) (see Remark 29.3), this
completes the proof. �
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30. Surfaces immersed in CP2 # mCP2

For M,M ′ as in (2.11) and c1( · ) : H2( · ,Z) → Z, we have

(30.1) [c1(M ′)](ξ, q1, . . . , qm) = [c1(M)](ξ) − q1 − . . . − qm

whenever ξ ∈ H2(M,Z) and q1, . . . , qm ∈ Z. In fact, for the tangent bundle τ and
normal bundle ν of any of the m exceptional divisors Σ in M ′ resulting from the
blow-up, [c1(M ′)]([Σ ]) = c1(τ) + c1(ν) = 2 + c1(ν) and c1(ν) = [Σ ] · [Σ ] = −1.
(Note the sign convention used in (2.11).)

We now discuss a special case, using further notational conventions. First, M =
CP2#mCP2 stands, in the rest of this section, for the complex surface obtained
by blowing up any ordered set of m ≥ 1 distinct points in CP2, while 〈 , 〉 and Zm

are the standard Euclidean inner product of Rm and the additive subgroup of Rm

generated by the standard basis e1, . . . , em. The identification (2.11) now yields

(30.2) H2(CP2 # mCP2,Z) = Zm+1 = Z × Zm ⊂ Z ×Rm.

Specifically, the homology classes which correspond here to (1, 0) ∈ Z ×Rm and
(0, ej) ∈ Z × Rm, j = 1, . . . ,m, are realized by a projective line in CP2 not
containing any of the blown-up points (with its standard orientation, described at
the beginning of Section 5) and, respectively, by the m embedded copies of CP1

that replace the blown-up points, each of them with the opposite of its standard
orientation. Therefore,

(30.3) (d, q) · (d ′,q′) = dd ′ − 〈q,q′〉
for the intersection form · in H2(M,Z), while c1(M) : H2(M,Z) → Z acts by
(d, q) 7→ 3d− q1 − . . .− qm, where q = (q1, . . . , qm) (see (30.1)). Thus,

(30.4) Ker [c1(M)] = {(d, q1, . . . , qm) : q1 + . . .+ qm = 3d} ⊂ H2(M,Z).

Example 30.1. The totally real immersion f : S2 → CP2#CP2 described in
Corollary 15.3 for m = 1 has d(f) = (1, 3). In fact, let d(f) = (d, q). Then d = 1
due to the intersection equality in Corollary 15.3 and (30.3) for (d ′,q′) = (1,0), so
that (5.3.b) and (30.4) for m = 1 give (d, q) = (1, 3).

Example 30.2. A totally real embedded 2-sphere Σ ⊂ CP2# 2CP2 with the
degree [Σ ] = (0, 1,−1), for a suitable orientation of Σ, can be obtained as follows.
Using a complex automorphism of CP2, we may assume that the blown-up points
are x± = (0,±a) ∈ C×R ⊂ C2 ⊂ CP2, with a > 0. The 2-sphere S of radius a in
C×R, centered at (0,0), contains x± as its unique complex points, both removable
by blow-up (Example 13.5). Blowing them up transforms S into a totally real
embedded sphere Σ in CP2# 2CP2. To see that [Σ ] = (0, 1,−1), set [Σ ] = (d, q).
Thus, d = 0 from (30.3) applied to the homology class (d ′,q′) = (1,0), represented
by a projective line in CP2 not intersecting S. Next, (5.4) (for n = 2) and (30.3)
yield 〈q,q〉 = −(d, q) · (d, q) = χ(Σ) = 2. The two components of q thus have the
absolute value 1, and opposite signs (by (5.3.b) combined with (30.4) for d = 0
and m = 2).

Remark 30.3. Condition (28.4) is satisfied by M = CP2#mCP2, m ≥ 1. In fact,
Ker [c1(M)] is generated by (1, 3e1) and (0, ej − e1), j = 2, . . . ,m, with ej as
above. (See (30.4).) These generators are all realized by totally real immersions,
in view of Examples 30.1, 30.2 and Lemma 12.1(a).
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Proof of Theorem 2.16. We will verify below that the complex surfaces (0.1) all
satisfy the assumptions, and hence conclusions, of Theorem 28.6. Thus, totally
real immersions of closed real surfaces Σ in the complex surfaces M forming
the list (0.1) realize, as their index-degree pairs, all elements (i ,d) of the set
Z(Σ,M) ⊂ Iq(Σ)×Dε

±(M) described in the lines following Theorem 2.2. This will
clearly imply Theorem 2.16, since in Section 7 we already proved that, conversely,
all such index-degree pairs lie in Z(Σ,M).

First, (28.3) holds if M is C2, CP1× CP1, CP2, or CP2#mCP2, m ≥ 1, as
q/2 then equals, respectively, ∞, 2, 3 or 1 (see (e) – (f) in Section 27), and in
the last two cases a totally real immersion RP2 → M exists according to (vi) in
Section 9 combined with Lemma 12.1(a).

Next, (28.4) is satisfied by C2 and CP2 in view of Corollary 11.3 (since Ker [c1(·)]
is the trivial group); by CP1×CP1, as a consequence of (29.3) and Remark 29.2;
and by CP2#mCP2, m ≥ 1, according to Remark 30.3.

