
Spectral construction of non-holomorphic Eisenstein-type series

and their Kronecker limit formula

James Cogdell Jay Jorgenson ∗ Lejla Smajlović
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Abstract

Let X be a smooth, compact, projective Kähler variety and D be a divisor of a holomorphic form
F , and assume that D is smooth up to codimension two. Let ω be a Kähler form on X and KX

the corresponding heat kernel which is associated to the Laplacian that acts on the space of smooth
functions on X. Using various integral transforms of KX , we will construct a meromorphic function
in a complex variable s whose special value at s = 0 is the log-norm of F with respect to µ. In the case
when X is the quotient of a symmetric space, then the function we construct is a generalization of
the so-called elliptic Eisenstein series which has been defined and studied for finite volume Riemann
surfaces.

1 Introduction

1.1 Kronecker’s limit formula

The discrete group PSL2(Z) acts on the upper half plane H, and the quotient space PSL2(Z)\H has one
cusp which can be taken to be at i∞ by identifying PSL2(Z)\H with its fundamental domain. Associated
to the cusp is a non-holomorphic Eisenstein series Epar

∞ (z, s) which initially is defined as a Poincaré series
for Re(s) > 1 but can be shown to admit a meromorphic continuation to all s ∈ C. One realization of
the classical Kronecker limit formula is the asymptotic expansion that

Epar
∞ (z, s) =

3

π(s− 1)
− 1

2π
log
(
|∆(z)|Im(z)6

)
+ C +Oz(s− 1) as s→ 1

where C = 6(1− 12 ζ ′(−1)− log(4π))/π. An elegant proof of Kronecker’s limit formula can be found in
[Si80], though the normalization used in [Si80] is slightly different than in [JST16] from which we quote
the above formulation. The series Epar

∞ (z, s) has a well-known functional equation which allows one to
restate Kronecker’s limit formula as

Epar
∞ (z, s) = 1 + log

(
|∆(z)|1/6Im(z)

)
s+Oz(s

2) as s→ 0.

There are many results in the mathematical literature which develop and explore analogues of Kro-
necker’s limit formula. One particularly motivating study is given in [KM79] in which the authors define a
non-holomorphic hyperbolic Eisenstein series Ehyp

γ (z, s) associated to any hyperbolic subgroup, generated
by a hyperbolic element γ, of an arbitrary co-finite discrete subgroup Γ of PSL2(R). The Kronecker limit
formula obtained in [KM79] states that the Poincaré series which defines Ehyp

γ (z, s) admits a meromorphic

continuation to s ∈ C and the value of Ehyp
γ (z, s) at s = 0 is, in effect, the harmonic one-form which is

dual to the geodesic on Γ\H associated to γ.

∗The second named author acknowledges grant support PSC-CUNY.
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Abelian subgroups of discrete groups Γ which act on H are classified as parabolic, hyperbolic and
elliptic, so it remained to define and study non-holomorphic Eisenstein series associated to any elliptic
subgroup of an arbitrary discrete group Γ. Any elliptic subgroup can be viewed as the stabilizer group of a
point w on the quotient Γ\H, where in all but a finite number of cases the elliptic subgroup consists solely
of the identity element of Γ. One can envision the notion of a non-holomorphic elliptic Eisenstein series
Eell
w (z, s) which, if the above examples serve as forming a pattern, will admit a mermorphic continuation

and whose special value at s = 0 will be associated to a harmonic form of some type specified by w.
Indeed, such series were studied in [vP10] and, in fact, the Kronecker limit function is the log-norm of a
holomorphic form which vanishes only at w.

1.2 A unified approach

The article [JvPS16] developed a unified construction of the hyperbolic, elliptic and parabolic Eisenstein
series mentioned above for any finite volume quotient of H; of course, if the quotient is compact, then
parabolic Eisenstein series do not exist. The goal of [JvPS16] was to devise a means, motivated by a type
of pre-trace formula, so that the various Eisenstein series could be obtained by employing different test
functions. As one would expect, there were numerous technical considerations which arose, especially in
the case when Γ was not co-compact. In the end, one can view the approach developed in [JvPS16] as
starting with a heat kernel, and then undertaking a sequence of integral transforms until one ends up
with each of the above mentioned Eisenstein series. Whereas the article [JvPS16] did provide a unified
approach to the construction of parbolic, hyperbolic and elliptic Eisenstein series for hyperbolic Riemann
surfaces, the analysis did employ the geometry of SL2(R) quite extensively.

