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Abstract. Wave propagation problems arise in a wide range of applications.

The energy conserving property is one of the guiding principles for numer-
ical algorithms, in order to minimize the phase or shape errors after long

time integration. In this paper, we develop and analyze a local discontinu-

ous Galerkin (LDG) method for solving the wave equation. We prove optimal
error estimates, superconvergence toward a particular projection of the exact

solution, and the energy conserving property for the semi-discrete formulation.

The analysis is extended to the fully discrete LDG scheme, with the centered
second-order time discretization (the leap-frog scheme). Our numerical exper-

iments demonstrate optimal rates of convergence and superconvergence. We

also show that the shape of the solution, after long time integration, is well
preserved due to the energy conserving property.

1. Introduction. Wave propagation problems arise in science, engineering and in-
dustry, and they are significant to geoscience, petroleum engineering, telecommuni-
cation, and the defense industry (see [14, 21] and the references therein). Among all
the equations describing wave propagation, the constant coefficient wave equation
is the simplest one and has been extensively studied. One of the most important
properties of the wave equation is the conservation of energy. Experiences reveal
that energy conserving numerical methods, which conserve the discrete approxima-
tion of energy, are favorable because they are able to maintain the phase and shape
of the waves accurately. Numerical methods without this property may result in
substantial phase and shape errors after long time integration.

A vast amount of literature can be found on the numerical approximation of the
wave equation. All types of numerical methods, including finite difference, finite
element, finite volume, spectral methods and integral equation based methods, have
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their proponents. Among the partial differential equation techniques, the finite
difference method provides an efficient solver, but is usually limited by the shape
of the domain. The finite element method can handle complex geometry, but often
dissipates energy. Here, we will confine our attention in finite element methods, in
particular, discontinuous Galerkin (DG) methods. The DG methods belong to a
class of finite element methods using discontinuous piecewise polynomial spaces for
both the numerical solution and the test functions. They were originally devised
to solve hyperbolic conservation laws with only first order spatial derivatives, e.g.
[8, 9, 10, 12, 13]. They allow arbitrarily unstructured meshes, and have compact
stencils. Moreover, they easily accommodate arbitrary h-p adaptivity. The DG
methods were later generalized to the local discontinuous Galerkin (LDG) methods
by Cockburn and Shu to solve convection-diffusion equations [11], motivated by
successful numerical experiments from Bassi and Rebay [3] for the compressible
Navier-Stokes equations.

Methods for solving the wave equation can be divided into two categories. The
first category is to rewrite the wave equation into a first order hyperbolic system.
Therefore, various DG methods designed for first order hyperbolic systems can be
applied, for example the standard DG method proposed by Cockburn and Shu [10].
High order nodal DG methods for Maxwell’s equations of a first order system are
proposed in [20]. Space-time DG methods are studied by Falk and Richter in [15],
and later by Monk and Richter in [22]. A suboptimal DG method using central
fluxes, which is also energy conserving, has been presented in [16] for Maxwell’s
equations. More recently, Chung and Engquist [5, 6] have proposed an optimal,
energy conserving DG method for the wave equation using staggered grids.

The second category of numerical methods is to tackle the second derivatives
in the wave equation directly, without introducing more unknowns to reduce the
order of the system. Two decades ago, Safjan and Oden [24] introduced a fam-
ily of unconditionally stable high order Taylor-Galerkin schemes for acoustic and
elastic wave propagation. A non-symmetric interior penalty discontinuous Galerkin
(IPDG) method has been presented by Rivière and Wheeler in [23]. Later Grote
et al. [18, 19] proposed a symmetric IPDG method for the second order equation,
which conserves a specifically defined energy. Adjerid and Temimi [1] presented a
Galerkin method which uses finite element spaces of continuous functions in space,
and discontinuous functions in time, and their method achieves the optimal conver-
gence rate and superconvergence property. Local discontinuous Galerkin method
has been applied to the wave equation by Baccouch [2] to study its superconvergence
property at the Radau points.

In this paper, we primarily consider the one-dimensional linear wave equation

utt = uxx, in [a, b]× [0, T ],(1)

subject to the initial conditions

u(x, 0) = u0(x), ut(x, 0) = v0(x).(2)

We will consider both the homogeneous Dirichlet boundary conditions

u(a, t) = 0, u(b, t) = 0,(3)

and the periodic boundary condition

u(a, t) = u(b, t).(4)
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DG method for this problem with the upwind flux has optimal high order accu-
racy, but is dissipative. On the other hand, DG method with central flux is energy
conserving, but is only suboptimal accurate. Usually it is difficult to obtain DG
schemes for wave equations which are non-dissipative (energy conserving for the
physical energy) and optimal high order accurate, without going to staggered mesh
[5, 6] or using penalty with a parameter to adjust [18, 19]. Here, we consider the
local discontinuous Galerkin method defined on a single mesh for this linear wave
problem. The proposed semi-discrete scheme is shown to be energy conserving. It
has the optimal convergence rates in both the energy and L2 norms, and the upper
bound of the errors grows in time only in a linear fashion. This method can achieve
superconvergence, towards a particular projection of the exact solution. The order
of superconvergence is proved to be k+3/2 when piecewise P k polynomials are used.
Coupled with the centered second-order time discretization (the leap-frog method)
for the temporal derivatives, we present the fully discrete LDG method, which is
explicit in time, and we also show the energy conservation property. To demon-
strate the importance of energy conservation, we test an example with long time
integration, and the numerical results reveal that our method stays very accurate
after long time integration, in contrast to numerical methods without this property.
We remark here that since our scheme is non-dissipative, it is more oscillatory than
the commonly used upwind (energy-dissipative) DG method when applied to prob-
lems with discontinuities. The advantage of energy-conserving methods is to solve
smooth wave problems, with the attempt to resolve all waves for long time periods.