Finally, the assumption about K2 in Theorem 28.6 holds for CP1× CP1 by
Proposition 29.1, and for the remaining complex surfaces (0.1) it is immediate
from Lemma 28.5: (28.5) is satisfied, with Σ = K2, by Corollary 28.2(b), since
q/2 ∈ {∞, 3, 1} (as remarked above), while (28.4) was verified in the last paragraph.
This completes the proof. �

31. Some special cases of Theorem 2.17

Let Σ and M be, respectively, a fixed closed real surface and one of the complex
surfaces (0.1). The pairs (i ,d) that can be simultaneously realized as the Maslov
index and degree of a totally real immersion Σ →M then are nothing other than
all elements of the set Z(Σ,M). (See Theorem 2.16 and the discussion following
it in Section 2.) This is, however, not the case if one replaces the word ‘immersion’
by ‘embedding’ since, in view of (5.4) and Corollary 23.2 (for n = 2), the degree
d = d(f) of any totally real embedding f : Σ → M satisfies the additional
constraint (2.10).

Theorem 2.17 states that there are no further constraints, as long as m ≤ 7 in
(0.1). In other words, the conditions (i ,d) ∈ Z(Σ,M) and (2.10) hold if and only
if the pair (i ,d) is realized by a totally real embedding Σ →M , where M is C2,
CP2, CP1×CP1, or CP2#mCP2, 1 ≤ m ≤ 7.

In this section we establish Theorem 2.17 in the case where Σ is orientable and
M is C2, CP2 or CP1× CP1. (For the other cases, see Section 36.) Note that
Z(Σ,M) = Iq(Σ) × Ker [c1(M)] when Σ is orientable, according to (2.7), (2.8)
and the lines following Theorem 2.2.

First, if Σ is orientable and M = C2 or M = CP2, relations (24.4), (24.5) and
(2.7) give d ∈ Ker [c1(M)] = {0}, and so, by (2.10), Σ must be the torus T 2. Our
assertion is now obvious from Corollary 28.2(a).

To verify Theorem 2.17 for orientable Σ and M = CP1× CP1, we use the
notations of (29.1) – (29.2). In view of (29.2) – (29.3), conditions d ∈ Ker [c1(M)]
and (2.10), for any given closed oriented surface Σ, now read a + b = 0 and
2ab = −χ(Σ), where d = (a, b). This gives χ(Σ) = −2ab = 2a2 ≥ 0; that is, Σ
can only be the torus T 2 with a = b = 0 or the sphere S2 with (a, b) = (± 1,∓ 1).
A totally real embedding Σ → M realizing the pair (i ,d) for any i ∈ I4(Σ)
(cf. (e) in Section 27) and our d = (a, b) thus exists in view of Corollary 28.2(a)
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(for Σ = T 2) or Remark 29.2 (for Σ = S2). Note that, if Σ = S2, every value of
i ∈ I4(Σ) is realized, since (24.1) allows just one value, i = 0.

32. A Diophantine equation

Let Σ be an oriented closed real surface, and let M be the complex surface
obtained by blowing up any set of m distinct points in CP2, for m = 1, . . . , 8.
Thus, Z(Σ,M) = Iq(Σ) × Ker [c1(M)] (see Section 31). As a first step toward
proving Theorem 2.17 for such Σ and M , we will provide in this section an explicit
description of the subset of Z(Σ,M) defined by the additional requirement (2.10).
However, as q = 2 ((f) in Section 27) and, by (2.9), I2(Σ) = {w1(Σ)} = {0},
the first component i of any element (i ,d) of that subset is uniquely determined,
so that we need only find the corresponding set of the second components d .
We use the identification (30.2) to treat d as a pair (d, q) with d ∈ Z and
q ∈ Zm ⊂ Rm or, equivalently, as an (m+1)-tuple (d, q1, . . . , qm) of integers. We
also set χ = χ(Σ) and 1 = (1, . . . , 1) ∈ Rm. The conditions imposed on d are
d ∈ Ker [c1(M)] and d · d = −χ, which, by (30.3) – (30.4), amount to

(32.1) 〈q,1〉 = 3d , |q|2 = d2 + χ , d ∈ Z , q ∈ Zm.

Here 〈 , 〉 is the inner product of Rm, and | | is the corresponding norm.
We now proceed to solve equations (32.1) with χ ≤ 2 and 1 ≤ m ≤ 8.

Example 32.1. Treating (32.1) as a system of equations imposed on d and q =
(q1, . . . , qm), in which m,χ ∈ Z are fixed parameters with m ≥ 1, we can rewrite
it as q1 + . . . + qm = 3d and q21 + . . . + q2m = d2 + χ, the unknowns now being
d, q1, . . . , qm ∈ Z. Thus, since q2 ≡ q mod 2 for any q ∈ Z, a solution to (32.1)
exists only if χ is even. Each of the following three families of solutions to (32.1)
represents infinitely many values of m (with d always denoting an integer):

(i) (d, q) = (0,0) = (0, 0, . . . , 0), with any m ≥ 1 and χ = 0,
(ii) (d,q) = (d,1) = (d, 1, . . . , 1), for d ≥ 1, with m = 3d and χ = (3− d)d,
(iii) (d,q) = (d, d−1, 1, . . . , 1), for any d ≥ 0, with m = 2d+ 2 and χ = 2.

As we will show in Lemma 32.3 below, a solution to (32.1) with χ < 0 exists
only if m ≥ 10. In this regard, m = 10 is a threshold value: solutions (d, q) =
(d, q1, . . . , qm) with m = 10 not only exist for any prescribed even negative integer
χ, but can also be chosen so that d > 0 and qj > 0 for all j, as illustrated by
(d, q) = (3c+ 1 + 2ε; c, c, c, c + ε, . . . , c + ε, 3), for integers c ≥ 2 and ε ∈ {0, 1},
with χ = 8 − 2ε − 6c or (d, q) = (3c + 4; c + 2, c, c + 1, . . . , c + 1, 3), for integers
c ≥ 1, with χ = 4− 6c.