1.3 Our results

The goal of the present paper is to understand the heat kernel construction of non-holomorphic elliptic
Eisenstein series in a more general setting. We consider a smooth, complex, projective variety X of
complex dimension N . We fix a smooth Kähler metric on X, which we denote by the (1, 1) form ω. In
general terms, let us now describe the approach we undertake to define and study what we call elliptic
Eisenstein series.

Let t be a positive real variable, and let z and w be points on X. Let KX(z, w; t) be the heat kernel
acting on smooth functions on X associated to the Laplacian ∆X corresponding to ω; see, for example,
[Ch84] or [BGV91]. One of the key properties of KX(z, w; t) is that it satisfies the heat equation, meaning
that

(∆z + ∂t)KX(z, w; t) = 0.

We compute the integral transform in t of KX(z, w; t) after multiplying by a function G(t, u) which
satisfies the differential equation (∂t − ∂2u)G(t, u) = 0. By what amounts to integration by parts, we get
a function (KX ∗G)(z, w;u) which satisfies the equation(

∆z − ∂2u
)
(KX ∗G)(z, w;u) = 0.

If one formally replaces u by iu, one gets the kernel function associated to the wave equation. However,
this substitution is only formal because of convergence considerations; nonetheless, one is able to use
the language of distributions in order to achieve the desired result which is to obtain a wave kernel
WX(z, w;u). At this point, one would like to integrate the wave kernel against the test function (sinhu)−s

for a complex variable s to yield, as in [JvPS16], the elliptic Eisenstein series. Again, however, technical
problems occur because of the vanishing of sinh(u) when u = 0. Instead, we integrate the wave kernel
against (coshu)−s, for which there is no such technical issue. We then replace s by s+ 2k and sum over
k, in a manner dictated by, of all things, the binomial theorem, thus allowing us to mimic the use of
(sinhu)−s. In doing so, we arrive at the analogue of the elliptic Eisenstein series EX(z, w; s), where s is
a complex variable, initially required to have real part Re(s) sufficiently large, z is a variable on X, and
w is a fixed point on X. Though w may be referred to as the elliptic point, it is, in the case X is smooth,
simply a chosen point on X.

As a final step, we let D be the divisor of a holomorphic form F on X, and assume that D is smooth
up to codimension two. We show that the integral of EX(z, w; s) with respect of the metric µD(w) on D
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induced from the Kähler form ω has an expansion in s at s = 0, and the second order term in s is the
log-norm of F . This result is the analogue of the classical Kronecker limit formula.

Thus far, all results are obtained by using the spectral expansion of the heat kernel associated to the
Laplacian ∆X . We can equally well reconsider all of the above steps for the operator ∆X − Z for any
complex number Z, in which case we do not begin with the heat kernel KX(z, w; t) but rather we begin
with KX(z, w; t)e−Zt. If, for whatever reason, there is a means by which we have another expression
for the heat kernel, and also have a compelling reason to choose a specific Z, then we may end up with
another expression for EX(z, w; s). Such a situation occurs when, for instance, X is the quotient of a
symmetric space G/K by a discrete group Γ. In this case, the heat kernel can be obtained as the inverse
spherical transform of an exponential function. In that setting, it is natural to take Z = −ρ20 where
ρ0 is essentially the norm, with respect to the Killing form, of half the sum of the positive roots. (In
the notation of Gangoli [Ga68], our ρ0 would be his |ρ∗|.) Finally, we note that one can, without loss
of generality, re-scale the time variable t by a positive constant c, so then all begins with the function
KX(z, w; t/c)e−Zt/c. In the development of our results, it will be evident that it is necessary to both
translate the Laplacian ∆X and re-scale time t, where it will become evident that as long as ρ20 ̸= 0, then
it is natural to take c = 1/(4ρ20), which would have the effect of scaling ρ0 to be 1/2, or ρ20 to be 1/4.
(See section 2.7 below.)

The full development of these considerations in all instances would take a considerable amount of time
and space, so for the purpose of the present article we will focus on the results obtainable by considering
the spectral decomposition of the heat kernel in the case of a compact Kähler variety X. However, it
is possible to give an indication of what will follow when an additional expression for the heat kernel is
available. For instance, if X is an abelian variety, we obtain an expression for the heat kernel on X by
viewing X as a complex torus. As an example of our analysis, we can take D to be the divisor of the
Riemann theta function θ, so then our construction expresses the log-norm of the Riemann theta function
θ as a type of Kronecker limit function.

