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Solving wave propagation problems within heterogeneous media has been of great interest
and has a wide range of applications in physics and engineering. The design of numerical
methods for such general wave propagation problems is challenging because the energy
conserving property has to be incorporated in the numerical algorithms in order to
minimize the phase or shape errors after long time integration. In this paper, we focus
on multi-dimensional wave problems and consider linear second-order wave equation
in heterogeneous media. We develop and analyze an LDG method, in which numerical
fluxes are carefully designed to maintain the energy conserving property and accuracy.
Compatible high order energy conserving time integrators are also proposed. The optimal
error estimates and the energy conserving property are proved for the semi-discrete
methods. Our numerical experiments demonstrate optimal rates of convergence, and show
that the errors of the numerical solutions do not grow significantly in time due to the
energy conserving property.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Wave propagation is a fundamental form of energy transmission, which arises in many fields of science, engineering
and industry, and it is significant to geoscience, petroleum engineering, telecommunication, and the defense industry (see
[23,32] and the references therein). Efficient and accurate numerical methods to solve wave propagation problems are
of fundamental importance to these applications. Experience reveals that energy conserving numerical methods, which
conserve the discrete approximation of the energy, are favorable because they are able to maintain the phase and shape of
the waves accurately, especially for long time simulation. In [43], we have designed a high order accurate energy conserving
local discontinuous Galerkin (LDG) method for the one-dimensional second-order wave equation with constant coefficient.
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In this paper, we focus on multi-dimensional problems in heterogeneous media, and develop optimally convergent LDG
methods which also conserve the energy in the discrete sense.

The wave equation can be written in a second-order form, or an equivalent first-order hyperbolic system. Directly solving
the second-order equation usually involves fewer unknown variables, therefore the resulting numerical schemes are more
efficient. This saving can be significant in the three-dimensional applications. For example, for the linear elasticity equa-
tions in three dimensions, three variables are used in the second-order form, while first-order system needs at least nine
components [6]. In addition, there are many applications where the second-order PDEs arise naturally. When converted
into first-order systems, they may admit a wider class of solutions, therefore some constraints are needed to ensure that
these solutions are solutions of the original second-order equation, which also increases difficulty to the design of numerical
methods. Finally, it was also shown [3] that the second-order equation may allow larger time step size, compared to the
first-order system.

A vast amount of literature can be found on the numerical approximations of the second-order wave equation. The most
common numerical method for solving the wave equation is to use the second order accurate centered finite difference
operator. One major component in designing such finite difference methods which conserve the energy numerically is
the Summation By Parts (SBP) operator, with special attention paid near the boundaries. There have been many studies
on this subject (see [42] and the references therein). While finite difference methods provide efficient solvers, they are
largely limited by the geometry of the domain, although some attempts [4] have been made to circumvent this difficulty. In
contrast, finite element methods have the flexibility in handling complex geometry. Safjan and Oden [40] introduced a family
of unconditionally stable high order Taylor–Galerkin schemes for acoustic and elastic wave propagation. Faccioli et al. [24]
used explicit Fourier–Legendre domain decomposition methods and focused on the numerical validation of the methods.
Spectral methods for acoustic and elastic waves have been developed in [35,45], and a mortar coupling between spectral
and finite elements methods for elastodynamic problem on complex geometries can be found in [9]. Spectral element
methods are shown to conserve energy when applied to the wave equations [2,27]. We refer to [19,28] for a review of
previous work on spectral and spectral element methods. Here, we will confine our attention in discontinuous Galerkin (DG)
methods, which have the advantages of being local (versus global), easy h-p adaptivity and being able to handle hanging
nodes, compared with spectral element methods. DG methods can be viewed as spectral element methods with domain
decomposition. They belong to a class of finite element methods using discontinuous piecewise polynomial spaces for both
the numerical solution and the test functions. They were originally devised to solve hyperbolic conservation laws with only
first order spatial derivatives, e.g. [13–15,17,18]. They allow arbitrarily unstructured meshes, and have compact stencils.
Moreover, they easily accommodate arbitrary h-p adaptivity. DG methods were later generalized to the LDG methods by
Cockburn and Shu to solve convection–diffusion equations [16], motivated by successful numerical experiments from Bassi
and Rebay [7] for the compressible Navier–Stokes equations. Recently, Zhong and Shu [46] studied the question of how
many grid points (degrees of freedom) per wave length are needed to achieve a given accuracy for the DG method applied
to the linear wave equation, following the classical error analysis by Kreiss and Oliger [34] for the finite difference methods.

Many DG methods have been developed for the wave equation in both first-order and second-order forms [1,5,15,25,30,
37,39,40], and some of these methods are also energy conserving [11,26,29]. Two approaches are commonly used to achieve
the energy conserving property. The first one is to introduce two staggered mesh sets, and define one set of solution
on each mesh. This usually leads to more complexity, as staggered mesh may be difficult to construct, especially for high
dimensional complex domain and in the neighborhood of the boundary. Recently, Chung and Engquist [11,12] have proposed
an optimal, energy conserving DG method for the first-order wave equation using staggered grids. They introduced different
meshes for different computational variables, and are able to prove the optimal convergence for unstructured meshes. The
other approach to obtain energy conserving method is to use the central numerical flux [26], i.e., the numerical flux along
cell boundaries is evaluated by taking the average of two values of the numerical solution from the two neighboring cells.
However, only suboptimal convergence can be proven theoretically, and numerically, one can observe optimal convergence
if even order polynomial space is used, and suboptimal if odd order polynomial space is used.

Usually it is difficult to obtain DG schemes for wave equations which are non-dissipative (energy conserving for the
physical energy) and optimal high order accurate. In [43], we have designed an energy conserving LDG method for the
simple one-dimensional second-order constant coefficient wave equation. We have proved that the proposed method has
the optimal convergence rates in both the energy and L2 norms, and the upper bound of the errors grows in time only
in a linear fashion. In this paper, we consider the multi-dimensional wave problems in heterogeneous media. Extension of
the previous work to the multi-dimensional problems on Cartesian meshes is discussed. Extra attention needs to be paid at
the interface of different media to ensure the stability and energy conservation. Theoretical proof, as well as the numerical
evidence, indicates that a good choice of the projection of the initial condition into the polynomial space is important to
achieve optimal convergence rate. The semi-discrete LDG method will be coupled with high order explicit energy conserving
time discretization. We remark here that since our scheme is non-dissipative, it is more oscillatory than the commonly used
upwind (energy-dissipative) DG method when applied to problems with discontinuities. The advantage of energy conserving
methods is to solve smooth wave problems, with the attempt to resolve all waves for long time periods.

The outline of our paper is as follows. In Section 2, we present the semi-discrete LDG method, and prove its energy
conserving property. The optimal error estimates, both in the energy norm and the L2 norm, are analyzed in Section 3,
and therein, the upper bound of errors is proved to grow linearly in time. The fully discrete LDG method, with the high
order energy conserving time discretization, and its energy conserving properties are presented in Section 4. Section 5
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contains numerical experiments that demonstrate the optimal convergence rates and energy conservation of the proposed
LDG method, as well as its excellent long time accuracy. Finally, we give concluding remarks in Section 6.

2. Local discontinuous Galerkin discretization

2.1. The model problem

In this paper, we primarily consider the second-order wave equation, on a bounded domain Ω in R2 or R3,

utt = ∇ · (a2(x)∇u
)
, x ∈ Ω, t ∈ [0, T ], (2.1)

where a(x) > 0, and this problem is subject to the initial conditions

u(x,0) = u0(x), ut(x,0) = v0(x). (2.2)

The speed of wave propagation is a(x), which is assumed to be piecewise smooth. Both homogeneous Dirichlet boundary
conditions and periodic boundary conditions will be considered. We remark here that the results in the following sections
will remain the same if a source term f (x, t) is added to Eq. (2.1), so for simplicity, we only consider (2.1) throughout this
paper.