Remark 32.2. Equations (32.1) remain satisfied after any permutation of the com-
ponents q1, . . . , qm of q, as well as after the signs of d and all q1, . . . , qm have been
changed. Also, a new solution with m replaced by m′ > m (or, m′ < m) arises
if one inserts additional m′ − m zeros (or, respectively, deletes existing m − m′

zeros) among the q1, . . . , qm. Successive applications of these operations, repeated
in any order, any number of times, lead to what we call trivial modifications of the
given solution (d,q) to (32.1).

Lemma 32.3. No solutions to (32.1) exist when χ < 0 and 1 ≤ m ≤ 9. If χ = 0,
the only solution (d, q) with 1 ≤ m ≤ 8 is (0,0), while the only solutions with
χ = 0 and m = 9 are (3s, s, s, s, s, s, s, s, s, s) for s ∈ Z.
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Proof. The Schwarz inequality 〈q,1〉2 ≤ |q|2|1|2 becomes (9 − m)d2 ≤ mχ for
(d, q) with (32.1). If 1 ≤ m ≤ 9, this gives χ ≥ 0. If, in addition, χ = 0, our
Schwarz inequality yields (9−m)d = 0, and so q is a multiple of 1 (the equality
case in the Schwarz inequality). Thus, either χ = 9 − m = 0, or m < 9 and
χ = d = 0, which completes the proof. �

For (d, q),m, χ with (32.1) and the greatest integer s with 3s ≤ d+ 1,

(32.2) d = 3s+ r , while s ∈ Z and r ∈ {−1, 0, 1} .
Setting s = s1 = (s, . . . , s) ∈ Rm we now have |q|2 = d2 +χ = 9s2 +6rs+ r2 +χ,
|s|2 = ms2 and 〈q, s〉 = 3sd = 3s(3s+ r) = 9s2 + 3rs. Hence

(32.3) |q− s|2 = (m− 9)s2 + r2 + χ and r2 ∈ {0, 1}.

Lemma 32.4. The only solutions (d, q) = (d, q1, . . . , qm) to (32.1) with χ = 2
and 1 ≤ m ≤ 8 are

(32.4) (0; 1,−1) , (1; 1, 1, 1) , (2; 1, 1, 1, 1, 1, 1) , (3; 2, 1, 1, 1, 1, 1, 1, 1) ,

and those obtained from them by trivial modifications; cf. Remark 32.2.
Note that, up to trivial modifications, (32.4) are precisely the solutions (iii) in

Example 32.1 for d = 0, 1, 2, 3.

Proof. Let (d, q) = (d, q1, . . . , qm) satisfy (32.1) with χ = 2 and 1 ≤ m ≤ 8. After
a trivial modification we get

(32.5) d ≥ 0 and q1 . . . qm 6= 0 .

By (32.3), s2 ≤ (9−m)s2 ≤ χ+1 = 3, and so s ∈ {−1, 0, 1}. Since d ≥ 0, we have
s ∈ {0, 1}; cf. (32.2). For ` = |q − s|2, (32.3) with χ = 2 gives ` ∈ {2, 3} (when
s = 0) or ` ∈ {m− 7,m− 6} (when s = 1). As ` ≥ 0, it follows that m ∈ {6, 7, 8}
if s = 1, while m = ` ∈ {2, 3} and |q1| = . . . = |qm| = 1 if s = 0, as ` = |q|2 ≤ 3
and, by (32.5), q1 . . . qm 6= 0. The triple (s,m, `) thus must assume one of the
seven values (0, 2, 2), (0, 3, 3), (1, 6, 0), (1, 7, 0), (1, 7, 1), (1, 8, 1) and (1, 8, 2). When
s = 1, the relations ` =

∑m
j=1(qj − 1)2 ≤ 2 and (32.5) imply that

(32.6) ` of the m integers q1, . . . , qm equal 2, and m− ` of them equal 1.

Thus, if s = 1, we have q1 + . . .+ qm = m+ `, while, by (32.1), q1 + . . .+ qm = 3d,
and so m + ` = 3d, which eliminates three of the seven triples (s,m, `), leaving
only those with s = 0 or m + ` divisible by three: (0, 2, 2), (0, 3, 3), (1, 6, 0), and
(1, 8, 1). These triples lead to the four possibilities listed in (32.4). Namely, (0, 2, 2)
and (0, 3, 3) have m ∈ {2, 3} and |q1| = . . . = |qm| = 1, so that the sequence of
two or three integers qj with values ±1 and sum 3d ≥ 0 (cf. (32.1) and (32.5))
must be (±1,∓1) with d = 0 or (1, 1, 1) with d = 1, as required. By (32.6), the
triples (1, 6, 0) and (1, 8, 1) correspond in turn to the last two solutions listed in
formula (32.4). �

33. Deformations of pseudoholomorphic immersions

We now present some facts needed in Section 34 to prove Theorem 2.18.
Given complex vector spaces W, V and A ∈ HomR(W,V ), let A± stand for

the unique operators W → V such that A+ is C-linear, A− is antilinear, and
A = A+ + A−. Thus, A± = (A ∓ i ◦ A ◦ i)/2 are the components of A relative
to the decomposition of HomR(W,V ) into the ±1-eigenspaces of the involution
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A 7→ −i ◦ A ◦ i, where i stands for multiplication by i. Let ∇ now be a fixed
connection in a complex vector bundle η over an almost complex manifold Σ. The
Cauchy-Riemann operator ∂ of ∇ is the linear differential operator that takes any
C1 section ψ of η to

(33.1) ∂ψ = [∇ψ]−,

for [ ]− as in the preceding lines, so that ∂ψ is a section of HomC(TΣ, η) (where
TΣ is the complex conjugate bundle of TΣ) and its value ∂ψx at any x ∈ Σ is
([∇ψ]x)−. Note that ∇ψ itself is a section of HomR(TΣ, η) sending v ∈ TxΣ, for
any x ∈ Σ, to ∇vψ ∈ ηx. Thus, ∂ψx : TxΣ → ηx and 2∂ψxv = ∇vψ + i∇ivψ
whenever v ∈ TxΣ.

