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Abstract
We show that a Killing field on a compact pseudo-Kähler ddbar manifold is neces-
sarily (real) holomorphic. Our argument works without the ddbar assumption in real
dimension four. The claim about holomorphicity of Killing fields on compact pseudo-
Kähler manifolds appears in a 2012 paper by Yamada, and in an appendix we provide
a detailed explanation of why we believe that Yamada’s argument is incomplete.
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1 Introduction

By a pseudo-Kähler manifold we mean a pseudo-Riemannian manifold (M, g)

endowed with a ∇-parallel almost-complex structure J , for the Levi-Civita connec-
tion ∇ of g, such that the operator Jx : Tx M → Tx M is a linear gx -isometry (or is,
equivalently, gx -skew-adjoint) at every point x ∈ M. This implies integrability of J
(see the comment preceding Lemma 3.1). We then call (M, g) a pseudo-Kähler ∂∂

manifold if, in addition, the underlying complex manifold M has the following ∂∂

property, also referred to as the ∂∂ lemma:

every closed ∂ exact or ∂ exact (p, q) form
equals ∂∂λ for some (p − 1, q − 1) form λ.

(1.1)

It iswell known that the ∂∂ property follows if M is compact and admits aRiemannian
Kähler metric [5, Prop. 6.17 on p.144].
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Theorem A Every Killing vector field on a compact pseudo-Kähler ∂∂ manifold is
real holomorphic.

We provide two proofs of Theorem A, in Sects. 3 and 4. The former is derived directly
from the ∂∂ condition; the latter, shorter, relies on the Hodge decomposition, which
is equivalent to the ∂∂ property [2, p. 269, subsect. (5.21)].

The Riemannian-Kähler case of Theorem A is well known, and straightforward
[1, the lines following Remark 4.83 on pp. 60–61]. See also Remark 2.2.

For pseudo-Kähler surfaces, our argument yields a stronger conclusion.

Theorem B In real dimension four, the assertion of Theorem A holds without the ∂∂

hypothesis.

The authors wish to express their gratitude to Kirollos Masood for bringing Yama-
da’s paper [7] to the first author’s attention and discussing with him issues involving
Theorem B, formula (4.3), and the Appendix. We also thank Fangyang Zheng for
very useful suggestions about Lemma 3.1, and Takumi Yamada for a brief but helpful
communication.

2 Proof of Theorem B

All manifolds, mappings, tensor fields, and connections are assumed smooth.

Lemma 2.1 Given a connection ∇ on a manifold M, let a vector field v on M be
affine in the sense that its local flow preserves ∇. Then, for any ∇-parallel tensor field
Θ on M, of any type, the Lie derivative £v Θ is ∇-parallel as well. If Θ happens to
be a closed differential form, £v Θ = d [Θ(v, · , . . . , · )].
Proof Clearly, −£v Θ is the derivative with respect to the real variable t , at t = 0,
of the push-forwards [dφt ]Θ under the local flow t �→ φt of v. All [dφt ]Θ being
∇-parallel, so is £v Θ . For the final clause, use Cartan’s homotopy formula £v =
ıv d + d ıv for £v acting on differential forms [4, Thm. 14.35, p. 372]. ��
Lemma 2.1 also follows from the Leibniz rule: £v (∇Θ) = (£v ∇)Θ + ∇(£v Θ).

Let (M, g) now be a fixed pseudo-Kähler manifold. If v is any vector field on M
then, with J and ∇v treated as bundle morphisms T M → T M,

for B = ∇v and A = £v J one has A = [J , B ] and J A = −AJ , (2.1)

which is immediate from the Leibniz rule. For the Kähler form ω = g(J ·, · ) of
(M, g) and any g-Killing vector field v, it follows from (2.1) and Lemma 2.1 that

i) A = £v J and α = £v ω are related by α = g(A ·, · ), while
ii) A∗ = −A, J A = −AJ , ∇A = 0, ∇α = 0, and α is exact.

(2.2)

Given an exact p -form α on a compact pseudo-Riemannian manifold (M, g),

α is L2 orthogonal to all parallel p times covariant tensor fields θ on M . (2.3)
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Namely, (θ, α) = (μ, α) = (μ, dβ) = (d∗μ, β) for β with α = dβ and the
skew-symmetric part μ of θ , while d∗μ = 0, as ∇μ = 0. Here, (, ) is the L2 inner
product, assigning to two tensor fields of the same type the integral over M of their
g-inner product, and d∗ denotes the g-divergence.

Remark 2.2 By (2.2-ii) and (2.3), for a Killing field v on a compact Riemannian
Kähler manifold, £v ω is L2-orthogonal to itself, and so, as a consequence of (2.2-i),
v must be real holomorphic.