2.2. Notations

We consider a two-dimensional rectangular domain Ω for simplicity (extension to three dimension is straightforward),
and without loss of generality, we denote it by [0, Lx] × [0, L y]. We discretize the computational domain Ω into rectangular
cells Ki, j = Ii × J j , where Ii = [xi− 1

2
, xi+ 1

2
], i = 1, . . . , Nx and J j = [y j− 1

2
, y j+ 1

2
], j = 1, . . . , N y . The center of each cell is

(xi, y j) = ( 1
2 (xi− 1

2
+ xi+ 1

2
), 1

2 (y j− 1
2

+ y j+ 1
2
)), and the mesh sizes are denoted by hx

i = xi+ 1
2

− xi− 1
2

and hy
j = y j+ 1

2
− y j− 1

2
,

with hx = max1≤i≤Nx hx
i , hy = max1≤ j≤N y hy

j , and h = max(hx,hy) the maximal mesh size. Regular meshes are used, namely,
the ratio between the maximal and the minimal mesh sizes remains bounded during mesh refinement. Let Th be the family
of partitions of Ω parameterized by h > 0, and we define

E I
h := set of all interior edges/faces of Th,

E B
h := set of all boundary edges/faces of Th on Γ = ∂Ω,

Eh := E I
h ∪ E B

h .

The piecewise polynomial space V k
h is defined as the space of tensor products of piecewise polynomials of degree at

most k in each variable on every element Ki, j , that is,

V k
h = {

v : v
∣∣

K ∈ Q k(K ), ∀K ∈ Th
}
, (2.3)

where Q k is the space of tensor products of one-dimensional polynomials of degree up to k. Note that functions in V k
h are

allowed to have discontinuities across element interfaces. We extend this definition to vector-valued functions by defining

Σk
h = {

w = (w1, w2)
T : wl

∣∣
K ∈ Q k(K ), l = 1,2, ∀K ∈ Th

}
. (2.4)

The solution of the numerical scheme is denoted by uh , which belongs to the finite element space V k
h . We denote by

uh(x+
i+1/2, y) and uh(x−

i+1/2, y) the limit values of uh at xi+ 1
2

from the right cell Ii+1 × J j and from the left cell Ii × J j ,

respectively; uh(x, y+
j+1/2) and uh(x, y−

j+1/2) are defined similarly. The L2 norm over the domain Ω is denoted by ‖ · ‖.

2.3. The LDG method

In this subsection, we define the semi-discrete LDG method for the wave equation (2.1), by discretizing the space with
the LDG method and leaving the time dependence continuous. The wave equation is written into a first order system by
substituting the first order derivatives ux , u y with the auxiliary variable q = (q1,q2):

utt = ∇ · (a(x)q
)
,

q = a(x)∇u. (2.5)

The LDG method for (2.5) is then formulated as follows: find uh , q1, q2 ∈ V k , such that
h h h
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∫
Ki, j

(uh)ttψdx +
∫

Ki, j

aq1
hψxdx −

∫
J j

âq1
hψ

(
x−

i+ 1
2
, y

)
dy +

∫
J j

âq1
hψ

(
x+

i− 1
2
, y

)
dy

+
∫

Ki, j

aq2
hψydx −

∫
Ii

ãq2
hψ

(
x, y−

j+ 1
2

)
dx +

∫
Ii

ãq2
hψ

(
x, y+

j− 1
2

)
dx = 0, (2.6)

∫
Ki, j

q1
hφdx +

∫
Ki, j

auhφxdx −
∫
J j

âuhφ
(
x−

i+ 1
2
, y

)
dy +

∫
J j

âuhφ
(
x+

i− 1
2
, y

)
dy = −

∫
Ki, j

axuhφdx, (2.7)

∫
Ki, j

q2
hϕdx +

∫
Ki, j

auhϕydx −
∫
Ii

ãuhϕ
(
x, y−

j+ 1
2

)
dx +

∫
Ii

ãuhϕ
(
x, y+

j− 1
2

)
dx = −

∫
Ki, j

ayuhϕdx, (2.8)

for all test functions ψ , φ, ϕ ∈ V k
h . The hatted terms, âq1

h and âuh , and the tilde terms, ãq2
h and ãuh , in (2.6)–(2.8) are the

cell boundary terms obtained from integration by parts, and they are the so-called numerical fluxes. These numerical fluxes
are single-valued functions defined on the cell boundaries, and they are essential to ensure numerical stability and capture
certain properties of the PDEs, such as energy conservation in wave equations.

If the function a(x) is continuous, the numerical fluxes can be determined following the one-dimensional approach in
[43]. For the hatted terms, we use the simple alternating fluxes,

âq1
h = aq1,−

h , âuh = au+
h , (2.9)

where all quantities are computed at the same points (xi+1/2, y) (i.e., the cell interface). We remark that the choice of the
fluxes (2.9) is not unique. We can, for example, alternatively choose the numerical fluxes to be

âq1
h = aq1,+

h , âuh = au−
h . (2.10)

Similarly, one can use the numerical fluxes

ãq2
h = aq2,−

h , ãuh = au+
h , (2.11)

or

ãq2
h = aq2,+

h , ãuh = au−
h , (2.12)

where all quantities are computed at the same points (x, y j+ 1
2
) (i.e., the cell interface).

However, if the function a(x) is discontinuous, the above numerical fluxes are not well defined at the interface, since a(x)

takes different values from both sides of the interface. Here we assume that a(x) is piecewise smooth and the discontinuities
only occur in the direction aligned with our spatial discretization, namely, either vertical or horizontal (or both). Thus, we
can align the jumps of a(x) with cell interfaces. Then, one way to define the numerical fluxes is to take a(x) from the same
side as uh or q1

h (or q2
h), for example (2.9) becomes

âq1
h = a−q1,−

h , âuh = a+u+
h . (2.13)

However, this is not sufficient to render the correct accuracy and energy conserving property. Theoretically, the natural
interface condition (see [8]) for the two media is the continuity in u and the flux aq, that is, u− = u+ and a−q− = a+q+ .
This continuity condition, however, is not consistent with the fluxes of the original LDG methods (2.7)–(2.8). Take Eq. (2.7)
with the choice of numerical fluxes (2.13) as an example. Applying the integration by parts on the volume integral again,
Eq. (2.7) becomes∫

Ki, j

q1
hφdx −

∫
Ki, j

a(uh)xφdx +
∫
J j

(
a−u−

h − a+u+
h

)
φ
(
x+

i− 1
2
, y

)
dy = 0, (2.14)

and this flux term a−u−
h − a+u+

h is not consistent with the continuity condition, as u, not au, is continuous across the
interface.

To overcome this difficulty, we propose to update the discretization of Eqs. (2.7) and (2.8) by:∫
Ki, j

q1
hφdx +

∫
Ki, j

uhaφxdx −
∫
J j

ûha−φ
(
x−

i+ 1
2
, y

)
dy +

∫
J j

ûha+φ
(
x+

i− 1
2
, y

)
dy = −

∫
Ki, j

axuhφdx, (2.15)

∫
K

q2
hϕdx +

∫
K

uhaϕydx −
∫
I

ũha−ϕ
(
x, y−

j+ 1
2

)
dx +

∫
I

ũha+ϕ
(
x, y−

j− 1
2

)
dx = −

∫
K

ayuhϕdx, (2.16)
i, j i, j i i i, j
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for all test functions ψ , φ, ϕ ∈ V k
h . Note that a is no longer included in the numerical flux and takes its value from inside

the cell Ki, j , the same way as the test function ϕ , at the interface. We will show later that this choice of discretization will
provide correct accuracy and energy conservation property. For the hatted terms, we still use the simple alternating fluxes,

âq1
h = a−q1,−

h , ûh = u+
h , (2.17)

or

âq1
h = a+q1,+

h , ûh = u−
h , (2.18)

where all quantities are computed at the same points (xi+ 1
2
, y) (i.e., the cell interface). Similarly, one can use the numerical

fluxes

ãq2
h = a−q2,−

h , ũh = u+
h , (2.19)

or

ãq1
h = a+q2,+

h , ũh = u−
h , (2.20)

where all quantities are computed at the same points (x, y j+ 1
2
) (i.e., the cell interface).

If the numerical fluxes (2.18) and (2.20) are used, and if we denote Ki, j by K for simple presentation, the LDG methods
can be equivalently reformulated as(

(uh)tt,ψ
)

K + (aqh,∇ψ)K − (
a+q+

h · ν,ψ
)
∂ K = 0, (2.21)

(qh,φ)K + (auh,∇ · φ)K − (
u−

h ,aφ · ν)
∂ K = −(uh∇a,φ)K , (2.22)

where (·)K denotes the L2 inner product, that is, ( f , g)K = ∫
K f · gdx; the vector ν is the outward normal vector of

∂ K , and φ is a vectored test function in the space V k
h × V k

h . Eq. (2.22) renders a formulation of qh in terms of uh in an
element-by-element fashion, and therefore this could be substituted into Eq. (2.21). This is the spirit of the LDG method,
and qh is simply an auxiliary variable.

