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Abstract

In this paper, we propose a high order residual distribution conservative finite difference scheme for solving steady state
hyperbolic conservation laws on non-smooth Cartesian or other structured curvilinear meshes. WENO (weighted essen-
tially non-oscillatory) integration is used to compute the numerical fluxes based on the point values of the solution,
and the principles of residual distribution schemes are adapted to obtain steady state solutions. In two space dimension,
the computational cost of our scheme is comparable to that of a high order WENO finite difference scheme and is therefore
much lower than that of a high order WENO finite volume scheme, yet the new scheme does not have the restriction on
mesh smoothness of the traditional high order conservative finite difference schemes. A Lax–Wendroff type theorem is
proved for convergence towards weak solutions in one and two dimensions, and extensive numerical experiments are per-
formed for one- and two-dimensional scalar problems and systems to demonstrate the quality of the new scheme, including
high order accuracy on non-smooth meshes, conservation, and non-oscillatory properties for solutions with shocks and
other discontinuities.
! 2005 Elsevier Inc. All rights reserved.
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1. Introduction

High order conservative schemes, such as finite volume and finite difference methods, are widely used in
solving hyperbolic conservation laws

ut þr" F ðuÞ ¼ 0; ð1:1Þ

where hyperbolicity means that oF ðuÞ
ou " n is diagonalizable with real eigenvalues for any real vector n. In finite

volume schemes, the conservative unknowns are the cell averages, which are updated by evaluating the fluxes
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through reconstructions. In finite difference schemes, we update the point values, and reconstructions are also
needed when evaluating the fluxes. In both types of schemes, high order accurate essentially non-oscillatory
(ENO) and weighted essentially non-oscillatory (WENO) reconstructions [17,28,29,20,18,26] are very success-
ful in capturing shocks in a sharp, non-oscillatory fashion while maintaining high order accuracy in smooth
regions.

For one-dimensional problems, high order conservative finite volume and finite difference schemes have
comparable computational cost. However, for two- or three-dimensional problems on Cartesian or general
curvilinear meshes, multi-dimensional reconstructions are needed to approximate the integrals for the numer-
ical fluxes for finite volume schemes, while in finite difference schemes, the reconstructions can be performed
dimension-by-dimension. Therefore, finite difference schemes are much less expensive in computational costs
than finite volume schemes of the same order of accuracy. For a detailed comparison of these two types of
schemes, we refer to [10,27]. On the other hand, there are some drawbacks in using high order finite difference
schemes, and the most significant one is the restriction on the smoothness of the meshes. To obtain a high
order conservative finite difference scheme, the mesh size is required to be uniform or at least smoothly varying
[21]. In this respect, finite volume schemes are much more flexible. To partially overcome this restriction, a
multi-domain finite difference WENO scheme is proposed in [25]. Even though this multi-domain approach
is performing well in many complicated applications [25,19], it does have the drawback that it is no longer
strictly conservative.

In this paper, we are interested in developing high order conservative schemes which are of the finite dif-
ference type (the numerical approximations are the point values of the solution) and have a comparable com-
putational cost as regular finite difference schemes, yet the meshes are allowed to be arbitrary Cartesian or
curvilinear without any smoothness assumption. Our effort is restricted to steady state problems in this paper.
Time dependent problems are significantly more difficult and will be left for future work. In order to obtain
conservative high order finite difference schemes on such more general meshes, we need to start from a differ-
ent point of view other than directly approximating the derivatives by a conservative flux difference (as it is
shown in [21] that such conservative flux difference approximation can be at most second order accurate
on general non-smooth meshes). The idea of ‘‘residual distribution’’ comes into play here naturally. A brief
overview of a residual distribution scheme for a two-dimensional conservation law (1.1) is given as follows.
We are given a general triangular or quadrilateral mesh, with nt elements fT jgj¼1;...;nt and ns nodes
fMigi¼1;...;ns which are the vertices of these elements. The residual UT over the element T is defined and decom-
posed as

UT ¼
Z

T
divF hðuhÞdx;

X

i;Mi2T
UT

i ¼ UT ; ð1:2Þ

where Fh is an approximation of the flux function F in (1.1), and the total residual UT over the element T is
decomposed to a sum of residuals UT

i to be distributed to each node Mi of T. The design principles for the
distribution of the residual are described in [1]. The dual cells, Ci, i = 1, . . . ,ns are obtained by joining the cent-
roids of the elements Tj having Mi as one of the nodes, to the mid-points of the edges of Tj. If we denote the
collection of elements Tj having Mi as one of the nodes as Si, then the residual distribution scheme is given as

unþ1
i ¼ uni &

Dtn
jCij

X

T2Si

UT
i . ð1:3Þ

The class of residual distribution (RD) schemes, or fluctuation splitting schemes for solving steady state
problems (solutions to (1.1) which are time independent), has received considerable attention. Such schemes
were pioneered by Deconinck et al. [12], Roe and Sidilkover [23], Struijs et al. [30] and followed by later works
in, e.g. [1,3,32,7]. The RD schemes use a pointwise representation of the solution, same as in finite difference
schemes, and it allows conservative approximations with high order accuracy on very general meshes. The RD
schemes are demonstrated to be robust in many numerical tests. A Lax–Wendroff type theorem has been pro-
vided to ensure convergence to weak solutions [5], and stability is established following maximum principles,
see, e.g. [1,7]. The accuracy at steady state is ensured if the scheme satisfies the residual property, which is
related to the accuracy approximating the residuals, see [1]. Most of the works mentioned above are for
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schemes of at most second order accuracy. Following the systematic construction from a first order monotone
and upwind RD scheme to a second order one, Abgrall and Roe [8] proposed a natural generalization to
obtain a high order RD scheme on general triangular meshes. For a hybrid of different meshes, quadrilateral
meshes have also been considered [31], and a recent work by Abgrall and Marpeau [4] gives a formal construc-
tion of second order schemes on quadrilateral meshes. Besides steady state problems, attention has also been
paid recently to design RD schemes for unsteady problems [11,6].

Most of the previous works emphasize the construction of second order accurate RD schemes on general
triangular or quadrilateral meshes, although an enhancement to higher order accuracy is possible. In our
work, we are interested in designing high order finite difference schemes on structured curvilinear meshes
which are not necessarily smooth. In fact, we only consider in this paper rectangular meshes or a special class
of quadrilateral meshes formed by parallelograms. The main purpose of this restriction on the meshes is the
observation that the evaluation of the residuals in Eq. (1.2) in 2D, which are in general two-dimensional inte-
grals, can be decomposed to a dimension-by-dimension one-dimensional computation. We would like to
remark that our construction and distribution of the residual are somewhat different from the usual residual
distribution schemes by starting from a stable monotone first order scheme and then upgrading the accuracy,
rather we compute directly a high order accurate residual by a WENO integration procedure and rely on the
residual distribution stage to obey the upwinding property for numerical stability. As for the residual distri-
bution, we follow the RD schemes with a modification. A Lax–Wendroff type theorem for convergence
towards weak solutions is proved, similar to that in [4], but with a wider stencil. It should be emphasized that
our purpose is to save computational cost in the evaluation of the residual via a dimension-by-dimension
approach on structured curvilinear meshes, instead of improving the distribution mechanism.

This paper is organized as follows. In Section 2, we present the fourth order central WENO integration on
one-dimensional non-smooth meshes as an example of high order WENO integration. In Sections 3 and 4, we
describe the residual evaluation procedure through a WENO integration and the residual distribution proce-
dure for one and two-dimensional problems, respectively. Section 5 contains extensive numerical simulation
results for one and two-dimensional scalar and system steady state problems to demonstrate the good behav-
ior of our scheme. Concluding remarks are given in Section 6. The Lax–Wendroff type theorem for
convergence towards weak solutions is proven for the one-dimensional case in Section 3 and for the two-
dimensional case in Appendix A.

2. Introduction of the WENO integration

In this section, we first introduce one-dimensional WENO integration which is an important component of
the residual evaluation in (1.2) for our special meshes. Given a grid {xj}j=0, . . . ,N " [a,b], which is not assumed
to be uniform or smooth, we define cells and cell sizes by Ijþ1

2
¼ ½xj; xjþ1(, Dxjþ1

2
¼ xjþ1 & xj; j ¼ 0; . . . ;N & 1.

Consider a real-valued function u(x) defined on [a,b] and denote uj = u(xj), j = 0, . . . ,N, we would like to
approximate the integral of u(x) on I iþ1

2
to (2k & 1)th order accuracy.

In each stencil Sr(i) = {xi& r, . . . ,xi& r+ k& 1} which contains I iþ1
2
, there is a unique polynomial pr(x) of degree

at most k & 1 which interpolates u(x) at the nodes in Sr(i). We denote the integral of pr(x) on I iþ1
2
by v(r), hence

vðrÞ ¼
Xk&1

j¼0

ci&rþjui&rþj; r ¼ 0; . . . ; k & 2; ð2:1Þ

where the coefficients ci& r+ j depend on the cell sizes in Sr(i) but not on u.
The WENO integration would take a convex combination of all the v(r) defined in Eq. (2.1) as a new

approximation to the integral
R
I
iþ1

2

uðxÞdx

v ¼
Xk&2

r¼0

xrvðrÞ.