1.4 Outline of the paper

The article is organized as follows. In section 2 we establish notation and recall some known results. In
section 3, we define the wave distribution associated to a certain space of smooth functions on X. In
section 4 we apply the wave distribution to the test function cosh−(s−ρ0)(u), for a suitably chosen constant
ρ0, yielding a function KX;ρ2

0
(z, w; s). In section 5 we define two series formed from KX;ρ2

0
(z, w; s), one

producing a formula for the resolvent kernel GX;ρ2
0
(z, w; s), which is the integral kernel that inverts the

operator ∆X + s(s− ρ0). The second series EX;ρ2
0
(z, w; s) is the analogue of the elliptic Eisenstein series.

The analogue of Kronecker’s limit formula is given in section 6. Finally, in section 7, we conclude with
some examples. In our opinion, each example is of independent interest. Admittedly, the discussion in
section 7 is somewhat speculative; however, we elected to include the discussion in an attempt to illustrate
some of the directions we believe our results can apply.

In an unavoidable mishap of notation, the heat kernel on X is denoted by KX(z, w; t), and the function

obtained by applying the wave distribution to cosh−(s−ρ0)(u) is KX;ρ2
0
(z, w; s). Similarly, Γ will sometimes

signify the Gamma function and sometimes signify a discrete group acting on a symmetric space. In each
case, the meaning will be clear from the context of the discussion.

2 Background material

In this section we establish notation and state certain elementary results which will be used throughout
the article. The contents in this section are given in no particular order of importance.
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2.1 Stirling’s approximation

Stirling’s approximation for the logarithm log Γ(s) of the classical gamma function is well-known, and we
will use the form which states that

log Γ(s) = s log(s)− s+
1

2
log(2π/s) +

M∑
n=1

B2n

2n(2n− 1)s2n−1
+ hM (s), (1)

where Bn is the n-th Bernoulli number and hM (s) is a holomorphic function in the half-plane Re(s) ≫ 0
and hM (s) = OM (s−2M−1) as s → ∞. The proof of (1) is found in various places in the literature; see,
for example, [JLa93]. Going further, the proof from [JLa93] extends to show that one can, in effect,
differentiate the above asymptotic formula. More precisely, for any integer ℓ ≥ 0, one has that

∂ℓs log Γ(s) = ∂ℓs

(
s log(s)− s+

1

2
log(2π/s) +

M∑
n=1

B2n

2n(2n− 1)s2n−1

)
+ ∂ℓshM (s), (2)

where ∂ℓshM (s) = OM,ℓ(s
−2M−ℓ−1), as s→ ∞.

We will use the notational convenience of the Pochhammer symbol (s)n, which is defined as

(s)n :=
Γ(s+ n)

Γ(s)
.

2.2 Elementary integrals

For any real number r ∈ R and complex number ν with Re(ν) > 0, we have, from 3.985.1 of [GR07] the
integral formula ∫ ∞

0

cos(ur) cosh−ν(u) du =
2ν−2

Γ(ν)
Γ

(
ν − ir

2

)
Γ

(
ν + ir

2

)
. (3)

If r = 0, then we get the important special case that∫ ∞

0

cosh−ν(u) du =
2ν−2Γ2(ν/2)

Γ(ν)
, (4)

which is stated in 3.512.1 of [GR07]. Additionally, we will use that for any r ∈ C with Re(r2) > 0 and
u ∈ C with Re(u) > 0, one has that

u√
4π

∫ ∞

0

e−r2te−u2/(4t)t−1/2 dt

t
= e|r|u. (5)

For any real valued function g and r ∈ C, we define H(r, g) as

H(r, g) := 2

∫ ∞

0

cos(ur)g(u) du. (6)

This is a purely formal definition; the conditions on g under which we consider H(r, g) are stated in
section 3 below.

2.3 An asymptotic formula

For the convenience of the reader, we state here a result from page 37 of [Er56]. Let (α, β) ⊂ R. Let g be
a real-valued continuous function, and h be a real-valued continuously differentiable function, on (α, β)
such that the integral

β∫
α

g(t)exh(t)dt
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exists for sufficiently large x. Assume there is an η > 0 such that h′(t) < 0 for t ∈ (α, α+η). In addition,
for some ϵ > 0, assume that h(t) ≤ h(α)− ϵ for t ∈ (α+ η, β). Suppose that

h′(t) = −a(t− α)ν−1 + o((t− α)ν−1) and g(t) = b(t− α)λ−1 + o((t− α)λ−1) as t→ α+

for some positive λ and ν. Then

β∫
α

g(t)exh(t)dt =
b

ν
Γ(λ/ν)(ν/(ax))λ/νexh(α) (1 + o(1)) as x→ ∞. (7)

Note that the assumptions on h hold if α = 0, h(0) = 0 and is monotone decreasing, which is the setting
in which we will apply the above result. In this case, we will use that the above integral is O(x−λ/ν).

