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ON CONFORMALLY SYMMETRIC RICCI-
RECURRENT MANIFOLDS WITH
ABELIAN FUNDAMENTAL GROUPS.

By Andrzej DERDZINSKI.

1. Introduction. An n-dimensional (7 = 4) Riemannian manifold M (not neces-
sarily of definite metric) is called conformally symmetric [1]" if its Weyl’s conformal
curvature tensor C*;; is parallel, that is,

( l ) Ch;jk’l = 0 .

A Riemannian manifold is said to be Ricci-recurrent provided that at each point x
such that R;;(x) = O, there exists a tangent vector v satisfying the relation R;; (x) =
i R;;(x). Condition (1) holds clearly for any conformally flat as well as for any
locally symmetric Riemannian manifold of dimension n = 4. ‘We shall restrict our
consideration to manifolds which are essentially conformally symmetric, i.e., satisfy (1)
but are neither conformally flat nor locally symmetric. In[7] W. Roter proved the ex-
istence and gave a complete local description of those essentially conformally symmetric
manifolds which are at the same time Ricci-recurrent. Although the Ricci-recurrent
ones do not exhaust the whole class of essentially conformally symmetric manifolds (see
[2]), they form a remarkable subclass which contains, e.g., all essentially conformally
symmetric Riemannian metrics of index one, i.e., of signature (—, +, ---, +) (see
[3], Corollary 1). The present paper deals with a global classification problem for
complete, analytic, essentially confomally symmetric Ricci-recurrent manifolds. We
observe first (Theorem 1) that in the simply connected case Roter’s formulae remain
valid (i.e., describe all possible isometry types) also in the large. Given a complete,
analytic, essentially conformally symmetric Ricci-recurrent manifold M, we may ex-
press it as an orbit space M/G of the Riemannian universal covering A of M (de-
termined in Theorem 1) by a discrete group G of isometries. Using this fact, we
finally prove (Theorem 3) that there exists no compact, complete, analytic, four-di-
mensional essentially conformally symmetric Ricci-recurrent manifold with Abelian
fundamental group. In particular, the four-torus admits no complete, analytic,
essentially conformally symmetric Riemannian metric of index one.

2. The general form of universal coverings. The class of simply connected, com-
plete, analytic, essentially conformally symmetric Ricci-recurrent manifolds can be
described as follows:

Theorem 1. (i) Let M denote the Euclidean n-space (n = 4) endowed with the
metric g given by

gidxdx’ = p(dx")? + kjdx’dx" 4 2dx'dx"
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1) Numbers in brackets refer to the references at the end of the paper.
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where Greek indices range over the set {2,...,n — 1), the function ¢ is defined by
o(x', ..., x™) = (A + ag)x’x"

A being a non-constant analytic function on R and [kj.], [a;] non-zero symmetric
matrices such that [k,,] is non-singular and k**a;, =0, [k**] being the reciprocal of
[kis). Then M is a simply connected, complete, analytic, n-dimensional essentially con-
Sformally symmetric Ricci-recurrent manifold. (ii) Conversely, every simply connected,
complete, analytic, n-dimensional essentially conformally symmetric Ricci-recurrent mani-
fold M is isometric to a manifold M of the above type.

Proof. (i) By an explicit computation (cf. [7], proof of Theorem 3) we verify
that M is essentially conformally symmetric and Ricci-recurrent and that the geodesic
equations for M reduce to a system of linear differential equations, so that M is
complete.