For a real k-dimensional manifold Σ and an almost complex manifold M ,
let [TM ]∧k denote the kth complex exterior power of TM , and let detRTΣ
be as in (5.2.ii). Any C∞ mapping f : Σ → M then gives rise to the vec-
tor bundle morphism det df : detRTΣ → f∗([TM ]∧k) uniquely characterized by
(det df)x(v1 ∧ . . . ∧ vk) = [dfxv1] ∧ . . . ∧ [dfxvk] for x ∈ Σ and v1, . . . , vk ∈ TxΣ.
Obviously, f is a totally real immersion if and only if det df is nonzero everywhere
as a section of HomR(detRTΣ, f∗([TM ]∧k)).

Given a pseudoholomorphic immersion f of an oriented real surface Σ in an
almost complex surface M (cf. the lines following Theorem 2.18) and a C∞ curve
(homotopy) I 3 t 7→ f t of mappings Σ → M , where I ⊂ R is an interval, such
that 0 ∈ I and f 0 = f , let ν be the (complex) normal bundle of f (see (5.1)).
Then

(33.2) i) det df t

t=0

= 0, ii)
d

dt
det df t

t=0

= df ∧ ∂ψ.

Here (i) reflects the fact that f 0 = f is pseudoholomorphic; (ii), however, requires
further explanation. First, ψ in (ii) is the section of ν obtained as the image
of (df t/dt)t=0 under the projection morphism f∗TM → ν, and ∂ is the Cau-
chy-Riemann operator for a suitable connection in ν, while both sides of (ii) are
sections of HomR(detRTΣ, f∗([TM ]∧2)) and df∧∂ψ is given by (df∧∂ψ)x(u, v) =
[dfxu]∧ [∂ψxv]− [dfxv]∧ [∂ψxu] for x ∈ Σ and u, v ∈ TxΣ. Thus, with iu ∈ TxΣ
defined using the f -pullback of the almost complex structure of M to Σ,

(33.3) (df ∧ ∂ψ)x(u, iu) = −2i[dfxu] ∧ [∂ψxu],

due to complex-linearity of dfx and anti-linearity of ∂ψx. Secondly, the spaces
λx = HomR([TxΣ]∧2, [Tf(t,x)M ]∧2), with f(t, x) = f t(x), are the fibres of a com-
plex line bundle λ over Σ × I, and (x, t) 7→ (det df t)x is, in view of (i), a section
of λ, vanishing along the submanifold Σ × {0}. In general, when a C1 section
h of a vector bundle η over a manifold N vanishes at a point y ∈ N, one can
define a linear operator Dhy : TyN → ηy to be the composite in which the dif-
ferential dhy : TyN → T(y,0)η (of h treated as a mapping N → η into the total
space) is followed by the projection T(y,0)η → ηy coming from the identifications
T(y,0)η = TyN ⊕ T0ηy and T0ηy = ηy. (Hence, for η = T ∗N and h = dφ with
any C2 function φ : N → R, the Hessian of φ at the critical point y is Dhy.)
We may now set (dh(y(t))/dt)t=0 = dhyv whenever t 7→ y(t) is a C1 curve in N
with y(0) = 0, having the velocity v ∈ TyN at t = 0. As a consequence of this
for η = λ and N = Σ × I, along with any point y = (x, 0) in the submanifold
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Σ ×{0}, and the curve y(t) = (x, t), the left-hand side of (33.2.ii) is a well-defined
section of HomR(detRTΣ, f∗([TM ]∧2)).

Equality (33.2.ii) is now easily verified in local coordinates. For instance, one
may fix a diffeomorphism between a neighborhood of any given point of f(Σ)
and a neighborhood U of (0,0) in C2, which makes f appear as the inclusion
U∩(C×{0}) → C2 and, at all points of U∩(C×{0}), identifies the almost complex
structure of M with the standard complex structure of C2. The connection in ν is
then defined only locally (as well as coordinate-dependent and nonunique), but the
corresponding Cauchy-Riemann operator ∂ is uniquely characterized by (33.3). A
globally defined connection leading to ∂ may now be obtained via a finite partition
of unity.

34. Proof of Theorem 2.18

Lemma 34.1. Let dx be a fixed positive smooth measure density on a compact
manifold Σ with dimΣ ≥ 1.

(i) For any finite-dimensional vector space V of real-valued continuous func-
tions on Σ, there exist C∞ functions f, h : Σ → R, both L2-orthogonal
to V, such that |f |+ |h| > 0 everywhere in Σ.

(ii) For any finite-dimensional vector space W of complex-valued continuous
functions on Σ, some C∞ function ϕ : Σ → C is L2-orthogonal to W
and nonzero everywhere in Σ.

Proof. To prove (i), set k = dimV, and let δ : Σ → V ∗ be the C∞ mapping
assigning to each x the evaluation functional (Dirac delta) δ[x] which sends f to
f(x). Its image {δ[x] : x ∈ Σ} spans V ∗, as otherwise it would lie in a proper
subspace; that is, some f ∈ V r {0} would vanish at all x ∈ Σ. Thus, we may
choose 2k distinct points x1, . . . , xk, y1, . . . , yk ∈ Σ such that both δ[x1], . . . , δ[xk]
and δ[y1], . . . , δ[yk] are bases of V ∗, by first picking the xa and then selecting
each ya near the corresponding xa. Let us also fix pairwise disjoint open sets
U1, . . . , Uk, U

′
1, . . . , U

′
k in Σ with xa ∈ Ua and ya ∈ U ′a for a = 1, . . . , k.

