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Abstract Fast sweeping methods are efficient Gauss–Seidel iterative numerical schemes
originally designed for solving static Hamilton–Jacobi equations. Recently, these methods
have been applied to solve hyperbolic conservation laws with source terms. In this paper, we
propose Lax–Friedrichs fast sweeping multigrid methods which allow even more efficient
calculations of viscosity solutions of stationary hyperbolic problems. Due to the choice of
Lax–Friedrichs numerical fluxes, general problems can be solved without difficult inver-
sion. High order discretization, e.g., WENO finite difference method, can be incorporated
to achieve high order accuracy. On the other hand, multigrid methods, which have been
widely used to solve elliptic equations, can speed up the computation by smoothing errors of
low frequencies on coarse meshes. We modify the classical multigrid method with regard to
properties of viscous solutions to hyperbolic conservation equations by introducing WENO
interpolation between levels of mesh grids. Extensive numerical examples in both scalar
and system test problems in one and two dimensions demonstrate the efficiency, high order
accuracy and the capability of resolving singularities of the viscosity solutions.
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1 Introduction

Hyperbolic conservation laws, used to describe the conservation of quantities via first order
nonlinear partial differential equations, arise in many applications including gas dynamics
[20,32], shallow water waves [34], magneto-hydrodynamics [11], oil recovery [6], etc.

The solutions of these equations may develop singularities, such as discontinuities, and
do not satisfy the equations in the classical sense. To find the physical relevant solutions,
“vanishing viscosity solutions” and “entropy solutions” are introduced to define the solu-
tions uniquely (see [19,21] and references therein). The main challenge in computing these
vanishing viscosity solutions is that naive numerical discretization usually fails to capture
solutions due to the lack of certain properties, e.g., domains of dependence and influence,
conservation property, discontinuities, positivity preserving in solutions, or entropy condi-
tions. Thus, development of successful numerical methods relies on a good understanding of
the physical background and sophisticated approximations with built-in intrinsic properties,
such as the use of consistent, conservative and dissipative numerical fluxes [12,17].

In this paper, we focus on solving the stationary problems of hyperbolic conservation laws
with source terms,

∇ · f (u) = s(u), u ∈ Rn,

in which the Jacobian matrix f ′(u) is diagonalizable with all the eigenvalues being real for
any u. Most of the previous approaches are based on the pseudo time stepping, e.g., a class
of schemes called “residual distribution schemes” [1–4,8,9,25,30] proposed to distribute the
residuals, which are defined through integrating the flux and source terms on triangular or
quadrilinear cells in a conservative fashion, and march in pseudo time. Recently, inspired
by fast sweeping methods for time independent Hamilton–Jacobi equations, Chen et al. [7]
proposed Lax–Friedrichs fast sweeping methods which discretize the steady state hyper-
bolic conservation laws directly, by approximating the spatial derivatives with consistent and
conservative numerical fluxes, and iterating with Gauss–Seidel type nonlinear method with
a finite number of alternating sweeping directions. In particular, the Lax–Friedrichs fluxes
evaluated in WENO (Weighted Essentially Non-oscillatory) fashion [15,22,26–28] are used
to achieve high order accuracy as well as high resolution of shocks. Besides Lax–Friedrichs
fast sweeping scheme, another type of fast sweeping methods which relies on a paraxial
form of the equations was proposed recently in [31]. The computational cost is very low
and the method resolves shocks sharply by directly imposing the Rankine–Hugoniot jump
conditions, together with appropriate entropy conditions. For complex interaction of shock
waves and rarefaction waves in high dimensions, the implementation is more complicated
and the scheme may require more iterations to converge.

Here we aim to base our study upon the Lax–Friedrichs fast sweeping methods proposed
in [7] and improve the efficiency by integrating multigrid (MG) acceleration. It is known that
traditional MG methods for solving elliptic equations cannot achieve the same efficiency when
they are applied directly to solve steady state solutions of hyperbolic equations, especially
in system problems. Previous approaches include, e.g., dimensional splitting [29], splitting
of elliptic and advection parts of the operators [23], flux splitting with upwind fluxes [13,14]
and upwind interpolation and restriction techniques [5,16,18,33]. Steady states of hyperbolic
systems are directly solved by the MG procedure with upwind fluxes. Previous methods are
usually limited by the complexity in the flux construction, thus only have first or second
order accuracy. The challenge and novelty of our approach is to embed the high order Lax–
Friedrichs WENO fluxes in MG framework and obtain the viscosity solutions with less
computational cost. Due to the presence of discontinuous singularities, regular interpolation
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may lose efficiency, sometimes even fail to converge, compared with Lax–Friedrichs fast
sweeping method. In [5], the authors proposed a Riemann solver to replace the regular
interpolation, which is still computationally expensive because it requires to solve for the
steady state of another hyperbolic equation corresponding to the solution on the coarse mesh.
Inspired by the upwind-biased WENO construction described in [35], we directly interpolate
the error between coarse and fine meshes by WENO interpolation, which can deal with
singularities and be straightforwardly extended to system cases after characteristic splitting.
Based on the construction of our approach, it is flexible to adopt high order accurate numerical
fluxes and improve the efficiency by the MG procedure.

The rest of the paper is organized as follows. First, we begin in Sect. 2 with a brief
review of Lax–Friedrichs fast sweeping methods for steady state problems for hyperbolic
conservation laws with source terms described in [7]. The MG full approximation scheme
is then described in Sect. 3, where we also explain upwind-biased WENO interpolation
to avoid slow convergence. Numerical results obtained from our algorithm are included in
Sect. 4, demonstrating the improved efficiency compared to the previous Lax–Friedrichs fast
sweeping methods without MG acceleration. Conclusive remarks are given in Sect. 5.

2 Review of Lax–Friedrichs Fast Sweeping Method for Steady State
Hyperbolic Conservation Problems

In this section, we review the iterative method for hyperbolic problems that was developed
in our previous work [7].