(ii)y By Theorem 3 of [7] we may find a point xe M and a chart at x, i.e., a
connected neighbourhood U of x together with a diffeomorphism f = (f*, ...,/ : U—
f(U) C R* such that the metric g of M is expressed in U as

gsAfdf = o(df*) + kydf*df* + 2df'df®

with o(y) = (A Ok + @) () f*(y) for any yeU, where A4 is a non-constant
analytic function defined on some interval of R and [k,,], [a;.] are non-zero sym-
metric matrices satisfying k*a,, = 0, [k,,] being non-singular and [k**] its reciprocal.
Using the fact that the only Christoffel symbols with respect to this chart which may
not vanish are I'};, I'fy and I'ly = I'h, 2=2, ...,n—1 (see [7), p. 93), it is easy
to see that

(2) S l.i.i =0,
which means that f' is an affine function on U. By Theorem 6.1 of ([5], p. 252), f*
can be extended to an analytic function on M, denoted again by f' and satisfying
(2) in view of analyticity. Computing (in our chart) the components of the Ricci
tensor (see [7], p. 93), we verify that they all vanish except for

(3) Ry=@m—-2)4. f*.
Therefore the equality
(4) Ri;f uf = Ruf'if;

holds on U and, by analyticity, it extends to the whole of M. Transvecting (4)
with u'u* for a suitably chosen vector u, we conclude that

(5) Ri;=Sf':f*,;
for some analytic function S on M. Now choose ve T, M such that df'(v) =1. By
(), df* is parallel, so d[ f(exp(t — f}(x))v))/dt = 1, which easily implies

(6) fiexp(t — fi(x)v) =t
for each 1€ R. The components of df ' in our chart are clearly (1,0, ..., 0), so that
formulae (3), (5) and (6) yield

A1) = S(exp(t — [ (x)o)/(n —2) ,
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wherever A(?) is defined. By completeness of M, this implies that 4 can be extended
to an analytic functiorr on the whole real line, denoted also by 4. The analytic
Riemannian manifold M, defined to be the R® together with the metric § given by
Gidxidx’ = p(dx’) 4 ki dx’dx* 4 2dx'dx™, where F(x, ..., x") = (A(x"Yez, + az,)x*x*,
is of the type determined in (i). Clearly, f: U— f(U)c M is now an isometry,
and by Corollary 6.2 of ([§], p. 255), it extends to an affine diffeomorphism of M
onto M, denoted again by f. The equality f*§ =g on U remains valid on M in
view of analyticity. Hence f is an isometry, which completes the proof.

By Theorem 1, the universal covering of any complete, analytic, essentially
conformally symmetric Ricci-recurrent manifold is Euclidean, so that we obtain

Corollary 1. Let M be a complete, analytic, essentially conformally symmetric
Ricci-recurrent manifold. Then m M = 0 for any integer k = 2.

Theorem 2. Let M be the Riemannian manifold defined as in (i) of Theorem 1.
Then

(i) Any isometry F = (F', ..., F™ of M onto itself is of the form
F'(x', ..., x")=ex' +T,

(7) Fix o X = Hix* +C'(xY), 2=2,...,n—1,
Fr(xty .., x™) = —eky, C (XY HEX" + JCH(xY)) 4+ ex™ + 1,

where r, ¢, T are real numbers satisfying the conditions

(8) ] =1, A(t)y = A(et + T) for any real ¢,
and [Hf,] is an (n — 2) X (n — 2) matrix such that

(9) a) k, HYH, =k, and b)) a, H;H; = a,,

and the functions C*', 2=2,...,n—1, form a solution of the following system of
ordinary differential equations:

(10) CX(t) = ANCH (1) + k*a,,C*1) .

(ii) Conversely, for any r, e, T, HJ} and C? satisfying (8)-(10), formulae (7) define
an isometry of M onto itself.