2.4. Energy conservation

As is well known, the important physical quantity, the energy E = ∫
Ω

u2
t + (a(x)ux)

2 + (a(x)u y)
2dx, is conserved, in the

linear wave equation (2.1) with proper boundary conditions. This property is often taken into consideration in the design of
numerical schemes because experiences show that schemes conserving the discrete analogs of energy appear to approximate
the solution better, especially in the long time behavior. In this subsection, we will show that the proposed semi-discrete
LDG method conserves energy.

Proposition 2.1. The (continuous) energy

Eh(t) =
∫
Ω

(
(uh)

2
t + (

q1
h

)2 + (
q2

h

)2)
dx (2.23)

is conserved by the semi-discrete LDG method (2.21)–(2.22) for all time.

Proof. By taking the time derivative of Eq. (2.22), and choosing the test function φ = qh , one obtains(
(qh)t,qh

)
K + (

a(uh)t ,∇ · qh

)
K − ((

u−
h

)
t,aqh · ν)

∂ K = −(
(uh)t∇a,qh

)
K . (2.24)

In Eq. (2.21), we choose the test function to be (uh)t :(
(uh)tt, (uh)t

)
K + (

aqh,∇(uh)t
)

K − (
a+q+

h · ν, (uh)t
)
∂ K = 0. (2.25)

Addition of Eqs. (2.24) and (2.25) becomes(
(uh)tt, (uh)t

)
K + (

(qh)t,qh

)
K + (

aqh,∇(uh)t
)

K + (
a(uh)t,∇ · qh

)
K

+ (ut∇a,qh)K − ((
u−

h

)
t,aqh · ν)

∂ K − (
a+q+

h · ν, (uh)t
)
∂ K = 0,

and with integration by parts, we obtain(
(uh)tt, (uh)t

) + (
(qh)t,qh

) + (
(uh)t,aqh · ν) − ((

u−)
,aqh · ν) − (

(uh)t,a+q+ · ν) = 0. (2.26)
K K ∂ K h t ∂ K h ∂ K
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By summing up Eq. (2.26) over all cells and using the periodic or homogeneous Dirichlet boundary conditions, we have

0 = (
(uh)tt, (uh)t

)
Ω

+ (
(qh)t ,qh

)
Ω

+
∑

K∈Th

((
(uh)t,aqh · ν)

∂ K − ((
u−

h

)
t,aqh · ν)

∂ K − (
(uh)t ,a+q+

h · ν)
∂ K

)
= (

(uh)tt, (uh)t
)
Ω

+ (
(qh)t ,qh

)
Ω

.

Therefore the quantity Eh is invariant in time. �
3. Error estimate

In this section, we derive the optimal error estimates for the energy conserving LDG method (2.21)–(2.22) proposed in
Section 2. The error estimate in the energy norm will be presented first, and then the analysis will be extended to the L2

norm. We will also show that both these error bounds are linear in time.

3.1. Projections and inequalities

First, we introduce the projections and other notations that will be used throughout this paper. We use P to denote a
weighted L2 projection of a function ω(x) with k + 1 continuous derivatives into space V k

h , that is:

(Pω,aφ)K = (ω,aφ)K ,

for any φ ∈ Q k on K .
In addition, a one-dimensional projection P−

x for a real-valued function ω, which projects ω into the one-dimensional
piecewise polynomial space of degree k while taking the values of ω at the cell interface, is defined as follows(

P−
x ω,aφ

)
Ii

= (ω,aφ)Ii , ∀φ ∈ Pk−1(Ii) and
(

P−
x ω

)−
(xi+ 1

2
) = ω−(xi+ 1

2
), (3.1)

where Pk−1(Ii) is the space of polynomials on the interval Ii of degree up to k−1. Similarly, the one-dimensional projection
P+

x ω is defined as the projection of ω such that(
P+

x ω,aφ
)

Ii
= (ω,aφ)Ii , ∀φ ∈ Pk−1(Ii) and

(
P+

x ω
)+

(xi− 1
2
) = ω+(xi− 1

2
),

and the one-dimensional projection on the y-direction P±
y is defined in the same way. Since the Cartesian meshes are used

in this paper, we can extend the definition of the above P±
x to two dimension: on a two-dimensional rectangular element

Ki, j = Ii × J j , the projection P− for scalar functions is defined as

P− = P−
x ⊗ P−

y . (3.2)

This projection P− on the Cartesian meshes has been shown in [22, Lemma 3.7] to have the following superconvergence
property: for η ∈ Hk+2(Ω), ρ ∈ Σk

h ,∣∣(η − P−η,a∇ · ρ)
Th

− (
η − ̂P−η,aρ · ν)

Eh

∣∣ ≤ Chk+1‖η‖Hk+2(Ω)‖ρ‖Ω, (3.3)

where the “hat” term denotes the numerical flux.
Another projection Π+ , for vector-valued functions ρ = (ρ1,ρ2), is defined as

Π+ρ = (
P+

x ⊗ P yρ1, P x ⊗ P+
y ρ2

)
, (3.4)

where P x and P y are the one-dimensional L2 projections in the x- and y-directions, respectively. One can easily observe
that, for any ρ ∈ [H1(Ω)]2, the restriction of Π+ρ to I × J (= Ki, j) are elements of [Q k(I × J )]2 that satisfy(

Π+ρ − ρ,a∇w
)

I× J = 0, (3.5)

for any w ∈ Q k(I × J ), and((
Π+ρ(xi− 1

2
, ·) − ρ(xi− 1

2
, ·)) · ν,aw

(
x+

i− 1
2
, ·)) J = 0, ∀w ∈ Q k(I × J ), (3.6)((

Π+ρ(·, y j− 1
2
) − ρ(·, y j− 1

2
)
) · ν,aw

(·, y+
j− 1

2

))
I = 0, ∀w ∈ Q k(I × J ), (3.7)

where ν is the outward normal vector of the boundary of Kij . These projections defined above have the following approxi-
mation property (see [22,44]): for any η ∈ Hk+1(Ω) and ρ ∈ [Hk+1(Ω)]2,∥∥P±η − η

∥∥
Ω

≤ Chk+1‖η‖Hk+1(Ω),
∥∥Π±ρ − ρ

∥∥
Ω

≤ Chk+1‖ρ‖Hk+1(Ω), (3.8)

where C is independent of the mesh size h.



94 C.-S. Chou et al. / Journal of Computational Physics 272 (2014) 88–107
Finally, we denote the errors by

eu = u − uh = ηu + ζu, ηu = u − P−u, ζu = P−u − uh,

eq = q − qh = ηq + ζq, ηq = q − Π+q, ζq = Π+q − qh, (3.9)

which, from left to right, respectively represent the errors between the exact solution and the numerical solution, the
projection errors, and the errors between the numerical solution and the particular projection of the exact solution. Note
that the signs of the projection P±

h and Π± of u and q in (3.9) are consistent with the choice of the numerical fluxes
in (2.17). So if the other set of numerical fluxes are chosen, the signs of P±

h and Π± in (3.9) should be changed accordingly.

3.2. Error estimate in the energy norm

The optimal error estimates of the proposed LDG method rely upon carefully chosen projections of the initial conditions.
Note that we have two initial conditions in (2.2), one for u and the other for ut . We take the initial condition uh(x,0)

as P−
h u(x,0) = P−

h u0(x), which is consistent with the choice of the numerical fluxes (2.17). The other initial condition
(uh)t(x,0) is given by the standard L2 projection. Thus, we have the following lemma.

Lemma 3.1. Suppose the initial conditions of the LDG scheme (2.6)–(2.7) are given by

uh(x,0) = P−
h u(x,0), (uh)t(x,0) = Phut(x,0), (3.10)

there hold the following error estimates∥∥ζu(0)
∥∥ = 0,

∥∥ζq(0)
∥∥ ≤ Chk+1,

∥∥(ζu)t(0)
∥∥ ≤ Chk+1, (3.11)

and (
(eu)t(0), v

)
Ω

= 0, for any v ∈ Q k. (3.12)

The proof of this lemma is similar as that in [43], and is therefore omitted here.