2.1 High Order Lax–Friedrichs WENO Sweeping Method for 1D Problems

We first consider the one-dimensional scalar steady state problem

f (u)x = s(u, x), x ∈ [a, b], (1)

subject to an initial guess and appropriate boundary conditions.
We discretize the interval uniformly into N cells, and the grid points are denoted by

{x j }Nj=0, where x j = a + j�x, j = 0, . . . , N and �x = (b− a)/N . The midpoint of a cell
is defined as x j+ 1

2
= (x j + x j+1)/2, j = 0, . . . , N − 1. The numerical approximation of u

on the grid point x j is denoted by u j , j = 0, . . . , N . A conservative finite difference type
discretization of Eq. (1) can be written as

f̂ j+ 1
2
− f̂ j− 1

2

�x
= s(u j , x j ), (2)

in which f̂ j± 1
2

represent numerical fluxes approximating the fluxes at x j± 1
2
. The order of the

numerical scheme thus depends on the order that
f̂

j+ 1
2
− f̂

j− 1
2

�x approximates fx (u j ).
If we substitute the numerical fluxes in Eq. (2) by the first order Lax–Friedrichs flux

f̂ j+ 1
2
= 1

2
( f (u j )+ f (u j+1))− σ

2
(u j+1 − u j ), (3)

where σ = max j {| f ′(u j )|}, j = 1, . . . , N − 1, one obtains the discretization formula

1

2
( f (u j+1)− f (u j−1))− σ

2
(u j+1 − 2u j + u j−1)−�xs(u j , x j ) = 0,
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and equivalently,

u j = 1

2
(u j−1 + u j+1)+ 1

σ
(�xs(u j , x j )− 1

2
( f (u j+1)− f (u j−1))).

If we denote the iteration step by n, with n = 0 corresponding to the initial guess, a simple
updating formula would be

un+1
j = 1

2
(u j−1 + u j+1)+ 1

σ
(�xs(un

j , x j )− 1

2
( f (u j+1)− f (u j−1))). (4)

The superscripts of u j+1 and u j−1 on the right-hand-side of Eq. (4) are not specified because
they depend on whether the numerical solutions are updated from left to right or from right
to left, which we call the sweeping direction. If the sweeping direction is from left to right,
then we take u j−1 = un+1

j−1 and u j+1 = un
j+1. The formula becomes

un+1
j = 1

2
(un+1

j−1 + un
j+1)+

1

σ
(�xs(un

j , x j )− 1

2
( f (un

j+1)− f (un+1
j−1))).

If the sweeping direction is from right to left, then u j−1 = un
j−1 and u j+1 = un+1

j+1 will be
used, and

un+1
j = 1

2
(un

j−1 + un+1
j+1)+

1

σ
(�xs(un

j , x j )− 1

2
( f (un+1

j+1)− f (un
j−1))).

These updating formulas are essentially Gauss–Seidel iterations because the point values
are computed using newly updated neighboring values. Our sweeping method is simply
to update point values by Eq. (4), with alternating sweeping directions to achieve a faster
convergence rate. This scheme is first order accurate and serves as a framework for the high
order sweeping method.

To achieve high order accuracy, high order numerical fluxes f̂ j± 1
2

need to be used. Here,
we adopt WENO numerical flux reconstruction [7,15,22,26–28] to obtain Lax–Friedrichs
WENO fluxes, f̂ j± 1

2
.

First, we define

ˆ̂f j+ 1
2
= f̂ j+ 1

2
+ σ

2
(u j+1 − u j ), j = 0, . . . , N − 1, (5)

where f̂ j+ 1
2

is the original high order Lax–Friedrichs WENO flux. The newly defined flux
(5) retains the form of Eq. (3) by subtracting the diffusion term explicitly, which allows us
to formulate the iterative scheme. The discretization formula then could be written, in terms
of ˆ̂f j+ 1

2
, as

( ˆ̂f j+ 1
2
− σ

2 (u j+1 − u j )
)
−

( ˆ̂f j− 1
2
− σ

2 (u j − u j−1)
)

�x
= s(u j , x j ).

Thus, we obtain the iterative scheme

un+1
j = 1

2
(u j−1 + u j+1)+ 1

σ

(
�xs(un

j , x j )− ( ˆ̂f j+ 1
2
− ˆ̂f j− 1

2
)
)

. (6)

As in the first order sweeping method, the iterations will take alternating directions: if we
sweep from left to right, then in (6), u j−1 = un+1

j−1 and u j+1 = un
j+1 are used; if we sweep

from right to left, u j−1 = un
j−1 and u j+1 = un+1

j+1 are used.
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Upon the convergence of the iterations, high order accuracy will be achieved due to the use
of high order numerical fluxes. The WENO construction of the numerical fluxes guarantees
essentially non-oscillatory properties of the numerical solutions around discontinuities.

Similar approaches can be applied to one-dimensional systems

f(u)x = s(u, x), x ∈ [a, b],
where f, s and u are vector-valued functions in Rm , we use the same iterative formula (6), but
perform local characteristic decomposition for numerical flux construction, which is more
robust than the component-by-component evaluation. The flux reconstruction procedure is
described as follows. First we compute an average state u j+ 1

2
between u j and u j+1, using

either the simple arithmetic mean or a Roe’s average [24]. The right eigenvectors rm and
the left eigenvectors lm of the Jacobian f ′(u j+ 1

2
) are needed for the local characteristic

decomposition. The WENO procedure is used in

v±i = R−1f±i , for i in a neighborhood of j,

where R = (r1, . . . , rn) is the matrix whose columns are the right eigenvectors of f ′(u j+ 1
2
),

± indicates fluxes with opposite characteristic directions after Lax–Friedrichs splitting. The
numerical fluxes v̂±

j+ 1
2

computed are then projected back into the physical space by left

multiplying with R, yielding finally the numerical fluxes f̂ j± 1
2

in the physical space. Finally,
the grid values u j are updated component-wisely by formula (6).

2.2 High Order Lax–Friedrichs WENO Sweeping Method for 2D Problems

The sweeping method we described in the previous section can be easily extended to two-
dimensional steady state problems

f (u)x + g(u)y = s(u, x, y), (x, y) ∈ [a, b] × [c, d]. (7)

Let {(xi , y j )}, i = 0, . . . , Nx , j = 0, . . . , Ny denote the grid points of a uniform discretiza-
tion of the computational domain, with �x = (b − a)/Nx and �y = (d − c)/Ny as the
mesh sizes for x− and y− directions, respectively. We use ui, j to represent the numerical
solution of u at grid point (xi , y j ). A conservative finite difference discretization of (7) can
be written as

f̂i+ 1
2 , j − f̂i− 1

2 , j

�x
+

ĝi, j+ 1
2
− ĝi, j− 1

2

�y
= s(ui, j , xi , y j ). (8)

If one uses the high order Lax–Friedrichs WENO fluxes constructed in Eq. (5), then applying

f̂i+ 1
2 , j = ˆ̂fi+ 1

2 , j −
σx

2

(
ui+1, j − ui, j

)
,

ĝi, j+ 1
2
= ˆ̂gi, j+ 1

2
− σy

2

(
ui, j+1 − ui, j

)
,

in (8), where σx = maxi, j {| f ′(ui, j )|} and σy = maxi, j {|g′(ui, j )|}, leads to the equation

�y
( ˆ̂fi+ 1

2 , j − ˆ̂fi− 1
2 , j

)
− σx�y

2

(
ui+1, j − 2ui, j + ui−1, j

)

+�x
(
ˆ̂gi, j+ 1

2
− ˆ̂gi, j− 1

2

)
− σy�x

2

(
ui, j+1 − 2ui, j + ui, j−1

) = �x�y s(ui, j , xi , y j ).
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Thus ui, j can be solved in terms of neighboring grid function values

ui, j = σx�y
(
ui+1, j + ui−1, j

)

2(σx�y + σy�x)
+ σy�x

(
ui, j+1 + ui, j−1

)

2(σx�y + σy�x)
+ �x�y s(un

i, j , xi , y j )

σx�y + σy�x

−
�y

( ˆ̂fi+ 1
2 , j − ˆ̂fi− 1

2 , j

)
+�x

(
ˆ̂gi, j+ 1

2
− ˆ̂gi, j− 1

2

)

σx�y + σy�x
.

