Math 6112 - Spring 2020
Problem Set 2
Due: Friday 24 January 2020
6. Define the center of a category \mathcal{C} to be the class of natural transformations of the identity functor $1_{\mathcal{C}}$ to itself. Let $\mathcal{C}=R-\underline{\bmod }$ and let c be an element of the center of R. For any $M \in O b(R-\underline{\bmod })$ let $\eta(c)_{M}: M \rightarrow M$ denote the map $x \mapsto c x$ for $x \in M$. Show that the map $\eta(c): M \mapsto \eta(c)_{M}$ is a natural transformation in the center of $R-\bmod$ and every element of the center of $R-\bmod$ is of this form. Show that $c \mapsto \eta(c)$ is a bijection of the center of R with the center of $R-\underline{\bmod }$ and hence the center of $R-\underline{\bmod }$ is a set.
7. Let \mathcal{C} and \mathcal{D} be categories and let $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$ define an equivalence of categories. Let $f \in \operatorname{Hom}_{\mathcal{C}}(A, B)$. Show that any of the following properties of f implies the same property for $F(f)$:
(a) f is monic;
(b) f is epic;
(c) f has a right (or left) inverse;
(d) f is an isomorphism.

Let \mathcal{C} be a category and $f_{i}: A_{i} \rightarrow B$ be two morphisms in \mathcal{C}. A pullback of $\left\{f_{1}, f_{2}\right\}$ or a fibered product of A_{1} and A_{2} is a triple (C, g_{1}, g_{2}) consisting of an object C of \mathcal{C} and morphisms $g_{i}: C \rightarrow A_{i}$ such that the following diagram commutes

and such that if

is any commutative diagram containing f_{1} and f_{2} then there is a unique $k: D \rightarrow C$ such that

is commutative. We usually denote C by $A_{1} \times{ }_{B} A_{2}$. As in the above exercise if a pull back exists it is unique up to isomorphism. [The dual notion to a pull back is a push out and can be defined by reversing all the arrows above.]
8. Now take $\mathcal{C}=\underline{G r p}$ and $f_{i}: G_{i} \rightarrow H$ in $\underline{G r p}$. Let M be the subgroup of the product $\overline{G_{1}} \times G_{2}$ defined by

$$
M=\left\{\left(g_{1}, g_{2}\right) \in G_{1} \times G_{2} \mid f_{1}\left(g_{1}\right)=f_{2}\left(g_{2}\right)\right\}
$$

Let $m_{i}=\left.p_{i}\right|_{M}$ where the p_{i} are the projections of $G_{1} \times G_{2}$ onto G_{i}. Show that $\left(M, m_{1}, m_{2}\right)$ is a pull back of $\left\{f_{1}, f_{2}\right\}$, i.e., $M=G_{1} \times_{H} G_{2}$.
9. Let p be a prime number and let $I=\{1,2,3, \ldots\}$ be the directed set of positive integers with their usual order. For each $n \in I$ let $\mathbb{Z} / p^{n} \mathbb{Z}$ be the ring of integers $\bmod p^{n}$. If $m \leq n$ we have the projections $\varphi_{n m}: \mathbb{Z} / p^{n} \mathbb{Z} \rightarrow \mathbb{Z} / p^{m} \mathbb{Z}$. The ring of p-adic integers is the inverse limit ring $\mathbb{Z}_{p}=\lim _{n} \mathbb{Z} / p^{n} \mathbb{Z}$.
(i) Show that \mathbb{Z}_{p} can be constructed as sequences of residue classes $a=\left(a_{1}(\bmod p), a_{2}\left(\bmod p^{2}\right), a_{3}\left(\bmod p^{3}\right), \ldots\right)$ where the a_{i} are integers and for $\ell \geq k$ we have $a_{k} \equiv a_{\ell}\left(\bmod p^{k}\right)$ with componentwise addition and multiplication. The maps $\eta_{n}: \mathbb{Z}_{p} \rightarrow \mathbb{Z} / p^{n} \mathbb{Z}$ are given by $a \mapsto a_{n}\left(\bmod p^{n}\right)$.
(ii) Show that every element of \mathbb{Z}_{p} can be represented by a representative of the form $\left(r_{0}, r_{0}+r_{1} p, r_{0}+r_{1} p+r_{2} p^{2}, \ldots\right)$ with $0 \leq r_{i}<p$.
(iii) Show that if we associate to $\left(r_{0}, r_{0}+r_{1} p, r_{0}+r_{1} p+r_{2} p^{2}, \ldots\right)$ the formal sum $r_{0}+r_{1} p+r_{2} p^{2}+\cdots=\sum r_{i} p^{i}$, called a p-adic number, then the addition and multiplication in \mathbb{Z}_{p} correspond to the usual sum and product of series with the usual rules of "carrying".