There must exist a C∞ function f : Σ → R which is L2-orthogonal to V and
such that f = 1 on ΣrU , where U = U1∪ . . .∪Uk. In fact, let φ1, . . . , φk be the
basis of V dual to the basis δ[x1], . . . , δ[xk] of V ∗. Thus, φa(xb) = δab for a, b =
1, . . . , k. The functions φ1, . . . , φk are linearly independent when treated as linear
functionals acting, via the L2 inner product, on the space F of all C∞ functions
Σ → R with compact supports contained in U . (Otherwise, some nontrivial
combination of the φa, being L2-orthogonal to F, would vanish everywhere in U,
which is impossible as φa(xb) = δab.) Hence, given λ1, . . . , λk ∈ R, there exists
ξ ∈ F with

∫
Σ
φaξ dx = λa for a = 1, . . . , k. Choosing such ξ for λa = −

∫
Σ
φa dx,

a = 1, . . . , k, we can now define f by f = ξ + 1.
The same argument may be applied to the ya and U ′a rather than xa and Ua.

Thus, there exists a C∞ function h : Σ → R which is L2-orthogonal to V and
such that h = 1 on ΣrU ′, with U ′ = U ′1 ∪ . . .∪U ′k. As (ΣrU)∪ (ΣrU ′) = Σ,
this yields (i). Now (ii) follows if we set ϕ = f + ih with f, h as in (i) for
V = {Reχ : χ ∈ W}. �

Proof of Theorem 2.18. We have f∗[detCTM ] = τ ⊗ ν = Hom(τ , ν) as f∗TM =
τ ⊕ν, and so the equivalence of (a) and (b) is obvious. Furthermore, (c) implies (a)
in view of (5.1) with n = 2. Now assume (b) and let ∂ be the Cauchy-Riemann
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operator appearing in (33.2.ii). Since ∂ is elliptic, for any prescribed C∞ section
φ of Hom(τ , ν), solvability of the equation ∂ψ = φ with an unknown C∞ section
ψ of ν is equivalent to L2-orthogonality of φ to the kernel of the formal adjoint of
∂. (To form the adjoint, one fixes Hermitian fibre metrics in τ and ν, along with
a positive smooth measure density on Σ.) Lemma 34.1(ii) now implies that φ, for
which the equation is solvable, may be chosen so as to be nowhere zero. (In fact,
since we assume (b), we may fix a global C∞ section of Hom(τ , ν), unit relative
to the Hermitian fibre metric naturally determined by those in τ and ν, and use
it to treat sections of Hom(τ , ν), including φ, as functions Σ → C.) Choosing
a deformation t 7→ f t of f in the direction of the corresponding solution ψ, and
applying (33.2), we now obtain (c). Note that the section appearing in (33.2.ii) is
nonzero everywhere in Σ, since the vectors within square brackets in (33.3), one
tangent and one normal to Σ, are nonzero whenever u 6= 0. �

35. Proofs of Theorem 2.19 and Corollaries 2.20 – 2.21

We begin by proving Theorem 2.19 in the special case where the m distinct
blown-up points, rather than being arbitrary, are selected in a particular way: the
first c of them lie in Σ, and the last m− c in M rΣ.

By blowing up the m points we transform Σ into a complex submanifold Σ ′

of the resulting complex surface M ′ with [Σ ′ ] = ([Σ ], 1, . . . , 1, 0, . . . , 0), where 1
occurs c times. This is clear since the Zm component of [Σ ] in the decomposi-
tion (2.11) is formed by intersection numbers of Σ ′ with the ordered m-tuple of
exceptional divisors. Hence, by (30.1), the restriction of c1(M ′) to Σ ′ is zero, so
that, in view of Theorem 2.18, the inclusion mapping Σ ′ →M ′ is homotopic to a
totally real embedding ĥ : Σ →M ′. (We identify Σ ′ with Σ using the blow-down
projection π : M ′ → M .) If ĥ is chosen sufficiently C1-close to the inclusion
Σ ′ →M ′ (cf. Theorem 2.18), ĥ(Σ) will have a single, transverse intersection with
each of the first c exceptional divisors and will not intersect the other m − c of
them. The composite h = π ◦ ĥ : Σ → M thus is an embedding homotopic to
the inclusion Σ →M , having exactly c complex points removable by blow-up (cf.
Section 13), located at the first c original blown-up points (that lay on Σ) and no
other complex points.

Let y1, . . . , ym now be an arbitrary m-tuple of distinct points in M . Deforming
h slightly if necessary, we may assume that yj /∈ h(Σ) for j = 1, . . . ,m. (If
some yj is one of the c complex points of h(Σ) removable by blow-up, we deform
h around yj using the flow of a C∞ vector field on M supported in a small
neigborhood of yj , which is holomorphic near yj , so that removability by blow-up
is preserved.) Applying the final clause of Lemma 14.1 to these h and yj , we
obtain an embedding h′ : Σ → M which, when the points y1, . . . , ym are blown
up, becomes the required totally real embedding f : Σ →M ′, completing the proof
of Theorem 2.19.