We sweep the whole domain with four alternating orderings repeatedly,

(1)i=1 : I, j=1 : J, (2)i= I : 1, j = 1 : J, (3)i=1 : I, j= J : 1, (4)i= I : 1, j= J : 1,

where I and J are maximum values for indices in x- and y- directions, respectively. If the
first sweeping direction is chosen, then ui−1, j = un+1

i−1, j , ui, j−1 = un+1
i, j−1, ui+1, j = un

i+1, j and
ui, j+1 = un

i, j+1. The updating formula is

un+1
i, j =

σx�y
(

un
i+1, j + un+1

i−1, j

)

2(σx�y + σy�x)
+

σy�x
(

un
i, j+1 + un+1

i, j−1

)

2(σx�y + σy�x)
+ �x�y s(un

i, j , xi , y j )

σx�y + σy�x

−
�y

( ˆ̂fi+ 1
2 , j − ˆ̂fi− 1

2 , j

)
+�x

(
ˆ̂gi, j+ 1

2
− ˆ̂gi, j− 1

2

)

σx�y + σy�x
. (9)

If the second sweeping direction is chosen, then ui−1, j = un
i−1, j , ui, j−1 = un+1

i, j−1, ui+1, j =

un+1
i+1, j and ui, j+1 = un

i, j+1. The updating formula is

un+1
i, j =

σx�y
(

un+1
i+1, j + un

i−1, j

)

2(σx�y + σy�x)
+

σy�x
(

un
i, j+1 + un+1

i, j−1

)

2(σx�y + σy�x)
+ �x�y s(un

i, j , xi , y j )

σx�y + σy�x

−
�y

( ˆ̂fi+ 1
2 , j − ˆ̂fi− 1

2 , j

)
+�x

(
ˆ̂gi, j+ 1

2
− ˆ̂gi, j− 1

2

)

σx�y + σy�x
. (10)

Notice that the indices n and n + 1 are switched for stencils involving ui−1, j and ui+1, j

in (9) and (10) because the sweeping directions 1 and 2 visit these two points in reverse
orders. Similarly, the updating formulas in the third and fourth sweeping directions require
the switched indices n and n + 1 for stencils involving ui, j−1 and ui, j+1.

For two-dimensional system problems

f(u)x + g(u)y = s(u, x, y), (x, y) ∈ [a, b] × [c, d],
where f, g, s and u are vector-valued functions in Rm , we use the same two-dimensional
iterative formula, but perform local characteristic decomposition for numerical flux con-
struction as follows. Assume f ′(u) and g′(u) can be written as Lx�x Rx and L y�y Ry ,
respectively, where �x and �y are diagonal matrices with real eigenvalues on the diagonal,
and Lx , Rx and L y , Ry are matrices of left and right eigenvectors for the corresponding Jaco-
bians. Similar to one-dimensional systems, we first compute an average state ū in each cell
[xi , xi+1] × [y j , y j+1], using either the simple arithmetic mean or a Roe’s average [24]. We
denote L̄ x , R̄x as the matrices with left and right eigenvectors Lx , Rx of f ′(u) at the average
state, and λ̄k

x as the corresponding eigenvalues. The matrices L̄ y , R̄y and the eigenvalues λ̄k
y

are defined similarly but associated with L y , Ry , and �y of g′(u).
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The WENO procedure is used in the construction of fluxes:

�±p = R̄x
−1

f±p , for p in a neighborhood of i,

�±q = R̄y
−1

g±q , for q in a neighborhood of j,

where f ±p , g±q are fluxes corresponding to Lax–Friedrichs splitting applied on each dimen-

sion. The numerical fluxes �̂±
i+ 1

2
and �̂±

j+ 1
2

are then projected back into the physical space

by left multiplying with R̄x and R̄y , yielding finally the numerical fluxes f̂i± 1
2

and ĝ j± 1
2

in
the physical space.

3 Fast Sweeping Method with Multigrid Fully Approximation Scheme

Although it has been demonstrated in our previous work [7] that Lax–Friedrichs fast sweeping
method is very efficient, compared to the regular time evolution schemes, to converge to steady
states, we attempt to further accelerate the convergence rate of the fast sweeping method by
coupling our iterative scheme with the well-known MG framework, presented as follows.

3.1 Framework

Consider the one-dimensional scalar steady state problem

f (u)x = s(u, x), x ∈ [a, b],
with an initial guess and appropriate boundary conditions. Based upon the finite difference
discretization in space and the approximation of the derivative by Lax–Friedrichs WENO
fluxes, it can be written as a nonlinear problem

A(U ) = s(U, X), (11)

where X = [x0, x1, . . . , xN ]T is the vector of grid points, U = [u0, u1, . . . , uN ]T is the
vector of discretized u, and A(U ) is a nonlinear operator such that

A(U ) j =
ˆ̂f j+ 1

2
− σ

2 (u j+1 − u j )− ˆ̂f j− 1
2
+ σ

2 (u j − u j−1)

�x
,

with ˆ̂f constructed in Eq. (5). To solve this nonlinear problem, Eq. (11), with MG solver, one
typically uses the full approximation scheme, consisting of fine grid smoother, restriction and
interpolation between fine and coarse meshes. In our algorithm, we will use Lax–Friedrichs
fast sweeping iteration as the smoother, which is more efficient than time marching as demon-
strated in [7]. We denote the restriction operator by R and the interpolation operator by P ,
then the two-level MG fast sweeping scheme in one-dimensional space can be summarized
as follows:

1. Setting up two levels of grids: Divide the domain [a, b] into N = 2k equal cells for
some integer k. The fine mesh grid points are x j = a + jh for j = 0, 1, . . . , N , where
h = b−a

N . Let uh = [uh
0, . . . , uh

N ]T be the discretized numerical solution on the fine
mesh. Then the mesh size on the coarse mesh is 2h and the grid points are x2h

i = a+2 jh
for j = 0, . . . , N/2, which are identical to those even-indexed points on the fine mesh.
Denote the numerical solution on the coarse mesh by u2h .
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Fig. 1 Restriction between the
fine mesh and the coarse mesh

2. Smoothing on the fine grid: Let uh = un be the numerical solution on the fine mesh
after n two grid iterations. We update uh by Lax–Friedrichs fast sweeping method shown
in Eq. (6). The coefficient σ is only updated on the finest mesh and will be passed down
to the coarse mesh. The number of iterations on the finest mesh is problem dependent
and chosen to be the smallest value such that our MG method converges. We will specify
this number in each example in Sect. 4.