This paper is organized as follows. In Section 2, we present the semi-discrete
LDG method, and prove its energy conserving property. The optimal error esti-
mates, both in the energy norm and the L2 norm, are analyzed in Section 3, and
therein, the upper bound of errors is proved to grow linearly in time. In Section 4,
we prove the superconvergence of the LDG method toward a particular projection
of the exact solution. The fully discrete LDG method, with the leap-frog time dis-
cretization, and its energy conserving properties are presented in Section 5. Section
6 contains numerical experiments that demonstrate the optimal convergence rates
and energy conservation of the proposed LDG method, and a comparison with the
IPDG method proposed in [18]. Finally, we give the concluding remarks in Section
7.

2. Local discontinuous Galerkin discretization.

2.1. Notations. We divide the interval I = [a, b] into N subintervals and denote
the cells by Ij = [xj− 1

2
, xj+ 1

2
] for j = 1, · · · , N . The center of each cell is xj =

1
2 (xj− 1

2
+ xj+ 1

2
), and the mesh size is denoted by hj = xj+ 1

2
− xj− 1

2
, with h =

max1≤j≤N hj being the maximal mesh size. We assume that the mesh is regular,
namely, the ratio between the maximal and the minimal mesh sizes stays bounded
during mesh refinement. The piecewise polynomial space V kh is defined as the space
of polynomials of degree up to k in each cell Ij , that is,

(5) V kh = {v : v|Ij ∈ P k(Ij), j = 1, 2, · · · , N}.

Note that functions in V kh are allowed to have discontinuities across element inter-
faces.

The solution of the numerical scheme is denoted by uh, which belongs to the
finite element space V kh . We denote by (uh)+

j+ 1
2

and (uh)−
j+ 1

2

the limit values of uh
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at xj+ 1
2

from the right cell Ij+1 and from the left cell Ij , respectively. We use the

usual notations [uh] = u+
h − u

−
h and ūh = 1

2 (u+
h + u−h ) to respectively represent the

jump and the mean of the function uh at the element interfaces. The L2 norm over
the interval I is denoted by ‖ · ‖.

2.2. The LDG method. In this subsection, we define the semi-discrete LDG
method for the wave equation (1), by discretizing the space with the LDG method
and leaving the time dependence continuous. First, we write the wave equation into
a first order system by substituting ux with variable q:

utt = qx,(6)

q = ux.

The LDG method for (6) is then formulated as follows: find uh, qh ∈ V kh , such that∫
Ij

(uh)ttvdx+

∫
Ij

qhvxdx− (q̂hv
−)j+ 1

2
+ (q̂hv

+)j− 1
2

= 0,(7) ∫
Ij

qhwdx+

∫
Ij

uhwxdx− (ûhw
−)j+ 1

2
+ (ûhw

+)j− 1
2

= 0,(8)

for all test functions v, w ∈ V kh . The hatted terms, q̂h and ûh, in (7)-(8) are the
cell boundary terms obtained from integration by parts, and they are the so-called
numerical fluxes. These numerical fluxes are single-valued functions defined on the
cell boundaries and should be designed according to guiding principles for different
PDEs to ensure numerical stability. Here we use the simple alternating fluxes:

(9) q̂h = q−h , ûh = u+
h ,

in which we have omitted the half-integer indices j + 1
2 , as all quantities in (9)

are computed at the same points (i.e., the cell interface). In the case of Dirichlet
boundary conditions (3), the numerical fluxes (9) at the two boundaries become

(q̂h) 1
2

= q+
h, 12

, (ûh) 1
2

= u(a, t) = 0,(10)

(q̂h)N+ 1
2

= q−
h,N+ 1

2

, (ûh)N+ 1
2

= u(b, t) = 0,

at the two end boundaries. In the proofs of the following sections, the flux terms
at the boundary cells (j = 1/2 and N + 1/2) will vanish because u vanishes at
the boundary, and therefore, we will retain the flux notation of internal cells for
simplicity. We remark that the choice of the fluxes (9) is not unique. We can, for
example, alternatively choose the numerical fluxes to be

(11) q̂h = q+
h , ûh = u−h .

2.3. Energy conservation. As is well-known, the one-dimensional linear wave
equation (1) admits an important conserved quantity – the energy, E =

∫
I
(u2
t +

u2
x)dx. Experiences show that schemes conserving the discrete analogs of energy

often produce approximations that behave better for long time simulation. In this
subsection, we will show that the proposed semi-discrete LDG method conserves
energy.

Proposition 1. The (continuous) energy

(12) Eh(t) =

∫
I

(
(uh)2

t + q2
h

)
dx

is conserved by the the semi-discrete LDG method (7)-(8) for all time.
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Proof. We first take the time derivative of Eq. (8) and choose the test function
w = qh to obtain

(13)

∫
Ij

(qh)tqhdx+

∫
Ij

(uh)t(qh)xdx− ((uh)+
t q
−
h )j+ 1

2
+ ((uh)+

t q
+
h )j− 1

2
= 0.

In Eq. (7), we choose the test function to be (uh)t:

(14)

∫
Ij

(uh)tt(uh)tdx+

∫
Ij

qh(uh)txdx− (q−h (uh)−t )j+ 1
2

+ (q−h (uh)+
t )j− 1

2
= 0.

Adding Eq. (13) to Eq. (14), one obtains∫
Ij

(uh)tt(uh)tdx+

∫
Ij

qh(uh)txdx− (q−h (uh)−t )j+ 1
2

+ (q−h (uh)+
t )j− 1

2

+

∫
Ij

(qh)tqhdx+

∫
Ij

(uh)t(qh)xdx− ((uh)+
t q
−
h )j+ 1

2
+ ((uh)+

t q
+
h )j− 1

2
= 0.

Using integration by parts on the term
∫
Ij
qh(uh)txdx, we get

(15)

∫
Ij

(uh)tt(uh)tdx+

∫
Ij

(qh)tqhdx+ (q−h (uh)+
t )j− 1

2
− ((uh)+

t q
−
h )j+ 1

2
= 0.

If the Dirichlet boundary conditions are used, the flux terms of the boundary cells
(j = 1/2 and N + 1/2) in the above equations will vanish, and therefore, we keep
the notation of the internal cells for simplicity.