We require xr P 0 and
Pk&2

r¼0xr ¼ 1 for stability and consistency.
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To determine xr, recall that if u(x) is smooth in all candidate stencils, there are constants dr such that

v ¼
Xk&2

r¼0

drvðrÞ ¼
Z

I
iþ1

2

uðxÞdxþOðDx2k&1Þ;

where
Pk&2

r¼0dr ¼ 1. In this smooth case, we would hope to have xr ¼ dr þOðDxk&1Þ; r ¼ 0; . . . ; k & 2 so that
(2k & 1)th order accuracy can be achieved for the integral. When the function u(x) has a discontinuity in one
or more of the stencils, we would hope the corresponding weights xr to be essentially 0 to avoid spurious oscil-
lations. A way to produce xr, same as in the original WENO reconstructions [18,26], is the following:

xr ¼
arPk&2
s¼0as

; r ¼ 0; . . . ; k & 2

with

ar ¼
dr

ð!þ brÞ
2 .

Here, ! > 0 is introduced to avoid the denominator to become 0, and we take ! = 10&6 in our numerical test. br
is the so-called ‘‘smoothness indicator’’ of the stencil Sr(i) which measures the smoothness of the function u(x)
in the stencil and is defined by

br ¼
Xk&1

l¼1

Z xiþ1

xi

Dxiþ1
2

! "2l&1 olprðxÞ
olx

# $2

dx.

Near boundary, one-side biased rather than central stencils could be used in the WENO procedure. More
details about the WENO procedure can be found in [18].

3. High order RD finite difference WENO schemes in one dimension

In this section, we design a residual distribution high order WENO finite difference scheme for one-dimen-
sional steady state problems on non-smooth meshes. In the first subsection, we define the residuals from the
integral form, as in Eq. (1.2), and then describe the distribution of the residuals, complying with the principles
of upwinding and the residual property. We also state and prove a Lax–Wendroff type theorem for conver-
gence towards weak solutions. In the second subsection, we extend the scheme naturally to one-dimensional
systems, based on a local characteristic field decomposition, and using the principles as in the scalar case to
distribute the residuals in the characteristic fields.

3.1. One-dimensional scalar problems

We have the one-dimensional scalar steady state problem

f ðuÞx ¼ gðu; xÞ. ð3:1Þ

We define the grid to be {xi}i=0, . . . ,N, grid function {ui}i=0, . . . ,N, the interval I iþ1
2
¼ ½xi; xiþ1(, the control vol-

ume centered at xi to be Ci (from the mid-point of the interval I i&1
2
to the mid-point of the interval I iþ1

2
), and the

length of Ci is denoted by |Ci|.
The residual in the interval I iþ1

2
is define by

Uiþ1
2
¼
Z xiþ1

xi

ðf ðuÞx & gðu; xÞÞdx ¼ f ðuiþ1Þ & f ðuiÞ &
Z xiþ1

xi

gðu; xÞdx. ð3:2Þ

If we can reach the zero residual limit, i.e., if Uiþ1
2
¼ 0 for all i, then the accuracy of the scheme is determined

by the accuracy of the approximation to
R xiþ1

xi
gðu; xÞdx. In our scheme, we use a fourth order central WENO

integration, which is described in Section 2, to approximate the integral
R xiþ1

xi
gðu; xÞdx (k = 3, leading to a fifth

order central WENO approximation to the integral in each cell and hence a fourth order approximation to the
integral over the whole computational domain). Fourth order accuracy is therefore guaranteed at the zero
residual limit.
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Next, we start to distribute the residuals. In the interval [xi,xi+1], the residual is Uiþ1
2
, and it is to be dis-

tributed to the nodes xi and xi+1. For simplicity and with no ambiguity, we drop the subscript iþ 1
2 for the

residuals. Here we denote the residual distributed to the point xi+1 and xi as U+ and U&, respectively. We
require U = U+ + U& for the conservation and require |U±|/|U| to be uniformly bounded (this is usually
referred to as the residual property [1], which implies that when the zero residual limit Uiþ1

2
¼ 0 is reached,

the distributed residuals U± are also zeros). To have an upwind scheme, one way to distribute the residual
is the following:

Uþ ¼ aU; U& ¼ ð1& aÞU; a 2 ½0; 1( ð3:3Þ

with a determined by

a ¼
1 if !k P e;

0 if !k 6 &e;

rð!k; eÞ; otherwise,

8
><

>:

where !k ¼ f 0ð!uÞ, and !u is the average state in the cell taken to be 1
2 ðui þ uiþ1Þ. The function r(Æ , Æ) is a contin-

uously differentiable entropy correction function for the Roe scheme [15] which is given by

rðk; eÞ ¼ 1

4e3
ðkþ eÞ2ð2e& kÞ; ð3:4Þ

where e is chosen accordingly in the problem.
Finally, the point value ui is updated through sending the distributed residuals to the point xi, as in a pseudo

time-marching scheme, which can be written as a semi-discrete system

dui
dt

þ 1

jCij
Uþ

i&1
2
þ U&

iþ1
2

! "
¼ 0. ð3:5Þ

In our numerical experiments, we use a third order TVD Runge–Kutta scheme [28] for the (pseudo) time dis-
cretization. Since the accuracy in time is irrelevant here, any stable time marching can be used, and strategies
such as preconditioning and multigrid can be used to accelerate convergence towards steady state, but we do
not pursue these approaches in this paper. Because of the residual property, namely the uniform boundedness
of |U±|/|U|, a zero residual limit Uiþ1

2
¼ 0 is clearly also a steady state solution of (3.5). Conversely, a steady

state solution of (3.5) may not imply a zero residual limit Uiþ1
2
¼ 0 for all i. Our numerical experiments indicate

that, near shocks, Uiþ1
2
may not be small even if the steady state solution of (3.5) is reached. Convergence to-

wards weak solutions in this case would thus need to rely on a Lax–Wendroff type theorem stated and proved
below, in the same spirit as that in [5].

Following the notations as above, we additionally denote Dxiþ1
2
¼ xiþ1 & xi and Dx = maxiDxi, and define

the function uDx as a piecewise constant function where uDx(x) = ui, x2Ci.
As defined in Eq. (3.2), the residual is approximated by

Uiþ1
2
¼ f ðuiþ1Þ & f ðuiÞ &RðgðuDx; xÞ; I iþ1

2
Þ; ð3:6Þ

where R gðuDx; xÞ; I iþ1
2

! "
is an approximation of

R
I
iþ1

2

gðu; xÞdx, which can be written as a linear combination of

the point values of g. The distributed residuals, as defined in Eq. (3.3), are U)
iþ1

2
, with the conservation

property,

Uiþ1
2
¼ Uþ

iþ1
2
þ U&

iþ1
2

ð3:7Þ

and the residual property

U)
iþ1

2

%%%
%%%

Uiþ1
2

%%%
%%%
6 C; ð3:8Þ

where here and below C with or without subscriptions denotes constants independent of the mesh sizes.
Equipped with the above properties, we have the following theorem.
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Theorem 3.1. Assume that the flux function f in Eq. (3.1) is Lipschitz continuous, and the source term g(u,x) is
continuous in both arguments. If uDx is a steady state solution of Eq. (3.5) satisfying Eqs. (3.6)–(3.8) , and if there
is a function u with bounded total variation such that

uDx ! u in L1ðRÞ; as Dx ! 0

and

sup
Dx

sup
x

juDxðxÞj 6 C1

then u is a weak solution to Eq. (3.1).

Proof. At steady state of the scheme, Uþ
i&1

2
þ U&

iþ1
2
¼ 0 for all i. Let u 2 C1

0 ðRÞ be a test function, and denote
ui = u(xi). We have,

0 ¼
X

i

Uþ
i&1

2
þ U&

iþ1
2

! "
ui ¼

X

i

Uþ
i&1

2
ui þ U&

iþ1
2
ðuiþ1 & uiþ1 þ uiÞ

¼
X

i

Uþ
i&1

2
þ U&

i&1
2

! "
ui &

X

i

U&
i&1

2
ðui & ui&1Þ ¼

X

i

Ui&1
2
ui &

X

i

U&
i&1

2
ðui & ui&1Þ ¼ Iþ II.

We look at the first summation term,

I ¼
X

i

Ui&1
2
ui ¼

X

i

f ðuiÞ & f ðui&1Þ &R gðuDx; xÞ; I i&1
2

! "! "
ui

¼
X

i

ðf ðuiÞ & f ðui&1ÞÞui &
X

i

R gðuDx; xÞ; I i&1
2

! "
ui

¼ &
X

i

f ðuiÞ
ðuiþ1 & uiÞ

Dxiþ1
2

Dxiþ1
2
&
X

i

R gðuDx; xÞ; I i&1
2

! "
ui.

Note that

&
X

i

f ðuiÞ
ðuiþ1 & uiÞ

Dxiþ1
2

Dxiþ1
2
! &

Z
f ðuÞux dx as Dx ! 0

and

X

i

RðgðuDx; xÞ; I i&1
2
Þui !

Z
gðu; xÞudx as Dx ! 0.

Therefore, I ! &
R
f ðuÞux dx&

R
gðu; xÞudx as Dx ! 0.

Next, we estimate the second term II

jIIj ¼
X

i

U&
i&1

2
ðui & ui&1Þ

%%%%%

%%%%% 6
X

i

U&
i&1

2

%%%
%%%jui & ui&1j 6 C

X

i

Ui&1
2

%%%
%%%jui & ui&1j

6 C
X

i

jf ðuiÞ & f ðui&1Þjjui & ui&1j þ C
X

i

R gðuDx; xÞ; I i&1
2

! "%%%
%%%
jui & ui&1j

Dxi&1
2

Dxi&1
2

6 C2

X

i

jui & ui&1jDxþ C2Dx
X

i

R gðuDx; xÞ; I i&1
2

! "%%%
%%%
jui & ui&1j

Dxi&1
2

.