3. Residual restriction: Compute the residual on the fine mesh

rh( j) =
ˆ̂f j+ 1

2
− σ

2

(
uh

j+1 − uh
j

)
− ˆ̂f j− 1

2
+ σ

2

(
uh

j − uh
j−1

)

h
− s(x j , uh

j ),

and restrict the residual to the coarse mesh by the restriction operator R. A typical choice
of R involves all neighboring grid points with some fixed weights. For example, in one-

dimensional space, r2h
j/2 = 1

4

(
rh

j−1 + 2rh
j + rh

j+1

)
, as shown in Fig. 1. This is what we

use in our scheme.

4. Smoothing on coarse grid: The system we need to solve on the coarse mesh is

A(u2h) = A(I 2h
h uh)+ R(rh),

where I 2h
h is the identical injection between different mesh grids. Apply the same Lax–

Friedrichs fast sweeping iteration once on coarse mesh as Eq. (6) after replacing s(u, x)

by A(I 2h
h uh)+ R(rh) and update u2h .

5. Interpolating the error and correcting the solution on the fine mesh: The error on
the coarse mesh is

e2h = u2h − I 2h
h uh .

Interpolate e2h to the fine mesh and correct the solution uh by

uh ← uh + P(e2h).

For the interpolation operator P , the simplest way is the linear interpolation, which
projects the values from the coarse mesh to the fine mesh directly at even-indexed fine-grid
points and takes the average of the adjacent coarse-grid values at odd-indexed fine-
grid points. However, since shocks or rarefaction waves may occur in our solutions of
hyperbolic equations, we need to construct the interpolation operator P more carefully
and the details are provided in Sect. 3.2.

The V-cycle MG fast sweeping method we use in the numerical tests is obtained by
applying the two-level MG fast sweeping iteration recursively.

MG fast sweeping method for system problems follows the same mechanism as the scalar
problems except that characteristic field splitting is implemented in the flux construction
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and interpolation. In higher dimensional space, WENO fluxes are computed dimension by
dimension, so is the interpolation.

3.2 Upwind-Biased WENO Interpolation in Scalar and System Problems

When the commonly used interpolation operators are applied in MG method to solve hyper-
bolic problems, it will converge at a slow rate, and in some cases it may not converge,
especially for systems of equations. To avoid that, an upwind interpolation is proposed in [5].
The authors suggest a strategy which needs to solve a Riemann problem for the corrected
solution on the fine mesh instead of interpolation. However, it requires a time evolution until
the steady state is obtained, which is time-consuming. To deal with that, we will follow
the upwind-biased WENO mechanism to construct the interpolation operator such that the
information will propagate along the characteristic directions.

Let e2h be the error on the coarse mesh. As we move up to the fine mesh, the errors on
the fine mesh eh

j , j = 0, 2, 4, . . . can be taken as e2h
j/2, while eh

j for j = 1, 3, 5, . . . need to
be interpolated.

A first order upwind-biased WENO interpolation is simply the upwind interpolation.
However, based on our experience, a high order WENO interpolation is needed to ensure the
convergence of our MG method. The upwind-biased WENO3 interpolation is constructed
as follows. To interpolate eh

j , j = 1, 3, 5, . . ., we follow the WENO procedure to construct

eWENO3
j− and eWENO3

j+ , which are interpolations based on the left and right biased stencils

respectively. The calculation of eWENO3
j− is based on eh

j−3, eh
j−1 and eh

j+1, which are identical

to e2h
( j−3)/2, e2h

( j−1)/2 and e2h
( j+1)/2. The formula to compute eWENO3

j− is

eWENO3
j− = w0 ·

eh
j−1 + eh

j+1

2
+ w1 ·

3eh
j−1 − eh

j−3

2
, (12)

where

w0 = a0

a0 + a1
, w1 = a1

a0 + a1
,

a0 = 2/3

(ε + (eh
j+1 − eh

j−1)
2)2

, and a1 = 1/3

(ε + (eh
j−1 − eh

j−3)
2)2

.

eWENO3
j+ is constructed similarly. We determine whether to use eWENO3

j− or eWENO3
j+ by the

characteristic direction calculated from f ′(u2h), where u2h is the numerical solution on the
coarse mesh after smoothing. The details are described in Algorithm 1.

For systems, we apply WENO3 construction within each characteristic field. First, the error
is projected into the characteristic fields of the solution u2h by multiplying the corresponding
left eigenvectors. Each component is calculated independently as in Algorithm 1 and Eq. (12)
upon the biased stencils which are determined by the sign of the associated eigenvalues. Once
each component is obtained, we project them back to the physical space by multiplying their
right eigenvectors. Such interpolation can avoid interaction among different characteristic
fields and ensure that the information propagates through the correct direction.

For higher dimensional problems, this WENO interpolation is carried out dimension by
dimension. Taking a two-dimensional problem as an example, there are two types of stencils
where the values must be interpolated from their neighboring points as shown in Fig. 2.
For blue points, e2h is available either on x-dimension or y-dimension only. So we can
implement the upwind-biased WENO3 interpolation in a single dimension to obtain the
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Algorithm 1 Upwind-biased WENO3 interpolation
for j = 1 : 2 : N − 1 do

if f ′(u2h
( j−1)/2) < 0 and f ′(u2h

( j+1)/2) < 0 then eh
j = eWENO3

j+ ;

else if f ′(u2h
( j−1)/2) > 0 and f ′(u2h

( j+1)/2) > 0 then eh
j = eWENO3

j− ;

else if f ′(u2h
( j−1)/2) ≤ 0 and f ′(u2h

( j+1)/2) ≥ 0 then eh
j = 0;

else

if
f (u2h

( j+1)/2)− f (u2h
( j−1)/2)

u2h
( j+1)/2−u2h

( j−1)/2
> 0 then eh

j = eWENO3
j− ;

else eh
j = eWENO3

j+ ;

end if
end if

end for

Fig. 2 Diagram of 2D
interpolation from the coarse
mesh to the fine mesh: black
circles denote the coarse mesh,
blue and red points are stencils
that only belong to the fine mesh.
(Color figure online)

numerical values on them. For red points, we simply use the average of the interpolated
values on the blue points surrounding them. In some special cases, for example, the wave is
propagating along either x or y direction, we need some other more effective techniques, e.g.,
semi-coarsening, in which the coarsening is only performed along the wave direction, so is the
interpolation.