Proof of Corollary 2.20. This is just Theorem 2.19 with c = 3d and Σ realized as a
nonsingular degree d curve in CP2. (For instance, the curve given by xd+yd+zd =
0 in the homogeneous coordinates [x, y, z].) �

Proof of Corollary 2.21. If d ≤ 2, the assertion follows from Corollary 2.20 for
d ≤ 2 (with a rearrangement of the blown-up points if d = 1). Now let d ≥ 3, and
let M be the complex surface obtained by blowing up a point in CP2. Using a
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complex automorphism of CP2, we may assume that the blown-up point is [0, 0, 1].
Equation xd = yd−1z, in the homogeneous coordinates [x, y, z], defines a degree
d singular curve in CP2, and by blowing up its unique singularity, at [0, 0, 1], we
transform it into a nonsingular holomorphic curve Σ ⊂ M , diffeomorphic to S2,
with [Σ ] = (d, d − 1). (In the holomorphic local coordinates ξ, η for M making
the blow-down projection appear as (ξ, η) 7→ [ξ, ξη, 1], equation xd = yd−1z reads
ξ = ηd−1, while the exceptional divisor is given by ξ = 0.) We can now apply
Theorem 2.19 to these M,Σ, with c = 2d+ 1 (cf. (30.1)) and m = j − 1. �

36. The remaining cases of Theorem 2.17

In Section 31 we proved Theorem 2.17 except for two cases, which we deal with in
this section. In the first remaining case, Σ is assumed oriented and M is obtained
from CP2 by blowing up any set of m distinct points, 1 ≤ m ≤ 8. As shown in
Lemmas 32.3 and 32.4, Σ must then be either the torus T 2, with the degree (0,0),
or the sphere S2, with one of the degrees (32.4) and their trivial modifications. (Cf.
the beginnining of Section 32.) We will now describe how each of these possibilities
is realized.

For (0,0), we fix a totally real 2-torus in an open ball U ⊂ C2 (cf. (v) in
Section 9) and then use a holomorphic embedding U → M . That the degrees
(32.4) and their trivial modifications are realized by totally real embedded 2-spheres
with m ≤ 8 is in turn clear, respectively, from Example 30.2 (combined with
Lemma 12.1(a)), Corollary 15.3 for m = 3 (along with Lemmas 12.1(a) and 32.4),
and Corollary 2.21 for d = 2, 3.

To establish Theorem 2.17 for nonorientable surfaces Σ, which is the other
remaining case, we first need an example and a lemma.

Given a simply connected almost complex surface M, a closed real surface Σ,
and a fixed element d of H2(M,Z[2]) (notation of (2.3)), consider the following
condition, imposed on d, in which q is defined by (1.4) and Z(Σ,M) is the set
described in the lines following Theorem 2.2:

(36.1)
Every (i ,d) ∈ Z(Σ,M) with the second component d is the
index-degree pair of some totally real embedding f : Σ →M.

Example 36.1. Condition (36.1) is satisfied by

(i) the torus Σ = T 2 and M as above, with d = 0,
(ii) the Klein bottle Σ = K2 and d = 0, with any M as above for which

q = ∞ or q is finite but not divisible by 4,
(iii) M = CP1×CP1 and Σ = K2, with any d ∈ H2(M,Z2) r {(1, 1)},
(iv) M = CP1×CP1 and Σ = S2, for d = (±1,∓1) ∈ Z2 = H2(M,Z),
(v) M = CP2 and Σ = RP2, with d = 1 ∈ {0, 1} = Z2 = H2(M,Z2).

In fact, (i) and (ii) are immediate from (a) – (b) in Corollary 28.2, (iii) from
Proposition 29.1, and (iv) from Remark 29.2 (where i must equal 0 by (24.1)).
Finally, (v) follows since Z(Σ,M) = I6(RP2) × D0

−(CP2) has just one element
(see (e) in Section 27, (24.3) and (24.4)), and that element is realized by the totally
real embedding described in (vi) of Section 9.

In the following lemma, by the mod 2 reduction of d ∈ H2(M,Z2) we mean
d itself.
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Lemma 36.2. Let M be a fixed simply connected almost complex surface. If
condition (36.1) holds for a closed real surface Σ and d ∈ H2(M,Z[2]), then
(36.1) will remain satisfied after Σ and d have been replaced by the connected
sum Σ#T 2#K2 and the mod 2 reduction of d.

Proof. Let us assume (36.1), with our fixed M , for some given Σ and d. First,
M, Σ#T 2 and d then satisfy a modified version of (36.1), obtained when the word
‘embedding’ is replaced by the phrase immersion having just one double point, at
which the self-intersection is transverse and, for orientable Σ, also negative in the
sense of Section 16. This is clear from Example 36.1(i) applied, instead of M , to
a simply connected open submanifold U of M rΣ, combined with Theorem 18.1
and (28.2). Specifically, to represent any given (i ,d) ∈ Z(Σ#T 2,M) with the
second component d by a totally real immersion f : Σ#T 2 →M having a single
self-intersection of the type just described, we write i = (i∗, i ′), as in (25.3.iii),
and then obtain f from the connected-sum operation performed on the totally real
embeddings Σ →M and T 2 → U ⊂M that realize the index-degree pairs (i∗,d)
and (i ′ , 0). (By (25.3), the additional condition imposed on elements of Z(Σ,M)
or Z(Σ#T 2,M) when Σ is nonorientable and χ(Σ) is even, described in the
lines following Theorem 2.2, holds for (i ,d) if and only if it does for (i∗,d).)