The second term above without the Dx factor converges to C2

R
jgðu; xÞuxjdx and hence the second term itself

is O(Dx). As for the first term,
X

i

jui & ui&1jDx 6
X

i

jui & uðxiÞjDxþ
X

i

juðxiÞ & uðxi&1ÞjDxþ
X

i

juðxi&1Þ & ui&1jDx.
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By the L1 convergence of the scheme and the fact that u(x) has bounded total variation, |II| ! 0 as Dx ! 0,
and we can conclude that

&
Z

f ðuÞux dx&
Z

gðu; xÞudx ¼ 0;

namely, u is a weak solution to Eq. (3.1). h

We now summarize the procedure of the high order RD finite difference WENO scheme for one-dimen-
sional scalar problems:

1. Compute the residuals defined in Eq. (3.2) using WENO integration with a proper accuracy.
2. Distribute the residuals according to the upwinding principle, which is defined in Eq. (3.3).
3. Update the point values through sending the residuals and forward in pseudo time (3.5) by a TVD Runge–

Kutta time discretization until the steady state is reached.

3.2. One-dimensional systems

Consider a one-dimensional steady state system (3.1) where u, f(u) and g(u) are vector-valued functions in
Rm. For hyperbolic systems, we assume that the Jacobian f 0(u) can be written as LKR, where K is a diagonal
matrix with real eigenvalues on the diagonal, and L and R are matrices of left and right eigenvectors of f 0(u),
respectively.

The grid, grid function and the control volumes are denoted as in Section 3.1. The residual in the interval
[xi,xi+1] is again defined by (3.2). As before, the accuracy of the scheme is determined by the accuracy of the
approximation to

R xiþ1

xi
gðu; xÞdx, which is again obtained by a fourth order central WENO integration.

In order to distribute the residual Uiþ1
2
, we use a local characteristic decomposition in the interval [xi,xi+1].

First, we compute an average state !u between ui and ui+1, using either the simple arithmetic mean or a Roe!s
average [22], and denote !L and !R to be the matrices with left and right eigenvectors L and R evaluated at the
average state, and !kk the corresponding kth eigenvalue. In the following, for simplicity of the notation and with
no ambiguity, we drop the subscript iþ 1

2 in the residuals. We project the residual U to the characteristic fields,
namely,W ¼ !RU. The residualW is to be distributed to the two endpoints xi and xi+1, and we denote the resid-
ual sent to xi+1 and xi by W+ and W&, respectively, with W = W+ + W&. Those residuals are defined by

Wþ ¼ RW; W& ¼ ðI& RÞW; ð3:9Þ

where I is the identity matrix and R is a diagonal matrix with the kth diagonal component

Rkk ¼
1 if !kk P e;

0 if !kk 6 &e;

rð!kk; eÞ; otherwise

8
><

>:

with the function r(Æ , Æ) defined by (3.4) and e chosen accordingly in the problem.
Next, we project the distributed residuals back to the physical space, and denote U+ and U& to be the resid-

uals in the physical space which are sent to the points xi+1 and xi, respectively,

Uþ ¼ !LWþ; U& ¼ !LW&. ð3:10Þ

Finally, as in the scalar case, the point value ui can be updated in the pseudo time-marching semi-discrete
scheme (3.5), which is again discretized by a third order TVD Runge–Kutta scheme in our numerical exper-
iments until steady state is reached.

We now summarize the procedure of the high order RD finite difference WENO scheme for one-dimen-
sional steady state systems:

1. Compute the residuals defined in Eq. (3.2) using WENO integration with a proper accuracy.
2. Project the residuals to local characteristic fields.
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3. Distribute the residuals according to the upwinding principle in characteristic fields, which is defined in
Eq. (3.9).

4. Project the distributed residuals in characteristic fields back to the physical space as in (3.10).
5. Update the point values through sending the residuals in the physical space and forward in pseudo time

(3.5) by a TVD Runge–Kutta time discretization until the steady state is reached.

4. High order RD finite difference WENO schemes in two dimension

In this section, we design a high order RD finite difference WENO scheme for two-dimensional steady state
problems on non-smooth curvilinear meshes. To be more precise, we restrict our attention to such curvilinear
meshes which can be smoothly mapped to non-smooth Cartesian meshes. We will use Cartesian meshes as
examples to describe our algorithm. The numerical experiments in next section will contain both Cartesian
meshes and a special class of quadrilateral meshes consisting of parallelograms. The procedure on general cur-
vilinear meshes is similar. In Section 4.1, we define the residuals from the integral form, as in Eq. (1.2), and
then describe the distribution mechanism. In Section 4.2, we extend the scheme to two-dimensional systems,
based on a local characteristic field decomposition, and distributing the residuals in characteristic fields dimen-
sion-by-dimension.

4.1. Two-dimensional scalar problems

We have the two-dimensional scalar steady state problem

f ðuÞx þ gðuÞy ¼ hðu; x; yÞ. ð4:1Þ

We define the grid to be {(xi,yj)}, grid function {uij}, the cells I iþ1
2;jþ

1
2
¼ ½xi; xiþ1( * ½yj; yjþ1(, the control volume

centered at (xi,yj) to be Cij (formed by connecting the centers of the four cells sharing (xi,yj) as a common
node), and the area of Cij is denoted by |Cij|.

The residual in the cell I iþ1
2;jþ

1
2
is defined by

Uiþ1
2;jþ

1
2
¼
Z yjþ1

yj

Z xiþ1

xi

ðf ðuÞx þ gðuÞy & hðu; x; yÞÞdxdy

¼
Z yjþ1

yj

f ðuðxiþ1; yÞÞ & f ðuðxi; yÞÞð Þdy þ
Z xiþ1

xi

gðuðx; yjþ1ÞÞ & gðuðx; yjÞÞ
& '

dx

&
Z yjþ1

yj

Z xiþ1

xi

hðuðx; yÞ; x; yÞdxdy. ð4:2Þ

If we reach the zero residual limit, i.e., if Uiþ1
2;jþ

1
2
¼ 0 for all i and j, the accuracy of the scheme is determined by

the accuracy of the approximations to the integrations of the fluxes and the source term.
To approximate the integration of the fluxes, which are one-dimensional integrals, we use a fourth order

central WENO integration described in Section 2. As for the source term
R yjþ1

yj

R xiþ1

xi
hðu; x; yÞdxdy, we can

approximate it in a dimension-by-dimension fashion, which is explained as follows. First, we define

Hjþ1
2
ðxÞ ¼

Z yjþ1

yj

hðuðx; yÞ; x; yÞdy

and hence
Z yjþ1

yj

Z xiþ1

xi

hðu; x; yÞdxdy ¼
Z xiþ1

xi

H jþ1
2
ðxÞdx.

The integral
R xiþ1

xi
Hjþ1

2
ðxÞdx can be approximated by a fourth order WENO integration in the x-direction,

using Hjþ1
2
ðxiþkÞ

n o

k¼&1;...;2
. By the definition of Hjþ1

2
ðxÞ, Hjþ1

2
ðxiþkÞ can again be approximated by a fourth order
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WENO integration in the y-direction, using fhðuiþk;jþl; xiþk; yjþlÞgl¼&1;...;2. Therefore, the integration of the
source term can be approximated dimension-by-dimension, and the fourth order accuracy is obtained at
the zero residual limit.

Next, we start to distribute the residuals. In the cell I iþ1
2;jþ

1
2
¼ ½xi; xiþ1( * ½yj; yjþ1(, the residual is Uiþ1

2;jþ
1
2
, and

it is to be distributed to the vertices of the cell, which are defined to be M1 = (xi+1,yj+1), M2 = (xi+1,yj),
M3 = (xi,yj+1) and M4 = (xi,yj). Here, we define the residuals sent to the vertices Mk as Uk

iþ1
2;jþ

1
2
for

k = 1, . . . ,4. For simplicity and without ambiguity, we drop the subscript iþ 1
2 ; jþ

1
2

& '
in the notations. For

conservation and the residual property, we require U ¼
P4

k¼1U
k and |Uk|/|U| to be uniformly bounded.

To have an upwind scheme, one way to distribute the residual is the following:

U1 ¼ abU; U2 ¼ að1& bÞU; U3 ¼ ð1& aÞbU; U4 ¼ ð1& aÞð1& bÞU; a; b 2 ½0; 1( ð4:3Þ

and a, the coefficient for upwinding in the x-direction, is given by

a ¼
1 if !kx P e;

0 if !kx 6 &e;

rð!k; eÞ; otherwise,

8
><

>:

where !kx ¼ f 0ð!uÞ, and !u is an average state in the cell defined by 1
4 ðui;j þ uiþ1;j þ uiþ1;jþ1 þ ui;jþ1Þ. Similarly, b,

the coefficient for upwinding in the y-direction, is given by

b ¼
1 if !ky P e;

0 if !ky 6 &e;

rð!k; eÞ; otherwise,

8
><

>:

where !ky ¼ g0ð!uÞ. r(Æ , Æ) is given in Eq. (3.4) and e is chosen accordingly in the problem.
Our numerical experience indicates that extra dissipation is necessary near shocks for the pseudo time

marching towards steady state to proceed in a stable fashion. We therefore add an additional dissipation resid-
ual Uk

diss to each of Uk, only around the shocks. The dissipation residuals are defined as the following:

U1
diss ¼

d
2
D3 uiþ1;jþ1 & ui;jþ1

Dxiþ1
2

þ uiþ1;jþ1 & uiþ1;j

Dyjþ1
2

 !