3.3 Numerical Boundary Condition for Problems with One-Side Boundary
information

In hyperbolic problems, since solutions follow the characteristic directions, only the infor-
mation on the boundaries with incoming characteristics is necessary. However, we still need
numerical boundary conditions for boundaries with outgoing characteristics, and extrapo-
lation is used in our calculations. In the fast sweeping iteration, a third order extrapolation
is implemented on the finest mesh only to compute the values at the boundary without pre-
scribed boundary condition. And the extrapolated boundary values will be stored and passed
down to the other coarse meshes. The extrapolation is also needed for constructing WENO
flux near the boundary, and for interpolation between coarse and fine meshes in the MG
method.

4 Numerical Simulations for Hyperbolic Conservation Problems

In this section, we show the numerical results of the proposed Lax–Friedrichs fast sweeping
MG method for hyperbolic steady state problems in one and two dimensions. The efficiency
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Fig. 3 Example 4.1.: the
numerical solution (blue circle)
by MG method with 128 cells on
the finest mesh and the exact
solution (red solid line) (Color
figure online)
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and high order accuracy of the proposed scheme are demonstrated by comparing it with the
regular Lax–Friedrichs fast sweeping method on fixed meshes. In our settings, one sweep
means visiting all grid points on the finest mesh once. The number of sweeps by MG method
is calculated as the ratio of the total number of visits on any grid points through all levels
of mesh grids and the number of grid points on the finest mesh. On a single level, we define
one iteration by the total sweepings in all alternating directions. Without specification, the
number of iterations on each level of grids is set to be 1, and a full V-cycle with coarsening
until only two cells left within the domain is applied. As for the stopping criteria, let res(i)
be the residual of the steady state equation after i th iteration, if the scheme converges, the
simulations stop when res(n) ≤ 10−8res(0), unless otherwise stated. All computations are
carried out using MATLAB 2011b on a Macintosh computer with 2.6 GHz Intel Core i5
processor and 8 GB Memory.

4.1 The One-Dimensional Scalar Problems

We test our algorithm on scalar problems in one-dimensional space. In all examples, we use
a uniform mesh with N = 128 on the finest mesh, unless specified otherwise.

Example 4.1 We solve the steady state solution of the one-dimensional Burgers’ equation
with a source term:

ut +
(

u2

2

)

x
= sin x cos x,

with the initial condition

u(x, 0) = 2 sin x,

and boundary conditions u(0, t) = u(π, t) = 0. The steady state solution to this problem
is smooth within the domain followed by a shock generated at the boundary and finally
approaches u(x,∞) = sin x , which is smooth. We apply MG method on it to test the
efficiency and the order of accuracy. Exact solutions are imposed on the ghost points in
WENO3 flux construction. To ensure the convergence, we implement five iterations on the
finest mesh of the MG method. The numerical solution is shown in Fig. 3.

We compare the fast sweeping MG method with Lax–Friedrichs fast sweeping method by
plotting the residual of the steady state equation with respect to the number of sweeps under
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Fig. 4 Example 4.1: comparison of the equation residual (left) and L1 error (right) by MG method (blue
dotted line) and regular fast sweeping method (red solid line) with N = 128 (Color figure online)

Table 1 Comparison of sweeps
and CPU time of the LF fast
sweeping (LF) and MG
framework for Example 4.1 on
meshes with N cells

N MG Sweeps MG CPU (s) LF Sweeps LF CPU (s)

64 322 2.17 436 2.36

128 621 7.80 914 9.83

256 1081 27.19 1872 38.78

512 1518 75.53 3842 166.07

1024 3430 328.78 7920 696.97

the same stopping criteria. The comparison is displayed in Fig. 4. We can see that errors for
both methods stagnate at the same level. The MG fast sweeping method saves about 1/3 of
the sweeps to approach the exact solution.

We have tested the order of accuracy of the MG method with different mesh sizes on the
finest mesh. The L1 and L∞ errors are calculated. The third order of accuracy is observed
in L1 error. The order of L∞ error is not exactly 3, but this can be expected when third order
WENO Lax–Friedrichs fluxes are used for this case with a shock formed at the boundary. The
sweep numbers and the CPU time are provided in Table 1 to show the efficiency improved
by the MG mechanism compared with Lax–Friedrichs fast sweeping method.

Example 4.2 We consider the steady state solutions of Burgers’ equation with a source term
depending on the solution itself:

ut +
(

u2

2

)

x
= −π cos(πx)u, x ∈ [0, 1],

123



J Sci Comput

Fig. 5 Example 4.2.: the stable
entropy solution (red solid line),
and the numerical solution (blue
circles) computed by MG method
with 128 cells on the finest mesh
(Color figure online)
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equipped with the boundary conditions u(0, t) = 1 and u(1, t) = −0.1. This problem has
two steady states with shocks

u(x,∞) =
{

u+ = 1− sin(πx), if 0 ≤ x < xs,

u− = −0.1− sin(πx), if xs ≤ x < 1,

where xs = 0.1486 or xs = 0.8514. Both solutions satisfy the Rankine–Hugoniot jump
condition and the entropy conditions, but only the one with the shock at 0.1486 is stable for
small perturbation. This problem was studied in [10] as an example of multiple steady states
for one-dimensional transonic flows and had been tested to demonstrate that starting with a
reasonable perturbation of the stable steady state, the fast sweeping method can capture the
stable shock in [7].

The initial guess is given by:

u(x, 0) =
{

1, if 0 ≤ x < 0.5,

−0.1, if 0.5 ≤ x < 1,

where the initial jump is located in the middle of the positions of the shocks in the two
admissible steady state solutions. Exact solutions are imposed on the ghost points of WENO
reconstruction and WENO interpolation. The number of iterations on the finest mesh is
chosen to be 3. The numerical result with 128 cells and the exact solution are displayed in
Fig. 5. We can see the well-captured shock location and good resolution of the shock.

To show the advantage of MG method, we compare the residuals of the steady state
equation and L1 errors by MG fast sweeping and regular fast sweeping, displayed in Fig. 6.
We can observe that to achieve the same level of residual, our MG method saves more than
half of the iterations compared with the LF fast sweeping method. Additionally, from the
history of L1 error, the solution obtained by MG method approaches the steady state within
very few iterations. The CPU time cost for different N is shown in Table 2. We also show
the number of sweeps by LF fast sweeping and MG method with different levels, denoted
by L , on different mesh sizes in Table 3. As the number of levels used in MG increases, it
saves more sweeps. Although the MG method is not optimal and the sweep number is mesh
dependent, the computation cost increases less than the LF fast sweeping method.