Proof. An easy computation shows that ¥' = »* = 0, " = 1 are the components
of the unique (up to a constant factor) parallel vector field v on M. For any iso-
metry F = (F', ..., F") we have thus

(11) F*v == 5-10 N

¢ being a non-zero constant. Moreover, F leaves invariant the orthogonal comple-
ment of v, which is a parallel (n — 1)-plane field determining a foliation whose
leaves are totally geodesic submanifolds of M, defined by x' = constant. It is easy
to see that the restrictions of dx®, ..., dx"™ to any leaf are parallel in the symmetric
connection the leaf inherits from M (see [6], pp. 56-59). Therefore any leaf is affinely
equivalent to R, the functions x% ..., x" refering to an affine coordinate system
and F restricted to any leaf is an affine equivalence onto another one. This, together
with (11), implies that F is of the form
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F'(x', ..., x™) = f(x"),
(12) FYx, ..., x™ = Fix)x! + C(x'),
F™(x', ..., x") = Fa(x")x" 4 & 'x* 4+ C'(x")
with
(13) det [Fy(x")] # 0.
Comparing now the components of § with those transformed by F, we obtain 1 =
Gin = (F*@)1n = ¢ 'f(x"), which gives
(14) Fi(x', ..,x)=ex'+T
for some real T. Next we have
0= gy = (F*g)ua = FI(x") + knCH(XYFI(X) + ko F(xYFI(x)x"

The right-hand side is a polynomial in variables XX, 1=2,...,n—1, so that

(15) FHx") = —& 'k, CH(x")Fi(x")
and k, F3(x")Fi(x') = 0, which, by (13), implies that F} = 0, i.e., Fj = constant, say
(16) Fi(x"= H} .

It is also easy to see that k;, = §,, = (F'g)i. = k,.Hj H,, which implies (9)a). More-
over, we have

(AQNk 2, + a,) X x"
=0n= (F*g)n
= (A(ex’ + THk,. + a, J(HIH;x*x" 4 2HC"(x")x" + C*(x")C*(x"))
' + k2, CH(xMCH(x") 4 2eFp(x")x* 4 2:C™(x") .
Both sides of this equality are polynomials in variables x*, so, by (9)a),

(17) ANy + ay = E(Alex' + Tk, + a, HIH)

(18) 2F;(x") + 28" (A(ex" + Tk, + @, )HIC (x') =0,

(19)  2:C™(x") + k2, CH(xYCH(x") + (Alex" + Thk,e + @, )C"(x)C(x') = 0.

Transvecting (17) with k*# and using the equalities k**a;, = 0 and K**HiH; = k’F,
we obtain

(20) A(f) =A@t + T)
for any real ¢. By induction on k, we obtain for the k-th derivative 4'*' of A
AP = et + 1) .
If we had [¢] # 1, then this would yield, for 7, = T/(1 — ¢),
Am(to) — eHzA(k)(to) ,

ie., A¥(t;) = 0 for k = 0. By analyticity, 4 would vanish identically, a contradic-
tion. Therefore || = 1, and (20) implies (8). Formula (9)b) follows now from (17).

By (18) we have F.(x") = —e(A(x')k,, + a,.)H,.C"(x"), which, together with (15),
(16) and (8), implies (10).
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Using (19) and taking into account (8) and (10) we see that the derivative of
C™(t) coincides with that of — ek, C*(1)C*(r), so that

(21) C™(8) = — ek, ,CHOCH(t) + 1

for some real constant r. Assertion (i) follows now from (12) together with (14),
(15), (16) and (21). Assertion (ii) can be verified by an explicit computation, which
completes the proof.

Remark 1. For our purposes it will be convenient to adopt the following nota-
tions and conventions. Elements of the isometry group /(M) determined in Theorem
2 will be identified with quintuples a = (¢, T, H, C(), r), where ¢ belongs to the
multiplicative group Z, = {—1, 1}, T satisfies (8) and so its range is a discrete subset
of R, H ={[H,] lies in the group D of all (n —2) X (n — 2) matrices satisfying (9),
the curve t+ C(f) = (C*(1), ..., C*7(#)) in R"™ is an element of the vector space V
of all solutions of (10) and r is an arbitrary real number.