;

U2
diss ¼

d
2
D3 uiþ1;j & ui;j

Dxiþ1
2

þ uiþ1;j & uiþ1;jþ1

Dyjþ1
2

 !

;

U3
diss ¼

d
2
D3 ui;jþ1 & uiþ1;jþ1

Dxiþ1
2

þ ui;jþ1 & ui;j
Dyjþ1

2

 !

;

U4
diss ¼

d
2
D3 ui;j & uiþ1;j

Dxiþ1
2

þ ui;j & ui;jþ1

Dyjþ1
2

 !

;

ð4:4Þ

where D ¼ max Dxiþ1
2
;Dyjþ1

2

! "
and the dissipation coefficient d is chosen accordingly in the problem.

Finally, we define the distributed residuals by ~U
k ¼ Uk þ hUk

diss; k ¼ 1; . . . ; 4, where h is a discontinuity indi-
cator defined by h = max(hx,hy), with the one-dimensional discontinuity indicators hx and hy for the x and y
directions given as in [33]; hx is defined by hx ¼ b

bþc with

ai ¼ jui&1;j & ui;jj2 þ e; b ¼ ai
ai&1

þ aiþ1

aiþ2

# $2

; c ¼ jumax & uminj2

ai
ð4:5Þ

and hy is defined similarly, but in the y-direction. A similar indicator with a wider stencil

b ¼ ai&2

ai&3
þ ai&1

ai&2
þ ai
ai&1

þ aiþ1

aiþ2
þ aiþ2

aiþ3
þ aiþ3

aiþ4

# $2

; c ¼ jumax & uminj2

ai&1 þ ai þ aiþ1 þ aiþ2
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with the same ai as that defined in (4.5), is used for two-dimensional systems. Here e is a small positive number
taken as 10&6 in our numerical experiments, and umax and umin are the maximum and minimum values of uij
for all grid points. Clearly, 0 6 h 6 1. Near a strong discontinuity, c + b, h is close to 1. However, in smooth
regions, h = O(D2), hence fourth order accuracy is maintained in smooth regions. This dissipation mechanism
works well for our numerical experiments, but it may not be the optimal approach as it has an adjustable coef-
ficient d, whose choice for optimal performance seems to be problem dependent. Other dissipation mecha-
nisms, such as the one adopted by Abgrall in [2], will be explored in the future.

The point value uij is then updated through sending the distributed residuals to the point (xi,yj), as in a
pseudo time-marching scheme, which can be written as a semi-discrete system

duij
dt

þ 1

jCijj
~U
4

iþ1
2;jþ

1
2
þ ~U

3

iþ1
2;j&

1
2
þ ~U

2

i&1
2;jþ

1
2
þ ~U

1

i&1
2;j&

1
2

! "
¼ 0. ð4:6Þ

We again use a third order TVD Runge–Kutta scheme for the pseudo time discretization. As in the one-
dimensional case, a steady state of Eq. (4.6) may not imply a zero residual Uiþ1

2;jþ
1
2
¼ 0 for all i, j, and

Uiþ1
2;jþ

1
2
may not be small around the shocks even if the steady state solution of Eq. (4.6) is reached. Moreover,

we may lose the strict residual property after adding dissipation residuals, but note that conservation is still

preserved after adding the dissipation since
P4

k¼1U
k
diss ¼ 0. In addition, the residual property is maintained

in smooth regions. It might be possible to improve upon the design of these dissipation residuals to remove
their negative effect on local residual property, along the lines of [1,8]. This will be investigated in the future.
Convergence toward weak solutions in this case rely on a Lax–Wendroff type theorem, and the proof is similar
to that of the one-dimensional case, but is more technical, hence we leave that to Appendix A.

We now summarize the procedure of the high order RD finite difference WENO scheme for two-dimen-
sional scalar steady state problems:

1. Compute the residuals (4.2) using WENO integration with a proper accuracy.
2. Distribute the residuals according to the upwinding principle, which is defined in Eq. (4.3).
3. Revise the residuals by adding a dissipation residual (4.4).
4. Update the point values through sending the residuals and forward in pseudo time (4.6) by a TVD Runge–

Kutta time discretization until the steady state is reached.

4.2. Two-dimensional systems

Consider a two-dimensional steady state system (4.1) where u, f(u), g(u) and h(u,x,y) are vector-valued
functions in Rm. For hyperbolic systems, we assume that any real linear combination of the Jacobians
n1f 0ðuÞ þ n2g0ðuÞ is diagonalizable with real eigenvalues. In particular, we assume f 0(u) and g 0(u) can be
written as LxKxRx and LyKyRy, respectively, where Kx and Ky are diagonal matrices with real eigenvalues
on the diagonal, and Lx, Rx and Ly, Ry are matrices of left and right eigenvectors for the corresponding
Jacobians.

The grid, grid function and the control volumes are denoted as in Section 4.1. The residual in the cell
I iþ1

2;jþ
1
2
¼ ½xi; xiþ1( * ½yj; yjþ1( is still defined by (4.2). As before, if we reach the zero residual limit of the scheme,

the accuracy of the scheme is determined by the accuracy of the approximations to the integrations of the
fluxes and the source term. We again use a fourth order central WENO integration described in Section 2.
For simplicity and without ambiguity, we drop the subscript iþ 1

2 ; jþ
1
2

& '
in the residuals in the following.

We would distribute the residual U to the four vertices {Mk}k=1, . . . ,4, defined in Section 4.1, and the cor-
responding residuals are still denoted by {Uk}k=1, . . . ,4, where Uk 2 Rm. We also require U ¼

P4
k¼1U

k and
the residual property that |Uk|/|U| should stay uniformly bounded. Here we consider a dimension-by-dimen-
sion procedure, coupled with a local characteristic field decomposition. First, we compute an average state
!u in I iþ1

2;jþ
1
2
, using either the simple arithmetic mean or a Roe!s average [22], and denote !Lx and !Rx as the

matrices with left and right eigenvectors Lx and Rx of f 0(u) evaluated at the average state, and !k
k
x the corre-

sponding eigenvalues; !Ly , !Ry and !k
k
y are defined similarly but associated with Ly, Ry and Ky of g 0(u).
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We first consider the x-direction and project the residual U to the x-characteristic fields: W ¼ !RxU. The
residual W is to be split into two parts in the x-direction: one is W+, which is sent to the side xi+1; the other
is W&, sent to the side xi, and W = W+ + W&. W± are defined by

Wþ ¼ RW; W& ¼ ðI& RÞW; ð4:7Þ

where I is the identity matrix and R is a diagonal matrix with the kth diagonal component

Rkk ¼
1 if !k

k
x P e;

0 if !k
k
x 6 &e;

rð!kkx; eÞ otherwise

8
>><

>>:

with the function r(Æ , Æ) defined by (3.4) and e chosen accordingly in the problem. Then we project W± back to
the physical space to obtain Û

)

Û
þ ¼ !LxWþ; Û

& ¼ !LxW&.

Next, we consider the y-direction, and we would distribute the two parts Û
)
in the y-direction. We first project

Û
)
to the y-characteristic fields to obtain P±

Pþ ¼ !RyÛ
þ
; P& ¼ !RyÛ

&
.

Then we distribute P± in the y-characteristic fields according to upwinding and the residual property as
follows:

!W1 ¼ CPþ; !W2 ¼ ðI& CÞPþ; !W3 ¼ CP&; !W4 ¼ ðI& CÞP&; ð4:8Þ

where I is the identity matrix and C is a diagonal matrix with the kth diagonal component

Ckk ¼

1 if !k
k
y P e;

0 if !k
k
y 6 &e;

rð!kky ; eÞ; otherwise.

8
>>><

>>>:

Finally, we project the distributed residuals back to the physical space

Uk ¼ !Ly
!Wk

; k ¼ 1; . . . ; 4.

As in the scalar case, we add a dissipation residual Uk
diss to each of Uk around the shocks. The dissipation resid-

uals are defined in Eq. (4.4). We define the distributed residuals by ~U
k ¼ Uk þ hUk

diss, k = 1, . . . ,4, where h is the
discontinuity indicator given in Section 4.1.

The point value uij is then updated through sending the distributed residuals to the point (xi,yj), as in a
pseudo time-marching scheme, which can be written as the semi-discrete system (4.6). We again use a third
order TVD Runge–Kutta scheme for the pseudo time discretization.

We now summarize the procedure of the high order RD finite difference WENO scheme for two-dimen-
sional steady state systems:

1. Compute the residuals defined in Eq. (4.2) using WENO integration with a proper accuracy.
2. Project the residuals to the local x-characteristic fields.
3. Distribute the residuals in the x-direction according to the upwinding principle, which is defined in Eq.

(4.7), and transform the two parts of residuals back to the physical space.
4. Project the residuals to the local y-characteristic fields.
5. Distribute the residuals in the y-direction, according to Eq. (4.8), and transform the four distributed resid-

uals back to the physical space.
6. Revise the residuals by adding a dissipation residual.
7. Update the point values through sending the residuals and forward in pseudo time (4.6) by a TVD Runge–

Kutta time discretization until the steady state is reached.
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As before, conservation is still preserved after adding the dissipation since
P4

k¼1U
k
diss ¼ 0. In addition, the

residual property is maintained in smooth regions.
In our numerical tests in following section, there are several examples (Examples 5.4.1, 5.4.3 and 5.4.4) in

which the L1 residue can only be reduced to around 10&4–10&6 and then stagnates at that level. This might be
related to the boundary conditions or lack of suitable numerical dissipation in certain regimes. More study is
needed to address this issue.