Remark 3.1. We would like to emphasize that this special choice of initial condition is critical in the optimal convergence
rate of the proposed LDG method. The optimal error estimate shown below is based on these initial conditions, and this is
confirmed by our numerical experiments. As shown in Section 5, if the standard L2 projections are used for both u and ut ,
the convergence rate becomes oscillating and does not converge to the desired (k + 1)-th order accuracy. Although previous
studies on LDG methods showed that the different choices of initial condition have little impact on the convergence/super-
convergence results [10,31,36], different initial conditions do make a difference for our method. We believe it is related
to the fact that the current energy conserving method has no numerical dissipation, and therefore it is more sensitive to
the error in the initial conditions. So it is critical to choose an appropriate initial condition which results in the “optimal”
energy conserving method.

Based on the initial conditions (3.10), we have the following error estimate in the energy norm.

Proposition 3.1. Let u and q be the exact solutions of the wave equation (2.5), and uh, qh be the numerical solutions of the semi-discrete
LDG method (2.21)–(2.22) with the initial conditions (3.10), there hold the following error estimates:∥∥(eu)t

∥∥ ≤ Chk+1(t + 1), ‖eq‖ ≤ Chk+1(t + 1), (3.13)

where the constant C depends on maxK∈Th {‖∇a(x)‖∞ | x ∈ K }, ‖u‖Hk+3 and ‖ut‖Hk+2 .

Proof. The error equations of the proposed LDG method are(
(eu)tt,ψ

)
K + (aeq,∇ψ)K − (

a+e+
q · ν,ψ

)
∂ K = 0, (3.14)

(eq,φ)K + (aeu,∇ · φ)K − (
e−

u ,aφ · ν)
∂ K = −(eu∇a,φ)K , (3.15)

for all test functions ψ ∈ V k
h and φ ∈ Σk

h , that can be derived by subtracting (2.21)–(2.22) from the weak formulation
satisfied by the exact solutions u and q.

Using the properties of the projections P− and Π+ , the error equations become(
(ζu)tt,ψ

)
K + (

(ηu)tt,ψ
)

K + (aζq,∇ψ)K − (
a+ζ+

q · ν,ψ
)
∂ K = 0, (3.16)

(ζq,φ)K + (ηq,φ)K + (aζu,∇ · φ)K − (
ζ−

u ,aφ · ν)
∂ K + (aηu,∇ · φ)K − (

η−
u ,aφ · ν)

∂ K

= −(ζu∇a,φ)K − (ηu∇a,φ)K . (3.17)
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Along the same line in the proof of Proposition 2.1, we first take the time derivative of Eq. (3.17), choose the test functions
to be φ = ζq , ψ = (ζu)t , and then sum up the resulting two equations to get(

(ζu)tt, (ζu)t
)

K + (
(ηu)tt, (ζu)t

)
K + (

(ζq)t, ζq
)

K + (
(ηq)t, ζq

)
K

= −(
aζq,∇(ζu)t

)
K + (

a+ζ+
q · ν, (ζu)t

)
∂ K − (

a(ζu)t,∇ · ζq
)

K + (
(ζu)−t ,aζq · ν)

∂ K

− (
a(ηu)t ,∇ · ζq

)
K + (

(ηu)−t ,aζq · ν)
∂ K − (

(ζu)t∇a, ζq
)

K − (
(ηu)t∇a, ζq

)
K .

If the Dirichlet boundary conditions are imposed, the flux terms of the boundary cells E B
h in the above equations will vanish,

and therefore for simplicity, we only keep the notation for the internal cells.
Summing up the above equation over all cells and using integration by parts yields(

(ζu)tt, (ζu)t
)
Th

+ (
(ηu)tt, (ζu)t

)
Th

+ (
(ζq)t, ζq

)
Th

+ (
(ηq)t, ζq

)
Th

= −(
a(ηu)t,∇ · ζq

)
Th

+ (
(ηu)−t ,aζq · ν)

Eh
− (

(ηu)t∇a, ζq
)
Th

if periodic or Dirichlet boundary conditions are employed.
By the properties of the projections (3.3) and (3.8), one has

1

2

d

dt

(∥∥(ζu)t
∥∥2 + ‖ζq‖2) = 1

2

d

dt

∫
I

(
(ζu)2

t + ζ 2
q

)
dx

≤ ∣∣((ηu)tt, (ζu)t
)
Th

+ (
(ηq)t, ζq

)
Th

∣∣ + Chk+1‖ut‖Hk+2(Ω)‖ζq‖ + |∇a|∞
∥∥(ηu)t

∥∥‖ζq‖
≤ Chk+1(∥∥(ζu)t

∥∥ + ‖ζq‖) ≤ Chk+1(∥∥(ζu)t
∥∥2 + ‖ζq‖2) 1

2 ,

which leads to

d

dt

(∥∥(ζu)t
∥∥2 + ‖ζq‖2) 1

2 ≤ Chk+1.

Combining this inequality with the property of the initial condition (3.11), we conclude that(∥∥(ζu)t
∥∥2 + ‖ζq‖2) 1

2 ≤ C(t + 1)hk+1,

in which the constant C only depends on maxK∈Th {‖∇a(x)‖∞ | x ∈ K }, ‖u‖Hk+3 and ‖ut‖Hk+2 . Together with the optimal
projection error (3.8), the error estimate (3.13) follows. �
3.3. Error estimate in the L2 norm

In this section, we prove the optimal error estimate in the L2 norm.

Proposition 3.2. Let u and q be the exact solutions of the wave equation (2.5), and uh, qh be the numerical solutions of the semi-
discrete LDG method (2.21)–(2.22) with the initial conditions (3.10), there holds the following error estimate:

max
t∈[0,T ]

∥∥eu(t)
∥∥ ≤ Chk+1(T + 1), (3.18)

where the constant C only depends on a and the solution u.

Proof. First, the term (eu)tt is split as the summation of (ζu)tt and (ηu)tt in Eq. (3.16), and by using product rule in time
derivative, one obtains

−(
(ζu)t,ψt

)
K + (aζq,∇ψ)K − (

a+ζ+
q · ν,ψ

)
∂ K = −(

(ηu)tt,ψ
)

K − d

dt

(
(ζu)t,ψ

)
K . (3.19)

For any fixed time τ ≤ T , we denote the time integral of the error by

Eu(t) =
τ∫

t

eu(s)ds, Eη
u(t) =

τ∫
t

ηu(s)ds, Eζ
u(t) =

τ∫
t

ζu(s)ds,

Eq(t) =
τ∫

eq(s)ds, Eη
q (t) =

τ∫
ηq(s)ds, Eζ

q(t) =
τ∫
ζq(s)ds.
t t t
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Integrating Eq. (3.15) in time, from t to τ yields

(Eq,φ)K + (aEu,∇ · φ)K − (
E−

u ,aφ · ν)
∂ K = −(Eu∇a,φ)K . (3.20)

If we choose the test functions to be ψ = Eζ
u(t) and φ = ζq(t) in (3.19)–(3.20), and use the fact that ψt = −ζu(t), we

have (
(ζu)t, ζu

)
K + (

aζq,∇Eζ
u
)

K − (
a+ζ+

q · ν, Eζ
u
)
∂ K = −(

(ηu)tt, Eζ
u
)

K − d

dt

(
(ζu)t, Eζ

u
)

K , (3.21)(
Eζ

q, ζq
)

K + (
aEζ

u,∇ · ζq
)

K − ((
Eζ

u
)−

,aζq · ν)
∂ K + (

Eζ
u∇a, ζq

)
K

= −(
Eη

q , ζq
)

K − (
aEη

u ,∇ · ζq
)

K + ((
Eη

u
)−

,aζq · ν)
∂ K − (

Eη
u∇a, ζq

)
K . (3.22)

If the Dirichlet boundary conditions are used, the flux terms of the boundary cells E B
h in the above equations will vanish,

and therefore for simplicity, we only keep the notation for the internal cells.
Adding up Eqs. (3.21) and (3.22) and summing over all cells, and using the periodic or Dirichlet boundary conditions,

one obtains

1

2

d

dt

(‖ζu‖2 − ∥∥Eζ
q
∥∥2) = −(

(ηu)tt, Eζ
u
)
Th

− d

dt

(
(ζu)t, Eζ

u
)
Th

− (
Eη

q , ζq
)
Th

− (
aEη

u ,∇ · ζq
)
Th

+ ((
Eη

u
)−

,aζq · ν)
Eh

− (
Eη

u∇a, ζq
)
Th

.