We now use Lemma 16.2 to remove the self-intersection of each totally real
immersion f : Σ#T 2 →M obtained as above, which, as explained in Section 16,
gives rise to a totally real embedding Σ#T 2#K2 → M . Finally, the assertion
about homotopy classes in Lemma 16.2 implies (36.1) for Σ#T 2#K2 and d. In
fact, the connected-sum operation in Lemma 16.2, resulting in Σ#T 2#K2, may be
viewed as involving one orientable summand: when Σ is orientable, the summand
in question is Σ#T 2, while for nonorientable Σ it is T 2 (since Σ#T 2#K2 is
then diffeomorphic to Σ#T 2#T 2). Thus, if Σ is nonorientable, our claim follows
from (25.3), since diffeomorphisms T 2 → T 2 equal to the identity on some disk in
T 2 (and, therefore, admitting extensions to Σ#T 2#T 2) act on H2(T 2,Z) = Z2

so as to realize every automorphism in SL(2,Z). Consequently, the T 2 Maslov
indices Z2 → Zq constructed in Lemma 16.2 (which are trivial on one Z summand
and arbitrary on the other) represent, after re-parametrization, all Maslov indices
Z2 → Zq, as required. Similarly, for orientable Σ, we obtain our conclusion using
diffeomorphisms of K2 equal to the identity on a disk. �

We will now prove the last remaining case of Theorem 2.17, in which Σ is
assumed nonorientable. First, let M be C2,CP2 or CP1×CP1. Every nonorient-
able closed surface admitting a totally real embedding in M can now be obtained
from just one or two low-genus primary surfaces by repeated applications of the
operation Σ 7→ Σ#T 2#K2 (see Corollaries 2.12, 2.13 and 2.10). Specifically, for
M = C2, or M = CP2, or M = CP1×CP1, the primary surfaces are: K2 alone,
or K2 and RP2 or, respectively, K2 and S2. The assertion of Theorem 2.17
for the complex surfaces C2, CP2 and CP1× CP1, with all nonorientable Σ, is
now immediate from Lemma 36.2, since, in view of Example 36.1, it holds for the
primary surfaces just listed. (If M = C2 or M = CP2, (e) in Section 27 gives
q = ∞ or q = 6, and, in both cases, d = 0 for Σ = K2 by (2.10.ii). Similarly, if
M = CP1×CP1, (2.10.ii) and (29.2) imply that d 6= (1, 1) for Σ = K2.)

Let M now be obtained from CP2 by blowing up any set of m ≥ 1 distinct
points, and let Σ be a totally real closed surface embedded in M . By the total
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mod 2 degree of Σ we mean the pair (d, s) with d ∈ {0, 1} and s ∈ {0, 1, . . . ,m},
characterized as follows. The mod 2 reduction of the degree [Σ ] ∈ H2(M,Z[2])
(equal to [Σ ] itself if Σ in not orientable) can, in analogy with (30.2), be treated
as an (m+1)-tuple (d, q1, . . . , qm) of elements of Z2 = {0, 1}. This gives the value
of d, while s is defined to be the number of times that 1 ∈ Z2 occurs among the
qj . Thus, s is the sum of the qj treated (and added) as integers with qj ∈ {0, 1}.

For M,m,Σ, d, s with the properties just listed,

(36.2)
blowing up a point of M that lies in Σ replaces the
quadruple m,Σ, d, s with m+ 1, Σ#RP2, d, s+ 1.

This is immediate from Lemma 12.1(b) for n = k = 2 and Lemma 12.1(c).
If, in addition, Σ is nonorientable or diffeomorphic to S2, then

(36.3) d − s − χ(Σ) is divisible by 4,

by (2.10) with d2 = d− q1 − . . .− qm, for qj ∈ {0, 1} ⊂ Z as above. The S2 case
follows if one applies the mod 4 reduction to (2.10.i), since 2 = −2 in Z4. We
can rephrase (36.3) in the form of a table:

Table 2. The values, allowed by (36.3), of the total mod 2 degree
(d, s) for totally real embeddings with 1 ≤ s ≤ 7 and the four
‘primary’ surfaces listed in the top row. Some values of (d, s) for
S2 and for s > 7 are listed as well.

Row S2 RP2 K2 K2#RP2 K2#K2

1 (0, 0) (0, 1) (0, 2)
2 (0, 2) (0, 3) (0, 4) (0, 5) (0, 6)
3 (0, 6) (0, 7) (0, 8) (0, 9) (0, 10)
4 (0, 10) (0, 11)
5 (1, 0) (1, 1) (1, 2) (1, 3)
6 (1, 3) (1, 4) (1, 5) (1, 6) (1, 7)

Proving Theorem 2.17 for nonorientable surfaces is now reduced to realizing, for
each row of Table 2, the leftmost total mod 2 degree (d, s) appearing in that row
by a totally real embedding Σ →M (where M , again, arises from CP2 by blowing
up m points, and, this time, m = s). In fact, for the primary surfaces, the remain-
ing total mod 2 degrees, in each row separately, are then immediately realized by
starting from the leftmost one and then successively applying (36.2). Next, for all
the remaining (nonprimary) nonorientable closed surfaces, Theorem 2.17 follows
from Lemma 36.2 (which now states that realizability for Σ implies the same for
Σ#T 2#K2, with m and (d, s) unchanged). On the other hand, Lemma 12.1(a)
allows us to replace m = s with any m ≥ s.

The leftmost total mod 2 degree (d, s) in each row is in turn realized as follows:
Row 1, by Example 20.2 and Lemma 28.1; Row 2, in view of Example 30.2; Row
3, from Corollary 2.21 for d = 2 (and j = 6); Row 4, by Corollary 2.21 for d = 4
(and j = 10); Row 5, by (vi) of Section 9; and, finally, Row 6, from Corollary 2.20
for d = 1 (and m = 3).

The m distinct blown-up points in the above argument can be made arbitrary,
even though the left-to-right steps in every row of Table 2 use Lemma 12.1, with the
blown-up point lying on the original totally real surface. Namely, by Lemma 12.1(c),
after a small deformation each of the resulting totally real surfaces Σ will have just
one, transverse intersection point with any exceptional divisor that it intersects.
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Blowing down all such divisors gives rise to a finite set of complex points, all
removable by blow-up, on a new surface Σ ′, and the final clause of Lemma 14.1
allows us to deform Σ ′ so as to move the complex points to arbitrarily prescribed
locations, where they can be blown up again.

