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ABSTRACT. There are several notions of largeness that make sense in any
semigroup, and others such as the various kinds of density that make sense
in sufficiently well behaved semigroups including (N, +) and (N, :). It was
recently shown that sets in N which are multiplicatively large must contain
arbitrarily large geoarithmetic progressions, that is, sets of the form {rj (a +
id) 14,5 € {0,1,...,k}}, as well as sets of the form {b(a+id)’ : 4,5 € {0,1,...,
k}} Consequently, given a finite partition of N, one cell must contain such
configurations. In the partition case we show that we can get substantially
stronger conclusions. We establish some combined additive and multiplicative
Ramsey Theoretic consequences of known algebraic results in the semigroups
(BN, +) and (BN, -), derive some new algebraic results, and derive consequences
of them involving geoarithmetic progressions. For example, we show that
given any finite partition of N there must be, for each k, sets of the form
{b(a+1id)J :4,j € {0,1,...,k}} together with d, the arithmetic progression
{a+14d : i € {0,1,...,k}}, and the geometric progression {bd’ : j € {0,1,
...,k}} in one cell of the partition. More generally, we show that, if S is a
commutative semigroup and F a partition regular family of finite subsets of
S, then for any finite partition of S and any k € N, there exist b, € S and
F € F such that rF U {b(rz)! : x € F,j € {0,1,2,...k}} is contained in a cell
of the partition. And we show that for certain partition regular families 7 and
G of subsets of N, given any finite partition of N some cell contains structures
of the form BUC U B - C for some B € F,C € G.

1. INTRODUCTION

Our starting point is the famous theorem of van der Waerden [21] which says
that whenever the set N of positive integers is divided into finitely many classes,
one of these classes contains arbitrarily long arithmetic progressions. The analo-
gous statement about geometric progressions is easily seen to be equivalent via the
homomorphisms b : (N,+) — (N,-) and £: (N\ {1},-) = (N, +) where b(n) = 2"
and £(n) is the length of the prime factorization of n.

In 1975 Szemerédi [20] showed that any set with positive upper asymptotic den-
sity contains arbitrarily long arithmetic progressions. (Ergodic theoretic proofs of
Szemerédi’s Theorem can be found in [6], [7] or [9].) It has recently been shown [1,
Theorem 1.3] that any set which is multiplicatively large (see Definition 2.1 below)
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must contain substantial combined additive and multiplicative structure; in partic-
ular it must contain arbitrarily large geoarithmetic progressions, that is, sets of the
form {ri(a+id):i,j € {0,1,...,k}}.

As we shall see below, the corresponding partition theorem (i.e. for any finite
partition of the positive integers, some cell contains arbitrarily large geoarithmetic
progressions) can be derived fairly simply from well known Ramsey theoretic results.

We thank Imre Leader for providing us with an elementary proof of the following
theorem. A family A of subsets of a set X is partition regular provided that
whenever X is partitioned into finitely many classes, one of these classes contains
a member of A.

Theorem 1.1. Let (S,-) be a set with some binary operation and let F and G be
partition regular families of subsets of S with all members of F finite. Let m € N
and let S = |J,-; As. Then there exist s € {1,2,...,m}, Be€ F, and C € G such
that B - C C As.

Proof. By a standard compactness argument (see for example [15, Section 5.5], or
[10, Section 1.5]) pick a finite subfamily H of F such that whenever S =", D;,
there exist s € {1,2,...,m} and B € H such that B C D,. For each z € S,
S=U, {t:t-z € A}, thus we may pick B(z) € H and s(z) € {1,2,...,m} such
that B(z) - x C Ay(). Define 7: S — H x {1,2,...,m} by 7(z) = (B(z),s(xz)).
Pick Be H,C € G,and s € {1,2,...,m} such that for all z € C, 7(z) = (B,s). O

Note that one cannot drop the assumption that all members of F are finite:
Consider the group (Z,+) and let F = {B C N : B is infinite} and G = {C C
Z\N: C is infinite}. Given B € F and C € G the set B+ C contains positive and
negative integers. Thus the partition Z = NU (Z \ N) shows that the conclusion of
Theorem 1.1 fails in this situation.

Theorem 1.1 applied to the semigroup (N, -), the family of all (k+ 1)-term arith-
metic progressions and the family of all (k + 1)-term geometric progressions yields
that for any finite partition of N there exist a,b,d,r € N with r # 1 and some cell
A such that

{(ba +ibd)r? :i,j € {0,1,...,k}} = {a,a+d,...,a+kd} - {b,br,...,brF} C A.

In particular we see that some cell contains arbitrarily large geoarithmetic progres-
sions.

Of course Theorem 1.1 can be applied iteratively to different kinds of partition
regular families and binary operations. For example, for each finite partition of
N and each k € N there exist k-term geometric progressions G1,G2 and a k-term
arithmetic progression A such that {g1 + a9 : g1 € G1, g2 € G2, and a € A} is
entirely contained in one cell.

In Section 3 we present some combined additive and multiplicative results that
can be obtained from known algebraic results or easy extensions thereof and are
stronger than Theorem 1.1. These results appear to be unlikely to be easily ob-
tainable by elementary methods.

For example we show in Theorem 3.7 that for certain partition regular families
F and G one can strengthen the conclusion of Theorem 1.1 and prove that for any
finite partition of N some cell contains structures of the form BUC'UB -C for some
BeF,Ceg.
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As a special case of Corollary 3.10 we obtain for example the following easy
extension of the geoarithmetic result about partitions stated above:

Corollary 1.2. Let k,m € N and let N = J-, A;. Then there ezist s € {1,2,...,
m}, a,d € As and r € A; \ {1} such that

{ri(a+id):i,j€{0,1,....,k}}u{dri:j€{0,1,....k}} C A,.

In Section 4 we derive several new algebraic results and new combinatorial con-
sequences thereof.

Consider the following result, which is [1, Theorem 3.13]. Given a set X, P¢(X)
is the set of finite nonempty subsets of X. (We shall give a precise definition of
“multiplicatively large” in Definition 2.1.)

Theorem 1.3. Let k € N. For each i € {0,1,...,k} let (x;:)2, and (y; )2, be
sequences in N. And let A be a multiplicatively large subset of N. Then there exist
F,G € Ps(N) and a,b € N such that {b(a + > ,cp %it) - ([Tieq ¥it) : -4 € {0,1,
.., k}} C A

Corollary 1.4. Let m,k € N. For each i € {0,1,...,k} let (xi )52, and (y; )52,
be sequences in N. Let N = |JI"| A,. Then there ezist s € {1,2,...,m}, F,G €
Ps(N), and a,b € N such that {bla + Y ,cr i) - ([Lyeq ¥it) 64 € {0,1,...,
k}} C A,.

Notice that a particular consequence of Corollary 1.4 is that one cell of each finite
partition of N must contain arbitrarily long geoarithmetic progressions. Further,
the common ratio r can be taken from FP((y,)S ;) for any prescribed (y,)2,
and the additive increment d can be guaranteed to be a multiple of some member
of FS((xn)22,) for any prescribed {z,,)22;. (In a semigroup (S, "), FP({yn)o>,) =
{Il.cr ®n : F € P¢(N)} where the products are taken in increasing order of indices.
If the operation is denoted by +, the corresponding notion is denoted F.S((y5)52;).)
To see this, for i € {1,2,...,k} and t € N, let z;; = iz; and y;; = (y:)!. Given F
and G as guaranteed by Corollary 1.4,let d=0-3 . oy and r = [[,co ¥:-

We show in Theorem 4.12 that one may take F = G in Theorem 1.3 and in
Corollary 4.15 that one may eliminate b from Corollary 1.4 (and in particular,
that the additive increment for the geoarithmetic progressions described above can
be taken from FS({z,)52 ;) for any (z,)S2,). We show also that one may not
simultaneously take F' = G and eliminate b. The example of Theorem 4.20 shows
also that one cannot eliminate the multiplier b in Theorem 1.3.

Another simply stated result from [1] is that any multiplicatively large set con-
tains geometric progressions in which the common ratios form an arithmetic pro-
gression, that is a set of the form {b(a + id)? : i,j € {0,1,...,k}} [1, Theorem
3.15]. From this one concludes that one cell of any finite partition of N must satisfy
this property. Of course one might hope for a theorem with stronger conclusions in
the partition case.

A well known extension of van der Waerden’s Theorem allows one to get the
additive increment of the arithmetic progression in the same cell as the arithmetic
progression. Similarly for any finite partition of N there exist some cell A and
b,7 € N such that {b,br?,...,brF,r} C A. One naturally wonders whether one
can intertwine these two facts. Indeed, this is achieved in the following theorem
which is a consequence of Corollary 4.7. (See Definition 4.6 for the definition of an
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(m, p, c)-set. These sets were introduced by Deuber [5] and are known to have rich
combinatorial structure.)

Theorem 1.5. Letr,k € N and let N = J._, A;. Then there exists € {1,2,...,7}
and a,d,b € A; such that

{bla+id) :i,j € {0,1,...,k}}U{dbd : j € {0,1,...,k}}
U{a+id:i€{0,1,...,k}} CA,.

More generally for all m,p,c € N there exist b € N, some (m,p,c)-set F and
s€{1,2,...,r} such that

Fu{ba?! 1z € F,je{0,1,...,k}} C A,.

In Section 5 we establish some limitations on the algebraic approach. We also
prove a theorem which, for countable commutative semigroups, is even stronger
than the powerful Central Sets Theorem. (The Central Sets Theorem for the semi-
group (N, +) is [7, Proposition 8.21]. Central subsets of any semigroup are guaran-
teed substantial combinatorial structure; see [15, Part III] for numerous examples.)
Several earlier results in the paper follow immediately from this theorem. However,
we prove these earlier results directly instead of stating them as corollaries, be-
cause the direct proofs are reasonably simple, while the theorem proved in Section
5 might be considered a little daunting.

2. PRELIMINARIES

We shall be concerned with several notions of largeness, both additive and mul-
tiplicative. Among these are various notions of density. The notion d defined below
is referred to as upper asymptotic density.

Definition 2.1. Let ACN.

- An{L?2,...
(a) d(A) = lim sup A2 nH
n—o0 n
(b) A Fplner sequence in (N, -) is a sequence (F},)32 ; of finite nonempty subsets
E,AF,
of N such that for each z € N, lim u =
n—oco |Fn| B
(¢) If F = (F,)5, is a Fglner sequence in (N, ), then dr(A) =
|ANEF,|
lim sup
@) IfF= <Fn)§21 is a Fglner sequence in (N,-), then d%(A4) =
lim sup M:mENanank .

(e) The set A is multiplicatively large if and only if there is some Fglner se-
quence (F,) ; in (N,-) such that dz(4) > 0.

An example of a Fglner sequence in (N,-) is given by F, = {H?Zl p;* : for
each i € {1,2,...,n}, a; € {0,1,.. .,n}}, where (p;)$2, is the sequence of primes
in their natural order. It is an easy exercise to show that a subset A of N is
multiplicatively large if and only if there is some Fglner sequence (F,,)32, in (N,-)
such that d’%(A) > 0.