Integrating the above equation from 0 to τ , we get

1

2

∥∥ζu(τ )
∥∥2 − 1

2

∥∥ζu(0)
∥∥2 + 1

2

∥∥Eζ
q(0)

∥∥2

= −
τ∫

0

(
(ηu)t, ζu

)
Th

dt + (
(eu)t(0), Eζ

u(0)
)
Th

−
τ∫

0

(
Eη

q , ζq
)
Th

dt

+
τ∫

0

(−(
aEη

u ,∇ · ζq
)
Th

+ ((
Eη

u
)−

,aζq · ν)
Eh

− (
Eη

u∇a, ζq
)
Th

)
dt, (3.23)

in which we use the fact Eζ
q(τ ) = Eζ

u(τ ) = 0. By the property of the projection (3.8), we have ‖(Eη
u )t‖ = Chk+1. Note that

Eη
q (t) =

τ∫
t

ηq(s)ds =
τ∫

t

(
q(s) − P−q(s)

)
ds =

τ∫
t

q(s)ds − P−
( τ∫

t

q(s)ds

)
,

and therefore we can conclude that ‖Eη
q‖ = Chk+1. Due to the property of projection P− (3.3), one has

−(
aEη

u ,∇ · ζq
)
Th

+ ((
Eη

u
)−

,aζq · ν)
Eh

− (
Eη

u∇a, ζq
)
Th

≤ Chk+1‖ζq‖Ω + |∇a|∞
∥∥Eη

u

∥∥
Ω

‖ζq‖Ω ≤ Ch2k+2(T + 1),

where the last inequality comes from the error estimate (3.13) of q. Combining with the property of the L2 projection (3.12),
we have

1

2

∥∥ζu(τ )
∥∥2 − 1

2

∥∥ζu(0)
∥∥2 + 1

2

∥∥Eζ
q(0)

∥∥2

≤
∣∣∣∣∣

τ∫
0

(
(ηu)t, ζu

)
Th

dt

∣∣∣∣∣ +
∣∣∣∣∣

τ∫
0

(
Eη

q , ζq
)
Th

dt

∣∣∣∣∣ + Ch2k+2(T + 1)τ

≤
τ∫

0

∥∥(ηu)t
∥∥‖ζu‖dt +

τ∫
0

∥∥Eη
q
∥∥‖ζq‖dt + Ch2k+2(T + 1)τ

≤ τ max
t∈[0,τ ]

∥∥(ηu)t
∥∥ max

t∈[0,τ ] ‖ζu‖ + τ max
t∈[0,τ ]

∥∥Eη
q
∥∥ max

t∈[0,τ ] ‖ζq‖ + Ch2k+2(T + 1)τ

≤ T
(

max
t∈[0,T ]

∥∥(ηu)t
∥∥ max

t∈[0,T ] ‖ζu‖ + max
t∈[0,T ]

∥∥Eη
q
∥∥ max

t∈[0,T ] ‖ζq‖ + Ch2k+2(T + 1)
)

≤ C T
(

hk+1 max
t∈[0,T ] ‖ζu‖ + (T + 1)h2k+2

)
≤ C

(
T 2 + 1

)
h2k+2 + 1

max ‖ζu‖2.

4 t∈[0,T ]
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Since this is true for any τ < T , we have

1

2

∥∥ζu(τ )
∥∥2 − 1

2

∥∥ζu(0)
∥∥2 + 1

2

∥∥Eζ
q(0)

∥∥2 ≤ C
(
T 2 + 1

)
h2k+2 + 1

4
max

t∈[0,T ] ‖ζu‖2.

Hence,

1

4
max

t∈[0,T ] ‖ζu‖2 + 1

2

∥∥Eζ
q(0)

∥∥2 ≤ C
(
T 2 + 1

)
h2k+2 + 1

2

∥∥ζu(0)
∥∥2 = C

(
T 2 + 1

)
h2k+2,

from which we can conclude

max
t∈[0,T ]

∥∥eu(t)
∥∥ ≤ Chk+1(T + 1).

where the constant C only depends on a and the solution u. �
Remark 3.2. The proposed semi-discrete LDG method has the advantage of energy conserving and optimal convergence
rate. The proof of optimal error estimate is carried out with the Q k polynomial space. Numerically, if one uses Pk space
(Pk = {xk1 yk2 | k1 + k2 ≤ k}), the same results can be observed, as shown in Section 5. However it seems to be difficult to
prove this fact, as the special projection introduced in Section 3.1 does not exist in the Pk space.

4. Time discretization

In this section, we develop fully discrete method which maintains the energy conservation property of the semi-discrete
methods. To achieve this, it is essential to employ time stepping methods that conserve the discrete energy. In the following,
we introduce a second-order time stepping (leap frog), and a high order symplectic time integrator.

In general, one obtains the semi-discrete scheme (2.21)–(2.22) after the spatial discretization by the LDG method. Note
that we can solve qh in terms of uh in (2.22) in an element-by-element fashion. This local solvability gives the name to the
LDG method, and we refer to [17] for details. Eliminating the auxiliary variable qh leads to the linear second-order ordinary
differential system:

M üh(t) = Auh(t), (4.1)

where uh(t) denotes the solution vector at time t and M denotes the mass matrix.

4.1. Second order time stepping

Newmark method is a family of single-step integration methods, proposed by Newmark [38] in 1959, for the solution
of structural dynamics problems. It has been applied to dynamics analysis of many practical engineering problems during
the last forty years. In [33], Newmark method is shown to belong to the category of variational algorithms, which are well
known to be symplectic and momentum preserving and to often have excellent global energy behavior. A special case in
the Newmark family is the standard leap-frog method, which is well-known to be energy conserving.

Let 0 ≤ t0 < t1 < · · · < tN = T be a partition of the interval [0, T ] with time step �tn = tn+1 − tn . Here uniform time step
�t is used. The fully discrete approximations un

h to u(·, tn) are constructed as follows: for n = 1, . . . , N − 1, un+1
h ∈ V k

h is
given by

M
un+1

h − 2un
h + un−1

h

�t2
= Aun

h, (4.2)

based on the system (4.1), and more precisely,(
un+1

h − 2un
h + un−1

h

�t2
,ψ

)
K

+ (
aqn

h,∇ψ
)

K − (
a+(

qn)+
h · ν,ψ

)
∂ K = 0, (4.3)(

qn
h,φ

)
K + (

aun
h,∇ · φ)

K − ((
un

h

)−
,aφ · ν)

∂ K = −(
un

h∇a,φ
)

K , (4.4)

for all test functions ψ ∈ V k
h and φ ∈ Σk

h . The initial u0
h and u1

h can be obtained through projection and Taylor expansion,
and this is shown in Eqs. (5.2) and (5.3) in Section 5.1.1. The stability condition is the standard leap-frog condition, where
the CFL number should be less than 1.

In Proposition 2.1, we have shown the semi-discrete LDG method conserves the continuous energy Eh(t). Along the
same line of analysis, we can prove that the discrete energy, as defined in the following proposition, is conserved in the
fully discrete method.
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Proposition 4.1. The solution to the fully discrete leap-frog LDG method (4.3)–(4.4), conserves the (discrete) energy

En+1
h =

∥∥∥∥un+1
h − un

h

�t

∥∥∥∥2

+
∥∥∥∥qn+1

h + qn
h

2

∥∥∥∥2

− �t2

4

∥∥∥∥qn+1
h − qn

h

�t

∥∥∥∥2

(4.5)

for all n.

