Undergraduate research on Knots and Graphs

Sergei Chmutov

Ohio State University

SAMMS-2015

Friday, July 31, 2015

Knots and Graphs.

https://people.math.osu.edu/chmutov.1/wor-gr-su15/wor-gr.htm
2006. Jeremy Voltz, Thistlethwaite's theorem for virtual links.

M. B. Thistlethwaite, L. Kauffman, K.Murasugi, F.Jaeger

Up to a sign and a power of t the Jones polynomial $V_{L}(t)$ of an alternating link L is equal to the Tutte polynomial $T_{\Gamma_{L}}\left(-t,-t^{-1}\right)$.

Unknots＝Trivial Knots
为 或尼 $\sqrt{3} 8$

Planar isotopy:

RII:

RIII:

Virtual crossings

Reidemeister moves

The Kauffman bracket.

Let L be a virtual link diagram.
A-spliting:

B-splitting:

A state S is a choice of either A - or B-splitting at every classical crossing.
$\alpha(S):=\#$ (of A-splittings in S)
$\beta(S):=\#$ (of B-splittings in S)
$\delta(S):=\#(o f$ circles in $S)$

$$
[L](A, B, d):=\sum_{S} A^{\alpha(S)} B^{\beta(S)} d^{\delta(S)-1}
$$

$$
J_{L}(t):=(-1)^{w(L)} t^{3 w(L) / 4}[L]\left(t^{-1 / 4}, t^{1 / 4},-t^{1 / 2}-t^{-1 / 2}\right)
$$

The Kauffman bracket. Example.

$$
\angle=6_{2} \quad(a, \beta, n)
$$

		$\infty \infty$	+
$(3,0,1)$	$(2,1,2)$	$(2,1,2)$	$(1,2,1)$
	\sim	\bigcirc	\bigcirc
$(2,1,2)$	$(1,2,1)$	$(1,2,3)$	(0,3,2)
$[L]=A^{3}+3 A^{2} B d+2 A B^{2}+A B^{2} d^{2}+B^{3} d ;$			$J_{L}(t)=$

Ribbon graphs

A ribbon graph R is a surface represented as a union of vertices-discs
 and edges-ribbons

- discs and ribbons intersect by disjoint line segments,
- each such line segment lies on the boundary of precisely one vertex and precisely one edge;
- every edge contains exactly two such line segments.

Bollobás-Riordan polynomial

Let F be a ribbon graph;

- $v(F)$ be the number of its vertices;
- $e(F)$ be the number of its edges;
- $k(F)$ be the number of components of F;
- $r(F):=v(F)-k(F)$ be the rank of F;
- $n(F):=e(F)-r(F)$ be the nullity of F;
- bc(F) be the number of boundary components of F;
- $s(F):=\left(e_{-}(F)-e_{-}(\bar{F})\right) / 2$.

$$
R_{G}(x, y, z):=\sum_{F} x^{r(G)-r(F)+s(F)} y^{n(F)-s(F)} z^{k(F)-b c(F)+n(F)}
$$

Bollobás-Riordan polynomial. Example.

Problem.

Make a construction of a ribbon graph from a link diagram and relate the parameters (α, β, δ) with parameters ($k, r, n, b c, s)$ (possibly after some substitution).

Construction.

Untwisting Seifert circles

Pulling Seifert circles apart

Glue in the vertex-discs

Main Theorem.

Let L be a virtual link diagram, G_{L} be the corresponding signed ribbon graph, and $n:=n\left(G_{L}\right), r:=r\left(G_{L}\right), k:=k\left(G_{L}\right)$. Then

$$
[L](A, B, d)=A^{n} B^{r} d^{k-1} R_{G_{L}}\left(\frac{A d}{B}, \frac{B d}{A}, \frac{1}{d}\right)
$$

THANK YOU!