Other notions of largeness with which we shall be concerned originated in topo-
logical dynamics and make sense in any semigroup. Four of these, namely thick,
syndetic, piecewise syndetic and IP-set have simple elementary descriptions and we
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introduce them now. The fifth, central, while originally defined by Furstenberg in
dynamical terms [7], is most simply described in terms of the algebraic structure
of 85, which we shall describe shortly. Given a semigroup (S,-), a subset A of S,
andz € S, welet 2 !A={yeS:zye A}

Definition 2.2. Let (S,-) be a semigroup and let A C S.
(a) A is thick if and only if whenever F' € P;(S) there exists € S such that
Fx CA.
(b) Ais syndetic if and only if there exists G € Py (S) such that S = |, t A
(c) A is piecewise syndetic if and only if there exists G € Ps(S) such that for
every F € P;(S) there exists z € S such that Fz C |, t7'A.

(d) Aisan IP-set if and only if there exists a sequence (2,)52; in S such that
FP((z,)32,) C A.

Each of the above notions is one-sided. So, for example, A could be said to be
“right thick” if it satisfies the definition above and “left thick” if for each F' € P¢(S)
there exists ¢ € S such that F C A. (On the other hand, “right” and “left” can
be, and have been, interchanged.)

Notice that each of thick and syndetic imply piecewise syndetic and thick sets
are IP-sets. It is easy to construct examples in (N, +) showing that no other impli-
cations among these notions is valid in general.

The following lemma gives a hint why piecewise syndetic sets will be interesting
for our purposes.

Lemma 2.3. Let (S,-) be a semigroup, let F be a partition regular family of finite
subsets of S, and let A be a piecewise syndetic subset of S. Then there existt,x € S
and F € F such that tFx C A. If (S,-) is commutative, then there exist t € S and
F € F such that tF C A.

Proof. Pick G € Py(S) such that |J,c; t7'A is thick. By a standard compactness
argument pick a finite subfamily H# C F such that for each partition of S into |G|
sets some cell contains a member of H. Since all elements of H are finite, |JH
is finite as well. Thus there exists some z € S such that (JH)z C U, t71A-
Equivalently, all members of #H are subsets of |J,c t ' Az~'. We conclude that
forsomet € Gand Fe H, F Ct 1Az~ L. O

Notice that if (S, -) is not commutative, then both multipliers in Lemma 2.3 may
be required. For example, let S be the free semigroup on the letters a and b. Then
F ={bF : F € Ps(S)} and G = {Fb: F € P¢(S)} are partition regular, aS and
Sa are piecewise syndetic, there do not exist F' € F and z € S with Fxz C aS, and
there do not exist F' € G and t € S with tF C Sa. (In fact, aS is syndetic in S.)

We now present a very brief review of basic facts about (89, -). For additional
information, including historical notes about the discovery of these facts see [15].

Given a discrete semigroup (S, -) we take the points of the Stone-Cech compacti-
fication S of S to be the ultrafilters on S, the principal ultrafilters being identified
with the points of S. Given A C S, A={p€ BS: A€ p} and the set {A: A C S}
is a basis for the open sets (and a basis for the closed sets) of 3S. Given p,q € 58S
and A C S, Aep-qifandonlyif {x € S: 2714 € ¢} € p. In particular, the
operation - on S extends the operation - on S.

With this operation, (8S,-) is a compact Hausdorff right topological semigroup
with S contained in its topological center. That is, for each p € S, the function
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pp : BS — BS defined by p,(q) = ¢-pis continuous and for each z € S, the function
Az : BS — BS defined by \;(¢) = x - q is continuous. A subset I of a semigroup T'
is a left ideal provided T - I C I, a right ideal provided I -T C I, and a two sided
ideal (or simply an ideal) provided it is both a left ideal and a right ideal.

Any compact Hausdorff right topological semigroup 7" has a smallest two sided
ideal K(T) = |U{L : L is a minimal left ideal of T} = |J{R : R is a minimal right
ideal of T'}. Given a minimal left ideal L and a minimal right ideal R, L N R is
a group, and in particular contains an idempotent. An idempotent in K(T') is a
minimal idempotent. If p and ¢ are idempotents in T' we write p < ¢ if and only if
pq = gp = p- An idempotent is minimal with respect to this relation if and only if
it is a member of the smallest ideal.

A subset of S is an IP-set if and only if it is a member of some idempotent in
BS. It is piecewise syndetic if and only if it is a member of an element of K(35S).

Definition 2.4. Let S be a semigroup and let A C S. Then A is central if and
only if there is a minimal idempotent p in 85 such that A € p.

A central set is in particular a piecewise syndetic IP-set. Given a minimal idem-
potent p and a finite partition of S, one cell must be a member of p, hence at least
one cell of any finite partition of S must be central. Central sets are fundamental
to the Ramsey Theoretic applications of the algebra of 55S.

We shall need the Hales-Jewett Theorem. Given the free semigroup S over an
alphabet L, a variable word w is a word over LU {v} in which v occurs, where v is
a “variable” not in L. Given a variable word w and a € L, 0,(w) is the word in S
obtained by replacing each occurrence of v by a.

Theorem 2.5. Theorem (Hales-Jewett). Let L be a finite alphabet, let S be the
free semigroup over L, let m € N, and let S = JI, A;. Then there exist i € {1,2,
...,m} and a variable word w such that {6,(w) : a € L} C A;.

Proof. [11, Theorem 1], or see [10, Theorem 2.3] or [15, Theorem 14.7]. O

The following application of Theorem 2.5 will be used later. This result is well
known among afficianados.

Theorem 2.6. Let (S,-) be a commutative semigroup, let A be a piecewise syndetic
subset of S, let k € N, and for i € {1,2,...,k} let (yin)2, be a sequence in S.
There ezist F € P;(N) and b € S such that {b}U{b[,cryic:i€{l,...,k}} C A

Proof. By virtue of Lemma, 2.3 it is sufficient to show that the family

{oyu{b-Tleryiz:i€{l,....k}} : b€ S, F e Ps(N)}
is partition regular.

Let L = {0,1,...,k} and let T be the free semigroup on the alphabet L. Let
by € S be an arbitrary, fixed element. Given a word w = lyls -- -1, of length n in
S, define f(w) = bo [T;e1,2,....n},1,520 Y1..¢ if there exists some t € {1,2,...,n} such
that I, # 0 and f(w) = by otherwise.

Consider a partition {41, As,...,An} of S. Then T = |J-, f1[As] so pick
by Theorem 2.5 s € {1,2,...,m} and a variable word w = Iyl ---1, (with each
Iy € LU {v}) such that {6;(w) :i € L} C f~1[A,].

Let F = {t € {1,2,...,n} : l; = v}, let G = {1,2,...,n} \ F and let b =
f(6o(w)). Then b[],cpyie = f(0:i(w)) for i € {1,2,...,k} and thus {b} U
{theri,tZ’I:G{].,...,k}}gAs. O
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Corollary 2.7. Let (S,-) be a commutative semigroup, let A be a piecewise syndetic
subset of S, let B be an IP-set in S, and let k € N. There existb € S andr € B
such that {b,br,br?,... br¥} C A. If A is central we may in particular take A = B
so that {r,b,br,br?,... brk} C A.

Proof. Let {x,)S2; be a sequence in S such that FP({z,)>2,) C B. For i € {1,2,
...,k} and n € N, let y;,, = (z,)". Pick b and F as guaranteed by Theorem 2.6
and let r = [[,cp ¢

Any central set is a piecewise syndetic IP-set and thus the in particular statement
follows. |

3. NEW WINE FROM OLD WINESKINS

All of the results about the algebraic structure of SN that are used in this section
have been known for several years.

There is a long list of configurations which are known to be present in any central
subset of (N, +) and a somewhat shorter, but still lengthy, list of structures which
can be found in any central subset of (N,-). Some of these involve special subsets
of BN defined by various notions of density.

Definition 3.1. (a) A={qepN: (VA€ q)(d(A) >0)}.

(b) If F = (Fn)7%, is a Fglner sequence in (N, ), then Ax =
{g € BN : (VA € q)(dr(4) > 0)}.
(c) If F = (F,)52, is a Folner sequence in (N, -), then A% =

{g € BN : (VA € q)(d%(4) > 0)}.

Lemma 3.2. Let F = (F,)52, be a Folner sequence in (N,-). Then A% is a two
sided ideal of (PN, -).

Proof. Let ¢ € A% and let p € fN. To see that p-q € A% let A € p-¢q and pick
z € Nsuchthat 27'A € ¢. Let o = d-(z7'A4),let k € N, and let e > 0. Pickm € N
and n > k such that [z7*ANmE,| > (a—e¢)-|F,|. Then |[ANzmF,| > (a—¢)-|F,|.

To see that ¢ -p € A% let A € g-pandlet B = {z € N:z7'4 € p}.
Let o = d%(B), let k € N, and let ¢ > 0. Pick m € N and n > k such that
|BNmE,| > (a—€) - |F,|. Pickt € N{z 'A:z € BNmF,}. Then |[ANtmF,|>
|[BNmE,| > (a —¢) - |Fpl. O

In [19], Rado proved that a u x v matrix C is kernel partition regular over (N, +)
(meaning that whenever r € N and N = |JI_, A;, there exist i € {1,2,...,r} and
Z € A;¥ such that CF = 6) if and only if C satisfies a computable requirement
called the columns condition.

A ux v matrix C with entries from Q is image partition regular over (N, +) if and
only if whenever r € N and N = J]_, 4;, there exist ¢ € {1,2,...,r} and &£ € N’
such that all entries of C# are in A;. We shall use the custom of denoting the
entries of a matrix by the lower case of the same letter whose upper case denotes
the matrix, so that the entry in row ¢ and column j of C' is denoted by ¢; ;.

Definition 3.3. Let u,v € N and let C' be a u X v matrix with entries from Q.

(a) C is a first entries matriz if and only if now row of C is 0 and for all
i,j € {1,2,...,u} and all k € {1,2,...,v}, if £k = min{¢ : ¢;; # 0} =
min{t : ¢;; # 0}, then ¢; = ¢j1 > 0.
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(b) The number b is a first entry of C if and only if b is the first nonzero entry
in some row of C.

Each first entries matrix is image partition regular over (N, +) and image parti-
tion regular matrices can be characterized in terms of first entries matrices. (See
[15, Theorem 15.24].)

We summarize some of the structures guaranteed to be present in any multiplica-
tively central set first. See [15, Chapter 14] for a formal definition of the notion of
tree in a set as well as the set of successors to a node. (Informally, there is a good
chance it means what you think it means.)

Theorem 3.4. Let A be a central subset of (N,-).

(a) For any sequence {x,)S>, in N and any k € N, there exist b € N and r €
FP({z,)%,) such that {b,br,br?,... brk} C A.

(b) There is a tree T in A such that for any path g through T and any Fglner
sequence F = (Fp)22,, FP({9(n))o,) C A and for every node f € T, the set By
of successors to f satisfies d=(By) > 0.

(c) If u,v € N and C is a u x v matriz with entries from Z which satisfies the
columns condition over Z, then there exists & € AY such that for all i € {1,2,...,
u}, [TGoy 2% = 1.

(d) If u,v € N and C is a u X v first entries matrix with entries from Z and all
first entries equal to 1, then there exists & in NV such that for all i € {1,2,...,u},
H;{:l x;¢ € A.

Proof. (a) Corollary 2.7.

(b) Pick a minimal idempotent ¢ of (AN, -) such that A € ¢. By Lemma 3.2 A%
is an ideal of (BN, ), so ¢ € A% and [15, Lemma 14.24] applies.

(c) [15, Theorem 15.16(a)].