Appendix. Spheres and tori in CP2 # 9CP2

Our proof, in the last section, of Theorem 2.17 for nonorientable surfaces, works
not only if 1 ≤ m ≤ 8, but also for m = 9, 10, 11. The question of extending the
classification of Theorem 2.17 to m ∈ {9, 10, 11} is thus reduced to determining
which values of the degree are realized, for such m, by totally real embeddings of
oriented closed surfaces.

Here we give a partial answer to this question for m = 9. Namely, let M =
CP2 # 9CP2 be the complex surface obtained from CP2 by blowing up any ordered
set of nine distinct points. By Lemma 32.3, the only closed oriented surfaces admit-
ting totally real embeddings in M are T 2 and S2. In the case of T 2, Lemma 32.3
also provides a list of possible degrees; in Example A.3 below we realize all those
degrees by totally real embeddings. Theorem A.4 below provides, in turn, an “alge-
braic classification” of the degrees of totally real embeddings S2 → M , analogous
to that for T 2 in Lemma 32.3. We begin with some general remarks.

Since being totally real is an open property, a totally real immersion f : Σ →M
with compact Σ and dimRΣ < dimCM leads, via a generic small deformation of
f , to totally real embeddings. The following lemma shows that a similar deformation
sometimes works when dimRΣ = dimCM .

Given a closed real manifold Σ, an integer d ≥ 2, and a surjective homomor-
phism ϕ : π1Σ → Zd, let π : Σ̃ → Σ be the d-fold covering projection correspond-
ing to the subgroup Kerϕ of π1Σ. Thus, Σ̃ is a principal Zd bundle over Σ, and
we will denote by λ the complex line bundle associated with it via the standard
action of Zd on C. Note that λ⊗d is trivial.

Lemma A.1. With Σ, d, ϕ, π, Σ̃ and λ as above, let us suppose that λ is real-
isomorphic to a vector subbundle of TΣ. Then, for any totally real embedding
f : Σ →M in an almost complex manifold M , there exists a totally real embedding
Σ̃ →M which is C∞ homotopic, through totally real immersions, to the composite
immersion f ◦ π.

Proof. Since f is totally real, our assumption about λ allows us to choose an
embedding F : U →M , where U is a neighborhood of the zero section Σ in the
total space of λ, such that F = f on Σ. (In fact, we may let F be the composite
of an injective real vector-bundle morphism from λ to the normal bundle of f ,
which exists in view of (5.1), followed by a tubular-neighborhood diffeomorphism.)
As Σ̃ is naturally embedded in the total space of the unit circle bundle of λ and
π : Σ̃ → Σ is the restriction to Σ̃ of the bundle projection π : λ → Σ, the
mappings given by Σ̃ 3 ξ 7→ F (tξ) ∈ M , each of them depending on a fixed
parameter t ≥ 0 close to 0, form a C∞ homotopy between f ◦ π (with t = 0)
and an embedding Σ̃ →M (with any t > 0 near 0). Being totally real is an open
property; thus, for t close to 0 such embeddings are totally real. �

Example A.2. Given a totally real embedding f : T 2 → M of the 2-torus in an
almost complex surface M and a d-fold self-covering π : T 2 → T 2, d ≥ 2, there
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exists a totally real embedding T 2 →M homotopic through totally real immersions
to f ◦ π. This is clear from Lemma A.1 for Σ = Σ̃ = T 2. (The corresponding λ is
trivial, since so is λ⊗d and π1Σ is free.)

Example A.3. Let M = CP2 # 9CP2 be the complex surface obtained by blow-
ing up any set of nine distinct points in CP2. By Lemma 32.3, the degree of any
totally real embedding T 2 → M equals (3s, s, s, s, s, s, s, s, s, s) for some s ∈ Z.
We now show that, conversely, every such degree is realized by some totally real
embedding f : T 2 → M . First, if s = 1, the embedding f is provided by Corol-
lary 2.20 with d = 3 and m = 9. If s > 1, we can use Example A.2 for this last
f and d = s. Finally, in the cases s < 0 and s = 0 it suffices to re-orient Σ or,
respectively, invoke Corollary 28.2(a).

For the degrees of totally real embedded 2-spheres, we have a partial result:

Theorem A.4. For every prescribed integer d, the system (32.1) with m = 9 and
χ = 2 has a unique solution (d, q) = (d, q1, . . . , qm) that satisfies the normalizing
condition q1 ≥ . . . ≥ qm; cf. Remark 32.2. Explicitly, we have

(q1, . . . , q9) =


(s+ 1, s, s, s, s, s, s, s, s− 1) , if d = 3s, s ∈ Z ,
(s+ 1, s+ 1, s+ 1, s, s, s, s, s, s) , if d = 3s+ 1, s ∈ Z ,
(s, s, s, s, s, s, s− 1, s− 1, s− 1) , if d = 3s− 1, s ∈ Z .

In fact, (32.3) with m = 9 and χ = 2 yields |q − s|2 ∈ {2, 3}. Setting pj =
qj − s and then decomposing 2 or 3 into all possible sums

∑9
j=1 p

2
j with pj ∈ Z,

p1 ≥ . . . ≥ p9 and
∑9

j=1 pj = 3(d − 3s) (which is the first equation in (32.1)), we
easily obtain the required formula for (q1, . . . , q9).
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[15] F. Forstnerič, Stein domains in complex surfaces, J. Geom. Anal. 13 (2003), 77–94.
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