Twist polynomial for delta-matroids

Sergei Chmutov

Ohio State University, Mansfield

AMS Special Session on Topology, Structure and Symmetry in Graph Theory

Wednesday, January 4, 2023

Δ-matroids.

Matroids	Δ-matroids [A. Bouchet, 1987]
A matroid is a pair $M=(E, \mathcal{B})$ consisting of a finite set E and a nonempty collection \mathcal{B} of its subsets, called bases, satisfying the axioms:	A Δ-matroid is a pair $M=(E ; \mathcal{F})$ consisting of a finite set E and a nonempty collection \mathcal{F} of its subsets, called feasible sets, satisfying the
(B1) No proper subset of a base is a base. (B2) (Exchange axiom) If B_{1} and B_{2} are bases and $b_{1} \in B_{1}-B_{2}$, then there is an element $b_{2} \in B_{2}-B_{1}$ such that $\left(B_{1}-b_{1}\right) \cup b_{2}$ is a base.	Symmetric Exchange axiom If F_{1} and F_{2} are two feasible sets and $f_{1} \in F_{1} \Delta F_{2}$, then there is an element $f_{2} \in F_{1} \Delta F_{2}$ such that $F_{1} \Delta\left\{f_{1}, f_{2}\right\}$ is a feasible set.

Δ-matroids. Examples. Ribbon graphs.

A quasi-tree is ribbon graph \mathbb{G} with a single boundary component.

Spanning trees:
$\{a\},\{b\},\{a, b, c\}$

Spanning quasitrees:
$\emptyset,\{a, b\}$

Spanning quasi-trees: $\{b\},\{c\},\{a, b\},\{a, c\}$, $\{a, b, c\}$

Theorem. Let $\mathbb{G}=(V, E)$ be a ribbon graph. Then

$$
D(\mathbb{G}):=(E ;\{\text { spanning quasi-trees }\})
$$

is a Δ-matroid.

Representable \triangle-matroids.

Let C be a symmetric $|E| \times|E|$ matrix over \mathbb{F}_{2}, with rows and columns indexed by the elements of E.

Theorem.

$$
D(C):=(E ;\{F \subseteq E \mid C[F] \text { is non-singular }\})
$$

is a Δ-matroid.
Example. Let $C:=A_{G}$ be the adjacency matrix of an abstract graph G and E is the set of its vertices.

If $G=K_{n}$ is the complete graph with n vertices, then the feasible sets of the corresponding Δ-matroid $D_{n}:=D\left(A_{K_{n}}\right)$ and all subsets of E of even cardinality. $D_{3}=(\{1,2,3\} ;\{\emptyset,\{1,2\},\{1,3\},\{2,3\}\})$

If G is a graph od a single vertex and a single loop attached to it, then its matroid is $N_{1}:=D\left(A_{G}\right)=(\{1\} ;\{\emptyset,\{1\}\}$. The corresponding ribbon graph \mathbb{G} consist of a sinle vertex and a single loop-ribbon half-twisted.

Minors in Δ-matroids.

Let $D=(E ; \mathcal{F})$ be a Δ-matroid and $e \in E$.
e is a loop iff $\forall F \in \mathcal{F}, e \notin F . \quad e$ is a coloop iff $\forall F \in \mathcal{F}, e \in F$.
If e is not a loop, $D / e:=(E \backslash\{e\} ;\{F \backslash\{e\} \mid F \in \mathcal{F}, e \in F\})$.
If e is not a coloop, $D \backslash e:=(E \backslash\{e\} ;\{F \mid F \in \mathcal{F}, F \subset E \backslash\{e\}\})$.
Twists of Δ-matroids. Let $D=(E ; \mathcal{F})$ be a Δ-matroids and $A \subseteq E$.

$$
D * A:=(E ;\{F \Delta A \mid F \in \mathcal{F}\}) .
$$

Dual Δ-matroid: $D^{*}:=D * E$.
Theorem. $D(\mathbb{G}) * A=D\left(\mathbb{G}^{A}\right)$.
A Δ-matroid is binary if it is a twist of a representative $\left(\right.$ over $\left.\mathbb{F}_{2}\right) \Delta$-matroid.

Matroids associated with a Δ-matroid.