By summing up Eq. (15) over all cells and using the periodic or Dirichlet bound-
ary conditions, we have

d

dt

(∫
I

((uh)2
t + q2

h)dx

)
= 0.

Therefore the quantity Eh is invariant in time.

3. Error estimate. In this section, we derive the optimal error estimates for the
energy conserving LDG method (7)-(8) proposed in Section 2. The error estimate
in the energy norm will be carried out first, and then the analysis will be extended
to the L2 norm. We will also show that these error bounds are both linear in time.

We start by introducing the projections and other notations to be used through-
out this paper. The standard L2 projection of a function ω(x) with k+1 continuous
derivatives into space V kh is denoted by Ph, i.e.,∫

Ij

Phωvdx =

∫
Ij

ωvdx,

for any v ∈ P k on Ij . In addition, we define P−h ω to be a projection of ω into V kh ,
such that ∫

Ij

P−h ωvdx =

∫
Ij

ωvdx,

for any v ∈ P k−1 on Ij , and

(P−h ω)− = ω− at xj+ 1
2
.

Similarly, the projection P+
h ω is defined as the projection of ω into V kh , such that∫

Ij

P+
h ωvdx =

∫
Ij

ωvdx,
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for any v ∈ P k−1 on Ij , and

(P+
h ω)+ = ω+ at xj− 1

2
.

For these projections, it is easy to show (see [7]):

(16) ‖ωe‖+ h‖ωe‖∞ + h
1
2 ‖ωe‖Γh

≤ Chk+1,

where ωe = ω − Phω or ωe = ω − P±h ω, and Γh denotes the set of boundary points
of all cells. The constant C depends on the function ω, but is independent of the
mesh size h.

Let us denote the errors by

eu = u− uh, εu = u− P+
h u, ēu = P+

h u− uh,(17)

eq = q − qh, εq = q − P−h q, ēq = P−h q − qh,
which, from left to right, respectively represent the errors between the exact solu-
tion and the numerical solution, the projection errors, and the errors between the
numerical solution and the particular projection of the exact solution. Note that
the signs of the projection P±h of u and q in (17) are consistent with the choice of
the numerical fluxes in (9). So if the other set of numerical fluxes (11) is chosen,
the signs of P±h in (17) should be changed accordingly.

To obtain the error estimates and the superconvergence property of the proposed
LDG method, the projections of the initial conditions for the numerical scheme need
to be carefully chosen. Note that we have two initial conditions in (2), one for u and
the other for ut. We take the initial condition uh(x, 0) as P+

h u(x, 0) = P+
h u0(x),

which is consistent with the choice of the numerical fluxes (9). The other initial
condition (uh)t(x, 0) is given by the standard L2 projection. Thus, we have the
following lemma.

Lemma 3.1. Assume the initial conditions of the LDG scheme (7)-(8) are given
by

uh(x, 0) = P+
h u(x, 0), (uh)t(x, 0) = Phut(x, 0),(18)

there holds the following error estimate

‖ēu(0)‖ = 0, ‖ēq(0)‖ ≤ Chk+1, ‖(ēu)t(0)‖ ≤ Chk+1,(19)

and ∫
Ij

(eu)t(0)vdx = 0, for any v ∈ P k.(20)

Proof. Here we only give the proof for the error estimate of ‖ēq(0)‖. All the other
results can be obtained similarly.

Subtracting (8) of the LDG method from the weak formulation satisfied by the
exact solution q yields∫

Ij
eqwdx+

∫
Ij
euwxdx− (e+

uw
−)j+ 1

2
+ (e+

uw
+)j− 1

2
= 0,(21)

for any test function w ∈ V kh . By the properties of the projection P+
h , we can derive∫

Ij

eqwdx+

∫
Ij

ēuwxdx− (ē+
uw
−)j+ 1

2
+ (ē+

uw
+)j− 1

2
= 0.(22)

Since ēu(0) = uh(0)− P+
h u(0) = 0, we have∫

Ij

eq(0)wdx = 0,
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for any test function w ∈ V kh . Taking w = ēq(0) yields

‖ēq(0)‖2 =

∫
I

(ēq(0))2dx = −
∫
I

ēq(0)εq(0)dx ≤ 1

2

∫
I

(ēq(0))2dx+
1

2

∫
I

(εq(0))2dx,

and therefore,

‖ēq(0)‖ ≤
(∫

I

(εq(0))2dx

) 1
2

= O(hk+1).(23)

This completes the proof.

Based on initial conditions (18), we have the following error estimate in the
energy norm.

Proposition 2. Let u and q be the exact solutions of the wave equation (6), and
uh, qh be the numerical solutions of the semi-discrete LDG method (7)-(8), with the
numerical fluxes defined in (9) and the initial conditions (18). Consider a regular
discretization of I and the piecewise polynomial finite element space V kh , there holds
the following error estimates:

(24) ‖(eu)t‖ ≤ Chk+1(t+ 1), ‖eq‖ ≤ Chk+1(t+ 1),

where the constant C depends on ‖u‖k+3 and ‖ut‖k+2.

Proof. By subtracting the LDG method (7)-(8) from the weak formulation satisfied
by the exact solutions u and q, we can derive the error equations∫

Ij

(eu)ttvdx+

∫
Ij

eqvxdx− (e−q v
−)j+ 1

2
+ (e−q v

+)j− 1
2

= 0,(25) ∫
Ij

eqwdx+

∫
Ij

euwxdx− (e+
uw
−)j+ 1

2
+ (e+

uw
+)j− 1

2
= 0,(26)

for all test functions v, w ∈ V kh . Using the properties of the projections P±h , the
error equations are equivalent to∫

Ij

(eu)ttvdx+

∫
Ij

ēqvxdx− (ē−q v
−)j+ 1

2
+ (ē−q v

+)j− 1
2

= 0,(27) ∫
Ij

eqwdx+

∫
Ij

ēuwxdx− (ē+
uw
−)j+ 1

2
+ (ē+

uw
+)j− 1

2
= 0,(28)

Along the same line in the proof of Proposition 1, we first take the time derivative
of Eq. (28), choose the test functions w = ēq, v = (ēu)t, and sum up the resulting
two equations to get∫

Ij

(eu)tt(ēu)tdx+

∫
Ij

(eq)tēqdx+ (ē−q (ēu)+
t )j− 1

2
− (ē−q (ēu)+

t )j+ 1
2

= 0.