(d) [15, Lemma 15.14 and Theorem 15.5]. O

The conditions of Theorem 3.4(c) and (d) are stronger than those required for
kernel and image partition regularity over (N, -). (And necessarily so. The set A =
N\ {z? : z € N} is central in (N,-) [15, Exercise 15.1.2], the matrix ( 2 -2 1)
is kernel partition regular over (N, -), and the matrix (2) is image partition regular
over (N,-). But one cannot get z,y,z € A with 22y~2z = 1 and one cannot
get € N with 22 € A.) By contrast, in (N, +), kernel partition regularity of C
corresponds to solutions to CZ = 0 in any central set and image partition regularity
of C' corresponds to obtaining all entries of C'Z in any central set.

We shall be interested in a property stronger than central for our additive results.
By [15, Theorem 6.79], A is a compact left ideal of (AN, +) so it contains a minimal
idempotent of (AN, +). Consequently, any finite partition of N will have one cell
satisfying the hypothesis of the following theorem.

Theorem 3.5. Let A C N and assume that there is o minimal idempotent q of
(BN, +) in ANA.

(a) For any sequence (£,)°, in N and any k € N, there ezist a € N and d €
FS({xn)22,) such that {a,a+d,...,a+kd} C A.

(b) There is a tree T in A such that for any path g through T, F'S({g(n));%,) C A
and for every node f € T, the set By of successors to f satisfies d(By) > 0.
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(c) Ifu,v € N and C is a uxv matriz with entries from Q which is kernel partition
regular over (N,+) (that is C satisfies the columns condition over Q), then there
exists T € A such that CZ = 0.

(d) If u,v € N and C is a ux v matriz with entries from Q which is image partition
regular over (N,+), (in particular if C is a first entries matriz), then there exists
Z in NV with all entries of CT in A.

(e) Let R be a finite set of polynomials which take integer values at integers and
have zero constant term and Let (z;)2, be a sequence in Z. Then there exists
F € Py(N) such that {a € A: {a+p(Eicrz) 1 p € R} C A} is piecewise syndetic.

Proof. (a) Corollary 2.7.

(b) [15, Lemma 14.24].

(c) [15, Theorem 15.16(b)].

(d) [14, Theorem 2.10].

(e) In [3, Theorem C] it was shown that the conclusion follows from the as-
sumption that A is piecewise syndetic. For an algebraic proof see [13, Corollary
3.7]. O

Lemma 3.6. Let D = {q € A : ¢ is a minimal idempotent of (SN,+)}. Then
ctD is o left ideal of (BN, -).

Proof. We have already observed that D # (). Let r € ¢£D. To see that SN-r C ¢/R
it suffices by the continuity of p, in (8N,-) to show that N-r C ¢/D. So let z € N
and let A € z-7. Then 27 'A € r so pick ¢ € DNz—1A. Then A € z-¢. By
[15, Theorem 6.79] = - ¢ € A. By [14, Lemma 2.1] - ¢ is a minimal idempotent of

(BN, +). o

Plentiful examples of candidates for the sets F and G of Theorem 3.7 are provided
by Theorems 3.4 and 3.5. Notice in particular that G could be any family of subsets
of N such that any additively central set must contain a member of G.

Theorem 3.7. Let D = {qg € A : ¢ is a minimal idempotent of (8N, +)}. Let
F be a set of subsets of N with the property that any multiplicatively central subset
of N contains a member of F and let G be a set of subsets of N with the property
that, whenever A C N and AN D # (), some member of G is contained in A.
Assume further that F or G consists of finite sets. Let H = (H,)S2, be a Fyglner
sequence in (N,-). Whenever r € N and N = |JI_, A;, there exists i € {1,2,...,r}
such that d(A;) > 0, dj,;(A;) > 0, and there exist B € F and C € G such that
BUCUB-C CA;.

Proof. By Lemma 3.6, ¢£D is a left ideal of (8N, -) so pick a minimal idempotent
g of (BN,-) in ¢fD. Pick i € {1,2,...,7} such that 4A; € ¢. Since q € ¢/D C A,
d(A4;) > 0. By Theorem 3.4(b), d3,(A;) > 0. Since g = q-¢q, {z € 4; : z7'4; €
q} € q. Assume first that F consists of finite sets. Since {z € A; : z7'4; €
q} € g, {x € A; : 7' A; € ¢} is multiplicatively central, so pick B € F such that
B C {z € A; : x7'A; € ¢}. Since B is finite, A; N (\,cp 2" 4; € ¢ and thus
(AiNN,ep £~ 14;) N D # 0. Pick C € G such that C C A; N[, 5 27" 4.

Now assume that G consists of finite sets. Since {z € A4; : z7'4; € q} € g,
{zx€Ai:x1A; € ¢} ND # 0, so pick C € Gsuchthat C C {z € A; : 2714, € ¢}
Since C is finite, 4; N, co z~LA; € gq, so there exists some B € F such that
BCA;N anC .CL'ilA,'. O




10 MATHIAS BEIGLBOCK, VITALY BERGELSON, NEIL, HINDMAN, AND DONA STRAUSS

By adding the requirement that the members of both F and G are finite, we
obtain an infinitary extension of Theorem 3.7 along the lines of the Central Sets
Theorem.

Theorem 3.8. Let D = {¢ € A : g is a minimal idempotent of (8N,+)}.
For each n € N, let F,, be a set of finite subsets of N with the property that any
multiplicatively central subset of N contains a member of F,, and let G, be a set of
finite subsets of N with the property that, whenever A C N and AN D # 0, some
member of Gy, is contained in A. Let H = (H,)S2, be a Folner sequence in (N,-).
Wheneverr € N and N = |J]_, A;, there existsi € {1,2,...,r} such that d(A;) > 0,
d3,(A) > 0, and there exist sequences (Bp)5>, and (Cn)32, such that B, € Fy and
Cy € Gy, for each n and for any F € Py(N) and any f € X ,ep (BLUCL,UB,,-Cy),

[lner f(n) € As.
Proof. Pick a minimal idempotent ¢ of (AN, ) in ¢/D and pick i € {1,2,...,7} such
that A; € ¢. Then d(4;) > 0 and d5,(A4) > 0. For any X € ¢, let X* = {z € X :
z !X € ¢}. Then by [15, Lemma 4.14] X* € g and for any z € X*, z 1 X* € q.
Choose By € F; such that By C A;* and choose C; € G; such that C; C
Al* N ﬂzeB1 IL'_IAl*.
Inductively, let n € N and assume we have chosen B; € F; and C; € G; for each
t € {1,2,...,n} with the property that for all nonempty F C {1,2,...,n} and all
fE XteF (Bt UCiU By - Ct), HtGF f(t) € Ai*. Let

X = AN {(ILer f(®) 'A*: 0#FC{1,2,...,n} and
f € Xiep (BiUCUB,-Cy)}.
Then X is a finite intersection of members of g so X € q. Pick B,y1 € Fp41 such
that B,y C X*. Then X N(,ep, ., 71X € q so pick Cpy1 € Gny1 such that
Cn+1 cXn ﬂ z1X. O

TEBn41

Corollary 3.9. Let m,k € N and let N = ;" | A;. Let H = (H,)32, be a Folner

sequence in (N,-). Then there exist i € {1,2,...,m}, a,d,b€ A;, andr € A; \ {1}

such that d(A;) > 0, dj,(A;) > 0, and

{bre:s€{0,1,...,k}}u{a+td:t€{0,1,...,k}} U{rd} U
{r(a+td):te{0,1,...,k}} U {bdr:s€{0,1,...,k}} U
{bré(a+td) : s,t € {0,1,...,k}} C A4;.

Proof. Let F = {{br° : s € {0,1,...,k}} U{r} : b,r € N} and let

G={{a+td:t€{0,1,...,k}} U{d}:a,d € N}.

By applying Theorem 2.6 to (N, ) and to (N,+) one concludes that every multi-
plicatively central set contains a member of F and that every additively central set
contains a member of G. Thus we may apply Theorem 3.8. By assigning 1 to its
own cell one may ensure that r # 1. |

Corollary 3.10. Let m,k € N and let N = JI", A;. Let H = (H,,)52, be a Folner
sequence in (N,-). Then there ezxist i € {1,2,...,m}, a,d € A;, and r € A;\ {1}
such that d(A;) > 0, dj,(A;) > 0, and

{r*(a+td):s,te{0,1,....k}} U{dr’:s€{0,1,...,k}} C 4.
Proof. Let i, a, b, d, and r be as in Corollary 3.9. Put a; = ab and d; = db. Then
{r*(ar +tdr) : 5,t € {0,1,...,k}}U{dir® : s € {0,1,...,k}} C A;. O
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The following proposition states that the geoarithmetic structure in the conclu-
sion of Corollary 3.10 can be found in any multiplicatively piecewise syndetic IP
set.

Theorem 3.11. Let A be a piecewise syndetic IP-set in (N,-) with 1 ¢ A and let
k € N. Then there exist a,d € A and r € A\ {1} such that

{r*(a+td):s,te{0,1,....,k}} U{dr’:s€{0,1,...,k}} C 4.
Proof. Let F = {{br* :5€{0,1,...,k}} :beNandr € A\ {1}} and let
G={{dtu{a+td:t€{0,1,...,k}}:a,d € N}.

By Corollary 2.7, F and G are partition regular. By Theorem 1.1 this holds for
H={B-C:BeFand C € G} as well. Since for any t e Nand H € H, tH € H
we may apply Lemma 2.3 and pick some B € F and C € G such that B-C C A.
Pick b € N and r € A4 such that B = {br® : s € {0,1,...,k}} and pick a;,d; € N
such that C' = {d1} U {ay +tdy : t € {0,1,...,k}}. Let a=arbandd =dib. O

4. EXTENSIONS OF GEOARITHMETIC PROGRESSIONS

A geoarithmetic progression is a set of the form {ri(a +id) : i,j € {0,1,...,k}}
where a,d, k € N and r € N\ {1}. We shall be concerned in this section with finding
certain generalizations of geoarithmetic progressions in one cell of a finite partition
of N.

Our first result in this direction (Corollary 4.3) replaces r in a geometric pro-
gression by multiples of members of any partition regular family of finite sets. For
that result, one needs to add a multiplier b because, for example, one can certainly
not expect to find a set of the form {r,r?} for r > 1 in one cell of an arbitrary finite
partition of N. Indeed one may assign the members of N\ {z? : z € N\ {1}} to 4,
or A, at will, and then assign z? to the cell that z is not in, z* to the cell 2 is not
in, and so on.

To establish Theorem 4.2 we need the following algebraic result which is of
interest in its own right. We let w = NU{0}. The case (S,+) = (w,+) of Theorem
4.1 follows from [14, Theorem 2.10]. Given a semigroup S, a set C' C S is said to
be central* if and only if for every central subset B of S, CN B # 0. (Equivalently,
S\ C is not central.) Notice in particular that S is always central* so that if all first
entries of a first entries matrix A are equal to 1, the requirement in the following
theorem that 1.5 be central* is automatically satisfied.

Theorem 4.1. Let u,v € N and let A be a u X v first entries matriz with entries
fromw. Let (S,+) be a commutative semigroup with identity 0 and let C be a central
subset of S. If for every first entry ¢ of A, ¢S is central*, then {Z € S* : AZ € C*}
is central in S”.

Proof. Pick a minimal idempotent e of 85 such that C' € e. Define ¥ : S¥ — S*
by ¢(Z) = A and let ¢ : 3(S?) — (8S)* be its continuous extension. Let M =
{p € B(S?): P(p) = (e,e,...,e)T}. By [15, Corollary 4.22] ¢ is a homomorphism,
50 to see that M is a subsemigroup, it suffices to show that M # (.