Define the exterior 2-form « on V by

o(Cy, C2) = 3k, (CHOCH) — CHOCH(®)

(this is a constant independent of ¢, which can be verified easily by differentiating
and taking into account (10)). The group operation of (M) can now be written as

(22) (&2, Ty, Hy, Cy(2), Ii)ee, Ta, Hy, Co(2), 1)
= (e182, 61T 2 + Ty, HyH,, H Cy(t) + Cy(eot + T),
e162w(H Cy(1), Ci(ext + T5)) + ey + 1),

where the curves ¢+ H,C,(¢) and ¢+ Cy(e,t + T,) are easily seen to lie in V' again.

Points of our manifold M, whose underlying set is just R", will be described as
triples (x, u, w), x, we R, ue R*™*, so that for an isometry a = (¢, T, H, C(f), r) € M)
we have

(23)  a(x,u, w) =(ex + T, Hu + C(x), —e(C(x), Hu + 3C(x)) + ew + 1),

..., ...y being the (possibly indefinite) inner product in R""* determined by kj,.

Finally, we can define two natural homomorphisms h,: (M) — Z,@ D and
hy: ker iyg — R by hy,(e, T, H, C(1), 1) = (¢, H) and k1, T, I, C(t),r) = T, I being the
identity matrix. Note that im k, is either trivial or infinite cyclic in view of (8).
Moreover, in the case n =4 D is finite (a simple computation shows that it has 4
or 6 elements).

3. The four-dimensional case. We start with some preliminary remarks and
lemmas.

Given a (connected) manifold M, we can express it as the orbit space M/r,
where M is the universal covering of M and I is a group isomorphic to =, M and
acting on M freely and properly discontinuously, i.e., as the group of deck trans-
formations (see [10], pp. 40-41). In the Riemannian case I acts as a group of
isometries. Proper discontinuity of [ implies in particular that for any sequences
x, €M, a, el” such that x, » x and a,x; — x, a, must equal the identity for all but
finitely many k.
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Lemma 1. Suppose G is an Abelian group acting freely and properly discontinuously
on R® so that the orbit space R"|G is compact. Then G is isomorphic to Z",

Proof. We have G = =,(R"/G), hence G is finitely generated. By Smith’s the-
orem ([4], p. 287) G is torsionfree. Therefore G is free, say G = Z*. Thus R"/G is
an Eilenberg-MacLane space of type (Z*, 1), which implies ([9], p. 93-95) that it is
homotopy equivalent to the k-torus T°. We have ([8], p. 303 and p. 294)
H(R"(G, Z,) = Z, = H(T*, Z,). 1t follows now (e.g., from Kiinneth formula) that
k = n, as desired. '

Lemma 2. Given vectors x,, ..., x, of R*, 5 > n, there exist s sequences of integers
kyy .oy ki, m=1,2, ... with the following two properties:

(1) there exists i = s such that for all m, k,, + 0.

(i) kLx, + -+ + k%x, >0 as m — co.

Proof. Restricting ourselves to the span of the vectors x,, ..., x, and changing
their order, if necessary, we may assume that they span the whole R” and x,, ..., x,
is a basis. Let G be the group of translations generated by this basis and define an
action of Z° on R" by (k', ..., k')x = x 4+ k', 4+ -+ + k’x,, xcR", k* € Z. Suppose
now that our assertion fails. Then the action of Z* is clearly free and properly
discontinuous. Thus R"/Z*® is a manifold and the obvious surjective map R*/G —
R"(Z* shows that it is compact, for R"/G is a torus. By Lemma 1 we have s=n,
a contradiction. This completes the proof.