If the Dirichlet boundary conditions are used, the flux terms of the boundary cells
(j = 1/2 and N + 1/2) in the above equations will vanish, and therefore, we keep
the notation of the internal cells for simplicity.

By summing up the above equation over all cells and using the periodic or Dirich-
let boundary conditions, we have∫

I

(eu)tt(ēu)tdx+

∫
I

(eq)tēqdx = 0
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Therefore,

1

2

d

dt

(
‖(ēu)t‖2 + ‖ēq‖2

)
=

1

2

d

dt

∫
I

(
(ēu)2

t + ē2
q

)
dx

≤
∫
I

(εu)tt(ēu)tdx+

∫
I

(εq)tēqdx ≤ ‖(εu)tt‖‖(ēu)t‖+ ‖(εq)t‖‖ēq‖

≤ C1h
k+1‖(ēu)t‖+ C2h

k+1‖ēq‖ ≤ Chk+1(‖(ēu)t‖2 + ‖ēq‖2)
1
2 ,

which leads to

d

dt

(
‖(ēu)t‖2 + ‖ēq‖2

) 1
2 ≤ Chk+1.

Combining this inequality with the property of the initial condition (19), we con-
clude that (

‖(ēu)t‖2 + ‖ēq‖2
) 1

2 ≤ C(t+ 1)hk+1,

in which the constant C only depends on ‖u‖k+3 and ‖ut‖k+2. Together with the
optimal projection error (16), the error estimate (24) follows.

Next, we consider the error estimate with respect to the L2 norm.

Proposition 3. Let u and q be the exact solutions of the wave equation (6), and
uh, qh be the numerical solutions of the semi-discrete LDG method (7)-(8), with the
numerical fluxes defined in (9) and the initial conditions (18). Consider a regular
discretization of I and the piecewise polynomial finite element space V kh , there holds
the following error estimates:

(29) max
t∈[0,T ]

‖eu(t)‖ ≤ Chk+1(T + 1),

where the constant C only depends on the solution u.

Proof. We split (eu)tt as the summation of (ēu)tt and (εu)tt in Eq. (27), and use
chain rule in time derivative to obtain

−
∫
Ij

(ēu)tvtdx+

∫
Ij

ēqvxdx− (ē−q v
−)j+ 1

2
+ (ē−q v

+)j− 1
2

=−
∫
Ij

(εu)ttvdx−
d

dt

∫
Ij

(ēu)tvdx.(30)

For any time τ ≤ T , we denote the time integral of the error by

Ēu(t) =

∫ τ

t

ēu(s)ds, Ēq(t) =

∫ τ

t

ēq(s)ds,

Eq(t) =

∫ τ

t

eq(s)ds, Eεq (t) =

∫ τ

t

εq(s)ds.

Taking the integral of Eq. (28) in time, from t to τ , gives

(31)

∫
Ij

Eqwdx+

∫
Ij

Ēuwxdx− (Ē+
u w
−)j+ 1

2
+ (Ē+

u w
+)j− 1

2
= 0.
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If we choose the test functions to be v = Ēu(t) and w = ēq(t) in (30)-(31), and
use the fact that vt = −ēu(t), we have∫

Ij

(ēu)tēudx+

∫
Ij

ēq(Ēu)xdx− (ē−q Ē
−
u )j+ 1

2
+ (ē−q Ē

+
u )j− 1

2

=−
∫
Ij

(εu)ttĒudx−
d

dt

∫
Ij

(ēu)tĒudx,∫
Ij

Eq ēqdx+

∫
Ij

Ēu(ēq)xdx− (Ē+
u ē
−
q )j+ 1

2
+ (Ē+

u ē
+
q )j− 1

2
= 0.

If the Dirichlet boundary conditions are used, the flux terms of the boundary cells
(j = 1/2 and N + 1/2) in the above equations will vanish, and therefore, we keep
the notation of the internal cells for simplicity.

Adding up these two equations and summing over all cells, and using the periodic
or Dirichlet boundary conditions, one obtains

1

2

d

dt

(
‖ēu‖2 − ‖Ēq‖2

)
= −

∫
I

(εu)ttĒudx−
d

dt

∫
I

(ēu)tĒudx−
∫
I

Eεq ēqdx

= −
∫
I

(εu)tēudx−
d

dt

∫
I

(eu)tĒudx−
∫
I

Eεq ēqdx.

By integrating the inequality from 0 to τ , we get

1

2
‖ēu(τ)‖2 − 1

2
‖ēu(0)‖2 +

1

2
‖Ēq(0)‖2

= −
∫ τ

0

∫
I

(εu)tēudxdt+

∫
I

(eu)t(0)Ēu(0)dx−
∫ τ

0

∫
I

Eεq ēqdxdt,(32)

in which the fact Ēq(τ) = Ēu(τ) = 0 is used. By the properties of the projection
(16), we have ‖(εu)t‖ = Chk+1. Note that

Eεq (t) =

∫ τ

t

εq(s)ds =

∫ τ

t

(
q(s)− P−h q(s)

)
ds =

∫ τ

t

q(s)ds− P−h

(∫ τ

t

q(s)ds

)
,

and therefore we can conclude that ‖Eεq‖ = Chk+1. Combining with the property

of the L2 projection (20), we have

1

2
‖ēu‖2(τ)− 1

2
‖ēu(0)‖2 +

1

2
‖Ēq(0)‖2

≤
∣∣∣∣∫ τ

0

∫
I

(εu)tēudxdt

∣∣∣∣+

∣∣∣∣∫ τ

0

∫
I

Eεq ēqdxdt

∣∣∣∣
≤
∫ τ

0

‖(εu)t‖‖ēu‖dt+

∫ τ

0

‖Eεq‖‖ēq‖dt

≤ τ max
t∈[0,τ ]