For each B € e pick by [15, Theorem 15.5] Zp € SY such that ¥(Zg) € B*.
Direct e by reverse inclusion and let g be a limit point in S(S?) of the net (Zp)pee.
Then q € M.
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Since M is a compact right topological semigroup, pick a minimal idempotent r
of M. We claim that r is minimal in 3(S?). To see this, let p be an idempotent
of B(S?) such that p < r. Then (p) < @¢(r) = (e,e,...,e)T and (e,e,...,e)T is
minimal in (8S)* by [15, Theorem 2.23] so ?(p) = (e,e,...,e)T. Thus p € M and
sop=r. o _

Pick X € r such that Y[ X ] C (B)". Then X C {Z¥ € S : A¥ € B"}. O

Notice that all we need in the proof of the following theorem is that {(b,7) € 52 :
{r,b,br,...,br¥} C C} is piecewise syndetic, which we establish by (algebraically)
showing that it is central. We do not have, nor do we think it is likely to be easy
to find, an elementary proof of this fact.

Theorem 4.2. Let (S,-) be a commutative semigroup with identity and let C' be
a central subset of S. If F is a partition regular family of finite subsets of S and
k € N, then there exist b,r € S and F € F such that rF U {b(rz)’ : z € F and
ie{0,1,....k}} CC.

Proof. Let k € N and let

0 1
10
4= 11
1k

Then A is a first entries matrix with all first entries equal to 1 so by Theorem 4.1
{(b,r) € S : {b,r,br,...,br*} C C} is central in S? and is in particular piecewise
syndetic. Let G = {{d} x F: b € S and F € F}. Then G is a partition regular
family of finite subsets of S? so pick by Lemma 2.3 F € F, c € S, and (s,r) € S?
such that (s,r) - ({c} x F) C {(b,7) € S? : {b,r,br,...,br¥} CC}. Let b=sc. O

Notice that, if in the above proof, the matrix A is replaced by a matrix whose set
of rows is {(0,0,1)} U {(0,1,5) : j € {0,1,...,k}} U {(1,i,5) : i,j € {0,1,...,k}},
then the conclusion of Theorem 4.2 becomes “there exist b,c,r € S and F € F
such that rF U {b(rz)/ : 2 € F and j € {0,1,...,k}} U {cbi(rz)! : 2 € F and
i,j € {0,1,.. .,k}} C C.” Of course additional strengthenings can be obtained
using first entries matrices with all first entries equal to 1 and additional columns.

We see now that, given any central subset C of (N, -) we can get sets of the form
{b(a+id)? :i,j € {0,1,...,k}} together with the multiplier, the increment, and
the arithmetic progression in C.

Corollary 4.3. Let C be a central subset of (N,-) and let k € N. There exist
a,b,d € N such that
{b(a+id) :i,j €{0,1,....,k}} U {bd : j € {0,1,...,k}}
U{a+id:i€{0,1,...,k}}u{d} CC.

Proof. Let F = {{d,a,a+d,...,a+kd} :a,d € N}. Pick by Theorem 4.2 b,r € S
and F' € F such that rFU{b(rz)? : € F and j € {0,1,...,k}} CC. Picke¢,s €N
such that F = {¢,s,s+¢,...,s + kc}. Let d = rc and a = rs. O

Again note that if the stronger version of Theorem 4.2 that we mentioned after
its proof is used, the conclusion of Corollary 4.3 becomes “There exist a,b,c,d € N
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such that
{cbi(a+td)? : t,i,j € {0,1,...,k}} U{cbid’ :i,j € {0,1,...,k}}
U{bla+td)’ :t,j€{0,1,....,k}}U{bd :j € {0,1,...,k}}
U{a+td:te{0,1,...,k}}u{d}CC.”

We remark also that Corollary 4.3 could also be stated in terms of an arbitrary
commutative ring with no change in proof.

The following result is stronger than Corollary 4.3. We state it separately because
its formulation is more involved and the proof requires more theoretical background.

Corollary 4.4. Let S be an infinite set with operations + and - such that (S, +) is
a commutative semigroup with identity 0, (S \ {0},-) is a commutative semigroup
with identity 1, and - distributes over +. Let C be a central subset of (S'\ {0},-),
let k € N, and let G be a finite subset of S\ {0}. Then there exist a,b,d € C such
that
{b(a+di)i:i€G andj€{0,1,... K}y U{bd :j €{0,1,... k}}
U{a+di:ie G} CC.

Proof. We observe first that S\ {0} is central in (S,+). To see this, suppose
instead that 0 is a minimal idempotent of (8S,+4). Then by [15, Theorem 2.9]
BS =0+ BS = BS +0 is a group and in particular (S,+) is cancellative. But
then by [15, Theorem 4.36] 8S \ S is an ideal of (8S,+) and so 0 € S\ S, a
contradiction.

Let F = {{a,d}U{a+dj:j € G} :a,d € S}. We claim that 7 N P(S\ {0})
is partition regular in S\ {0}. Solet r € N and let S\ {0} = U;_, D;. Pick
i € {1,2,...,7} such that D; is central in (S,+). Let {(d,)S>, be a sequence such
that FS({(d,)22,) C D;. Theorem 2.6 applied to the sequences (jd,)2, for j € G
yields that there exist a € D; and F' € P;(N) such that a + Y, pjd; € D; for all
JEG Ifweletd=3}, d; weseethat {a,d}U{a+dj:j€G}CD;.

Pick by Theorem 4.2 b,r € S\ {0} and F € FNP(S\{0}) such that rFU{b(rz)? :
ze€Fandje{0,1,...,k}} CC. Pick ¢,s € S such that F = {¢,s}U{s+ic:i €
G}. Let d = rc and a = rs. Since a,d € rF, we have a,d € C. Also b = ba® so
beC. O

Suppose that the semigroup S satisfies the hypotheses of Corollary 4.4 and that
0-z = 0 for every z € S. Then, by [4, Theorem 4.4] first entry matrices over S
whose first entries are all 1 can be used to prove Corollary 4.4 as well as a sequence
of successively stronger theorems. For example, the theorem stated in the remark
following Theorem 4.2 is valid in S if C is any central subset of (S '\ {0},-), G is
any given finite subset of S and F = {f}U{d+tf:t € G}U{a+sd+tf:s,t € G}
for some a, d, and f in S\ {0}.

The following corollary is also a consequence of [1, Theorem 3.15].

Corollary 4.5. Let k € N, and let A be piecewise syndetic in (N,-). Then there
exist a,b,d € N such that {b(a +id)’ :i,j € {0,1,...,k}} C A.

Proof. Pick t € N such that t~' A is central and apply Corollary 4.3. |

Corollary 4.3 extends the conclusion of [1, Theorem 3.15] (i.e. the one given in
Corollary 4.5) in the sense that the arithmetic progression of the ratios is contained
in the same cell as the geoarithmetic structure. Moreover it replaces arithmetic
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progressions by arithmetic progressions together with the common difference. The
strongest natural generalization of this kind of structure is perhaps given by Deu-
ber’s (m, p, ¢)-sets.

Definition 4.6. Let m,p,c € N. A set FF C Nis an (m, p, ¢)-set if and only if there
exists £ € N™ such that

F = {C'Z.m} U Uzlzzl {C'Z.k + Z:;k-i-l )‘zmz : {Ak+1> Ak+27 R )‘m} g {07 ]-7 T 7p}} .

Thus a set of the form {a,a+d,...,a+pd,d},a,d € N is precisely a (2, p, 1)-set.
Note that (m, p, c)-sets are very closely related to first entries matrices: Let A be
a matrix whose set of rows is {(A1,A2,...,Ay) : there is some j < m such that
Aj=c¢, Ay =0fori < j,and A\; € {0,1,...,p} for i > j}. Then A is a first entries
matrix and a set F' C Nis an (m, p, ¢)-set if and only if there exist £ € N™ such that
F is the set of entries of AZ. By the results on first entries matrices cited above the
family of all (m, p, ¢)-sets is partition regular for all m,p,c € N. In fact, Deuber’s
Theorem [5, Satz 3.1] states that for all m,p,c,r € N there exist n,q,d € N such
that whenever A is an (n,q,d)-set and A = |Ji_, B;, there exist i € {1,2,...,r}
and an (m, p,c)-set F' such that F' C B;.

Since for each (m,p,c)-set F and each r € N the set rF' is again an (m, p, c)-set
we have the following immediate corollary of Theorem 4.2 which extends Corollary
4.3.

Corollary 4.7. Let C be a central subset of (N,-) and let k,m,p,c € N. There
exist b € N and an (m,p,c)-set F' such that

Fu{bs’:z € F,je{1,2,...,k}} CC.

One might hope that, in analogy with Deuber’s Theorem, configurations of the
form {ba’ : j € {0,1,...,N},a € A} where A is an (m, p,c)-set and m,p,c, N,b € N
are strongly partition regular as well. We shall see in Theorem 4.9 that this is not
the case.

Lemma 4.8. Let N € N and let v,p € R with 0 < v and 1 < pN < 2. Let

a > max{2vy,2p", 5:;,21—[)}. Ifa,deR, a>0,d>0, and {a,a+ d,a + 2d} C
[0,~] U Uévzl[aj,(ap)j], then either {a,a + d,a + 2d} C [0,7] or there is some
j€{1,2,...,N} such that {a,a+ d,a + 2d} C [o/, (ap)?].

Proof. If a + d < +, then since a > 27, we have that {a,a + d,a + 2d} C [0,7].
So assume that a +d > v. Pick j € {1,2,..., N} such that a + d € [o?, (ap)’].
Since a > 2p"N, we have that a + 2d < 2(ap)? < 2a9pN < a/*!. We conclude that
{a+d,a+ 2d} C [o?, (ap)’], hence a > 209 — adp? = oI (2 — p?). Tf j > 1, then
since a > 2”::, > é’JT_pl;, we have that o/ (2 — p?) > (ap)?~!. If j = 1, then since
a > 51 we have that (2 — p) > 7. O

Theorem 4.9. Let m,p,c, N € N. There exist an (m,p,c)-set A and B1,By C N
such that By UBy = {a’ : a € A and j € {0,1,...,N}} and there do not exist
a,b,d € N and t € {1,2} such that {b(a +id)? :i € {0,1,2} and j € {1,2}} C B;.

Proof. Fix p € R with 1 < pV < 2. Let z,,, = 1. We define &1, Tm_2,...,21 by
downward induction. So let k € {1,2,...,m — 1} and assume z; has been chosen
forie {k+1,k+2,...,m}. Fori e {k+1,k+2,...,m}and j € {1,2,...,N}, let
Az"j = {(.’L’zC—F Z;cn:z'—i-l l'k/\k)j : {)\z'—{—l; ’\’i+2a ey )\m} g {0, 1, .e ,p}}. Assume that
for each 7 € {k+ 1,k +2,...,m} the following inductive hypotheses are satisfied.
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(1) If r < m, then max|J" ., U;V:1 A;j < min U;V:1 Ay
(2) If a,b,d € N and {b(a + sd)’ : s € {0,1,2} and t € {1,2}} C U, UL, 4i;,
then either {b(a + sd)* : s € {0,1,2} and ¢t € {1,2}} C U=, U;VZI A;j or
{ba,b(a +d),b(a+2d)} C A, ; for some j € {1,2,...,N}.
(3) If a,b,d € N and {b(a + sd)’ : s € {0,1,2} and t € {1,2}} C U}, 4y, then
there exists some j € {1,2,...,[ 5]} such that {ba,b(a+d),b(a +2d)} C A, ; and
{ba?,b(a + d)?,b(a + 2d)*} C A, ;.