123



J Sci Comput

0 200 400 600 800 1000 1200

10
−8

10
−6

10
−4

10
−2

10
0

sweep

E
qu

at
io

n 
R

es
id

ue
Lax−Friedrichs fast sweeping
Multigrid fast sweeping

0 200 400 600 800 1000 1200

10
−2

10
−1

sweep

L1  E
rr

or

Lax−Friedrichs fast sweeping
Multigrid fast sweeping

Fig. 6 Example 4.2.: comparison of the residual (left) and L1 error (right) by MG method (blue dotted line)
and regular fast sweeping method (red solid line) (Color figure online)

Table 2 Comparison of CPU
time (s) of the LF fast sweeping
method (LF) and MG framework
for Example 4.2. on meshes with
N cells

N MG CPU (s) LF CPU (s)

64 2.85 3.21

128 7.62 13.23

256 24.91 52.70

512 60.19 213.71

Table 3 Sweeps by LF fast
sweeping and MG solver for
Example 4.2. on meshes with N
cells

N = 64 N = 128 N = 256 N = 512

LF fast sweeping 540 1094 2194 4416

L = 4 375 645 1080 2115

L = 5 345 570 870 1545

L = 6 360 525 765 1170

Example 4.3 In this example, we study Burgers’ equation with another source term on the
right-hand side:

ut +
(

u2

2

)

x
= (6x − 3)u,
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Fig. 7 Example 4.3.: the stable
entropy solution (red solid line),
and the numerical solution (blue
circles) computed by MG method
with 128 cells on the finest mesh
(Color figure online)
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Fig. 8 Example 4.3.: comparison of the residual (left) and L1 error (right) by MG method (blue dotted line)
in 6.96 s and Lax–Friedrichs fast sweeping method (red solid line) in 18.41 s (Color figure online)

with boundary conditions u(0) = 1 and u(1) = −0.1. The steady state is

u =
{

1+ 3x2 − 3x, if x < xs,

−0.1+ 3x2 − 3x, if x > xs,

where xs = 0.18377223398316. We test our MG algorithm on this problem and compare
the results with fast sweeping iterative scheme. The initial condition is obtained by shifting
the shock location to x = 0.5. Exact solution is imposed at the boundary. The number of
iterations on the finest mesh is set to be 5. The numerical solution is shown in Fig. 7. The
comparison of the MG method and Lax–Friedrichs fast sweeping scheme is displayed in
Fig. 8. The MG method converges about three times faster than the fast sweeping method,
which also can be observed from CPU time cost.
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Fig. 9 Example 4.4.: the stable
entropy solution (red solid line)
and the numerical solution (blue
circles) computed by MG method
with 128 cells on the finest mesh
(Color figure online)
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Fig. 10 Example 4.4.: comparison of the residual (left) and L1 error (right) by MG method (blue dotted line)
in 17.65 s and LF fast sweeping method (red solid line) in 57.22 s (Color figure online)

Example 4.4 This is another example involving Burgers’ equation with a nonlinear source
term which will reach a smooth stationary solution. The equation we study is

ut +
(

u2

2

)

x
= u(1− u), x ∈ [0, 0.5],

with boundary conditions u(0) = 1 − √e and u(0.5) = 0. The exact steady state is u =
1− e0.5−x . We choose a polynomial u(x, 0) = −x(x − 0.5)(x − 1) as the initial guess and
impose the exact solution at boundaries. The number of iterations on the finest mesh in MG
V-cycle is chosen to be 1. The numerical solution is shown in Fig. 9 and the comparison
of two methods is displayed in Fig. 10. The MG method only requires 1/5 of the sweeps
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Table 4 Comparison of CPU
time (s) of the LF fast sweeping
method (LF) and MG framework
for Example 4.4. on meshes with
N cells

N MG CPU (s) LF CPU (s)

64 5.95 13.06

128 17.65 57.22

256 47.63 203.17

512 140.01 788.01

Table 5 Sweeps by LF fast
sweeping and MG solver for
Example 4.4. on meshes with N
cells

N = 64 N = 128 N = 256 N = 512

LF fast sweeping 2168 4268 8296 >10000

L = 4 602 973 1638 2891

L = 5 560 854 1316 2093

L = 6 553 826 1239 1918

of regular fast sweeping method to achieve the same residual. We have tested the L1 and
L∞ errors associated with different N and a third order of accuracy is clearly achieved. The
CPU time cost on different meshes is shown in Table 4. As N increases, the CPU time cost
by MG method is almost 1/5 of that of LF fast sweeping method. The number of sweeps
by LF fast sweeping and MG method with different levels, denoted by L , on different mesh
sizes are shown in Table 5. As the number of levels used in MG increases, it saves more
sweeps. Although the MG method is not optimal and the sweep number is mesh dependent,
the increasing rate on the computation cost is less than that of LF fast sweeping method.

Example 4.5 Consider the steady state problem

(u2)x = u, x ∈ [0,
1

4
],

with initial guess u(x) = 0. The exact solution will be u(x) = 1 + x
2 without singularities

within the domain, and the wind direction is uniformly from left to right. We impose the
exact boundary condition only at x = 0 and extend the solution at x = 1

4 by the third order
extrapolation. In MG method, when we interpolate the errors between two successive mesh
grids by WENO scheme, zero boundary condition is imposed at x = 0 while extrapolation is
used at x = 1

4 corresponding to the one-sided boundary condition. The numerical solution by
MG fast sweeping method is shown in Fig. 11, and the comparison of the efficiency between
the MG method and Lax–Friedrichs fast sweeping method is shown in Fig. 12. It is clear
to see that MG method saves at least half of the sweeps of regular fast sweeping method.
Because its solution is a simple linear function, the numerical error is close to the machine
error even on the coarse mesh and the order of accuracy is not shown in this case.

Remark 4.1 Based on the tests of one-dimensional scalar problems, we find that for prob-
lems with smooth stationary solutions without shocks (e.g., Examples 4.4 and 4.5), our MG
method requires less iterations on the finest mesh to guarantee convergence compared with
shock cases (e.g., Examples 4.1, 4.2 and 4.3). The reason may be that since the iterative
scheme approaches the steady state very efficiently, the errors on the fine mesh also have
discontinuities if the steady state has shocks. Therefore, MG method needs more iterations

123



J Sci Comput

Fig. 11 Example 4.5.: the exact
solution (red solid line) and the
numerical solution (blue circles)
computed by MG method with
128 cells on the finest mesh
(Color figure online)
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Fig. 12 Example 4.5.: comparison of the equation residual and the L1 error history by LF fast sweeping (red)
in 6.7 s and MG(blue dashed) in 4.82 s (Color figure online)

on the fine mesh to damp errors at high frequencies, especially around shock locations, so
that a relative smooth error at low frequencies can be passed down to coarse meshes.