‖(εu)t‖ max
t∈[0,τ ]

‖ēu‖+ τ max
t∈[0,τ ]

‖Eεq‖ max
t∈[0,τ ]

‖ēq‖

≤ T
(

max
t∈[0,T ]

‖(εu)t‖ max
t∈[0,T ]

‖ēu‖+ max
t∈[0,T ]

‖Eεq‖ max
t∈[0,T ]

‖ēq‖
)

≤ CT
(
hk+1 max

t∈[0,T ]
‖ēu‖+ (T + 1)h2k+2

)
≤ C(T 2 + 1)h2k+2 +

1

4
max
t∈[0,T ]

‖ēu‖2.
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Since this is true for any τ < T , we have

1

2
max
t∈[0,T ]

‖ēu‖2 −
1

2
‖ēu(0)‖2 +

1

2
‖Ēq(0)‖2 ≤ C(T 2 + 1)h2k+2 +

1

4
max
t∈[0,T ]

‖ēu‖2.

Hence,

1

4
max
t∈[0,T ]

‖ēu‖2 +
1

2
‖Ēq(0)‖2 ≤ C(T 2 + 1)h2k+2 +

1

2
‖ēu(0)‖2 = C(T 2 + 1)h2k+2,

from which we can conclude

max
t∈[0,T ]

‖eu(t)‖ ≤ Chk+1(T + 1).

where the constant C only depends on the solution u.

4. Superconvergence. The superconvergence property of the LDG method is
studied in this section. We will prove superconvergence towards a particular pro-
jection of the exact solution, with the order k + 3/2, in which an increase of 1/2
over the optimal error estimate of Section 3 can be observed.

To obtain the superconvergence property of the method, two functionals related
to the L2 norm of a function f(x) on Ij , as defined in [4], are needed:

B−j (f) =

∫
Ij

f(x)
x− xj−1/2

hj

d

dx

(
f(x)

x− xj
hj

)
dx,

B+
j (f) =

∫
Ij

f(x)
x− xj+1/2

hj

d

dx

(
f(x)

x− xj
hj

)
dx.

Properties of these functionals in the following lemma are essential to the proof of
the superconvergence. The proof can be found in [4] and is therefore omitted.

Lemma 4.1. For any function f(x) ∈ C1 on Ij, we have

B−j (f) =
1

4hj

∫
Ij

f2(x)dx+
f2(xj+1/2)

4
,(33)

B+
j (f) = − 1

4hj

∫
Ij

f2(x)dx−
f2(xj−1/2)

4
.(34)

(See [4] for the detailed proof)

We prove the superconvergence of the numerical solution in the following Propo-
sition.

Proposition 4. Let u and q be the exact solutions of the wave equation (6), and
uh, qh be the numerical solutions of the semi-discrete LDG method (7)-(8), with the
numerical fluxes defined in (9) and the initial conditions (18). Consider a regular
discretization of I and the piecewise polynomial finite element space V kh , there holds
the following error estimate:

(35) ‖ēu‖ ≤ Chk+ 3
2 (t+ 1),

where the constant C only depends on the solution u.
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Proof. In the proof of Proposition 3, we have derived an upper bound for the error
term ‖ēu(τ)‖2 in Eq. (32). Utilizing the property (20) due to the L2 projection of
the initial condition (uh)t(0), Eq. (32) becomes

1

2
‖ēu(τ)‖2 − 1

2
‖ēu(0)‖2 +

1

2
‖Ēq(0)‖2 = −

∫ τ

0

∫
I

(εu)tēudxdt−
∫ τ

0

∫
I

Eεq ēqdxdt,

(36)

for any time τ ≤ T .
Firstly, we consider the first term on the right-hand side and tackle the term ēu.

We rewrite the error equation (28) as∫
Ij

eqwdx−
∫
Ij

(ēu)xwdx− [ēu]w+
∣∣
j− 1

2

= 0,(37)

by performing integration by parts on the term
∫
Ij
ēuwxdx. Define ēu = rj +

dj(x)(x− xj)/hj on the cell Ij , where rj = ēu(xj) is a constant and dj(x) ∈ P k−1.
By choosing the test function w in (37) to be dj(x)(x − xj− 1

2
)/hj on Ij , the last

term w+
j− 1

2

will be reduced to 0. Using the definition of B−j (f), one has∫
Ij

eqdj(x)(x− xj− 1
2
)/hjdx− B−j (dj(x)) = 0.

By Lemma 4.1, this is equivalent to∫
Ij

eqdj(x)
x− xj− 1

2

hj
dx− 1

4hj

∫
Ij

d2
j (x)dx−

d2
j (xj+1/2)

4
= 0,

and hence, ∫
Ij

d2
j (x)dx ≤ 4

∫
Ij

eqdj(x)(x− xj− 1
2
)dx.(38)

We define piecewise polynomials d(x) and φ1(x), such that d(x) = dj(x), and
φ1(x) = x − xj− 1

2
on Ij . Clearly, ‖φ1‖∞ = maxj hj = h, and Eq. (38) leads

to

‖d‖2 ≤ 4‖eq‖‖d‖‖φ1‖∞ ≤ 4h‖eq‖‖d‖.

Therefore, by Proposition 2, we have

‖d‖ ≤ 4h‖eq‖ ≤ Chk+2(t+ 1).

Secondly, we repeat similar analysis to the term Ēq in (36). From Eq. (27), we
can derive ∫

Ij

(eu)ttvdx−
∫
Ij

(ēq)xvdx− [ēq]v
−∣∣
j+ 1

2

= 0.