5. Numerical results

In this section, we provide numerical experimental results to demonstrate the behavior of our schemes.
Pseudo time discretization towards steady state is by the third order TVD Runge–Kutta method in all numer-
ical simulations. In Sections 5.1 and 5.2, for one-dimensional problems, the parameter e in (3.4) for Roe!s
entropy correction is taken as 0; and in Sections 5.3 and 5.4, for two-dimensional problems, e is taken as
0.1 unless otherwise stated.

5.1. One-dimensional scalar problems

In this section, numerical steady state is obtained with L1 residue reduced to the round-off level.

Example 5.1.1. We solve the steady state solution of the one-dimensional Burgers equation with a source
term

ut þ
u2

2

# $

x

¼ sin x cos x ð5:1Þ

with the initial condition

uðx; 0Þ ¼ b sin x ð5:2Þ

and the boundary condition u(0, t) = u(p, t) = 0. This problem was studied in [24] as an example of multiple
steady state solutions for characteristic initial value problems. Here we take b = 2, which gives a smooth stea-
dy state solution u(x,1) = sinx. We test our scheme on both uniform meshes and non-smooth meshes which
are obtained by randomly perturbing each node of the uniform mesh up to 20% of the mesh sizes. The numer-
ical results are shown in Table 1. We can see clearly that fourth order accuracy is achieved and the magnitudes
of the errors are comparable for both uniform and non-uniform, non-smooth meshes.

Example 5.1.2. We solve the Burgers equation (5.1) and take b = 0.5 in (5.2) as the initial condition. This

problem has a solution with a shock, located at p& arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& b2

q
, 2:0944. The numerical solution on a

non-smooth mesh which is 20% randomly perturbed is shown in Fig. 1. We can see that the numerical shock
is at the correct location and is resolved well.

Table 1
Errors and numerical orders of accuracy of the fourth order RD finite difference WENO scheme for Example 5.1.1 on non-smooth and
uniform meshes with N cells

N Non-smooth mesh Uniform mesh

L1 error Order L1 error Order L1 error Order L1 error Order

20 7.02E & 05 – 1.37E & 04 – 6.52E & 05 – 1.01E & 04 –
40 3.89E & 06 4.17 5.72E & 06 4.58 3.30E & 06 4.30 5.18E & 06 4.29
80 2.02E & 07 4.27 3.19E & 07 4.16 1.91E & 07 4.11 3.00E & 07 4.11
160 1.29E & 08 3.97 1.97E & 08 4.02 1.17E & 08 4.03 1.83E & 08 4.03
320 7.82E & 10 4.04 1.22E & 09 4.01 7.24E & 10 4.01 1.14E & 09 4.01
640 4.83E & 11 4.02 7.58E & 11 4.01 4.52E & 11 4.00 7.10E & 11 4.00
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Example 5.1.3. We consider the steady state solutions of the Burgers equation with a different source term:

ut þ
u2

2

# $

x

¼ &p cosðpxÞu; x 2 ½0; 1( ð5:3Þ

equipped with the boundary condition u(0, t) = 1 and u(1, t) = &0.1. This problem has two steady state solu-
tions with shocks:

uðx;1Þ ¼
uþ ¼ 1& sinðpxÞ if 0 6 x < xs;

u& ¼ &0:1& sinðpxÞ if xs 6 x < 1;

)

where xs = 0.1486 or xs = 0.8514. Both solutions satisfy the Rankine–Hugoniot jump condition and the en-
tropy conditions, but only the one with the shock at 0.1486 is stable for small perturbation. This problem
was studied in [13] as an example of multiple steady states for one-dimensional transonic flows. This case is
tested to demonstrate that starting with a reasonable perturbation of the stable steady state, the numerical
solution converges to the stable one.

The initial condition is given by

uðx; 0Þ ¼
1 if 0 6 x < 0:5;

&0:1 if 0:5 6 x < 1;

)

where the initial jump is located in the middle of the positions of the shocks in the two admissible steady state
solutions. We test our scheme on a non-smooth mesh which is 20% perturbed from the uniform one. The
numerical result and the exact solution are displayed in Fig. 2. We can see the correct shock location and good
resolution of the shock.

5.2. One-dimensional systems

In this section, numerical steady state is obtained with L1 residue reduced to the round-off level.

Example 5.2.1. We solve the steady state solutions of the one-dimensional shallow water equation

h

hu

# $

t

þ
hu

hu2 þ 1
2 gh

2

# $

x

¼
0

&ghbx

# $
; ð5:4Þ

where h denotes the water height, u is the velocity of the fluid, b(x) represents the bottom topography and g is
the gravitational constant.

x

u

0 0.5 1 1.5 2 2.5 3

–0.5

0

0.5

1

exact
numerical

Fig. 1. The numerical solution (symbols) versus the exact solution (solid line) for Example 5.1.2. Non-smooth mesh with 80 cells.
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Starting from a stationary initial condition, which itself is a steady state solution, we can check the order of
accuracy. The smooth bottom topography is given by

bðxÞ ¼ 5e&
2
5ðx&5Þ2 ; x 2 ½0; 10(.

The initial condition is the stationary solution

hþ b ¼ 10; hu ¼ 0

and the exact steady state solution is imposed as the boundary condition.
We test our scheme on uniform meshes as well as on non-smooth meshes which are 20% perturbed form the

uniform ones. The numerical results are shown in Table 2. We can clearly see the order of accuracy and the
errors on these two types of meshes are comparable.

Example 5.2.2. We test our scheme on the steady state solution of the one-dimensional nozzle flow problem

q

qu

E

0

B@

1

CA

t

þ
qu

qu2 þ p

uðE þ pÞ

0

B@

1

CA

x

¼ & a0ðxÞ
aðxÞ

qu

q2u2=q

uðE þ pÞ

0

B@

1

CA; x 2 ½0; 1(; ð5:5Þ

where q denotes the density, u is the velocity of the fluid, E is the total energy, c is the gas constant, which is
taken as 1.4, p ¼ ðc& 1Þ E & 1

2qu
2

& '
is the pressure, and a(x) represents the area of the cross-section of the

nozzle.

Table 2
Errors and numerical orders of accuracy for the water height h of the fourth order RD finite difference WENO scheme for Example 5.2.1
on non-smooth and uniform meshes with N cells

N Non-smooth mesh Uniform mesh

L1 error Order L1 error Order L1 error Order L1 error Order

20 4.55E & 03 – 1.67E & 02 – 5.29E & 03 – 1.65E & 02 –
40 3.83E & 04 3.57 9.61E & 04 4.12 2.71E & 04 4.29 8.81E & 04 4.23
80 1.52E & 05 4.66 4.23E & 05 4.50 1.11E & 05 4.61 4.07E & 05 4.44
160 6.71E & 07 4.50 2.37E & 06 4.16 5.70E & 07 4.28 2.08E & 06 4.29
320 3.64E & 08 4.20 1.31E & 07 4.18 3.30E & 08 4.11 1.18E & 07 4.14
640 2.13E & 09 4.09 7.56E & 09 4.11 2.01E & 09 4.04 7.08E & 09 4.06

x

u

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

exact
numerical

Fig. 2. The stable entropy solution (solid line) and the numerical solution (symbols) for Example 5.1.3. Non-smooth mesh with 80 cells.
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We start with an isentropic initial condition, with a shock at x = 0.5. The density q and pressure p at &1
are 1, and the inlet Mach number at x = 0 is 0.8. The outlet Mach number at x = 1 is 1.8, with linear Mach
number distribution before and after the shock. The area of the cross-section a(x) is then determined by the
relation

aðxÞf ðMach number at xÞ ¼ constant 8x 2 ½0; 1(;

where

f ðwÞ ¼ w
ð1þ dw2Þp

; d ¼ 1

2
ðc& 1Þ; p ¼ 1

2
" cþ 1

c& 1
.

From Fig. 3, we can see that the shock is resolved well. Also, we can observe in Table 3 that the design
fourth order accuracy can be achieved outside three cells around the shock for non-smooth meshes if we
approximate the integral in the shocked cell in two parts separated by the shock, that is, if the shock xs is
within [xi,xi+1], then the integrals over [xi,xs] and over [xs,xi+1] are approximated separately using WENO
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Fig. 3. Nozzle flow problem. Non-smooth mesh with 81 cells. Solid lines: exact solution; symbols: numerical solution. Top left: density;
top right: momentum; bottom left: pressure; bottom right: total energy.
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with one-sided stencils (but always including the points xi and xi+1). This is an idea of sub-cell resolution [16]
and requires an accurate estimate of the shock location xs, which we take as the exact shock location in our
numerical experiment. If we perform the approximation of the integral in the shocked cell in the usual way, we
would lose some accuracy in the downstream due to error pollution, as shown in the lower half of the table.
We refer to [14] for more discussions on such accuracy issues for high order WENO methods applied to sys-
tems with shocks. Notice that we have put the exact shock location at the center of a cell for all the meshes.

5.3. Two-dimensional scalar problems

In this section, numerical steady state is obtained with L1 residue reduced to the round-off level.