Let $D=(E, \mathcal{F})$ be a Δ-matroid.
$D_{\text {min }}:=\left(E, \mathcal{F}_{\text {min }}\right)$, where $\mathcal{F}_{\text {min }}:=\{F \in \mathcal{F} \mid F$ is of minimal possible cardinality $\}$.
$D_{\max }:=\left(E, \mathcal{F}_{\max }\right)$, where $\mathcal{F}_{\text {max }}:=\{F \in \mathcal{F} \mid F$ is of maximal possible cardinality $\}$.

Properties.

- $D_{\min }$ and $D_{\max }$ are matroids. Width $w(D):=r\left(D_{\max }\right)-r\left(D_{\min }\right)$
- $w(D(\mathbb{G}))=2 g(\mathbb{G})$, the genus of \mathbb{G}.
- $(D(\mathbb{G}))_{\text {min }}=\mathcal{C}(\mathbb{G}) . \quad(D(\mathbb{G}))_{\max }=\left(\mathcal{C}\left(\mathbb{G}^{*}\right)\right)^{*}$.
- $D(\mathbb{G})=\mathcal{C}(\mathbb{G})$ iff \mathbb{G} is a planar ribbon graph.

The twist polynomial of a delta-matroid $D=(E, \mathcal{F})$ is the generating function for the width of all twists of D,

$$
{ }^{\partial} w_{D}(z):=\sum_{A \subseteq E} z^{w(D * A)}
$$

J. L. Gross, T. Mansour, T. W. Tucker, Partial duality for ribbon graphs, I: Distributions, European Journal of Combinatorics 86 (2020) 103084, 1-20: GMT-conjecture. For any ribbon graph there is a subset of edges partial duality relative to which changes the genus.
Q. Yan, X. Jin, Counterexamples to a conjecture by Gross, Mansour, and Tucker on partial-dual genus polynomials of ribbon graphs, European Journal of Combinatorics 93 (2021) 103285:
Theorem. The genus of any partial dual to $B_{2 n+1}$ is equal to n.
$D\left(B_{2 n+1}\right)=D_{2 n+1}$. In particular, ${ }^{2} w_{D_{2 n+1}}(z)=2^{2 n+1} z^{2 n}$.
-, F. Vignes-Tourneret, On a conjecture of Gross, Mansour and Tucker, European Journal of Combinatorics 97(3) (2021) 103368:
Theorem. For any join-prime ribbon graph different from partial duals of $B_{2 n+1}$, there are partial duals of different genus.

Gross-Mansour-Tucker conjecture.

Independent proofs and non-orientable case:

- Maya Thompson (Royal Holloway University of London).
- Q. Yan, X. Jin, Partial-dual genus polynomials and signed intersection graphs, Forum of Mathematics, Sigma 10 (2022) 1-16.
Q. Yan, X. Jin, Twist monomials of binary delta-matroids. Preprint arXiv:2205.03487v1 [math.CO]:
Theorem. A normal binary delta-matroid has a twist monomial iff each connected component of its corresponding looped simple graph is either a complete graph of odd order or a single vertex with a loop.

Theorem of Daniel Yuschak.

$\|E\|$	Number of twist nonequivalent binary Δ-matroids on E	Number of twist nonequivalent Δ-matroids on E
2	5	5
3	13	16
4	40	90
5	141	2902

D. Yuschak, Delta-matroids with twist monomials. Preprint arXiv:2208.13258v1 [math.CO] 28 Aug 2022:
Theorem. If a Δ-matroid has a twist monomial, then it is binary.
Thus the only Δ-matroids with twist monomials are

$$
D_{2 n_{1}+1} \oplus \cdots \oplus D_{2 n_{k}+1} \oplus N_{1} \oplus \cdots \oplus N_{1}
$$

Proof of Yuschak's theorem.

A. Bouchet, A. Duchamp, Representability of Δ-matroids over GF(2), Linear Algebra Appl. 146 (1991) 67-78:
Theorem. $A \Delta$-matroid is binary iff it has no minor isomorphic to one of the following delta-matroids:

1. $(\{1,2,3\},\{\emptyset,\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\})$
2. $(\{1,2,3\},\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\})$
3. $(\{1,2,3\},\{\emptyset,\{2\},\{3\},\{1,2\},\{1,3\},\{1,2,3\}\})$
4. $(\{1,2,3,4\},\{\emptyset,\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\})$
5. $(\{1,2,3,4\},\{\emptyset,\{1,2\},\{1,4\},\{2,3\},\{3,4\},\{1,2,3,4\}\})$

THANK YOU!!!