Integrating the above equation in time from t to τ gives∫
Ij

((eu)t(τ)− (eu)t(t))vdx−
∫
Ij

(Ēq)xvdx− [Ēq]v
−∣∣
j+ 1

2

= 0.(39)

Similar to the previous analysis, we define Ēq = bj + sj(x)(x − xj)/hj on the cell
Ij , where bj is a constant and sj(x) ∈ P k−1. Choose the test function v in (39) to
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be sj(x)(x − xj+ 1
2
)/hj on Ij , and use the definition of B+

j (f) and Lemma 4.1 to

obtain∫
Ij

((eu)t(τ)− (eu)t(t)) sj(x)
x− xj+ 1

2

hj
dx+

1

4hj

∫
Ij

s2
j (x)dx+

s2
j (xj−1/2)

4
= 0.

Hence, ∫
Ij

s2
j (x)dx ≤ 4

∣∣∣∣∣
∫
Ij

((eu)t(τ)− (eu)t(t)) sj(x)(x− xj+ 1
2
)dx

∣∣∣∣∣ .(40)

Then we define piecewise polynomials s(x) and φ2(x), such that s(x) = sj(x), and
φ2(x) = x− xj+ 1

2
on Ij , and finally get

‖s‖2 ≤ 4‖(eu)t(τ)− (eu)t(t)‖‖s‖‖φ2‖∞ ≤ 4h‖(eu)t(τ)− (eu)t(t)‖‖s‖.

By Proposition 2, we conclude that

‖s‖ ≤ 4‖(eu)t(τ)− (eu)t(t)‖ ≤ Chk+2(τ + 1).

Lastly, we will use the above results to bound the right-hand side of Eq. (36). By
the definition of projections, (εu)t and Eεq are both orthogonal to piecewise constant
function, hence∫

I

(εu)tēudx =
∑
j

∫
Ij

(εu)t(rj + dj(x)(x− xj)/hj)dx

=
∑
j

∫
Ij

(εu)tdj(x)(x− xj)/hjdx,∫
I

Eεq ēqdx =
∑
j

∫
Ij

Eεq (bj + sj(x)(x− xj)/hj)dx

=
∑
j

∫
Ij

Eεqsj(x)(x− xj)/hjdx.

Define the function φ3(x) = (x− xj)/hj on Ij , then ‖φ3‖∞ = 1
2 . Therefore,

1

2
‖ēu(τ)‖2 − 1

2
‖ēu(0)‖2 +

1

2
‖Ēq(0)‖2

≤
∫ τ

0

(
‖(εu)t‖‖φ3‖∞‖d‖+ ‖Eεq‖‖φ3‖∞‖s‖

)
dt

≤
∫ τ

0

(
Chk+1 1

2
Chk+2(t+ 1) + Chk+1 1

2
Chk+2(τ + 1)

)
dt

=

∫ τ

0

(
C(t+ τ + 1)h2k+3

)
dt = C(τ + 1)2h2k+3.

Combining this inequality with the initial condition (19), and replacing τ by t, we
have

‖ēu(t)‖2 +
1

2

∥∥∥∥∫ t

0

ēq(s)ds

∥∥∥∥2

≤ C(t+ 1)2h2k+3,

and in particular

‖ēu(t)‖ ≤ C(t+ 1)hk+ 3
2 ,

where the constant C only depends on the solution u.
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Although the proofs for both the error estimate in Section 3 and the supercon-
vergence in Section 4 are shown with the numerical fluxes (9), the same results hold
for the other choice of fluxes (11).

5. Time discretization. In order to extend the energy conservation property of
the the semi-discrete method to the fully discrete method, it is natural to employ
time stepping methods conserving discrete energy. In this paper, we consider the
second order leap-frog method for time discretization, which is well-known to be
energy conserving.

Let 0 ≤ t0 < t1 < · · · < tN = T be a partition of the interval [0, T ] with time
step ∆tn = tn+1 − tn. Here uniform time step ∆t is used. The fully discrete
approximations unh to u(·, tn) are constructed as follows: for n = 1, . . . , N − 1,

un+1
h ∈ V kh is given by∫

Ij

un+1
h − 2unh + un−1

h

∆t2
vdx+

∫
Ij

qnhvxdx− (q̂hv
−)j+ 1

2
+ (q̂hv

+)j− 1
2

= 0,(41) ∫
Ij

qnhwdx+

∫
Ij

unhwxdx− (ûhw
−)j+ 1

2
+ (ûhw

+)j− 1
2

= 0,(42)

for all test functions v and w in V kh , and the numerical fluxes ûh, q̂h are defined as
in (9), (10) or (11).

In Proposition 1, we showed the semi-discrete LDG method conserves the con-
tinuous energy Eh(t). Along the same line of analysis, we can exhibit the following
conserved quantity for the fully discrete method.

Proposition 5. The solution to the fully discrete leap-frog LDG method (41)-(42),
conserves the (discrete) energy

(43) En+1
h =

∥∥∥∥un+1
h − unh

∆t

∥∥∥∥2

+

∥∥∥∥qn+1
h + qnh

2

∥∥∥∥2

− ∆t2

4

∥∥∥∥qn+1
h − qnh

∆t

∥∥∥∥2

for all n.

Proof. Suppose the numerical fluxes (9) are used, as the following proof can be car-
ried out similarly for fluxes (11). Choose the test function v =
1
2

(
un+1
h −un

h

∆t +
un
h−u

n−1
h

∆t

)
=

un+1
h −un−1

h

2∆t in (41) to obtain∫
Ij

un+1
h − 2unh + un−1

h

∆t2
un+1
h − un−1

h

2∆t
dx+

∫
Ij

qnh

(
un+1
h − un−1

h

2∆t

)
x

dx(44)

−

(
(qnh)−

(
un+1
h − un−1

h

2∆t

)−)
j+ 1

2

+

(
(qnh)−

(
un+1
h − un−1

h

2∆t

)+
)
j− 1

2

= 0.

Consider Eq. (42) at time levels tn−1 and tn+1, and let the test function w be 1
2∆tq

n
h .