Proof. We choose the test function in (4.3) to be ψ = (un+1
h − un

h)/(2�t) + (un
h − un−1

h )/(2�t) = (un+1
h − un−1

h )/(2�t), and
obtain(

un+1
h − 2un

h + un−1
h

�t2
,

un+1
h − un−1

h

2�t

)
K

+
(

aqn
h,∇

(
un+1

h − un−1
h

2�t

))
K

−
(

a+(
qn)+

h · ν,
un+1

h − un−1
h

2�t

)
∂ K

= 0. (4.6)

Consider Eq. (4.4) at time levels tn−1 and tn+1, and let the test function φ be qn
h/(2�t). Subtracting these two equations

yields (
qn+1

h − qn−1
h

2�t
,qn

h

)
K

+
(

a
un+1

h − un−1
h

2�t
,∇ · qn

h

)
K

−
(

(un+1
h )− − (un−1

h )−

2�t
,aqn

h · ν
)

∂ K
= −

(
un+1

h − un−1
h

2�t
∇a,qn

h

)
K
. (4.7)

Adding Eqs. (4.6) to (4.7) and summing over all cells gives(
un+1

h − 2un
h + un−1

h

�t2
,

un+1
h − un−1

h

2�t

)
Th

+
(

qn+1
h − qn−1

h

2�t
,qn

h

)
Th

=
(

un+1
h − 2un

h + un−1
h

�t2
,

un+1
h − un−1

h

2�t

)
Th

+
(

qn+1
h + 2qn

h + qn−1
h

4
,

qn+1
h − qn−1

h

2�t

)
Th

−
(

qn+1
h − 2qn

h + qn−1
h

4
,

qn+1
h − qn−1

h

2�t

)
Th

= 1

2�t

(∥∥∥∥un+1
h − un

h

�t

∥∥∥∥2

+
∥∥∥∥qn+1

h + qn
h

2

∥∥∥∥2

− �t2

4

∥∥∥∥qn+1
h − qn

h

�t

∥∥∥∥2

−
∥∥∥∥un

h − un−1
h

�t

∥∥∥∥2

−
∥∥∥∥qn

h + qn−1
h

2

∥∥∥∥2

+ �t2

4

∥∥∥∥qn
h − qn−1

h

�t

∥∥∥∥2)
= 0.

Therefore, by the definition of En
h in (4.5), we have En+1

h = En
h for all n, which completes the proof. �

Remark 4.1. The discrete energy En
h can be rewritten as:

En+1
h =

∫
Ω

(
un+1

h − un
h

�t

)2

dx +
∫
Ω

qn+1
h qn

hdx, (4.8)

which is a consistent approximation of the continuous energy (2.23).

4.2. High order time stepping

The spatial discretization of the proposed method is by the local discontinuous Galerkin method, which can be high order
accurate depending on the polynomial degree k utilized in the space V k

h . Therefore, we would like to present high order time
stepping which also conserves the energy exactly. Such numerical methods have been designed from the modified equation
approach [21,41,42]. Following the same technique, we will present an energy conserving fourth-order time discretization
below. This idea can be extended to derive higher order methods.

For a smooth function u, simple calculus leads to

u(t + �t) − 2u(t) + u(t − �t) = �t2

1∫ (
1 − |θ |)u′′(t + θ�t)dθ. (4.9)
−1
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Therefore, the leap-frog method is obtained by simply approximating u′′(t + θ�t) with u′′(t) on the right hand side, i.e.,

u(t + �t) − 2u(t) + u(t − �t) ≈ �t2u′′(t).

Extension to high order version can be derived by the modified equation approach, as shown in [21,41]. To obtain a fourth-
order time discretization, we consider the Taylor expansion of u′′(t + θ�t) and the first three terms are:

u′′(t + θ�t) ≈ u′′(t) + θ�tu′′′(t) + θ2�t2

2
u(4)(t).

Inserting the above approximation into Eq. (4.9), the integral of odd powers of θ vanishes, and we have

u(t + �t) − 2u(t) + u(t − �t) ≈ �t2
(

u′′(t) + �t2

12
u(4)(t)

)
. (4.10)

We comment here that if one considers a time integrator more accurate than fourth order, more terms should be included
in the Taylor expansion. Applying (4.10) to the differential system (4.1), and utilizing the fact that u(4)

h (t) = M−1 Aüh(t) =
(M−1 A)2uh(t), one has the fourth-order method:

un+1
h − 2un

h + un−1
h

�t2
= M−1 Aun

h + �t2

12

(
M−1 A

)2
un

h. (4.11)

It has been shown that the largest time step of this fourth-order method is
√

3 of that of the leap-frog method [20,42],
and therefore the computational cost is comparable yet the accuracy is improved. In our numerical simulations, we use
Eq. (4.11) as the fourth-order time integrator.

We remark here that the same fourth-order method has been reformulated into a predictor–corrector method in [42]:
for n = 1, . . . , N − 1, un+1

h ∈ V k
h is given by

M
u∗

h − 2un
h + un−1

h

�t2
= Aun

h, (4.12)

Mun+1
h = Mu∗

h + �t4

12
Avh, vh = u∗

h − 2un
h + un−1

h

�t2
, (4.13)

based on the system (4.1). More precisely, it can be rewritten in the form of a second-order predictor step(
u∗

h − 2un
h + un−1

h

�t2
,ψ

)
K

+ (
aqn

h,∇ψ
)

K − (
a+(

qn)+
h · ν,ψ

)
∂ K = 0, (4.14)(

qn
h,φ

)
K + (

aun
h,∇ · φ)

K − ((
un

h

)−
,aφ · ν)

∂ K = −(
un

h∇a,φ
)

K , (4.15)

and the corrector step

vh = u∗
h − 2un

h + un−1
h

�t2
, (4.16)

(wh,φ)K + (avh,∇ · φ)K − (
(vh)

−,aφ · ν)
∂ K = −(vh∇a,φ)K , (4.17)(

un+1
h ,ψ

)
K = (

u∗,ψ
)

K + �t4

12
(awh,∇ψ)K − �t4

12

(
a+(w)+h · ν,ψ

)
∂ K = 0, (4.18)

for all test functions ψ ∈ V k
h and φ ∈ Σk

h .

5. Numerical experiments

5.1. Example 1: Wave equation with a constant coefficient – a standing wave

5.1.1. Accuracy test in Q k space
We consider the 2D wave equation with a constant coefficient, which is taken to be 1,

utt = ∇2u, (x, y) ∈ [0,2] × [0,2], (5.1)

with initial conditions

u(x, y,0) = sin(πx) sin(π y), ut(x, y,0) = 0,

and periodic boundary conditions u(0, y, t) = u(2, y, t) and u(x,0, t) = u(x,2, t), for all 0 ≤ x ≤ 2, 0 ≤ y ≤ 2 and t ≥ 0.
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Table 5.1
Example 1 with Q 1 space: numerical errors and orders with uniform meshes.

N Error of u Error of ux Error of u y

L2 error Order L2 error Order L2 error Order

10 4.9405E−03 1.3059E−02 1.3059E−02
20 1.2323E−03 2.0033 6.7050E−03 0.9617 6.7050E−03 0.9617
40 3.1303E−04 1.9770 2.2976E−03 1.5451 2.2976E−03 1.5451
80 7.7676E−05 2.0108 3.7983E−04 2.5967 3.7983E−04 2.5967

160 1.9396E−05 2.0017 7.5453E−05 2.3317 7.5453E−05 2.3317

Table 5.2
Example 1 with Q 2 space: numerical errors and orders with uniform meshes.

N Error of u Error of ux Error of u y

L2 error Order L2 error Order L2 error Order

10 2.7279E−04 1.7387E−03 1.7387E−03
20 3.2450E−05 3.0715 1.7662E−04 3.2993 1.7662E−04 3.2993
40 4.1196E−06 2.9776 2.5073E−05 2.8164 2.5073E−05 2.8164
80 5.1406E−07 3.0025 2.5418E−06 3.3022 2.5418E−06 3.3022

160 6.4271E−08 2.9997 3.4971E−07 2.8616 3.4971E−07 2.8616

Table 5.3
Example 1 with Q 3 space: numerical errors and orders with uniform meshes.

N Error of u Error of ux Error of u y

L2 error Order L2 error Order L2 error Order

10 1.2053E−05 5.3347E−05 5.3347E−05
20 7.8368E−07 3.9430 4.0172E−06 3.7311 4.0172E−06 3.7311
40 5.0864E−08 3.9455 2.2137E−07 4.1817 2.2137E−07 4.1817
80 3.3455E−09 3.9264 1.2105E−08 4.1928 1.2105E−08 4.1928

This problem has the exact solution, which is a standing wave

u(x, y, t) = cos(
√

2πt) sin(πx) sin(π y).