Let (M, g) be, again, a pseudo-Kähler manifold. The vector bundle morphisms C :
T M → T M having C∗ = −C (that is, gx -skew-adjoint at every point x ∈ M)
constitute the sections of

the vector subbundle so(T M) of EndIR (T M) = HomIR (T M, T M). (2.4)

We denote by E the vector subbundle of so(T M), the sections C of which are also
complex-antilinear (so that JC = −C J , in addition to C∗ = −C). Then,

E is a complex vector bundle of rank m(m − 1)/2, where m = dimC M,

with a pseudo Hermitian fiber metric having the real part induced by g.
(2.5)

In fact, C �→ JC provides the complex structure for E. Nondegeneracy of g
restricted to E follows from g-orthogonality of the decomposition EndIR (T M) =
EndC (T M) ⊕ E ⊕ D, the sections C of the subbundle D being characterized by
JC = −C J and C∗ = C , with EndC (T M) orthogonal to E ⊕ D since any anti-
linear morphism C : T M → T M is conjugate, via J , to −C , and so trIR C = 0.
The pseudo-Hermitian fiber metric in E arises by restricting 〈·, ·〉 − i〈J ·, ·〉 to E,
for the pseudo-Riemannian fiber metric 〈·, ·〉 in EndIR (T M) induced by g. The
rank m(m − 1)/2 follows since so(T M) = u(T M) ⊕ E, with u(T M) ⊆ so(T M)

characterized by having sections C : T M → T M that commute with J (which, due
to their g-skew-adjointness, makes them also gc-skew-adjoint, for gc = g − i ω):
so(T M) and u(T M) have the real ranks m(2m − 1) and m2.

Proof of Theorem B By (2.5), with m = 2, the pseudo-Hermitian fiber metric in the
line bundle E must be positive or negative definite. Hence, so is its g-induced real
part. For any Killing field v, (2.2-ii) implies that A = £v J is a section of E which,
due to (2.2)–(2.3), is L2-orthogonal to itself, and so £v J = 0. ��
The above proof does not extend to compact pseudo-Kähler manifolds (M, g) of com-
plex dimensions m > 2 with indefinite metrics. Namely, if the pair ( j, k) represents
the metric signature of g, with j minuses and k pluses (both j, k even, j +k = 2m),
then the analogous signature of the real part (induced by g) of the pseudo-Hermitian
fiber metric in E is ( jk/2, [ j2 + k2 − 2( j + k)]/4), with both components (indices)
positive unless jk = 0 or j = k = 2.

One easily verifies this last claim, about the signature, by using a Jx -invariant time-
like-spacelike orthogonal decomposition of Tx M, at any x ∈ M, to obtain obvious
three-summand orthogonal decompositions of both so(T M) and u(T M) at x , two
summands being spacelike, and one timelike.
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3 Proof of Theorem A

We denote by Ω p,qM the space of complex-valued differential (p, q) forms on a
complex manifold M. On such M, as ∂ ζ = 0 whenever d ζ = 0,

closedness of a (p, 0) form ζ implies its holomorphicity. (3.1)

Conversely, according to [2, p. 269, subsect. (5.21)] and [6, p. 101,Corollary 9.5], on
a compact complex ∂∂ manifold,

all holomorphic differential forms are closed. (3.2)

Since many expositions do not state what happens when, in the ∂∂ property (1.1), p
or q equals 0, we note that, as Fangyang Zheng pointed out to us, (1.1) for (p, 0)
forms easily follows from the case where p and q are positive.

Lemma 3.1 On a compact complex manifold M with the “positive (p, q) version” of
the ∂∂ property, if ξ ∈ Ω p,0M, for p ≥ 1, and ∂ ξ is closed, then ∂ ξ = 0.

Proof As 0 = d∂ ξ =∂∂ ξ = −∂∂ ξ , the “positive” ∂∂ lemma applied to the closed
∂ -exact (p, 1) form ∂ ξ gives ∂ ξ = ∂∂ η for some η ∈ Ω p−1,0M. Being thus holo-
morphic, ξ − ∂ η ∈ Ω p,0M is closed by (3.2), and 0 = ∂ (ξ − ∂ η) = ∂ ξ . ��

Lemma 3.1 implies, via complex conjugation, its analog for (0, q) forms. Also by
Lemma 3.1, on a compact complex manifold M with the ∂∂ property,

the only exact (p, 0) form ζ on M is ζ = 0, (3.3)

since exactness of ζ ∈ Ω p,0M amounts to its ∂ -exactness and implies its closedness.
For a pseudo-Kähler manifold (M, g), a bundle morphism A : T M → T M, and

the corresponding twice-covariant tensor field α = g(A ·, · ), one clearly has

α(J ·, J ·) = ±α if and only if J A = ±AJ , with either sign ± . (3.4)