Now A1 = {c} so all hypotheses hold vacuously for r = m.

Let v = max |JiZ, U;V:1 Aij,let D =pY ", x;, and choose z; € N such

that czy > max{2y,2p", ;’i:;, , ﬁ,72,DNp2N, p%}. Put a = cxy. Observe that
Ag1 C ez +{0,1,...,D} C [a,'ap] bgcause a = cxy > p%. Consequently, for
each .7 € {17 27 . '7N}7 Ak,j - [a]7 (ap)J]

To verify (2), let a,b,d € N such that {b(a+sd)’ : s € {0,1,2} and t € {1,2}} C

N
Uity Uj=; 4ij- Now

U Uit 4is = Ui ips Ujls 4s UL A € 10,70 U [0, (ap)]

so Lemma 4.8 applied to {ba, ba + bd, ba + 2bd} yields that either {ba, ba + bd, ba +
2bd} C [0,~] or {ba, ba+bd, ba+2bd} C [a?, (ap)’] for some j € {1,2,...,N}. In the
second case (2) holds directly, so assume that ba+2bd < 7. Then b(a+2d)? < 2 <
cry = a and thus {b(a+sd)’ : s € {0,1,2} and t € {1,2}} C UiZ,, Ujvzl A j.

To verify (3), let a,b,d € N and assume that {b(a + sd)* : s € {0,1,2} and
te{1,2}} C Uf[:l Ap ;. Again applying Lemma 4.8 pick j € {1,2,...,N} such
that {ba,ba + bd,ba + 2bd} C Aj;. Pick w,z € Aj,: such that ba = w’ and
ba+bd = 27 and let by = ged(w, z). Then by? = ged(ba, ba + bd) so blby? so b < by?.
Choose ay,ay such that w = bja; and z = bjas. Since w,z € cxy + {0,1,...,D}
and az > ay + 1, we have by < D so b < D’. From cz > DV p?" we deduce that
(ezn)® (cx)?3~1p*~1. Thus

D3
ba? > (ba)’2 > (cxk?ZJ
D3 DJ

All elements of Ay are smaller than cxpp = ap. Thus for I € {1,2,..., N} the set
Ay is bounded by (czip)'. Hence ba? cannot be an element of Ay, if I < 2j — 1.
Pick I,r € {1,2,..., N} such that ba® € Ay, and b(a + 2d)* € A,.. We have seen
that [ > 2j. Also " < b(a + 2d)? < b*(a + 2d)? < (ap)¥ < o®*1 sor < 25 and
thus I = r = 25 and (3) is established.

We take A = |J;-; Ag,1. To define the sets B; and By, choose a partition {I1, I>}
of N such that for d € N, d € [ if and only if 2d € I5. Let

B {l}UU:il U{Az’,j 1j € {1,2,...,N}ﬂ[1} and
By = UL U{4ij:i€{L,2,...,N}nL}.

Suppose we have r € {1,2} and a,b,d € N such that {b(a +sd)t : s € {0,1,2}
and t € {1, 2}} C B,. Consider first the possibility that b = a = 1, in which case
r = 1. Then bla+d) =1+d € A;; for some i € {1,2,...,m} and j € I; and
bla+d)? = (14 d)? € A;»j, while 2j € I,. Now assume that ba > 1. Pick the
largest k such that {b(a + sd)’ : s € {0,1,2} and ¢t € {1,2}} C U, U;VZI Aij.

251

> (cxpp)
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Then by (2), {ba,b(a + d),b(a + 2d)} C A ; for some j € {1,2,...,N}. Since
max ;% Ujvzl A;; < min Ujvzl Ay, j, one has in fact that {b(a + sd)! : s €
{0,1,2} and t € {1,2}} C Ujvzl Ap,; so (3) applies and we are done. a

Now, as we promised in the introduction, we turn our attention to extensions of
the following result from [1].

Theorem 4.10. Let k € N. For each i € {0,1,...,k} let (z; )2, and (y; )52, be
sequences in N. And let A be a multiplicatively large subset of N. Then there exist
F,G € P¢(N) and a,b € N such that {b(a + > ,cp zit) - ([Tieq ¥it) : -4 € {0,1,
.., k}} C A

Proof. [1, Theorem 3.13] O

We show now that this result can be strengthened to guarantee F' = G. The
proof uses the very deep and powerful Density Hales-Jewett Theorem.

Theorem 4.11 (Furstenberg and Kaznelson). Let L be a finite alphabet and let
€ > 0. There exists n € N such that, if S, is the length n words over L and B C S,
such that |B| > €-|Sy|, there is a variable word w of length n over L such that
{6o(w):a€ L} CB.

Proof. [8, Theorem EJ. O

Theorem 4.12. Let k € N and for each i € {0,1,...,k} let (x;)52; and (yi 1)y
be sequences in N. Let A be o multiplicatively large subset of N. Then there exist
F € P¢(N) and a,b € N such that

{ba} U {bla+ Y ,cp xiy) 11 € {0,1,...,k}} U
ba-[lier yit:J € {0,1,...,k}}g
bla+ Y cr Ti) - (Ilier vit) 14,5 € {0,1,...,k}} CA.

ANH
Proof. Pick a Fglner sequence (H,)S2; in (N,-) such that lim sup | nl

By thinning the sequence we may presume that we have € > 0 such that for each
neN |[ANH,| > e-|H,|. Let 441, = 0 and yg414 = 1 for all ¢. Let L =
{0,1,...,k+1}2. By Theorem 4.11, choose n € N such that whenever B C S,, and
|B| > 5 - |Sn| there must exist some variable word w such that {6; ;)(w) : (i,j) €
L}CB.

Define f : S, — N as follows. For w € S,, and t € {1,2,...,n}, let wy(t) =
m1(w(t)) and wa(t) = w2 (w(t)), so that w(t) = (w1 (t), wa(t)). (We are treating the
members of S, as functions from {1,2,...,n} to L.) Let

Jw) = Q4+ 271 Tayt),t) - Tt Yuwa(t)t -

We claim that there is some b € N such that [{w € S, : b- f(w) € A}| > §-|S,|. To
this end, since (H,,)>_; is a Fglner sequence, pick m € N such that for all w € S,,,
|Hm \ f(w) - Hp| < § - |Hp|. Then [ANHy,| C (AN f(w) - Hy) U (Hy, \ f(w) - Hyy,)
so |[AN f(w) - Hy| > [ANHpy| — |Hp \ f(w) - Hy| > €- |Hp| — 5 - [Hm| so

Sl - 5 - [Hnml 2wes, AN f(w) - Hp|

Ewes,, EbeHm Xa(f(w) -b)
= EbeHm Ewesn Xa(f(w)-b)

> 0.

A
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so for some b € Hy, e, Xa(f(w) - b) > 5 and thus we may pick b € H,, such
that [{w € Sy, : b-f(w) € A}| > 5-|Sy| as required. Let B = {w € S, : b-f(w) € A}.
Pick a variable word w such that {6; ;)(w) : (i,j) € L} C B. Letting v be the
variable, let F' = {t € {1,2,...,n} : w(t) = v} and let G = {1,2,...,n} \ F.
For t € G and (i,5) € L, m (05 (w)(t) = wi(t) and ms (0,5 (w)(t) = wa(t).
For t € F and (i,§) € L, mi (05 (w)(t) = i and m2 (6 ;) (w)(t) = j. Let b’ =
b-[licq Yuws(t),e and let @ = 1+ 37, Ty (1),¢- Then for any 4,5 € {0,1,...,k},
V- (a+ X ier Tit) - ([Lieq 25t) € A u

Let F = (F,)22, be a Fglner sequence in (N,:). By Lemma 3.2 A% is a two
sided ideal of (AN, -) and consequently, any piecewise syndetic set A has d’(A4) > 0,
and is in particular multiplicatively large. Notice that, if one wants the conclusion
of Theorem 4.12 only for piecewise syndetic sets, one can get by with an appeal to
the (standard) Hales-Jewett Theorem (Theorem 2.5), using Lemma 2.3.

We have just seen that we can take F' = @ in the partition theoretic version
of Theorem 4.10 (Corollary 1.4). And we will show in Corollary 4.15(a) that the
multiplier b may be eliminated. We show in Corollary 4.19, however, that one
cannot simultaneously take F' = G and eliminate b.

Lemma 4.13. Let (S,-) be a commutative semigroup, let L be a minimal left ideal
of (BS,-), and let k € N. Let F be a family of finite subsets of S such that the
family {bF : F € F and b € S} is partition reqular. Let A C S such that ANL # ().
Then there exists F' € F such that LN ﬂyer——lA # 0.

Proof. Pick v € AN L. Pick a minimal right ideal R of (3S,-) such that v € R
and pick an idempotent 4 € R. Thenv =uwvso B={z€ S:z'A€v} €u. In
particular B is central so pick by Lemma 2.3, some b € S and F' € F such that
bF C B. So for each y € F, (by)"'A € v. Equivalently for each y € F, y~1A4 € bv.
Since bv € L, we are done. O

We have by Lemma 3.6 that if D = {g € A : ¢ is a minimal idempotent of
(BN, +)} then ¢fD is a left ideal of (AN, ) and consequently ¢/D N K(BN,-) # 0.
Given any p € S and any finite partition {Ay,..., A, } there is at least one cell
A; such that A; € p. Consequently, the partition versions of Theorem 4.14 and
Corollary 4.15 are also valid.

Theorem 4.14. Let D = {q € A : ¢ is a minimal idempotent of (AN, +)} and
let A be a subset of N such that ANctDN K(BN,-) # 0. Let F be a family of
finite subsets of N such that the family {bF : F € F and b € N} is partition regular
and let G be a family of subsets of N such that any set which is central in (N, +)
contains a member of G. Let H = (Hp,)S2, be a Fylner sequence in (N,-). Then
there exist F € F and G € G such that E(ﬂyeF ytA) >0, d5(Nyery '4) >0
and FG C A.

Proof. Pick a minimal left ideal L of (BN,-) such that ANclDNL # 0. Since
¢fD is a left ideal of (N,:), L C ¢f/D. Pick, by Lemma 4.13, F € F such that
LOyepy A #0. Since L C K(BN,-) C A3, by Lemma 3.2, dj,(N,cp v 4) >
0. Since L C ¢fD, pick ¢ € A such that ¢ is a minimal idempotent of (8N, +)
and (,cry 'A € ¢. Then this set is central in (N, +) so pick G € G such that

G CNyery A Since g€ A, d(N,cpy 'A) > 0. a
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Corollary 4.15. Let D = {g € A: ¢ is a minimal idempotent of (8N, +)}, let A
be a subset of N such that there is a multiplicative idempotent p € ANclDNK (BN, -),
and let k € N. Let H = (H,)S2, be a Folner sequence in (N, ).
(a) For each i € {1,2,...,k} let {z;4)2, and (yi1)2, be sequences in N. Then
there exist H,K € Ps(N) and a € A such that d(A N ﬂ§:1 (Iier yi)~t4) > 0,
d3 (AN ﬂ;‘c:l (ILien yj,t)_lA) >0, and

{a+ ek g i € 41,2, k3 U{a-Tlem w5015 € {1,2,.., k}} U

{a+ Yo win) Tl vie 17 € (1,2, ,k}} C A.