Example 5.3.1. We solve the steady state problem of two-dimensional Burgers equation with a source term

ut þ
1ffiffiffi
2

p u2

2

# $

x

þ 1ffiffiffi
2

p u2

2

# $

y

¼ sin
xþ yffiffiffi

2
p

# $
cos

xþ yffiffiffi
2

p
# $

; ðx; yÞ 2 0;
pffiffiffi
2

p
* +

* 0;
pffiffiffi
2

p
* +

ð5:6Þ

with the initial condition given by

uðx; y; 0Þ ¼ b sin
xþ yffiffiffi

2
p

# $
. ð5:7Þ

This is the one-dimensional problem in Example 5.1.1 along the northeast–southwest diagonal line. Here, we
use the exact solution of the steady state problem as boundary conditions. We have also experimented with the
exact solution on the inflow boundaries and extrapolation of the point values with fourth order accuracy on
the outflow boundaries, obtaining similar results.

Since our grids are not aligned with the diagonal line, this is a truly two-dimensional test case. For this

example we take b = 1.2, which gives a smooth steady state solution uðx; y;1Þ ¼ sin xþyffiffi
2

p
! "

. For this example,

the parameter e in (3.4) for Roe!s entropy correction is taken as 0. We test our scheme on both uniform meshes
and non-smooth meshes which are 20% randomly perturbed from the uniform ones. For an example of the
non-smooth randomly perturbed mesh, see Fig. 4. The numerical results are shown in Table 4. We can see
clearly that fourth order accuracy is achieved and the magnitudes of the errors on these two types of meshes
are comparable.

Table 3
Errors outside three cells around the shock and numerical orders of accuracy for the density q of the fourth order RD finite difference
WENO scheme for Example 5.2.2 on non-smooth meshes with N cells

N Before shock After shock

L1 error Order L1 error Order L1 error Order L1 error Order

Sub-cell separate integrations in the shocked cell
21 1.36E & 07 – 7.09E & 07 – 7.58E & 06 – 3.35E & 05 –
41 1.44E & 08 3.23 6.13E & 08 3.53 5.08E & 07 3.90 2.19E & 06 3.93
81 1.28E & 09 3.49 4.85E & 09 3.66 1.67E & 08 4.93 6.61E & 08 5.05
161 8.34E & 11 3.94 3.11E & 10 3.96 7.72E & 10 4.43 3.00E & 09 4.46
321 5.41E & 12 3.95 2.00E & 11 3.96 3.65E & 11 4.40 1.36E & 10 4.46
641 2.22E & 13 4.60 1.20E & 12 4.05 1.75E & 12 4.38 4.92E & 12 4.80

Regular integration in the shocked cell
21 1.36E & 07 – 7.09E & 07 – 1.75E & 05 – 6.42E & 05 –
41 1.44E & 08 3.24 6.13E & 08 3.53 4.38E & 06 1.99 1.42E & 05 2.18
81 1.28E & 09 3.49 4.85E & 09 3.66 1.11E & 06 1.98 3.37E & 06 2.07
161 8.34E & 11 3.94 3.11E & 10 3.96 2.34E & 07 2.25 7.29E & 07 2.21
321 5.41E & 12 3.95 2.00E & 11 3.96 5.81E & 08 2.01 1.77E & 07 2.04
641 2.22E & 13 4.61 1.22E & 12 4.04 8.15E & 09 2.83 2.52E & 08 2.81
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Example 5.3.2. We consider the steady state solution of the following problem:

ut þ
1ffiffiffi
2

p u2

2

# $

x

þ 1ffiffiffi
2

p u2

2

# $

y

¼ &p cos p
xþ yffiffiffi

2
p

# $
u; ðx; yÞ 2 0;

1ffiffiffi
2

p
* +

* 0;
1ffiffiffi
2

p
* +

. ð5:8Þ

This is the one-dimensional problem in Example 5.1.3 along the northeast–southwest diagonal line. Inflow
boundary conditions are given by the exact solution of the steady state problem. Again, since our grids are
not aligned with the diagonal line, this is a truly two-dimensional test case. As before, this problem has
two steady state solutions with shocks

uðx; y;1Þ ¼
1& sin p xþyffiffi

2
p

! "
if 0 6 xþyffiffi

2
p < xs;

&0:1& sin p xþyffiffi
2

p
! "

if xs 6 xþyffiffi
2

p < 1;

8
><

>:

where xs = 0.1486 or xs = 0.8514. Both solutions satisfy the Rankine–Hugoniot jump condition and the en-
tropy conditions, but only the one with the shock at xþyffiffi

2
p ¼ 0:1486 is stable for small perturbation.

The initial condition is given by

uðx; y; 0Þ ¼
1 if 0 6 xþyffiffi

2
p < 0:5;

&0:1 if 0:5 6 xþyffiffi
2

p < 1;

(

where the initial jump is located in the middle of the positions of the shocks in the two admissible steady state
solutions. We test our scheme on a non-smooth mesh which is 20% perturbed from the uniform one. The

x

y

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Fig. 4. A demonstration of the non-smooth mesh with 20 · 20 cells.

Table 4
Errors and numerical orders of accuracy of the fourth order RD finite difference WENO scheme for Example 5.3.1 on non-smooth and
uniform meshes with N · N cells

N · N Non-smooth mesh Uniform mesh

L1 error Order L1 error Order L1 error Order L1 error Order

20 · 20 1.62E & 06 – 5.25E & 06 – 1.63E & 06 – 5.15E & 06 –
40 · 40 1.22E & 07 3.73 3.28E & 07 4.00 1.15E & 07 3.82 2.98E & 07 4.11
80 · 80 8.31E & 09 3.88 1.96E & 08 4.06 7.83E & 09 3.88 1.83E & 08 4.03
160 · 160 5.49E & 10 3.92 1.22E & 09 4.00 5.13E & 10 3.93 1.14E & 09 4.01
320 · 320 3.52E & 11 3.96 7.63E & 11 4.00 3.23E & 11 3.99 7.09E & 11 4.00
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coefficient d for the dissipation (4.4) is taken as 10. The numerical result is displayed in Fig. 5. We can see the
correct shock location and a good resolution of the solution.

Example 5.3.3. We consider the one-dimensional Burgers equation viewed as a two-dimensional steady state
problem

ut þ
u2

2

# $

x

þ uy ¼ 0; ðx; yÞ 2½ 0; 1( * ½0; 1( ð5:9Þ

with the boundary conditions

uðx; 0; tÞ ¼ 1:5& 2x; uð0; y; tÞ ¼ 1:5; uð1; y; tÞ ¼ &0:5.

This problem was studied in [9] as a prototype example for shock boundary layer interaction. We start from an
initial condition u(x,y, 0) = u(x, 0,0) and march to steady state by a pseudo-time marching. The isolines of the
numerical solution and the cross-sections for y = 0.25 across the fan, for y = 0.5 right at the junction where
the fan becomes a single shock, and at y = 0.75 across the shock, are displayed in Fig. 6. We can clearly
observe good resolution of the numerical scheme for this example. The coefficient d for the dissipation
(4.4) is taken as 10.

5.4. Two-dimensional systems

Example 5.4.1. We consider a Cauchy–Riemann problem

oW
ot

þ A
oW
ox

þ B
oW
oy

¼ 0; ðx; yÞ 2 ½&2; 2( * ½&2; 2(; t > 0; ð5:10Þ

where

A ¼
1 0

0 &1

# $
and B ¼

0 1

1 0

# $

with the following Riemann data W = (u,v)T:

x

y

0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(x+y)/sqrt(2)

u

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1 exact
numerical

Fig. 5. Example 5.3.2. Non-smooth mesh with 80 · 80 cells. Left: 25 equally spaced contours of the solution from &1.2 to 1.1; right: the
numerical solution (symbols) versus the exact solution (solid line) along the cross-section through the northeast to southwest diagonal.
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u ¼

1 if x > 0 and y > 0;

&1 if x < 0 and y > 0;

&1 if x > 0 and y < 0;

1 if x < 0 and y < 0

8
>>><

>>>:
and v ¼

1 if x > 0 and y > 0;

&1 if x < 0 and y > 0;

&1 if x > 0 and y < 0;

2 if x < 0 and y < 0.

8
>>><

>>>:
ð5:11Þ

The solution is self-similar, and therefore W ðx; y; tÞ ¼ ~W x
t ;

y
t

& '
. Let n ¼ x

t, g ¼ y
t, then

~W satisfies

ð&nI þ AÞ o
~W

on
þ ð&gI þ BÞ o

~W
og

¼ 0; ð5:12Þ

which can be written as

o
on

½ð&nI þ AÞ ~W ( þ o
og

½ð&gI þ BÞ ~W ( ¼ &2 ~W ð5:13Þ

x

y
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0.6

0.8

1

x

u

0 0.2 0.4 0.6 0.8 1
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0.5

1

1.5

numerical
exact
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u

0 0.2 0.4 0.6 0.8 1
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1.5

numerical
exact

x

u
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1
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numerical
exact

Fig. 6. Example 5.3.3. Non-smooth mesh with 80 · 80 cells. Top left: 25 equally spaced contour lines from &0.6 to 1.6. Top right: cross-
section at y = 0.25; bottom left: cross-section at y = 0.5; bottom right: cross-section at y = 0.75. For the cross-sections, the solid lines are
for the exact solution and symbols are for the numerical solution.
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with the boundary conditions at infinity given by the Riemann data in (5.10) and (5.11) at time t = 1. Eq.
(5.13) can be solved by the pseudo-time marching scheme with the prescribed boundary condition and the
same initial condition as in (5.11). The numerical results are shown in Fig. 7. The resolution of the numerical
scheme for this problem is very good. The coefficient d for the dissipation (4.4) is taken as 1. In this case, the L1

residue can only be reduced to the level around 10&6 and then stagnates at that level.