4.2 The One-Dimensional Systems

In this section, we test the MG method for hyperbolic conservation problems on one-
dimensional systems of equations. The finest mesh is set to be N = 256. The stopping
criteria is res(n) ≤ 10−8res(0).
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Fig. 13 Example 4.6.: the exact
solution (red solid line), and the
numerical solution (blue circles)
computed by MG method with
256 cells on the finest mesh
(Color figure online)
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Example 4.6 We solve the steady state solutions of the one-dimensional shallow water equa-
tions:

(
h

hu

)

t
+

(
hu

hu2 + 1
2 gh2

)

x
=

(
0

−ghbx

)
,

where h denotes the water height, u is the velocity of the fluid, b(x) represents the bottom
topography and g is the gravitational constant.

Starting from a stationary initial condition, which itself is a steady state solution, we will
check the efficiency of our method. The smooth bottom topography is given by:

b(x) = 5e−
2
5 (x−5)2

, x ∈ [0, 10].
The initial condition is the stationary solution:

h + b = 10, hu = 0,

and the exact steady state solution is imposed at the boundaries.
The numerical solution of h is displayed in Fig. 13. In this example, we implement four

times of fast sweeping iterations on the finest mesh to achieve convergence. The comparison
of the residuals of the equation and L1 errors by MG fast sweeping and Lax–Friedrichs fast
sweeping are shown in Fig. 14. It can be clearly seen that the MG method is much more
efficient.

We have tested the order of accuracy of the MG method with different mesh sizes. The
third order of accuracy can be observed in L1 and L∞ error.

Example 4.7 This example is studied in [35] as a one-dimensional stationary shock of the
Euler equations

⎛
⎝

ρ

ρu
e

⎞
⎠

t

+
⎛
⎝

ρu
ρu2 + p
u(e + p)

⎞
⎠

x

= 0,

where ρ denotes the density, u is the velocity, e is the energy and p is the pressure related
to e by p = (γ − 1)(e − 1

2ρu2) with γ = 1.4. The domain of x is [−1, 1]. A steady shock
occurs at x = 0 such that
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Fig. 14 Example 4.6.: comparison of the residual (left) and L1 error (right) by MG method (blue dotted line)
and Lax–Friedrichs fast sweeping method (red solid line). To reach the same stopping criterion, MG solver
takes 45.07 s of CPU time while Lax–Friedrichs fast sweeping method takes 68.67 s (Color figure online)
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Fig. 15 Example 4.7.: the exact solution (red solid line) and numerical solution (blue circles) computed by
MG method with 256 cells on the finest mesh (Color figure online)

⎛
⎝

pl

ρl

ul

⎞
⎠ =

⎛
⎝

1
γ M2∞

1
1

⎞
⎠ for x < 0,

⎛
⎝

pr

ρr

ur

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎝

pl
2γ M2∞−(γ−1)

γ+1
γ+1
γ−1

pr
pl
+1

γ+1
γ−1+ pr

pl√
γ

(2+(γ−1)M2∞)pr

(2γ M2∞+(1−γ ))ρr

⎞
⎟⎟⎟⎟⎟⎠

for x > 0,

with Mach number M∞ = 2. It’s easy to check this shock solution satisfies Rankine–
Hugoniot condition. We let the initial guess be the steady shock and test our MG method
with five iterations on the finest mesh. The numerical solution and the comparison with
Lax–Friedrichs fast sweeping method are shown in Figs. 15 and 16.
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Fig. 16 Example 4.7.: comparison of the residual (left) and L1 error (right) by MG method (blue dotted line)
in 97.08 s and Lax–Friedrichs fast sweeping method (red solid line) in 176.49 s (Color figure online)

4.3 The Two-Dimensional Scalar Problems

Example 4.8 We consider the steady state solution of the following problem:

ut +
(

ε√
1+ ε2

u2

2

)

x
+

(
1√

1+ ε2

u2

2

)

y
= −π cos

(
π

εx + y√
1+ ε2

)
u,

where (x, y) ∈ [0, 1√
2
] × [0, 1√

2
], ε can be varied among different values. This is the one-

dimensional problem in Example 4.2 along the diagonal direction if ε = 1. Inflow boundary
conditions are given by the exact solution of the steady state problem. Since our grids are
not aligned with the flow direction, this is a truly two-dimensional test case. As before, this
problem has two steady state solutions with shocks

u(x, y,∞) =
⎧
⎨
⎩

1− sin
(
π

εx+y√
1+ε2

)
, if 0 ≤ εx+y√

1+ε2 < xs,

−0.1− sin
(
π

εx+y√
1+ε2

)
, if xs ≤ εx+y√

1+ε2 < 1,

where xs = 0.1486 or xs = 0.8514.
The initial condition is given by:

u(x, y, 0) =
{

1, if 0 ≤ εx+y√
1+ε2 < 0.5,

−0.1, if 0.5 ≤ εx+y√
1+ε2 < 1,

where the initial jump is located in the middle of the positions of the shocks in the two
admissible steady state solutions. We test the cases ε = 1 and ε = 10−6. When ε is small,
semi-coarsening is performed to guarantee the convergence of MG method. The mesh size
we used is 64× 64 and three iterations are implemented on the finest mesh. First, we test the
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Fig. 17 Example 4.8. with ε = 1: contour plot of the numerical solution on a 64 × 64 mesh by MG fast
sweeping method
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Fig. 18 Example 4.8. with ε = 1: comparison of the residual (left) and L1 error (right) by MG method with
full coarsening (blue dotted line) in 163 s, and Lax–Friedrichs fast sweeping method (red solid line) in 284.02 s
(Color figure online)

case ε = 1 and apply both the MG and Lax–Friedrichs fast sweeping method. We show the
solution in Fig. 17 and compare the convergence history in Fig. 18. We also implement the
semi-coarsening in this case and it is not as efficient as full coarsening.

In the case of ε = 10−6 shown in Fig. 19, MG with semi-coarsening works well and saves
at least half of the sweeps while the residue in full-coarsening cannot drop to machine error.