Lemma 3. Let {...,...) be a non-degenerate symmetric bilinear form in R".
Given sequences yn,€R", y, #0,and t,eR, m=1,2,..., the following two conditions
are equivalent: (i) there exists a sequence u, € R" which is bounded (in a norm) and
satisfies

(24) Fmsldmy = t,, for all m.
(ii) there exists S = 0 such that |t,,| < S||y.ll, || || being a norm in R".
Proof. Choose covariant vectors e',...,e" such that (...,...) = Jac'®¢’,

lsl = 1, and define an inner product by (..., ...)= Y e‘®e€’. Note that (24) is
equivalent to
(25) - (_ym, ll:,,) =1,

where u,, is determined uniquely by e'(u,)= ¢;e’(#,) (no summing), so that ul, is
bounded if and only if w, is. If (i) holds, then (25) yields || < (sup |[un(Dilymll,

| || being the norm induced by (..., ...). Assume now (ii). Setting up, = £, [Vl >Vm
we obtain (25) and |ju,,]| < S, as desired.

Lemma 4. Let the indices A, p, v assume values 2, 3. Suppose A is a C” func-
tion on R, [k;,} a non-singular symmetric matrix, [k**] its reciprocal and [a;,] a non-
zero symmetric matrix such that k**a;, = 0. Consider the linear differential equation
in R?

(26) Cl(1) = AWC(t) + ka,,CM1), 2=2,3.

If Ci, C} (A=2,3) are two solutions of (i6), periodic with a common period T > 0,
then the determinant :
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Ci(n G
Ci(n  C3()

vanishes for some real t.

Proof. The matrix [k** a,,] represents a non-zero endomorphism Q of R® satis-
fying trace Q = 0 and self-adjoint with respect to the (possibly indefinite) inner pro-
duct determined by k,,. Equation (26) is equivalent to

27) Ct) = A(HC() + Q(C(1)) -

Given two T-periodic solutions C,, C; of (27), we are now to show that the vectors
C\(1), Cy(t) are dependent for some t. In a suitably chosen basis e;, e¢; of R® the

matrix for Q is
a b
—b —a

for some a, b with a* 4+ b* > 0 (according as k,, is or is not definite, we use here a
basis of eigenvectors of Q or just any orthonormal basis). Equation (27) takes now
the form

(28) F=(A+ay+by, FP=(A-ay'—bi.
Let C; = y.fez, i=1,2. The function
o = a(Fiys — yiyi — yiVs + V) + bV — ¥ + yivi — Yy
is T-periodic, hence () = 0 for some ¢. On the other hand, (28) yields

»n i
»i y:

d=2(a" + b%

?

which completes the proof.

Theorem 3. Let M be a complete, analytic, four-dimensional, essentially confor-
mally symmetric Ricci-recurrent manifold. If the fundamental group of M is Abelian,
then M is non-compact.

Proof. Suppose on the contrary that M is a compact, complete, analytic, four-
dimensional, essentially conformally symmetric Ricci-recurrent manifold with Abelian
fundamental group. In virtue of Theprem 1 we may assume that the universal
covering M of M is the Euclidean R‘ together with the metric § defined in (i) of
Theorem 1. Moreover, M may be identified with the orbit space M/I", I" being a
properly discontinuous group of fixed point free isometries of M, isomorphic to
=M. The subgroup G = I'Nkerk,; is of finite index in I", since imh,; is finite
(cf. Remark 1), and therefore the obvious map M/G — M/I" = M is a finite covering.
Thus G is a properly discontinuous Abelian group of isometries of M and M/G
is compact. By Lemma 1, G is isomorphic to Z‘. If h, were trivial on G, then
(x, u, w)—» x would define in view of Theorem 2 an unbounded function on M/G.
Hence, by Remark 1, 4,(G) is infinite cyclic, so that we have the following splitting
exact sequence:

O—-—)kerhznG-—)G-h—)hz(G)—-)O
2
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and
| (29) kerh,NG = Z°.
Given a= (1,0, 1, C(?), r) € ker ,, NG, we have
(30) either C(f) # 0 for all ¢+ or C =0 identically,
and
31 C(t+ T)=C(t) for each teR and each Teh,(G).

