Math 6112 - Spring 2020
Problem Set 5
Due: Friday 14 February 2020
20. Prove that the direct sum of projective modules is projective, i.e. if each P_{α} is projective, with $\alpha \in I$, then so is $\bigoplus_{\alpha \in I} P_{\alpha}$.
21. If $e \in R$ is an idempotent (so $e^{2}=e$), show that $R e$ is a projective R-module.
22. (Schanuel's Lemma) Suppose we have two short exact sequences

$$
0 \rightarrow N_{1} \rightarrow P_{1} \rightarrow M \rightarrow 0
$$

and

$$
0 \rightarrow N_{2} \rightarrow P_{2} \rightarrow M \rightarrow 0
$$

with P_{1} and P_{2} projective modules. Show that $P_{1} \oplus N_{2} \simeq P_{2} \oplus N_{1}$.
23. Show that direct summands of injective modules are injective, i.e., if I is an injective R-module and $I=M \oplus N$ then M is injective. (Of course, the same is true for N.)
24. Prove that the direct product of injective modules is again injective, i.e., if each Q_{α} with $\alpha \in I$ is injective then so is $\prod_{\alpha \in I} Q_{\alpha}$.