Subtracting these two equations yields∫
Ij

qn+1
h − qn−1

h

2∆t
qnhdx+

∫
Ij

un+1
h − un−1

h

2∆t
(qnh)xdx(45)

−
(

(un+1
h )+ − (un−1

h )+

2∆t
(qnh)−

)
j+ 1

2

+

(
(un+1
h )+ − (un−1

h )+

2∆t
(qnh)+

)
j− 1

2

= 0.
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Adding Eq. (44) to (45) and summing over all cells gives∫
I

un+1
h − 2unh + un−1

h

∆t2
un+1
h − un−1

h

2∆t
dx+

∫
Ij

qn+1
h − qn−1

h

2∆t
qnhdx

=

∫
I

un+1
h − 2unh + un−1

h

∆t2
un+1
h − un−1

h

2∆t
dx+

∫
Ij

qn+1
h + 2qnh + qn−1

h

4

qn+1
h − qn−1

h

2∆t
dx

−
∫
Ij

qn+1
h − 2qnh + qn−1

h

4

qn+1
h − qn−1

h

2∆t
dx

=
1

2∆t

(∥∥∥∥un+1
h − unh

∆t

∥∥∥∥2

+

∥∥∥∥qn+1
h + qnh

2

∥∥∥∥2

− ∆t2

4

∥∥∥∥qn+1
h − qnh

∆t

∥∥∥∥2

−
∥∥∥∥unh − un−1

h

∆t

∥∥∥∥2

−
∥∥∥∥qnh + qn−1

h

2

∥∥∥∥2

+
∆t2

4

∥∥∥∥qnh − qn−1
h

∆t

∥∥∥∥2
)

= 0.

Therefore, by the definition of Enh in (43), we have En+1
h = Enh for all n, which

completes the proof.

Remark 1. The discrete energy Enh can be rewritten as:

(46) En+1
h =

∫
I

(
un+1
h − unh

∆t

)2

dx+

∫
I

qn+1
h qnhdx,

which is a consistent approximation of the continuous energy (12).

6. Numerical experiments. Numerical experiments designed to gauge the per-
formance of our conservative schemes are reported in this section. Attention is given
particularly to two issues:

1. Verification of the theoretical results, including a study of the convergence
and superconvergence rates.

2. Investigating the long time behavior of our energy conserving scheme, which is
also compared with the performance of the energy conserving IPDG method
proposed in [19]. This includes a comparison of the errors as a function of
time, and the solutions after long time integration.

6.1. Convergence rates. In this subsection, we test the order of convergence and
superconvergence of the proposed LDG scheme. The results here present the case
of uniform meshes, in which the domain is uniformly divided into N cells. Since
the second order leap-frog time discretization is employed and our interest is in
the effect of the spatial discretization, we determine the time-step by the relation
∆t = Ch2. This relation guarantees that the error will be dominated by the spatial
discretization.

We consider the wave equation

utt = uxx, x ∈ [0, 2]

with initial conditions

u(x, 0) = sin(πx), ut(x, 0) = 0,
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Table 1. Numerical errors and orders of LDG method for wave
equation with uniform meshes and space P 1.

N eu ēu eq
L2 error order L2 error order L2 error order

10 1.7099E-02 9.1769E-04 4.2034E-02
20 4.2397E-03 2.0119 8.8732E-08 13.336 8.1594E-03 2.3650
40 1.0645E-03 1.9938 4.1486E-05 -8.869 5.3769E-03 0.6017
80 2.6556E-04 2.0031 3.8153E-06 3.4428 1.0483E-03 2.3587
160 6.6362E-05 2.0006 8.0124E-08 5.5734 1.3333E-04 2.9750

and a periodic boundary condition u(0, t) = u(2, t) for all t ≥ 0. This problem was
considered in [17] and has the exact solution

u(x, t) = sin(πx) cos(πt).

We implemented the LDG method with the alternating fluxes (9) and take ∆t =
0.01h2. Since leap-frog method requires initial conditions for two time steps, we
consider Taylor expansion of u at t = 0:

u(x,∆t) = u(x, 0) + ∆tut(x, 0) +
∆t2

2
utt(x, 0) +

∆t3

6
uttt(x, 0) +O(∆t4),

and convert the higher derivatives of t to derivatives of x by repeatedly using the
wave equation, while u and ut are given by initial conditions. To obtain the desired
order of convergence of u, following the initial conditions (18), we take the projection
P+
h of u(x, 0), and L2 projection Ph of ut(x, 0); that is, with u(x, 0) denoted by u0

and ut(x, 0) by v0, to use the initial conditions:

u0
h = P+

h u0,

u1
h = u0

h + ∆tPhv0 +
∆t2

2
(u0
h)xx +

∆t3

6
(Phv0)xx.

Tables 1 - 3 list the numerical errors and the orders of convergence for P k spaces,
k = 1, 2, 3. In each table, the L2-norm of the errors eu, ēu, and eq at final time
T = 1 are presented. The (k + 1)th order for eu can clearly be observed. However,
the order of convergence of ēu and eq may not be fully revealed from the tables.
In order to closely examine the order of convergence, we plotted the numerical
errors against mesh sizes in Figs. 1-3. The data sets are fitted by straight line in
least-squares sense, and the slopes of fitting lines are calculated, as shown atop the
figures. Altogether, the slopes of fitting lines for ēu are approximately (k + 2), and
the slopes for eq are close to (k + 1). We would like to mention that, although
the superconvergence rate is proved to be of order k + 3/2 in Section 4, we can
observe the superconvergence of order k + 2 in our numerical experiments. The
same phenomenon has been observed in [4].

6.2. Time history of the L2 error. In this subsection, we investigate the long
time evolution of the L2 error of the LDG method. An energy conserving IPDG
method was proposed in [18], which conserves a specifically defined energy. Here we
will compare the performance of these two methods. We consider again the wave
equation

utt = uxx, x ∈ [0, 2π]
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Table 2. Numerical errors and orders of LDG method for wave
equation with uniform meshes and space P 2.