Given a pseudo-Kähler manifold (M, g), vector fields u, v on M and sections A, C
of so(T M), cf. (2.4),may be used to represent a complex-valued 1-form ξ and 2-form
ζ on M, as follows,

ξ = u + iv, ζ = A + i C , (3.5)

meaning that ξ = g(u, · ) + ig(v, · ) and ζ = g(A ·, · ) + ig(C ·, · ). We prefer not
to think of (3.5) as sections of the complexifications of T M or so(T M). For a vector
field v treated via (3.5) as a real 1-form, and B = ∇v, our factor convention for the
exterior derivative gives

dv = B − B∗, and so d (Jv) = ∇(Jv) − [∇(Jv)]∗ = J B + B∗J . (3.6)
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Remark 3.2 On a complex manifold, a real-valued 2-form α is the real part of a com-
plex-bilinear complex-valued 2-form ζ if and only if α(J ·, J ·) = −α, and then
necessarily ζ = α − iα(J ·, · ). (This clearly remains valid for arbitrary twice-covar-
iant tensor fields, without skew-symmetry.)

Remark 3.3 For a complex-valued 2-form ζ on a complex manifold M, having bi-
degree (2, 0), or (0, 2), or (1, 1) clearly amounts to its being complex-bilinear, or
bi-antilinear or, respectively, J -invariant: ζ(J ·, J ·) = ζ . Sums ζ of (2, 0) and (0, 2)
forms are similarly characterized by J -anti-invariance: ζ(J ·, J ·) = −ζ . Thus, by
(3.4), in the pseudo-Kähler case, ζ = A + i C in (3.5) is a (1, 1) form if and only if
A and C commute with J .

Lemma 3.4 For a Killing vector field v on a pseudo-Kähler manifold (M, g), using
the notation of (3.5), we have

ξ ∈ Ω 1,0M , ζ ∈ Ω 2,0M , ∂ ξ = ζ , ∂ ξ = i (J BJ − B), where
ξ = Jv − iv, ζ = A − i AJ , with A = [J , B ] for B = ∇v.

(3.7)

Proof First, J BJ − B, as well as A = [J , B ] and AJ , are gx -skew-adjoint at every
point x ∈ M, since so is B = ∇v, and A anticommutes with J , cf. (2.1). Thus, ξ, ζ

and γ = i (J BJ − B) are indeed differential forms of degrees 1, 2, 2.
Furthermore, ξ is complex-linear, and ζ complex-bilinear. This is immediate for

ξ . For ζ , note that ζ = α − iα(J ·, · ), where α = g(A ·, · ), while (2.1) and (3.4)
give α(J ·, J ·) = −α. Now we can use Remark 3.2.

Thus, ξ ∈ Ω 1,0M. Also, according to Remark 3.3, ζ ∈ Ω 2,0M and γ ∈ Ω 1,1M,
since J BJ − B obviously commutes with J . Finally, for A = [J , B ], (3.6) with
B∗ = −B gives dξ = A − 2i B = [A − i(J BJ + B)] + i (J BJ − B), while the
summands A − i(J BJ + B) = A − i AJ = ζ and i (J BJ − B) = γ lie in Ω 2,0M
and Ω 1,1M, which completes the proof. ��
Proof of TheoremA By (2.2) and (3.4), the ∂ -exact (2, 0) form ζ = ∂ ξ in (3.7) is
parallel, and hence closed. Lemma 3.1 now gives ζ = 0, so that £v J = A = 0 due
to (2.1) and (3.7). ��

4 Another Proof of Theorem A

On a compact complex manifold M with the ∂∂ property, every cohomology space
Hk(M,C) has the Hodge decomposition [2, p. 269, subsect. (5.21)]:

Hk(M,C) = Hk,0M ⊕ Hk−1,1M ⊕ . . . ⊕ H1,k−1M ⊕ H0,kM , (4.1)

with each H p,qM consisting of cohomology classes of closed (p, q) forms. The
complex conjugation of differential forms descends to a real-linear involution of
Hk(M,C), the fixed points of which obviously are the real cohomology classes (those
containing real closed differential forms). In terms of the decomposition (4.1), a com-
plex cohomology class

is real if and only if, for all p and q, its Hq,p com
ponent equals the conjugate of its H p,q component.