We implemented the LDG method with the alternating fluxes (2.17) and use the time integrator (4.11) with time step

�t = 0.2/(�x
−5
4 + �y

−5
4 ). Since the symplectic time integrator requires initial conditions for two time steps, we consider

Taylor expansion of u at t = 0:

u(x, y,�t) = u(x, y,0) + �tut(x, y,0) + �t2

2
utt(x, y,0) + �t3

6
uttt(x, y,0) + O

(
�t4),

and convert the higher derivatives of t to derivatives of x and y by repeatedly using the wave equation, while u and ut are
given by the initial conditions. To obtain the desired order of convergence of u, following the initial conditions (3.10), we
take the projection P+

h of u(x, y,0), and L2 projection Ph of ut(x, y,0). In other words, with u(x, y,0) denoted by u0 and
ut(x, y,0) by v0, we use the initial conditions:

u0
h = P−

h u0, (5.2)

u1
h = u0

h + �t Ph v0 + �t2

2
P−

h

{
(∂xx + ∂yy)u0

} + �t3

6
Ph

{
(∂xx + ∂yy)v0

}
. (5.3)

Tables 5.1–5.3 list the numerical errors and the orders of convergence for Q k spaces, k = 1,2,3. In each table, the
L2-norm of the errors eu , ep , and eq at the final time T = 1 are presented. The (k + 1)-th order for all the errors of u, p,q
can be observed clearly.

5.1.2. Accuracy test in Q k space with standard L2 projections for initial conditions
To show that the special projections of the initial condition u0 in (5.2) is indeed critical for optimal rate of convergence,

we test the problem with the same setting, but with standard L2 projections for both u0 and v0. Tables 5.4–5.5 list the
numerical errors and the orders of convergence for Q 1 and Q 2 spaces. We can observe that the order of accuracy for u,
ux and u y is oscillating. When Q 2 space is used, the accuracy of ux and u y is close to 2, which means only suboptimal
convergence rate is obtained. This oscillating behavior of numerical accuracy is commonly observed for energy conserving
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Table 5.4
Example 1 with Q 1 space and L2 projections of the initial conditions: numerical errors and orders with uniform meshes.

N Error of u Error of ux Error of u y

L2 error Order L2 error Order L2 error Order

10 2.8467e−03 1.0048e−01 1.0048e−01
20 2.4944e−03 0.1906 1.4448e−01 −0.5240 1.4448e−01 −0.5240
40 1.0608e−03 1.2335 6.6667e−02 1.1158 6.6667e−02 1.1158
80 1.7083e−04 2.6345 1.7039e−02 1.9681 1.7039e−02 1.9681

160 2.3920e−05 2.8363 1.2683e−02 0.4259 1.2683e−02 0.4259
160 6.5615e−06 1.8661 1.3186e−03 3.2658 1.3186e−03 3.2658

Table 5.5
Example 1 with Q 2 space and L2 projections of the initial conditions: numerical errors and orders with uniform meshes.

N Error of u Error of ux Error of u y

L2 error Order L2 error Order L2 error Order

10 7.7825e−04 1.7934e−02 1.7934e−02
20 7.0800e−05 3.4584 4.7146e−03 1.9275 4.7146e−03 1.9275
40 1.1093e−05 2.6741 1.0602e−03 2.1528 1.0602e−03 2.1528
80 9.9096e−07 3.4847 2.4853e−04 2.0928 2.4853e−04 2.0928

160 1.4768e−07 2.7464 7.0811e−05 1.8114 7.0811e−05 1.8114

Table 5.6
Example 1 with P 1 space: numerical errors and orders with uniform meshes.

N Error of u Error of ux Error of u y

L2 error Order L2 error Order L2 error Order

10 1.2736e−02 6.3328e−02 6.3328e−02
20 3.1285e−03 2.0254 1.8352e−02 1.7869 1.8352e−02 1.7869
40 7.8996e−04 1.9856 5.6663e−03 1.6955 5.6663e−03 1.6955
80 1.9682e−04 2.0049 1.1306e−03 2.3253 1.1306e−03 2.3253

160 4.9184e−05 2.0006 2.5818e−04 2.1306 2.5818e−04 2.1306

methods, and the least square fitting of the order [43] may give the optimal convergence rate of u. We notice that in
Section 5.1.1, different initial conditions are employed and optimal convergence rates are clearly observed there. Previous
studies on LDG methods showed that different choices of initial conditions have little impact on the convergence/supercon-
vergence results [10,31,36]. This test demonstrates that our energy conserving method is more sensitive to the error in the
initial conditions, probably due to the fact that no numerical dissipation is included in these methods to dissipate the initial
error.

5.1.3. Accuracy test in Pk space
We consider the same problem and setup, but replace the DG spaces by P k , which is the polynomial space that has

degree at most k, namely, {∑i, j xi y j : i, j ∈ N, i + j ≤ k}. According to extensive numerical experiments in previous works,

(k + 1)-th order accuracy can usually be observed for the P k space. Since the space Pk is smaller than Q k , using Pk will
be more efficient in order to obtain (k + 1)-th order accuracy. However, theoretically it is very difficult to prove the optimal
order of accuracy for Pk space, and therefore in this paper, we only perform numerical experiments. As for the initial
conditions, we simply project the initial conditions (5.2)–(5.3), that are defined in Q k , to space Pk .

The orders of accuracy with spaces P 1, P 2 and P 3 are shown in Tables 5.6–5.8. For P 1, second order accuracy can be
observed in all the variables u, p and q. However, for P 2 and P 3, (k + 1)-th order can be achieved in u, but only k-th order
of accuracy is seen in p and q. This loss of accuracy in p and q may be resulted from the initial projection (5.2)–(5.3), which
has been shown to be essential for the Q k space, but appears not to produce the same optimal order of accuracy for the
Pk space.

5.1.4. Accuracy test with central flux in the Q k space
While claiming that the advantage of using alternating flux as proposed in this paper is to conserve energy, it is arguable

that in (2.6), (2.15) and (2.16) using the central flux

âq1
h = {{aqh}

}
, ûh = {{uh}

}
,

and

ãq2 = {{aqh}
}
, ũh = {{uh}

}
,
h
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Table 5.7
Example 1 with P 2 space: numerical errors and orders with uniform meshes.

N Error of u Error of ux Error of u y

L2 error Order L2 error Order L2 error Order

10 2.6763e−03 7.6128e−02 7.6128e−02
20 2.0342e−04 3.7177 1.2275e−02 2.6327 1.2275e−02 2.6327
40 4.7780e−05 2.0900 4.2500e−03 1.5302 4.2500e−03 1.5302
80 6.3518e−06 2.9112 1.1668e−03 1.8649 1.1668e−03 1.8649

160 8.0589e−07 2.9785 2.9819e−04 1.9683 2.9819e−04 1.9683

Table 5.8
Example 1 with P 3 space: numerical errors and orders with uniform meshes.

N Error of u Error of ux Error of u y

L2 error Order L2 error Order L2 error Order

10 1.5827e−04 3.9745e−03 3.9745e−03
20 1.2081e−05 3.7116 8.3389e−04 2.2528 8.3389e−04 2.2528
40 8.6623e−07 3.8018 7.7308e−05 3.4312 7.7308e−05 3.4312
80 3.0307e−08 4.8370 1.2469e−05 2.6323 1.2469e−05 2.6323

160 2.0657e−09 3.8749 1.1613e−06 3.4245 1.1613e−06 3.4245

Table 5.9
Example 1 with Q k and central flux: numerical errors and orders for u with uniform meshes, for Q 1, Q 2 and Q 3.

N Q 1 Q 2 Q 3

L2 error Order L2 error Order L2 error Order

10 2.8446e−02 1.9582e−04 7.5838e−05
20 1.1325e−02 1.3287 1.8994e−05 3.3659 6.0140e−06 3.6565
40 5.1048e−03 1.1496 2.5060e−06 2.9221 8.1456e−07 2.8842
80 2.4699e−03 1.0474 2.9755e−07 3.0742 1.0012e−07 3.0243

160 1.2234e−03 1.0136 3.7259e−08 2.9975 1.2413e−08 3.0118

where {{u}} = u−+u+
2 , may also conserve energy, as is known when applied for first order hyperbolic equations. However,

a well-known disadvantage of central flux is its order of accuracy oscillates, depending on if k is even or odd. Here we
implement the LDG scheme, with central flux and show that the order of accuracy indeed oscillates (Table 5.9): the order
for even k is k + 1 and the order for odd k is k. Therefore it is not an optimal energy conserving method to be used for any
desired order of accuracy.