N eu ēu eq
L2 error order L2 error order L2 error order

10 8.5041E-04 1.3099E-04 4.2597E-03
20 1.0541E-04 3.0121 3.4527E-06 5.2456 3.7914E-04 3.4899
40 1.3481E-05 2.9670 4.6501E-07 2.8924 6.4696E-05 2.5510
80 1.6795E-06 3.0048 2.3830E-08 4.2864 7.2923E-06 3.1492
160 2.0907E-07 3.0060 7.0408E-10 5.0809 7.2422E-07 3.3319

Table 3. Numerical errors and orders of LDG method for wave
equation with uniform meshes and space P 3.

N eu ēu eq
L2 error order L2 error order L2 error order

10 3.2810e-05 5.4290e-06 2.0398e-04
20 2.0357e-06 4.0105 1.4383e-07 5.2382 9.8007e-06 4.3794
40 1.2881e-07 3.9822 6.5194e-09 4.4635 9.3343e-07 3.3923
80 8.0431e-09 4.0013 7.0231e-11 6.5365 2.6316e-08 5.1485
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Figure 1. Numerical errors, eu, ēu and eq, with P 1 space are
plotted against mesh sizes. Errors are evaluated in L2 norm and
marked by blue circles. Red line is the least square fitting of the
data, with the slope of the fitting line displayed on the top of each
panel.

with a periodic boundary condition u(0, t) = u(2π, t) for all t ≥ 0, and initial
conditions u(x, 0) = esin x, ut(x, 0) = −esin x cosx. This problem has the exact
solution u = esin (x−t).

The LDG and IPDG methods are implemented with a uniform mesh with N cells,
and the leap-frog time discretization, with ∆t = 0.6h2. For the IPDG method, the
interior penalty stabilization parameter is taken to be 40000/π. In order to examine
the potential shape difference resulted from long time integration, both methods
are run until T = 1000, with finite element spaces P 2 and P 3, and N = 40, 80,
respectively.

In Fig. 4, the time evolution of L2 errors of both schemes are shown, with red
color representing LDG method and blue color for IPDG method, and the errors
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Figure 2. Numerical errors, eu, ēu and eq, with P 2 space are
plotted against mesh sizes. Errors are evaluated in L2 norm and
marked by blue circles. Red line is the least square fitting of the
data, with the slope of the fitting line displayed on the top of each
panel.

−2 −1.8 −1.6 −1.4 −1.2 −1
−8.5

−8

−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

log10 h

lo
g 1

0
e
u

slope =3.9952

−2 −1.8 −1.6 −1.4 −1.2 −1
−11

−10

−9

−8

−7

−6

−5

log10 h

lo
g 1

0
ē
u

slope =5.0502

−2 −1.8 −1.6 −1.4 −1.2 −1
−8

−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

log10 h

lo
g 1

0
e
q

slope =4.0038

Figure 3. Numerical errors, eu, ēu and eq, with P 3 space are
plotted against mesh sizes. Errors are evaluated in L2 norm and
marked by blue circles. Red line is the least square fitting of the
data, with the slope of the fitting line displayed on the top of each
panel.

are recorded every 10,000 iterations. The L2 errors of both schemes grow in a linear
fashion, but the slope for IPDG method is much larger than that for LDG method,
which almost stays as constant and is close to zero. In Fig. 4, the errors are plotted
in log scale just for easy visualization. From the figure, one can see that for LDG
method, the level of the errors are reduced by refining the mesh from N = 40 to
N = 80, but the mesh refinement does not substantially reduce the errors of IPDG
method due to the rapid growth.

It can be observed from Fig. 4 that, up to T = 1000, the L2 error of IPDG
method is greater than 10−1, and this large error can easily be visualized by di-
rectly comparing the solutions of both methods. Fig. 5 displays the exact solution
(red), the solution of LDG method (green) and the solution of IPDG method (blue)
at T = 1000, for spaces P 2 and P 3 with N = 40. It can be seen that solution of
LDG method overlaps with the exact solution, while the solution of IPDG method
preserves the shape but has a phase shift. A finer mesh with N = 80 for IPDG was
also tested, and the results look almost identical to Fig. 5, therefore not displayed
here. This suggests that a much finer mesh is required to obtain a more accurate
numerical solution. We would like to remark that tuning the interior penalty sta-
bilization parameter in IPDG method does result in solutions with different levels
of phase shift. However, evident phase error similar to Fig. 5 can still be observed
within a large range of the parameter.
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Figure 4. Time history until T = 1000 of the L2 error of the nu-
merical approximations obtained from the LDG and IPDG meth-
ods with k = 2, 3 and a uniform mesh with 40 and 80 cells. The
L2 error on y-axis are presented in log scale.
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Figure 5. Numerical approximations of the wave equation using
LDG and IPDG methods. Comparison is made at T = 1000 with
k = 2, 3 and N = 40.

7. Concluding remarks. In this paper, we developed and analyzed the LDG
method for solving the wave equation. We have proved the optimal error esti-
mates, superconvergence towards a particular projection of the exact solution, and
its energy conserving property for the semi-discrete formulation. The leap-frog
time discretization was used to obtain a fully discrete method, and the fully dis-
crete method is shown to conserve discrete energy. Usually it is difficult to obtain
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DG schemes for wave equations which are non-dissipative and optimal high order
accurate, without going to staggered mesh [5, 6] or using penalty with a parameter
to adjust [18, 19]. Our scheme does not have parameters to tune and is defined on
a single mesh. Numerical tests have demonstrated the optimal convergence rates
and superconvergence which were proved in this paper. Numerical simulations with
long time integration, in comparison with results from IPDG methods, confirmed
that energy conservation property is important in order to preserve the phase and
shape.

Same techniques in the proofs of this paper can be generalized to variable coef-
ficient problem and also to multi-dimensions, which constitute our current work in
progress. Future work also includes designing a higher order time stepping method
for the proposed LDG scheme, which conserves energy as the leap-frog discretiza-
tion. Another direction to pursue is to consider the space-time DG method for the
wave propagation problem.
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