Example 4.9 We consider the two-dimensional problem

ut +
(

u2

2

)

x
+ uy = 0, (x, y) ∈ [0, 1] × [0, 1],
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Fig. 19 Example 4.8. With ε = 10−6: comparison of residue and L1 error on a 128× 128 mesh by MG and
LF fast sweeping method
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Fig. 20 Example 4.9.: contour plot of the steady state by MG method (left) and comparison of the residual
(right) by MG method (blue dotted line) and Lax–Friedrichs fast sweeping method (red solid line) (Color
figure online)

with boundary conditions:

u(x, 0, t) = 1.5− 2x, u(0, y, t) = 1.5, u(1, y, t) = −0.5.

The initial condition is u(x, y, 0) = 1.5 − 2x . The steady state has a rarefaction wave
for y < 0.5 and a singular shock for y > 0.5. Because the flux on y is g(u) = u, only the
boundary condition at y = 0 is necessary. Numerically we apply the third order extrapolation
on the top boundary of y. The solution and the comparison of residual history are provided
in Fig. 20. We can see that the MG method can resolve both the rarefaction wave and shock
more efficiently than Lax–Friedrichs fast sweeping and saves about half of the sweeps. We
also look into the CPU time by different methods. To achieve the same stopping criteria,
Lax–Friedrich fast sweeping method takes 1237.06 s while the MG solver takes 594.54 s.
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4.4 The Two-Dimensional Systems

Example 4.10 We consider a Cauchy–Riemann problem:

∂W

∂t
+ A

∂W

∂x
+ B

∂W

∂y
= 0, (x, y) ∈ [−2, 2] × [−2, 2], t > 0, (13)

where

A =
(

1 0
0 −1

)
and B =

(
0 1
1 0

)
,

with the following Riemann data W = (u, v)T ,

u =

⎧
⎪⎪⎨
⎪⎪⎩

1, if x > 0 and y > 0
−1, if x < 0 and y > 0
−1, if x > 0 and y < 0
1, if x < 0 and y < 0

, and v =

⎧
⎪⎪⎨
⎪⎪⎩

1, if x > 0 and y > 0
−1, if x < 0 and y > 0
−1, if x > 0 and y < 0
2, if x < 0 and y < 0

. (14)

The solution is self-similar, and therefore W (x, y, t) = W̃ ( x
t ,

y
t ). Let ξ = x

t , η = y
t , then

W̃ satisfies

(−ξ I + A)
∂W̃

∂ξ
+ (−ηI + B)

∂W̃

∂η
= 0,

which can be written as

∂

∂ξ
[(−ξ I + A)W̃ ] + ∂

∂η
[(−ηI + B)W̃ ] = −2W̃, (15)

with the boundary conditions at infinity given by the Riemann data in (13) and (14) at time
t = 1. Eq. (15) can be solved with boundary conditions as the exact solution and the same
initial condition as in (14). Boundary values on the ghost points in the WENO reconstruction
are set as

u =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if x > 1 and y > 1
−1, if x > 1 and y < 1
−1, if x < 1 and y > 1
1.5, if x < 1 and − 1 < y < 1
1, if x < 1 and y < −1

, and v =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if x > −1 and y > 1
−1, if x < −1 and y > 1
−1, if x > −1 and y < 1
1.5, if x < −1 and − 1 < y < 1
2, if x < −1 and y < −1

.

We test it by MG fast sweeping method with a single iteration on the finest mesh and compare
the convergence history with Lax–Friedrichs fast sweeping method. The numerical solution
is shown in Fig. 21 and the comparison plot is in Fig. 22.

Example 4.11 We consider a regular shock reflection problem of the steady state solution of
the two-dimensional Euler equations:

ut + f(u)x + g(u)y = 0, (x, y) ∈ [0, 4] × [0, 1] (16)

where u = (ρ, ρu, ρv, E)T , f(u) = (ρu, ρu2 + p, ρuv, u(E + p))T , and g(u) =
(ρv, ρuv, ρv2 + p, v(E + p))T . Here ρ is the density, (u, v) is the velocity, E is the total
energy and p = (γ − 1)(E − 1

2 (ρu2 + ρv2)) is the pressure. γ is the gas constant which is
taken as 1.4 in our numerical test.
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Fig. 21 Example 4.10.: contour plot of numerical solution u (left) and v (right) by MG fast sweeping method
with 128× 128 cells on the finest meth

Fig. 22 Example 4.10.:
comparison of the residual by
MG method (blue dotted line) in
10470 s and Lax–Friedrichs fast
sweeping method (red solid line)
in 18300 s (Color figure online)
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The initial condition is taken to be

(ρ, u, v, p) = (1.69997, 2.61934,−0.50632, 1.52819) on y = 1,

(ρ, u, v, p) = (1, 2.9, 0,
1

γ
) otherwise.

The boundary conditions are given by

(ρ, u, v, p) = (1.69997, 2.61934,−0.50632, 1.52819) on y = 1,

and reflective boundary condition on y = 0. The left boundary at x = 0 is set as an inflow
with (ρ, u, v, p) = (1, 2.9, 0, 1

γ
), and the right boundary at x = 4 is set to be an outflow

with no boundary conditions prescribed. When we apply the MG procedure, the finest mesh
is set to be 160×40 and it only allows us to implement relaxation on four levels of grids. The
numerical results are shown in Fig. 23. It can be clearly seen that the incident and reflected
shocks are well-resolved. By comparing with Lax–Friedrichs fast sweeping method in Fig. 24,
the residue can drop to 10−3 within much less sweeps when MG solver is applied.
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Fig. 23 Ex 4.11.: contour plot of
numerical solution ρ (top) and E
(bottom) by MG fast sweeping
method with 160× 40 cells on
the finest meth

x

y

Density

0 1 2 3 4
0

0.5

1

1.5

2

2.5

x

y

Energy

0 1 2 3 4
0

0.5

1

8
10
12
14

Fig. 24 Ex 4.11.: comparison of
the residual by MG method (blue
dotted line) in 1193.5 s and
Lax–Friedrichs fast sweeping
method (red solid line) in
4933.8 s (Color figure online)
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5 Conclusions

In this paper, we proposed the Lax–Friedrichs fast sweeping WENO method coupled with
MG framework. Based on the previously developed fast steady state solver for hyperbolic
conservation problems, coupling this smoother with MG method significantly accelerates
the computation. In our algorithm, full approximation scheme is used to solve the nonlinear
system; however, due to the hyperbolicity of the problems, the regular interpolation within
MG method cannot be used. Instead, we need to use upwinding in the interpolation, and in
particular, WENO upwind interpolation between coarse and fine meshes is used to ensure
convergence.

This method has been applied to various problems. The numerical results demonstrate its
high order accuracy, capability of capturing shocks and its efficiency compared to the regular
Lax–Friedrichs fast sweeping WENO method, which has previously been shown to be much
faster than time evolution schemes. Future work includes developing fast sweeping method
using upwind fluxes and coupling with MG framework to achieve even lower computational
costs.
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