(4.2)
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The standard formula N (u, v) = [u, v] + J [Ju, v] + J [u, Jv] − [Ju, Jv], for the
Nijenhuis tensor N of an almost-complex structure J on a manifold M and any
vector fields u, v, clearly becomes

N (u, v) = [∇Jv J ]u − [∇Ju J ]v + J [∇u J ]v − J [∇v J ]u (4.3)

when one uses any fixed torsionfree connection ∇ on M. We call ∇ a Kähler con-
nection for the given almost-complex structure J if it is torsionfree and ∇J = 0.
By (4.3), J then must be integrable. This implies integrability of J in any pseudo-
Kähler manifold, as one then has ∇J = 0 for the Levi-Civita connection ∇.
Lemma 4.1 For any ∇-parallel real 2-form α on a complex manifold M with a
Kähler connection ∇, such that α(J ·, J ·) = −α, the complex-valued 2-form ζ =
α − iα(J ·, · ) is holomorphic. If, in addition, M is also compact and has the ∂∂

property, while α is exact, then α = 0.

Proof The relation α(J ·, J ·) = −α amounts to complex-bilinearity of ζ , and so
ζ ∈ Ω 2,0M (Remarks 3.2 – 3.3). Being ∇-parallel, ζ is closed, and hence holo-
morphic due to (3.1). The final clause: exactness of α makes [iζ ] ∈ H2,0M a real
cohomology class, so that, by (4.2), ζ is exact, and (3.3) gives ζ = 0. ��
Another proof of TheoremA Given a Killing field v, the differential 2-form α = £v ω

is parallel and exact by (2.2), while (2.2) gives J A = −AJ for A = £v J , related to
α via α = g(A ·, · ), and so α(J ·, J ·) = −α due to (3.4). Lemma 4.1 and (2.2-i)
now yield £v ω = α = 0 and £v J = 0. ��
We do not know whether—aside from Theorem B and the Riemannian case—
Theorem A remains valid without the ∂∂ hypothesis. For possible future reference, let
us note that, as shown above, one has the following conclusions about a Killing field
v on a compact pseudo-Kähler manifold, whether or not the ∂∂ property is assumed.
First, for α = £v ω, the complex-valued 2-form ζ = α − iα(J ·, · ) is parallel and
holomorphic (see the preceding proof and Lemma 4.1). Also, by (2.2), α is exact,
while A = £v J : T M → T M is parallel and complex-antilinear, as well as nilpotent
at every point. This last conclusion follows since the constant function trIR Ak, with
any integer k ≥ 1, has zero integral as a consequence of (2.3) applied to α = g(A ·, · )
and θ = g(Ak−1·, · ).

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix: Yamada’s argument

Yamada’s claim [7, Proposition 3.1] that on a compact pseudo-Kähler manifold, Kil-
ling fields are real holomorphic, has a proof which reads, verbatim,
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Let X be a Killing vector field. From Propositions 1.2 and
2.12, Z = X − √−1 J X is holomorphic. Because the real
part of a holomorphic vector field is an infinitesimal auto
morphism of the complex structure,we have our proposition.

(A.1)

Proposition 1.2 of [7], cited from Kobayashi’s book [3], amounts to the well-known
harmonic-flow condition satisfied by Killing fields v on pseudo-Riemannian mani-
folds. Thus, 2.12 in (A.1) should read 2.14, since Propositions 1.2 and 2.14 refer to the
Ricci tensor quite prominently, while 2.12 does not mention it at all; also, Proposition
2.14 contains, in its second part, a holomorphicity conclusion.

In the ninth line of the proof of the secondpart of Proposition 2.14, it is established—
correctly—that, for every (1, 0) vector field Y, and Z in (A.1), ∇′′Z is L2-or-
thogonal to ∇′′Y. Then, an attempt is made to conclude that ∇′′Z = 0, arguing by
contradiction: if ∇′′Z �= 0 at some point z0 , one can—again correctly—find Y
having g(∇′′Z ,∇′′Y ) �= 0 everywhere in some neighborhood of z0 . As a next step,
it is claimed that a contradiction arises: cited verbatim,

By considering a cut off function, we see that there exists
a complex vector field Y such that

∫
M g(∇′′Z ,∇′′Y ) dv �= 0.

(A.2)

It is here that the argument seems incomplete: such a cut-off function ϕ equals 1 on
some small “open ball” B centered at z0 , and vanishes outside a larger “concentric
ball” B ′, and after the original choice of Y has been replaced by ϕY, there is no way
to control the integral of g(∇′′Z ,∇′′(ϕY )) over B ′

� B (while the integrals over B
and M � B ′ have fixed values). More precisely, the sum of the three integrals must
be zero, ∇′′Z being L2-orthogonal to all ∇′′Y.
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