In fact, if C(x) = O but C did not vanish identically, then C(x) # 0, since C is a
solution of the second order linear differential equation (10). Choosing u ¢ R® such
that (C(x), u) = r (in the notations of Remark 1) we have, by (23), a(x, #, 0) = (x, u, 0),
so that @ = 1 and C = 0 identically, a contradiction, which proves (30). Now choose
a,=(1,T, I, C(), n)eG. By commutativity, aa; = a,a, which in view of (22) implies
(31).

We assert now that for any a,,a,e ker i,NG, say a; = (1,0, 1, Cy(f), ry), i=1,2,
we have

(32) C, and C, are linearly dependent over reals.
In fact, a,a, = a,a, implies by (22) the relation «(C,, C,) = 0. We have thus
(33) atay = (1,0, 1, kC, + IC,, kry + Ir,) .

Suppose (32) fails. From (31), (30) and Lemma 4 it follows that for some xeR,
Ci(x) and Cy(x) are linearly dependent non-zero vectors. If both derivatives C,(x),
C,(x) vanished, (32) would follow, so that we may assume C,(x) % 0 and

€2 Co(x) =E6Cx)# 0,

¢ being irrational in view of (30) and (33), since C;, and C, are assumed indepen-
dent. Thus

(35) Co(x) # £Cy(x) .

As in Lemma 2, we may choose sequences k,, ,, of integers such that
(36) kpy + 1,250 as m-— oo,

Since £ is irrational, we may claim k, = 0 £ /,,. We assert
(37) knrs + Lnta] S SllknCi(x) + LCa(x)]|

for some constant S and certain norm || || in R®. To verify (37), consider two
cases. If Cy(x), C,(x) are dependent, say C,(x)= nCy(x), n #¢& by (35), then the
sequence z, = (k,ry + L,r)/(k,, + l.n) converges to (r, — &r)/(np — &), so that |z,| < B
for some B > 0. Relation (37) holds now for any norm, with S = BJ|Cy(x)]]”*. On
the other hand, if C,(x), C,(x) are independent, choose a positive definite inner
product in R® so as to make them orthonormal and take into account the induced
norm. Clearly (37) is satisfied by S = || + [r;|. Thus, assuming C,, C, independent
over reals, we obtain (37), so that by Lemma 3 there exists a bounded sequence
i, in R* such that (k,Cy(x) + ,Ca(x),ii,> = k,r; + I,,r,. Without loss of generality
we may assume that #,, converges, say to #. The sequence u,, = i, — $(k,Cy(x) +
1,,C(x)) also tends to u in view of (36) and (34). Therefore (x, u,,, 0) = (x, u, 0) and
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aimaim(x, u,,, 0) — (x,u,0) by (23) and (33). This implies that @, and g, are depen-
dent over integers, hence so are C, and C,, a contradiction. Thus we have proved
(32).

Using (29) we may choose a,,a,,a;cker k,,NG independent over integers, say
a;=(1,0,71,C;, r;). Changing their order if necessary and using (32) we obtain
C.=¢C; and C; = 5C, for some real § and 5. Applying Lemma 2 to the vectors
(1,r), (&, 72), (p, rs) of R, we find sequences of integers K, I, pn, Dot all tending
to zero and such that k, + .6 + p,p— 0 and k,ry + lurg + purs > 0 as m — oo,
From (33) it follows that atmalmal=(0, 0, 0)—(0, 0, 0), which contradicts proper disconti-
nuity of G. This completes the proof.

Corollary 2. Let M be a compact four-dimensional analytic manifold whose funda-
mental group is a finite extension of an Abelian group (e.g., any compact four-manifold
admitting a flat positive definite Riemannian metric). Then M admits no complete,
analytic, essentially conformally symmetric Ricci-recurrent Riemannian metric. In par-
ticular (c¢f. (3], Corollary 1) M admits no complete, analytic, essentially conformally
symmetric metric of index one.

The assertion of Corollary 2 can be obtained from Theorem 3 by considering a
suitable finite covering of M.
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