Example 5.4.2. We consider a regular shock reflection problem of the steady state solution of the two-
dimensional Euler equations

ut þ fðuÞx þ gðuÞy ¼ 0; ðx; yÞ 2½ 0; 4( * ½0; 1(; ð5:14Þ

where u = (q,qu,qv,E)T, f(u) = (qu,qu2 + p,quv,u(E + p))T, and g(u) = (qv,quv,qv2 + p,v(E + p))T. Here q is
the density, (u,v) is the velocity, E is the total energy and p ¼ ðc& 1Þ E & 1

2 ðqu
2 þ qv2Þ

& '
is the pressure. c is the

gas constant which is again taken as 1.4 in our numerical tests.

We start with an initial condition where (q,u,v,p) = (1.69997,2.61934,&0.50632,1.52819) on y = 4 and
ðq; u; v; pÞ ¼ ð1; 2:9; 0; 1cÞ otherwise. The boundary conditions are given by (q,u,v,p) = (1.69997,2.61934,
&0.50632,1.52819) on y = 4, and reflective boundary condition on y = 0. The left boundary at x = 0 is set
as an inflow with ðq; u; v; pÞ ¼ ð1; 2:9; 0; 1cÞ, and the right boundary at x = 4 is set to be an outflow with no
boundary conditions prescribed (one-sided WENO integration is performed near the right boundary). The
coefficient d for the dissipation (4.4) is taken as 10. Numerical steady state is obtained with L1 residue reduced
to the round-off level for this problem. For the convergence history of the L1 residue, see Fig. 8 (the dash-dot
line).

The numerical results are shown in Fig. 9. We can clearly see a good resolution of the incident and reflected
shocks.

Example 5.4.3. We consider the same shock reflection problem as in the previous example, but use a different
mesh. Our choice for the new mesh is non-Cartesian and consists of parallelograms, and is almost aligned with
the shocks, as shown in the left graph of Fig. 10. We can see in the right graph of Fig. 10 that the shocks are
well resolved by a coarse 60 · 30 mesh. This demonstrates the capability of algorithm for non-Cartesian
meshes. In this case, the L1 residue can only be reduced to the level around 10&4 and then stagnates at that
level. For the convergence history of the L1 residue, see Fig. 8 (the solid line).
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Fig. 7. Example 5.4.1. Non-smooth mesh with 80 · 80 cells. 20 Equally spaced contours for u from &3 to 1.6 (left) and 20 equally spaced
contours for v from &1.6 to 3.5 (right).
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Fig. 8. The L1 residues of Example 5.4.2 (dash-dot line) and Example 5.4.3 (solid line).
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Fig. 9. Shock reflection. 160 · 40 Non-smooth mesh. Left: 23 equally spaced contours from 0.94 to 2.72 for the density; right: 25 equally
spaced contours from 5 to 15.2 for the energy.
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Fig. 10. Shock reflection. Non-Cartesian mesh with 60 · 30 cells. Left: a demonstration of the mesh with 20 · 10 cells; right: 23 equally
spaced contours from 0.94 to 2.72 for the density.
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Example 5.4.4. We solve the problem of flow passing a wedge with a 60# angle. Steady state solution of the
Euler equations (5.14) is computed with the initial condition taken as q = 1, p = 1/1.4, (u,v) = (1.8,0) which is
a Mach 1.8 flow. The boundary conditions are set to be reflective on both sides of the wedge. We use a non-
Cartesian mesh consisting of parallelograms, which is aligned with the two sides of the wedge, as shown in the
left graph of Fig. 11. This is an easier setup than the multi-domain finite difference setup in [19], albeit with
difficulties in the implementation of reflective boundary conditions along the wedge except for special angles
such as the 60# angle that we have tested. In the right hand side of Fig. 11, we can see that the shock is resolved
well. In this case, the L1 residue can only be reduced to the level around 10&4 and then stagnates at that level.

6. Concluding remarks

In this paper, we have designed a high order residual distribution finite difference WENO scheme on non-
smooth Cartesian or general curvilinear meshes for solving steady state solutions of conservation laws in one
and two space dimensions. The restriction on the meshes allows us to compute the residual dimension by
dimension to high order accuracy, therefore the cost of the algorithm is comparable with that of the high order
finite difference WENO schemes and much lower than that of the high order finite volume WENO schemes,
yet the new method does not have the requirement for the smoothness of the meshes of the traditional high
order conservative finite difference schemes. The idea of residual distribution is adapted and allows us to
obtain high order accuracy at steady state. A Lax–Wendroff type theorem is proved for convergence towards
weak solutions in one and two dimensions. Numerical examples are given to demonstrate the accuracy and
non-oscillatory shock resolution of the proposed scheme. Generalization of the technique to 3D is straightfor-
ward and will be carried out in the future. Acceleration techniques to reach steady state more efficiently,
improvement on the additional dissipation residual for stabilizing the pseudo time marching, and extension
of the method for time accurate problems also constitute future work.
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Appendix A. A Lax–Wendroff type theorem for two dimensions

In this appendix, we state and prove a Lax–Wendroff type theorem for convergence towards weak solutions
in two-dimensional scalar case.
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Fig. 11. Example 5.4.4. Flow passing a wedge. Non-Cartesian mesh with 80 · 80 cells. Left: a demonstration of the mesh with 20 · 20
cells; right: 20 equally spaced contours from 0 to 2.6 for the density.
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We follow the notations in Section 4.1. In addition, we define Sx
iþ1

2
¼ fxjx 2 ½xi; xiþ1(g; Sy

jþ1
2
¼ fyjy 2 ½yj;

yjþ1(g, Dxiþ1
2
¼ xiþ1 & xi; Dyjþ1

2
¼ yjþ1 & yj and Dx = maxiDxi, Dy = maxjDyj, D = max(Dx,Dy). Here, we

assume 0 < C1 6 jDxiþ1
2
=Dyjþ1

2
j 6 C2 for all i, j. Also, we define the function uDx,Dy as a piecewise constant func-

tion where uDx,Dy(x,y) = uij, (x,y) 2 Cij.
As in Section 4.2, the residual in the cell I iþ1

2;jþ
1
2
given by (4.2) is approximated by

Uiþ1
2;jþ

1
2
¼ R f ðuDx;Dyðxiþ1; yÞÞ; Sy

jþ1
2

! "
&R f ðuDx;Dyðxi; yÞÞ; Sy

jþ1
2

! "
þR gðuDx;Dyðx; yjþ1ÞÞ; Sx

iþ1
2

! "

&R gðuDx;Dyðx; yjÞÞ; Sx
iþ1

2

! "
þR R hðuDx;Dy ; x; yÞ; Sy

jþ1
2

! "
; Sx

iþ1
2

! "
;

where R is the one-dimensional numerical integration operator, with the first argument as the integrand and
the second the integration interval. The integral approximation can be written as a linear combination of the
point values of the integrand, as described in Section 2, and therefore the residual with 2r & 1 order accuracy
can be represented by

Uiþ1
2;jþ

1
2
¼
Xr&1

k¼&rþ2

ðakiþ1;jf ðuiþ1;jþkÞ & akijf ðui;jþkÞÞDyjþ1
2
þ
Xr&1

k¼&rþ2

ðbki;jþ1gðuiþk;jþ1Þ & bkijgðuiþk;jÞÞDxiþ1
2

þR R hðuDx;Dy ; x; yÞ; Sy
jþ1

2

! "
; Sx

iþ1
2

! "
; ðA:15Þ

where the coefficients akij ¼ akijðui;j&rþ2; . . . ; ui;jþr&1Þ are Lipschitz continuous functions in all the arguments, and
so are bkij. For example, the WENO weights used in this paper are Lipschitz continuous since the smoothness
indicators are smooth functions of u.

The distributed residuals, as defined in Section 4.1, are ~U
k
iþ1

2;jþ
1
2
; k ¼ 1; . . . ; 4, which are revised from the ori-

ginal one by adding a dissipation residual hUk
diss defined in Eq. (4.4), where h is the local discontinuity indica-

tor. Suppose the residuals satisfy the conservation property, by the fact that
P4

k¼1U
k
diss ¼ 0

Uiþ1
2;jþ

1
2
¼
X4

k¼1

~U
k
iþ1

2;jþ
1
2
¼
X4

k¼1

Uk
iþ1

2;jþ
1
2

ðA:16Þ

and residual property for the unrevised distributed residuals

Uk
iþ1

2;jþ
1
2

%%%
%%%

Uiþ1
2;jþ

1
2

%%%
%%%
6 C; k ¼ 1; . . . ; 4. ðA:17Þ

Equipped with properties mentioned above, we have the following theorem.

Theorem A.1. Assume that the flux function f and g in Eq. (4.1) are Lipschitz continuous, and the source term
h(u,x,y) is continuous in all arguments. If uDx,Dy is a steady state solution of Eq. (4.6) satisfying Eqs. (A.15)–
(A.17) , and there is a function u with bounded total variation such that

uDx;Dy ! u in L1ðR2Þ as Dx;Dy ! 0

and

sup
Dx;Dy

sup
x;y

juDx;Dyðx; yÞj 6 C;

then u is a weak solution to Eq. (4.1).