(b) There exist a,r,d € A such thatr > 1, E(ﬂ?zo(rj)_lA) >0, d;‘{(ﬂfzo(rj)_lA)
>0, and {(a +idyrd :i,j € {0,1,...,k}}u{dri:je{0,1,...,k}} C A.
(c) There exist a,r,d € A such thatr > 1, E(H?ZI(jr)_lA) >0, dL(ﬂ?ZO(jT)_lA)
>0, and {dj" : j € {1,2,...,k}} U{(a+id)j" :i € {0,1,...,k} and j € {1,2,...,
k}}U{a+id:i€{0,1,...,k}} C A
Proof. Since 1 is not an element of any minimal left ideal of (8N, -), by considering
A\ {1} instead of A we may assume that 1 ¢ A. Let

Fi1 = {{1}U{Ht€Hyi7t5i€ {1,2,...,k}}:H€Pf(N)},
G = {{a}U{a+>,cx miv:i€{1,2,...,k} : K € P¢(N) and a € N},
Fa = {{T’i:’iE{O,l,...,k‘}}:T’EA},

G = {{&yufa+id:i€{0,1,...,k}}:a,d€N},

and put Fj = {bF : b € N and F € F;} for i € {1,2}. By applying Theorem
2.6 and Corollary 2.7 to the semigroup (N,-) we see that the families F] and F}
are partition regular. Similarly by Theorem 2.6 and Corollary 2.7 applied to the
semigroup (N, +), every subset of N that is central in (N, +) contains a member of
Gi and a member of G,. Thus we get (a) by applying Theorem 4.14 to F; and G,
and (b) by applying Theorem 4.14 to F» and G,.

We will prove (¢) by using Theorem 4.14 with F; and G, where we define the
sequences (Y; )52, @ € {1,2,...,k} appropriately. Since A is central in (N, +),
choose a sequence (r,)52; such that FS({r,)52;) C A. Using this put y; , = i
fori € {1,2,...,k} and n € N. By Theorem 4.14 we find a,d € A and H € P;(N)
such that G = {d}U{a+id: i€ {0,1,...,k}} and F = {1}U{[],cqr ¥se : 4 € {1,2,
...,k}} satisfy the conclusion of Theorem 4.14. Let r = Y cr Tt € A. Then for
Je{L,2,...,k}, [icn it = [lieg 4™ = 57 Thus we see that (c) is valid. d

We now turn our attention to showing that one cannot simultaneously let F' = G
and eliminate the multiplier b in Theorem 4.10.

The following theorem is of interest in its own right. Recall from Corollary
2.7 that when N is finitely colored, one can find arbitrarily long monochromatic
arithmetic progressions with increments chosen from any IP-set. This theorem tells
us that at least relatively thin sequences cannot replace IP-sets.

Theorem 4.16. Let (d,)52; be a sequence in N such that for all n € N, 3d,, <
dpt1. There exists a partition {Ag, A1, As, A3} of N such that there do not exist
s €{0,1,2,3} and a,k € N with {a,a+ d}} C A,.

Proof. For a € T = R/Z we denote by ||a|| the distance to the nearest integer. We
will not distinguish strictly between equivalance classes and their representatives
in [0,1).
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Lemma 4.17. There ezists o € T such that ||ad,|| > 1/4 for each n € N.
Proof. For each n € N put R, = {a € T : ||lad,|| > 1/4}. Each R,, consists of
intervals of length od which are separated by gaps of the same length. Since

dnt1 > 3d, every interval of R, is 3 times longer than an interval or a gap of Rp41.
Thus any interval of R,, contains an interval of R, ;. This shows that for each
N €N, ﬂgzl R, # 0. By compactness of T there exists a € (2, R,. O

Let a € T such that d,« € [1/4,3/4] for each n € N. For i € {0,1,2,3} put
A;={m e N:ma € [i/4,(i+1)/4)}. Then for any a,k € N a(a+dy) = aa+j for
some 3 € [1/4,3/4] and thus aa and a(a + dj) must not lie in the same quarter of
[0,1). Equivalently there exists no s € {0,1,2, 3} such that {a,a+dp} C 4,. O

We remark that Lemma, 4.17 is well known. Under the much weaker assumption,
that the growth rate of the sequence (d, )52, is bounded from below by some ¢ > 1
B. de Mathan [16] and A. Pollington [17] independently proved that there exists
some a € T such that {ad, : n € N} is not dense in T. In order to give a self
contained proof we have chosen to go with the weaker statement. The loss is that
we have to make an additional step to show that any growth rate ¢ > 1 is sufficient
to avoid monochromatic arithmetic progressions with some dy as increment.

Corollary 4.18. Let ¢ € R with ¢ > 1 and assume that (d,)52 , is a sequence in N
such that for alln € N, qd,, < dp41. There exists a finite partition { A1, As, ..., A}
of N such that there do not ezist s € {1,2,...,r} and a,k € N with {a,a+d;} C As.

Proof. Pick m € N such that ¢™ > 3. Fort € {0,1,...,m —1} and n € N, let
Ctn = dpm—t. Given t € {0,1,...,m} one has that 3¢, , < ¢t nq1 for each n so
pick by Theorem 4.16 some {By o, Bt,1, Bt,2, B3} of N such that there do not exist
s € {0,1,2,3} and a,k € N with {a,a + ¢;x} C Bi;. Let r = 4™ and define a
partition {A;, As,..., A, } of N with the property that z and y lie in the same cell
of the partition if and only if z € B;; & y € By, for each t € {0,1,...,m — 1} and
each i € {0,1,2,3}. O

Corollary 4.19. There exist sequences (Ton)S>q, (T1,n)o2y, and (yp)2, in N
and a partition {Ag, A1, A2, A3} of N such that there do not exist s € {0,1,2,3},
F € Py(N), and a € N with {(a+ Yoner Tin) Ilper Yn i € {0,1}} C A,.

Proof. For each t € N, let 29y = 1, 1, = 2 and y;; = 3. For each n € N, let
d, = n3™. Pick Ag, A1, As, A3 as guaranteed by Theorem 4.16. Suppose one has
F € P¢(N) and a € N with {(a + Y ,cp @it) - [L;ep vt : ¢ € {0,1}} C A,. Let

n = |F|. Then (a + EtEF T14) - HtEF Yyt = dn + (a + ZteF To,t) - HtEF Yt, &
contradiction. O

We have just shown that one cannot simultaneously take F' = G and eliminate
the multiplier b from Corollary 1.4. We show now that this multiplier cannot
be eliminated from Theorem 4.10 (and consequently cannot be eliminated from
Theorem 4.12), even if different F' and G are allowed. Recall that thick sets in any
semigroup are also piecewise syndetic, in fact central. Consequently, they are also
multiplicatively large.

Theorem 4.20. There ezists a set A which is thick in (N, -) and a sequence ()32,
in N with the property that there do not exist a € N and d € FS({x,)32,) with
{a,a+d} C A.
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Proof. Let A =J;2,{(3n)!,2(3n)!,...,n(3n)!} and for each n, let z,, = (3n + 1)!.
Observe that A is thick in (N,-). Let a € A and let d € FS({z,)22,). We shall
show that a +d ¢ A. Pick n € Nand k € {1,2,...,n} such that a = k(3n)!. Pick
F € P¢(N) such that d = )7, 2; and let m = maxF. Then (3m +1)! < d <
(3m + 2)L.

If m < n we have k(3n)! < a+d< (k+1)(3n)! soa+d ¢ A. If m > n, then
a<Bm+1)soBm+1)!<a+d< (3m+3) and thus a+d ¢ A. O

It was shown in [1, Theorem 1.3] that the fact that a subset A of N is multiplica-
tively large is enough to guarantee that A contains arbitrarily large geoarithmetic
progressions. However, consider the set A = {z € N : the number of terms in the
prime factorization of z is odd}. It is not hard to show that dr(A4) = } for any
Fglner sequence F in (N, -). Consequently, the fact that A is multiplicatively large
is not enough to guarantee geoarithmetic progressions together with the common
ratio r, nor together with both b and a.

As is well known among afficianados, geoarithmetic progressions are strongly
partition regular. That is, for each m, k € N there exists K € N such that whenever
A,B,D € N, R e N\{1}, and { BR*(A+tD) : s,t € {0,1,...,K}} = U, Ci, there
existi € {1,2,...,m},a,b,d € N, and r € N\{1} such that {br®(a+td) : s,t € {0,1,
..., k}} C A;. (The easiest way to see this is to use the Griinwald/Gallai Theorem'
[10, Theorem 2.8]. Color the pair (s,t) € {0,1,..., K} x {0,1,..., K} according to
the color of BR*(A +tD).)

We present now an easy proof that even very limited configurations of the sort
produced by Corollary 3.9 are not strongly partition regular.

Theorem 4.21. There is a set C' C N such that for each k € N there exist b,a,d €
N and r € N\ {1} such that {br"(a + td) : n,t € {0,1,...,k}} U {br" : n € {0, 1,
. k}}U{a+td:t€{0,1,...,k}} C C and there ezist sets Ay and Ay such that
C = A1 U Ay and there do not exist i € {1,2}, ¢,a,d € N, and s € N\ {1} such
that {cs, cs®,cs(a + d),cs*(a + d),cs(a + 2d)} C A;.

Proof. Let 7 = 5. Inductively choose a prime rj1 > (ri™'(2k + 1))2. For each
keN, let B, ={r,"z:n€{l,2,....,k+1}andz € {k+ 1,k +2,...,2k + 1}}
and let B = J;_ | By.

Lemma 4.22. Ifa,d € N and {a + d,a + 2d} C B, then there ezxist k € N and
n € {1,2,...,k+1} such that {a+d,a+2d} C {ry"z : x € {k+1,k+2,...,2k+1}}.

Proof. Pick ke N, ne {1,2,...,k+1},and z € {k+1,k+2,...,2k+ 1} such that
a+d=ri"z. Then a+ 2d < 2(a + d) = 2r;"z. Also 2r;"z < r;"t1(k + 1) and
2ry"z < riy1(k+2). The first member of B larger than r1,"(2k +1) is " (k+1)
(ifn < k) or rg41(k+2) (if n = k+1). Thus thereissome y € {z+1,2+2,...,k+1}
such that a + 2d = r;"y. a

Lemma 4.23. Ifc € N, s € N\ {1}, and {cs,cs®*} C B, then there exist k € N,
ne{0,1,....;k},te{1,2,....k+1—-n}, andy e {k+1,k+2,...,2k+ 1} such
that ¢ = ™y and s = rit.

I This theorem was never published by its author. Its first publication was in [18] where it was
referred to as Griinwald’s Theorem, Griinwald being the original name of the author. During the
period surrounding World War II Griinwald changed his name to Gallai.
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Proof. Pick k <m, § € {1,2,...,k+1}, v e {1,2,....m+ 1}, y € {k+ 1,k +
2,...,2k+ 1}, and 2 € {m + 1,m + 2,...,2m + 1} such that c¢s = 7%y, and
cs? =r,,"z.

rm’ 2 Tm

Now s < iy < ri T (2k + 1) and s = > SO
WSy St (2k+1) and s redy T okt (2k 4+ 1)

rm < (T’kk+1(2k + 1))2 < Th+1

z
and so m < k and thus m = k. Therefore s = r;,”~°Z. Since rj, is a prime which

does not divide y, we must have that y divides z anyd therefore that y = 2. Let
t = v — 4. Since crp? % = ¢s = rp%y we have ¢ = 7,20 y. Let n = 26 — v. Since
¢ =1y and s = r;* we have that n > 0 and ¢ > 1. Since n + ¢ = & we have that
n+t<k+1. O

To complete the proof of the theorem, let A; = B, let Ay = {rk" :keNandne
{1,2,...,k+1}}, and let C = A; U A>. Given k € N, let a = ri(k + 1) and let
d=0b=r =r; Then for t,n € {0,1,...,k — 1} one has br™ = r;" € A,,
a+td=rip(k+t+1)€ A, and br*(a+td) = rpy" " 2(k +t+ 1) € A;.