5.1.5. Time history of the L2 error
To demonstrate that the growth of the L2 error of our proposed method is at most linear, as proved in Section 3, we

simulate the problem in Example 1 until T = 100 and monitor the L2 error. When a 40 × 40 uniform mesh is used, it can
be seen in Fig. 5.1 (upper panel) that the L2 error stays at the level of 10−5 for Q 2 and 10−7 for Q 3, and the average values
do not grow noticeably in time. As we reduce the resolution by using a 5 × 5 uniform mesh, the growth of errors can be
seen to be bounded linearly. We also simulated with the central flux for Q 2 and Q 3. Since the central flux also preserves
energy, the L2 error also remains roughly constant in average if a 40×40 uniform mesh is used. However, due to the nature
of the oscillating order of accuracy, the L2 error for Q 2 is comparable to that of alternating flux, but the error for Q 3 is
much higher than using alternating flux. Moreover, if Q 2 space and a coarse 5 × 5 mesh are used, the growth of the errors
for central flux is much faster than that for alternating flux (lower panel of Fig. 5.1).

5.2. Example 2: Wave equation with a constant coefficient – a traveling wave

In this example, we present a problem which has a traveling wave solution. This is to test whether the nice behavior of
L2 errors seen in Example 1 can still be observed in this traveling wave case. The equation is the same as Eq. (5.1), with
periodic boundary conditions and initial conditions

u(x, y,0) = cos(πx) cos(π y), ut(x, y,0) = −√
2π sin(πx) cos(π y),

and the exact solution is

u(x, y, t) = cos(
√

2πt + πx) cos(π y).

We tested spaces Q 2 and Q 3 with a well resolved 40 × 40 mesh, and the time history is displayed in the upper panel
of Fig. 5.2. The figure shows that the L2 errors stays constant in average over time. Similar to Example 1, as we decrease
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Fig. 5.1. Example 1 with Q k space. Upper panel: time history until T = 100 of the L2 error of the numerical approximations obtained from using the
alternating flux (red) and central flux (blue), with k = 2,3. A uniform 40 × 40 grid is used. The L2 error of u on y-axis are presented in log scale. Lower
panel: A uniform 5 × 5 grid is used to observe the growth of errors until T = 1000. History of L2 errors for central flux and alternating flux with Q 2 space
are shown at left and right in linear scale, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

the resolution of the numerical solutions, the growth of the errors are more obvious. In the lower panel of Fig. 5.2, we use
5 × 5, 10 × 10 and 20 × 20 meshes, and it can be observed that the errors grow in a linear fashion asymptotically for the
coarse meshes.

5.3. Example 3: Wave equation with discontinuous coefficient – standing wave

We consider the 2D wave equation

utt = ∇ · (a2(x, y)∇u
)
, (5.4)

with a discontinuous coefficient in the domain Ω = {(x, y) | (x, y) ∈ [−2,2] × [−1,1]}. The domain Ω is composed of two
subdomains Ω1 = [−1,1] × [−1,1] and Ω2 = Ω\Ω1, and if the coefficient a(x, y) is defined as

a(x, y) =

⎧⎪⎨⎪⎩
√

9
34 , in Ω1√
1
2 , in Ω2

and if we impose periodic boundary conditions in both x- and y-directions, then the solution is a standing wave

u(x, y, t) =
{

cos (3πt) cos (5πx) cos (3π y), in Ω1

cos (3πt) cos (3πx) cos (3π y), in Ω2.

By using the alternating flux (2.17)–(2.18) designed for this type of problem, we present the order of accuracy Q 2 space in
Table 5.10. Third order accuracy can be clearly seen in the all the variables. Spaces Q 1 and Q 3 were also tested, and we
obtained second and fourth orders accuracy, respectively (data not shown).
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Fig. 5.2. Example 2. Upper panel: time history until T = 100 of the L2 error of the numerical approximations obtained from using the Q 2 (red) and Q 3

(blue) spaces. A uniform 40 × 40 grid is used. The L2 error of u on y-axis are presented in log scale. Lower panel: time history until T = 1000 with Q 2

space, uniform meshes 5×5 (red), 10 ×10 (blue) and 20 ×20 (green) are used. The L2 error of u on y-axis are presented in linear scale. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 5.10
Example 3: numerical errors and orders with uniform meshes and space Q 2.

Nx × N y Error of u Error of ux Error of u y

L2 error Order L2 error Order L2 error Order

20× 5 1.1173e−01 7.9322e−01 6.7706e−01
40× 10 1.4404e−02 2.9554 1.4475e−01 2.4541 1.6922e−01 2.0005
80× 20 2.1081e−03 2.7725 2.4832e−02 3.1870 4.4012e−02 2.8145

160 × 40 2.3950e−04 3.1378 2.0700e−03 2.9408 2.0477e−03 3.5543
320 × 80 3.0262e−05 2.9844 3.3118e−04 2.6440 2.5500e−04 3.0054

5.4. Example 4: Wave equation with discontinuous coefficient – traveling wave

Here we test a problem with discontinuous coefficient but with a traveling wave solution. Consider Eq. (5.4) in the
domain Ω = {(x, y) | (x, y) ∈ [−2,2] × [−1,1]}, and its two subdomains Ω1 = [−1,1] × [−1,1] and Ω2 = Ω\Ω1, where the
coefficient is discontinuous at the interface:

a(x, y) =

⎧⎪⎨⎪⎩
√

4
5 , in Ω1√
1
5 , in Ω2.

If we impose periodic boundary conditions in both x- and y-directions, the solution is a traveling wave

u(x, y, t) =
{

cos (4πt + 2πx) cos (4π y), in Ω1

cos (4πt + 8πx) cos (4π y), in Ω2.

In Fig. 5.3, we show the time history of the L2 error until T = 200, using Q 2 and Q 3 spaces with 80 × 40 meshes. It can
be observed that the L2 errors grow linearly asymptotically on average, while the growth rate for Q 3 space is slower than
that for Q 2 space. Oscillations in errors with Q 3 space appear larger than Q 2 space.
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Fig. 5.3. Example 4. Time history until T = 200 of the L2 error of the numerical approximations obtained from using the Q 2 (red) and Q 3 (blue) spaces.
A uniform 80 × 40 grid is used. The L2 error of u on y-axis are presented in linear scale. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 5.4. Example 5. Two-dimensional contours of the numerical approximations at time T = 0.05, 0.25, 0.3, 0.4, 0.45, 0.5. The DG space used is Q 2 and the
grid is uniform with 40 × 40 cells.

5.5. Example 5: Isotropic wave propagation within heterogeneous media

We consider the 2D wave equation (2.1) with discontinuous coefficient in the domain [0,1] × [0,1], with the coefficient
a(x, y) defined as

a(x, y) =
{ 1

2 , if x ≤ 0.65,

1, if x > 0.65.

The initial condition is given by

u(x, y,0) = 0 and ut(x, y,0) = 2e−500((x−0.5)2+(y−0.5)2)

and zero boundary conditions are imposed for all the boundaries. Fig. 5.4 shows the time evolution of the wave propagation:
initially the wave propagates isotropically, until it reaches the interface of two media (around T = 0.25 to 0.3), and at a later
time, the wave fronts propagate at different speeds in these two media. To verify the convergence of our numerical solutions,
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Fig. 5.5. Example 5. Comparison of the 2D contours using 40 × 40 cells (left) and 80 × 80 cells (right), at T = 0.5.

Fig. 5.6. Example 5. Comparison of the cross sections of the numerical solutions at y = 0.5, at T = 0.05, 0.3, 0.5. The red dotted solutions are simulated
with 40 × 40 cells, and the blue solid curves are for 80 × 80 cells. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

we compared snapshots of the 2D contour at T = 0.5 with 40 × 40 and 80 × 80 cells, and the contours agree very well
(Fig. 5.5). We further compared, for these two meshes, the cross sections at y = 0.4 for T = 0.05, 0.3, 0.5. In Fig. 5.6, it can
be seen that the one-dimensional profiles match very well.

6. Concluding remarks

In this paper, we have developed an LDG method for multi-dimensional wave problems in discontinuous media. As
is well known, energy conservation is one of the most important properties of wave equations, and therefore this is the
aimed property of our numerical method aside high order convergence rate. To obtain such a scheme, we carefully designed
numerical fluxes and projections of the initial conditions. We also developed compatible time integrators, such as a second-
order (leap-frog) and a fourth-order energy conserving method. We proved the optimal error estimate for the semi-discrete
method, and also showed that our scheme preserves energy in the discrete sense. Numerous numerical examples were
shown to demonstrate the optimal convergence rate and energy conservation property.

Future works include the generalization of the LDG scheme to wave equations, of which the discontinuities of the co-
efficients are not aligned with the Cartesian grid. Schemes on unstructured triangular meshes will also be developed to
accommodate general computational domains.
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