Proof. At steady state of the scheme, ~U
1

i&1
2;j&

1
2
þ ~U

2

i&1
2;jþ

1
2
þ ~U

3

iþ1
2;j&

1
2
þ ~U

4

iþ1
2;jþ

1
2
¼ 0 for all i, j. Let u 2 C1

0 ðR
2Þ be a

test function, denote uij = u(xi,yj), and define hiþ1
2;j

¼
h
iþ1

2
;jþ1

2
þh

iþ1
2
;j&1

2
2 and hi;jþ1

2
¼

h
i&1

2
;jþ1

2
þh

iþ1
2
;jþ1

2
2 . We have
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0 ¼
X

i;j

~U
1

i&1
2;j&

1
2
þ ~U

2

i&1
2;jþ

1
2
þ ~U

3

iþ1
2;j&

1
2
þ ~U

4

iþ1
2;jþ

1
2

! "
uij

¼
X

i;j

U1
i&1

2;j&
1
2
þ U2

i&1
2;jþ

1
2
þ U3

iþ1
2;j&

1
2
þ U4

iþ1
2;jþ

1
2

! "
uij þ dD3

*
X

i;j

hi&1
2;j
uij & ui&1;j

Dxi&1
2

þ hiþ1
2;j
uij & uiþ1;j

Dxiþ1
2

þ hi;j&1
2

uij & ui;j&1

Dyj&1
2

þ hi;jþ1
2

uij & ui;jþ1

Dyjþ1
2

 !

uij

¼
X

i;j

Ui&1
2;j&

1
2
uij &

X

i;j

U2
i&1

2;jþ
1
2
ðui;jþ1 & uijÞ &

X

i;j

U3
iþ1

2;j&
1
2
ðuiþ1;j & uijÞ &

X

i;j

U4
iþ1

2;jþ
1
2
ðuiþ1;jþ1 & uijÞ þ dD3

*
X

i;j

hi&1
2;j
uij & ui&1;j

Dxi&1
2

þ hiþ1
2;j
uij & uiþ1;j

Dxiþ1
2

þ hi;j&1
2

uij & ui;j&1

Dyj&1
2

þ hi;jþ1
2

uij & ui;jþ1

Dyjþ1
2

 !

uij

¼ Iþ IIþ IIIþ IVþ V.

We look at the first summation term,

I ¼
X

i;j

Ui&1
2;j&

1
2
uij

¼
X

i;j

Xr&1

k¼&rþ2

akijf ðui;jþkÞ & aki&1;jf ðui&1;jþkÞ
! "

Dyjþ1
2
ui;jþ1

þ
X

i;j

Xr&1

k¼&rþ2

bkijgðuiþk;jÞ & bki;j&1gðuiþk;j&1Þ
! "

Dxiþ1
2
uiþ1;j &

X

i;j

R R hðuDx;Dy ; x; yÞ; Sy
j&1

2

! "
; Sx

i&1
2

! "
uij

¼ &
X

i;j

Xr&1

k¼&rþ2

akijf ðui;jþkÞ
uiþ1;jþ1 & ui;jþ1

Dxiþ1
2

Dxiþ1
2
Dyjþ1

2
&
X

i;j

Xr&1

k¼&rþ2

bkijgðuiþk;jÞ
uiþ1;jþ1 & uiþ1;j

Dyjþ1
2

Dyjþ1
2
Dxiþ1

2

&
X

i;j

R R hðuDx;Dy ; x; yÞ; Sy
j&1

2

! "
; Sx

i&1
2

! "
uij

¼ &
X

i

X

j

R f ðuDx;Dy ; xi; yÞ; Sy
jþ1

2

! "uiþ1;jþ1 & ui;jþ1

Dxiþ1
2

Dxiþ1
2

&
X

j

X

i

R gðuDx;Dy ; x; yjÞ; Sx
iþ1

2

! "uiþ1;jþ1 & uiþ1;j

Dyjþ1
2

Dyjþ1
2
&
X

i;j

R R hðuDx;Dy ; x; yÞ; Sy
j&1

2

! "
; Sx

i&1
2

! "
uij.

Note that:

&
X

i

X

j

R f ðuDx;Dy ; xi; yÞ; Sy
jþ1

2

! "uiþ1;jþ1 & ui;jþ1

Dxiþ1
2

Dxiþ1
2
! &

Z Z
f ðuÞux dxdy as Dx;Dy ! 0;

&
X

j

X

i

R gðuDx;Dy ; x; yjÞ; Sx
iþ1

2

! "uiþ1;jþ1 & uiþ1;j

Dyjþ1
2

Dyjþ1
2
! &

Z Z
gðuÞuy dxdy as Dx;Dy ! 0;

&
X

i;j

R R hðuDx;Dy ; x; yÞ; Sy
j&1

2

! "
; Sx

i&1
2

! "
uij !

Z Z
hðu; x; yÞudxdy as Dx;Dy ! 0.

Therefore,

I ! &
Z Z

f ðuÞux dxdy &
Z Z

gðuÞuy dxdy &
Z Z

hðu; x; yÞudxdy as Dx;Dy ! 0.
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Next, we estimate the second term II:

jIIj ¼
X

i;j

U2
i&1

2;jþ
1
2
ðui;jþ1 & uijÞ

%%%%%

%%%%% 6
X

i;j

U2
i&1

2;jþ
1
2

%%%
%%%jui;jþ1 & uijj 6 C

X

i;j

Ui&1
2;jþ

1
2

%%%
%%%jui;jþ1 & uijj

6 C
X

i;j

Xr&1

k¼&rþ2

jakijf ðui;jþkÞ & aki&1;jf ðui&1;jþkÞjjui;jþ1 & uijjDy

þ C
X

i;j

Xr&1

k¼&rþ2

jbki;jþ1gðuiþk;jþ1Þ & bkijgðuiþk;jÞjjui;jþ1 & uijjDx

þ
X

i;j

R R jhðuDx;Dy ; x; yÞj; Sy
jþ1

2

! "
; Sx

i&1
2

! "
jui;jþ1 & ui;jj

6 C
X

i;j

Xr&1

k¼&rþ2

jakijjjf ðui;jþkÞ & f ðui&1;jþkÞjjui;jþ1 & uijjDy

þ C
X

i;j

Xr&1

k¼&rþ2

jakij & aki&1;jjjf ðui&1;jþkÞjjui;jþ1 & uijjDy

þ C
X

i;j

Xr&1

k¼&rþ2

jbki;jþ1jjgðuiþk;jþ1Þ & gðuiþk;jÞjjui;jþ1 & uijjDx

þ C
X

i;j

Xr&1

k¼&rþ2

jbki;jþ1 & bki;jjjgðuiþk;jÞjjui;jþ1 & uijjDx

þ
X

i;j

R R jhðuDx;Dy ; x; yÞj; Sy
jþ1

2

! "
; Sx

i&1
2

! "
jui;jþ1 & ui;jj.

Since
R R

jhðu; x; yÞjjuy jdxdy is bounded,
P

i;jR R jhðuDx;Dy ; x; yÞj; Sy
jþ1

2

! "
; Sx

iþ1
2

! "
ui;jþ1&ui;j

Dy
jþ1

2

%%%%

%%%% is bounded, hence the

last term above is of the size O(Dy). Also, due to Lipschitz continuity of akij, b
k
ij and the flux functions, and

boundedness of uij and 0 < C1 6 Dxiþ1
2
=Dyjþ1

2

%%%
%%% 6 C2, we have

jIIj 6 C3

X

i;j

jui;j & ui&1;jjDxDy þ C3

X

i;j

jui;j & ui;j&1jDxDy þOðDyÞ. ðA:18Þ

The first term on the right side of (A.18) can be estimated by
X

i;j

jui;j & ui&1;jjDxDy 6
X

i;j

juij & uðxi; yjÞjDxDy þ Dy
X

i

X

j

juðxi; yjÞ & uðxi&1; yjÞjDx

þ
X

i;j

juðxi&1; yjÞ & ui&1;jjDxDy

and it goes to zero when the mesh is refined due to the L1 convergence of the numerical solution and the fact
that limit solution u has bounded total variation. Similarly, the second term on the right side of (A.18) also
goes to zero when the mesh is refined. Therefore, II ! 0 as Dx,Dy ! 0. Similarly, we can easily prove that
III, IV ! 0 as Dx,Dy ! 0.

Lastly,

V ¼ dD3
X

i;j

hi&1
2;j
uij & ui&1;j

Dxi&1
2

& hiþ1
2;j
uiþ1;j & ui;j

Dxiþ1
2

 !

uij þ dD3
X

i;j

hi;j&1
2

uij & ui;j&1

Dyj&1
2

& hi;jþ1
2

ui;jþ1 & uij
Dyjþ1

2

 !

uij

¼ dD3
X

i;j

hi&1
2;j
ðuij & ui&1;jÞ

uij & ui&1;j

Dxi&1
2

þ dD3
X

i;j

hi;j&1
2
ðuij & ui;j&1Þ

uij & ui;j&1

Dyj&1
2

.
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Clearly, the boundedness of h and uij implies that |V| is bounded by O(D), hence V! 0 as D ! 0. We can now
conclude that

&
Z Z

f ðuÞux dxdy &
Z Z

gðuÞuy dxdy ¼
Z Z

hðu; x; yÞudxdy

so u is a weak solution of Eq. (4.1). h
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