It is trivial that Ay does not contain {cs(a+d),cs(a+ 2d)} as the latter element
is less than twice the former. Suppose we have some ¢, a,d € N and some s € N\ {1}
such that

{cs,cs?,cs(a+d),cs?(a+d),cs(a+2d)} C A .

Pick by Lemma 4.23 some k € N, n € {0,1,...,k}, t € {1,2,...,k+ 1 —n},
andy € {k+1,k+2,...,2k + 1} such that ¢ = 74"y and s = r;’. Again invoking
Lemma 4.23, pick some k' € N, m € {0,1,...,k'}, t' € {1,2,...,k' + 1 —m}, and
ze{k'+1,k' +2,...,2k' + 1} such that c(a+d) = rp ™z and s = rp'* .

Since rpt = s = rit we have k = k' and ¢ = t'. Pick by Lemma 4.22 k" € N
and v € {1,2,...,k" 4+ 1} such that

{es(a+d),cs(a+2d)} C {rp"w:w e {K" + 1" +2,...,2k" +1}}.

t+m

Since cs(a + d) = r;t*™2z we have k" = k and v = t + m. Since cs = 7'y we

have a +d = rkm_"i. Since ry is a prime which does not divide y we have that y
Y
divides z so y = z and thus a +d = ;™ ™.
Pick w € {k+ 1,k + 2,...,2k + 1} such that cs(a + 2d) = ry'*™w. Then
a+2d = rkm_"g so w divides y and thus a + 2d = r;™~". Therefore d = 0, a

contradiction. O

5. ALGEBRA IN (8N, +) AND (BN,-) — EXTENDING THE CENTRAL SETS
THEOREM

In attempting to derive results about geoarithmetic progressions, the approach
that one might try first after a little experience in deriving Ramsey Theoretic
consequences of the algebra of SN would be to choose an appropriate idempotent
g in (BN, -) and show that if A € g, then there is some r, preferably in A, such that

ﬂ’:zo (r*)~'A € q. We show first that such an approach is doomed to failure.

Theorem 5.1.
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(a) For all g € PN, there ezists a partition {Ao, A1} of N such that for alli € {0,1}
and all z € N, (—z + A;) N (=22 + A;) ¢ q. In particular there exists A € q such
that for all x € N, either —x + A¢ q or —20+ A ¢ q.

(b) There does not exist ¢ € BN such that for each A € q there is some r € N\ {1}
withr~'A € q and (r*)"'A € q.

Proof. (a) Let ¢ € SN. Then g + BN is a right ideal of (8N, +) so there is an
additive idempotent in ¢ + SN. Pick r € BN such that ¢ + r is an idempotent in
(BN, +). Then ¢ +r €(),_, c{(N2") by [15, Lemma 6.6].

Define f : N = w by f(n) = min F' where F' € Py(w) and n =}, 2°. Then f
has a continuous extension f : AN — Bw. Fori € {0,1}let A; = {x € N: (2N—i) €

fl@+n)}.

Let i € {0,1} and let z € N and suppose that (—z + 4;) N (=22 + 4;) € ¢. Pick
J,k € w such that # = 27(2k + 1). Denote addition of z on the left in SN by A,
and addition of z on the right by p,. Then f o A, is constantly equal to f(z) and

f © X2, is constantly equal to f(z) + 1 on N27+2 | which is a member of g + 7. So
flx+q+r)=f(z) and f(2z + ¢ +r) = f(z) + L. Therefore f o A; 0 pr(q) = f(2)
and f o As; 0 pr(q) = f(x) + 1 s0

{yEN:f(x+y+r):f(m) andf(2x+y+r):f(x)+1}6q

sopick y € (—x+A;)N(—22+ A;) such that f(z+y+r) = f(z) and fRz+y+7r) =
f(z) +1. N

Since z+y € A;, we have that 2N—i € f(z+y+r) = f(x) so f(z)+i € 2N. (Recall
that we are identifying points of N with the principle ultrafilters they generate.)
Since 2z +y € A;, we have that 2N—i € f(Za:—}-y—H") = f(z)+1so f(z)+i+1 € 2N,
a contradiction.

(b) For z € N\ {1}, let £(z) be the number of terms in the prime factorization
of z. Then ¢ is a homomorphism from (N\ {1}, -) onto (N, +) and so its continuous
extension £ : (BN \ {1},-) = (BN, +) is also a homomorphism by [15, Corollary
4.22). |

We know that there exist multiplicative idempotents in the closure of the set of
additive idempotents in AN. In fact, there exist minimal multiplicative idempotents
in the closure of the set of minimal additive idempotents in SN, and we used
one such in the proof of Theorem 3.8. In particular we know that ¢/K (SN, +) N
K(BN,-) # (. In the following we shall assume that geometric progressions have
integer common ratios, though the lemma would remain valid with the more liberal
definition.

Lemma 5.2. Let D = {q € N : for all A € ¢, A contains arbitrarily long geo-
metric progressions}. Then D is a closed two sided ideal of (BN, -). In particular
A K(BN,:) CD.

Proof. Trivially D is closed. Let ¢ € D, let s € BN, let A € ¢s, and let B €
sq. Let n € N. We need to show that A and B contain length n geometric
progressions. Now {z € N: 274 € s} € ¢ so pick a € N and 7 € N\ {1} such that
{a,ar,ar?,...,ar" '} C {x € N: z 1A € s}. Then ()}, (ar’) '4 € s so pick
b€ N7, (ar) L A. Then {ba,bar,bar?,... ,bar" '} C A. Also {zx e N:z 'B ¢
q} € s so pick z € N such that 27'B € q. Pick ¢ € N and d € N\ {1} such that
{c,ed,ced?, ... ,cd® 1} C 271 B. Then {zc,zcd, xcd?,...,vcd” 1} C B. O
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We see now that there would be interesting Ramsey theoretic consequences of
the existence of an additive idempotent in the set D defined above. (Compare the
conclusion with those of Theorem 3.8.)

Theorem 5.3. Let D = {q € SN : for all A € ¢, A contains arbitrarily long
geometric progressions} and assume that there exists ¢ € D such that ¢ + q = q.
Then whenever r € N and N = U;Zl A;, there existi € {1,2,...,7} and a sequence
(Hp)22, such that for each n € N, H,, is a length n geometric progression and for

every F € P¢(N), one has ) .p H, C A;.

Proof. Pick ¢ € D such that g+¢ = q. Given B € ¢, let B* = {x € B: —z+B € ¢}.
Then by [15, Lemma 4.14], whenever € B* one has —z + B* € q.

Pick i € {1,2,...,r} such that A; € ¢q. Pick z € A;* and let H; = {z}.
Let n € N and assume that (H;)7, have been chosen so that for any F with
0#F C{1,2,...,n} and any f € Xycp Hy, Y ,cp f(t) € Ai*. Let

B = Ai* N n{_ZtEF f(t) + Ai* :F e Pf({].,2, ,TL}) and f € XtEFHt} .
Then B € g so pick a length n 4+ 1 geometric progression H,,; C B. O

We now turn our attention to deriving an extension, Theorem 5.8, of the Central
Sets Theorem for countable commutative semigroups [15, Theorem 14.11]. The
Central Sets Theorem for (N, +) is due to Furstenberg [7, Proposition 8.21]. See
[15, Part IIT] for numerous combinatorial applications of the Central Sets Theorem
5.8 has several earlier theorems as immediate corollaries. To establish this theorem
we shall use the notion of partial semigroup introduced in [2].

Definition 5.4. (a) A partial semigroup is a set S together with an operation
- that maps a subset of S x S into S and satisfies the associative law
(x-y)-z=z-(y-2) in the sense that if either side is defined, then so is the
other and they are equal.

(b) Given a partial semigroup (S,-) and xz € S, P(z) =

(¢) Given a partial semigroup (S,-), ¢ € S, and A C
z-y€ A}

(d) A partial semigroup (S,-) is adequate if and only if for each F' € Py(S),

(e) Given an adequate partial semigroup (S,-), 05 = (\,cg ¢lgsP(x).

{y € S : z-y is defined}.
S,z A ={y e¥(z):

Lemma 5.5. Let (S,-) be an adequate partial semigroup and for p,q € 6S define
pq= {A CS:{zeS:x1Aeq}e p}. Then, with the relative topology inherited
from BS, (8S,-) is a compact right topological semigroup.

Proof. [2, Proposition 2.6]. O

Lemma 5.6. Let (S,-) and (T, %) be adequate partial semigroups and let f : S8
have the property that for all z € S and all y € ¥s(z), fly) € Pr(f(z)) and

flx-y) = f(z) * Ji(y) Let f : BS — BT be the continuous extension of f. Then
the restriction of f to 6S is a homomorphism from (8S,-) to (6T, x).

Proof. [2, Proposition 2.8]. O

Definition 5.7. ® = {f: N — N: f(n) <n for all n € N}
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Theorem 5.8. Let k € N. For eachi € {1,2,...,k}, let E; be a countable commu-
tative semigroup with identity e;. For eachi € {1,2,...,k} andj € N, let (2; j+)72;
be a sequence in E;. We assume that, for every i € {1,2,...,k}, 2,14 = e; for ev-
ery t € N, and that {z;2,.)52, s a sequence which contains every element of E;
infinitely often. Let v be an arbitrary function mapping Ey X Es X --- X E to a
set X and let C; be a central set in E; for each i € {1,2,...,k}. Then, for any
finite coloring of X, there exist a sequence (H,)S>; in P¢(N), a sequence (¢in)5>q
in E; for each i € {1,2,...,k} and a monochromatic subset A of X such that
the following statements hold for every G € P(N), every i € {1,2,...,k} and all
f17f27"'7fk € o:

(1) Y(Ineq c1,n ica, 210w nea ¢hm - lien, 2k, fu(n)t) € A and

(#) e Cin - Mlien, #ifime € G-

Proof. Let L = NF and let v be a “variable” not in L. A located word over L is
a function w from a nonempty finite subset D,, of N to L. Let Sy be the set of
located words over L and let S7 be the set of located variable words over L, that is
the set of words over L U {v} in which v occurs. Let S = Sy U S;. Given u,w € S,
if max D,, < min D,,, then define u - w by D,.,, = D, U D,, and for t € D,

wwo={ 40 e

With this operation S, Sp, and S; are adequate partial semigroups so by Lemma
5.5 05, 050, and 51, are compact right topological semigroups. Also 457 is an
ideal of 6S. (The verification of this latter statement is an easy exercise and a
good chance for the reader to see whether she has grasped the definition of the
operation.) Notice that for j € {1,2} and p € $S;, one has that p € §S; if and
only if for each n € N, {w € S; : min D,, > n} € p.

We take for each w € S, Dy, () = D,, We have that for each a € L, 8, : S — Sp
(where 6, is the identity on Sp). Denote also by 6, its continuous extension taking
BS to Sy and notice that 6, is the identity on 3Sg.

For each i € {1,2,...,k}, define g; : So — E; by gi(w) = [[;cp,, %i,mi(w(t)).t for
each w € Sy. We shall also use g; to denote the continuous function from S to
BE; which extends g;.

We claim that, if b; € E; for each i € {1,2,...,k} and if n € N, there exists
w € Sp such that g;(w) = b; for every i € {1,2,...,k} and min(D,,) > n. To see
this, observe that we can choose ny,ns,...,ng in Nsuchthat n <ny <ns <...<
ng and 29,5, = b; for every ¢ € {1,2,...,k}. We can then define w by putting
Dy = {ni,n2,...,n;} and win;) = (1,1,...,1,2,1,...,1), with 2 occurring as the
i*h term in this k-tuple, for each i € {1,2,...,k}.

In particular each g; : So — E; is surjective and so, by Lemma 5.6, The restriction
of g; to §Sp is a homomorphism to dE; = SE;.

For each ¢ € {1,2,...,k}, let p; be a minimal idempotent in SE; for which
C; € p;- We shall first show that we can choose a minimal idempotent ¢ € §.5¢ and
an idempotent r € 457 such that ¢ < r, gi(¢) = p; for every i € {1,2,...,k}, and
0,(r) = q for every a € L.

Given (X1, Xa,..., Xk, n) € p1 Xpa X ---xpp X N we choose w(X1, X, ..., Xk, n)
€ So such that min(Dy(x,,x,,....x4,n)) > 1 and g;(w(X1, Xa, ..., Xy, n)) € X; for
eachi € {1,2,...,k}. We give p; Xxpa X ---xpr x N a directed set ordering by stating
that (X1, Xo,..., Xk, n) < (X{,X3,...,X;,n') if and only if X/ C X; for each
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i€{1,2,...,k}and n < n'. If z is any limit point of the net (w(X1, X2, ..., Xk, n))
in BSp, we have x € §Sy and g;(x) = p; for every i € {1,2,...,k}. (That z € 6Sp
follows from the fact that min(Dy(x,,x,.... x,,n)) > 1. To see that g;(z) = p;, let
A € p; and suppose g;(z) ¢ A. Pick B € x such that g;] B]NA=0. Let X; = A4
and for j # i let X; = E;. Pick (X{,X3,...,X;,n') = (X1,Xs,...,X},1) such
that w(X{,X3,...,X},n') € B. But g;(w(X{,X},...,X},n')) e X/ CX; =4, a
contradiction.)

Let C = {z € 6So : gi(z) = p; for all i € {1,2,...,k}}. We have just seen that
C is nonempty, and so it is a compact subsemigroup of §Sg. Let ¢ be a minimal
idempotent in C. Then ¢ is minimal in §Sy, because if ¢’ is any idempotent of
05y satisfying ¢' < ¢, we have ¢;(¢') < g:(q) = p; for every i € {1,2,...,k}. This
implies that g;(¢') = p; for every i € {1,2,...,k}. So ¢’ € C and thus ¢’ = q.

Let r be any idempotent in the intersection of the right ideal ¢dS; and the left
ideal §S1q of 651. Then r < g. For any a € L, we have 0,(r) < 8,(¢) = ¢ and hence
ba(r) =g

We define 7 : So = X by Y(w) = 9(g1(w), g2(w), ..., gr(w)). We can choose a
monchromatic subset A of X such that Y'[4] € ¢. Let Q = Y '[A]NNL_, 9~ [Ci).
Then Q € q. Let Q* = {w € Q : w™'Q € q}. Then Q* € ¢ and w=1Q* € ¢ for
every w € Q* by [15, Lemma 4.14].

We shall inductively choose a sequence (w,)32, in S; such that for each n € N,
(a) if n > 1, then min D,,, > maxD,,,_, and
(b) for every nonempty F C {1,2,...,n} and every choice of a; € {1,2,...,t}* for
te F7 HteF aat (wt) € Q*-

We first choose wy € S; such that 6,(w;) € Q*, where a denotes the k-tuple
(1,1,...,1). This is possible because 8, *[Q*] €  and so 8, '[Q*] # 0. Now let
n € N and assume that wy,ws,...,w, have been chosen. Let

U={Tlicp 0a(we) : 0 #F C{1,2,...,n} and forall t € F, a; € {1,2,...,t}*}.

By our assumption (b), U C Q* so ¢y v~ 'Q* € ¢. We observe that, for any
V €qand any a € L, ,7'[V] € r and that {w € S; : min(D,,) > max(D,,, )} € r.
Thus we can choose wp41 such that min(D,, ) > max(D,,, ), and

Wnt1 € {07 [Q* NNyery v 1Q*] ta € {1,2,...,n +1}F} .

We can now conclude the proof. For each n € N and i € {1,2,...,k}, let
H, = {t € Dy, : wy(t) = v} and let ¢;,, = HteDwn\Hn Zimi(wn(8)),t- Lhen, if
a € L, we have g;(0a(wn)) = ¢in - [Lien, Zimi(a)t -

Suppose now that fi, fa,..., fr € ® and G € P¢(N). For each n € N, define
a, € {1,2,...,n}* by m(a,) = fi(n) for each i € {1,2,...,k}. Then for each
i€{1,2,...,k}, we have

HTLEG C’i’" : HtGHn zlvfi (n)7t = HTLEG C’i’" : HtGH zlvfi (n)7t
Hne(; 9i (ean (wn)
= 9i(Ilseg ban (wn)) -
Since [],cq Oa. (wn) € Q, 7[Q] C A, and g;[Q] C C; for each i € {1,2,...,k} the
conclusions of the theorem hold. O

Corollary 5.9. Let m,k € N. Let C; be central in (N,+) and let Cy be central in
(N,:). For each i € {0,1,...,k} let (x;1)21 and (y;1)i2, be sequences in N. Let
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N = UL, A;. Then there ezist s € {1,2,...,m}, F € Ps(N), and a,b € N such

that
{ba} U {bla+ Y ,cp iy) 1i € {0,1,...,k}} U
{ba-Tl,cr vie 5 €{0,1,...,k}} U
{ola+cp zit) - Tper vie) 16,4 €{0,1,...,k}} C A,
{a}u{a+Y,cpzii:i€{0,1,...,k}} CCy, and
{03 U{b-Tlier vt :5€{0,1,...,k}} CCa.

Proof. Let Ey = (w,+) and let E2 = (N,-). Define ¢ : Ey X Es — w by 9¥(a, b) = ab.
Fort € Nlet 21,1, =0 and 221 = 1. For i € {1,2} let (2;2+)72; be a sequence
which contains every element of E; infinitely often. For j € {0,1,...,k} and t € N
let 21 j43,+ =z and 22 j43¢ = yj¢. (For j >k + 3 we do not care what 2 ;; and
22,4,t are.)

Since N is an ideal of (w,+), Cy is central in E;. Pick (Hp)S2, (c1,n)5%4,
(c2,n)52, and A as guaranteed by Theorem 5.8. Pick s € {1,2,...,m} such that
A C A;. Let n = k+3. (We choose n = k+3 rather than n = 1 so that there will be
functions f; and f in ® with the properties required of them below.) Let a = ¢y,
let b = cap, and let F = H,,. If fi(n) = 1, then ¢, + ZteHn 21, (n)t = a- If
fi(n) = j+3forsome j € {0,1,...,k}, thencin+) ichy. 21,71 (n)t = Ot D 1er Tit-
If fa(n) = 1, then ¢ - [[1epr, 22,f2(n),e = b- If f2(n) = j + 3 for some j € {0,1,

...k}, then ¢cp 4, - HteHn 29, fa(n)t = b HteF Yjt- O

We conclude with a simple variation on the proof of Theorem 5.8 which applies
in case the semigroups are all the same.

Theorem 5.10. Let k € N, let E be a countable commutative semigroup with
identity e, let Ry, Ry, ..., Ry be IP-sets in E, and let C' be a central subset of E.
There existr; € R; and b; € E for eachi € {1,2,...,k} such that whenever f : {1,2,
k= {1,2,..,k}, b {1,2,...,k} = {0,1,...,k}, and 0 £ F C {1,2,...,k},
one has [T;cp bi- (rp)"@ € C.

Proof. Let L ={1,2,..., k> + k + Z}k and let v, So, S1, S, (Dw)wes, and {0y)acr,
be as in the proof of Theorem 5.8. For j € {1,2,...,k} pick a sequence (z; ;)52
such that FP((z;:)i2;) C R;. For m € {0,1,...,k}, j € {1,2,...,k}, and t € N,
let 2o4mktje = (256)™. Let 21, = e for each ¢t and let (22,)52; be a sequence in E
which takes on each member of E infinitely often.

For i € {1,2,...,k}, define g; : So — E by gi(w) = [[;ep, Zmi(w(t),- For
F e Ps({1,2,...,k}), define T : So = E by Tp(w) = [[;cp gi(w) (s0 Vi3 = 94)-
Denote also by 7 the continuous extension taking 3Sp to SE.

As in the proof of Theorem 5.8 we see that given any by, bs, ..., b, € E there is
some w € Sy such that g;(w) = b; for each i € {1,2,...,k}. In particular each Vg
is a surjective homomorphism so by Lemma 5.6 the restriction of Yg to 65y is a
homomorphism to SE.

Pick a minimal idempotent p € SE such that C € p. We claim that for any
B € p and any n € N there exists wp,, € Sp such that for all F' € P¢({1,2,...,k}),
Yr(wp,,) € B. To see this pick by, bs,..., by such that FP({b;)¥_,) C B, which
one may do because p is an idempotent. Pick wg ,, such that g;(wg,,) = b; for each
ie{1,2,...,k}.

Direct D = {(B,n) : B € pand n € N} by (B,n) < (B',n') ifand only if B' C B
and n < n'. Let u be a limit point of the net (wB,n)(B,n)eD in 8Sy. We see as in



MULTIPLICATIVE AND ADDITIVE RAMSEY THEORY 27

the proof of Theorem 5.8 that u € 05y and Tr(u) = p for all F' € Pr({1,2,...,k}).
Let J = {w €30Sy : Yr(w) =pfor all F € Ps({1,2,...,k})}. Then J is a compact
subsemigroup of 4.5y since each Y is a continuous homomorphism. Pick a minimal
idempotent g of J. Given any idempotent ¢' € §Sy such that ¢’ < ¢, for each
F e Pr({1,2,...,k}), 7r(¢") < Yr(g) = p so Yr(¢') = p. Thus ¢’ € J and so
¢' = ¢q. That is, ¢ is minimal in §.5p.

Now we claim that we may choose w € S; such that Vr(6,(w)) € C for every
a € L and every F € P¢({1,2,...,k}). To see this, pick an idempotent r in
q0S1 N 8S1q. Then r < g so for each a € L, 0,(r) < 6,(¢) = q and so 0,(r) = g
and thus for each F € P;({1,2,...,k}), V¥ (6a(r)) = Yr(g) = p. Pick w € $1 N
N{(YFo6,) t[C]:a€ L and F € P;({1,2,...,k})}.

Let H={t € Dy : w(t) =v}. Fori € {1,2,...,k}, let b; = HteD,,,\H 2y (w(t)),¢
and let r; = [[,cpy zie- Now let f: {1,2,...,k} — {1,2,...,k}, h: {1,2,...,
kY = {0,1,...,k},and 0 # F C {1,2,...,k}. Let

a=(2+h()k+ f(1),24+h2)k+ f(2),...,2+ h(k)k + f(k)).
Then for ¢ € F,

b,-(rf(i))h(i) = b ([lien (mf(i)ﬂs)h(i))
= bi-[lien Zmi(a)t
= gi(fa(w))
50 [Tier i(rp)"® = Tr (6a(w)) € C. -
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