2.4 Geometric setting

Let X be a compact, complex, smooth projective variety of complex dimension N . Fix a smooth Kähler
metric µ on X, which is associated to the Kähler (1, 1) form ω. Let ρ denote a (local) potential for the
metric µ. If we choose local holomorphic coordinates z1, . . . , zN in the neighborhood of a point on X,
then one can write ω as

ω =
i

2

N∑
j,k=1

gj,k̄dzj ∧ dz̄k =
i

2
∂z∂z̄ρ

If M is a subvariety of X, the induced metric on M will be denoted by µM . In particular, the induced
metric on X itself is µX , which we will simply write as µ. In a slight abuse of notation, we will also write
µM , or µ in the case M = X, for the associated volume form against which one integrates functions.

The corresponding Laplacian ∆X which acts on smooth functions on X is

∆X = −
N∑

j,k=1

gj,k̄
∂2

∂zj∂z̄k
,

where, in standard notation, (gj,k̄) = (gj,k̄)
−1; see page 4 of [Ch84]. An eigenfunction of the Laplacian

∆X is an a priori C2 function ψj which satisfies the equation

∆Xψj − λjψj = 0

for some constant λj , which is the eigenvalue associated to ψj . It is well-known that any eigenfunction
is subsequently smooth, and every eigenvalue is greater than zero except when ψj is a constant whose
corresponding eigenvalue is zero. As is standard, we assume that each eigenfunction is normalized to
have L2 norm equal to one.

Weyl’s law asserts that

#{λj |λj ≤ T} = (2π)−2NvolN (B)volω(X)TN +O(TN−1/2) as T → ∞

and volω(X) is the volume of X under the metric µ induced by ω, and volN (B) is the volume of the unit
ball in R2N . As a consequence of Weyl’s law, one has that for any ε > 0,

∞∑
k=1

λ−N−ε
k <∞; (8)

see, for example, page 9 of [Ch84]. The eigenfunction ψj corresponding to the eigenvalue λj satisfies a
sup-norm bound on X, namely that

∥ψj∥∞ = OX

(
λ
N/2−1/4
j

)
; (9)

see [SZ02] and references therein.
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2.5 Holomorphic forms

By a holomorphic form F we mean a holomorphic section of a power of the canonical bundle Ω on X;
see page 146 of [GH78]. (Note: On page 146 of [GH78], the authors denote the canonical bundle by KX ,
which we will not since this notation is being used both for the heat kernel and the function obtained
by applying the wave distribution to hyperbolic cosine.) The weight n of the form equals the power of
the bundle of which F is a section. Let D denote the divisor of F , and assume that D is smooth up to
codimension two. In the case X is a quotient of a symmetric space G/K by a discrete group Γ, then F is
a holomorphic automorphic form on G/K with respect to Γ. With a slight gain in generality, and with
no increase in complication of the analysis, we can consider sections of the canonical bundle obtained by
considering the tensor product of the canonical bundle with a flat line bundle. The Kähler form ω will
induce a norm on F , which we denote by ∥F∥ω; see [GH78] for a general discussion as well as section 2
of [JK01]. We can describe the norm as follows.

As in the notation of section 2 of [JK01], let U be an element of an open cover of X. Once we
trivialize Ω on U , we can express the form F in local coordinates z1, . . . , zN . Also, we have the existence
of a Kähler potential ρ of the Kähler form ω. Up until now, there has been no natural scaling of ω. We
do so now, by scaling ω by a multiplicative constant c so that cω is a Chern form of Ω; see page 144 of
[GH78] as well as chapter 2 of [Fi18]. In a slight abuse of notation, we will denote the re-scaled Kähler
form by ω.

With this scaling of ω, one can show that |F (z)|e−nρ(z) is invariant under change of coordinates; see
section 2.3 of [JK01]. With this, one defines

∥F∥2ω(z) := |F (z)|2e−2nρ(z), (10)

where n is the weight of the form. The formula is local for each U in the open cover, but its invariance
implies that the definition extends independently of the various choices made. Following the discussion
of Chapter 1 of [La88], the above equation can be written in differential form as

ddc log ∥F∥2ω = n(δD − ω) (11)

where δD denotes the Dirac delta distribution supported on D.

Kähler metrics have the property that the associated Laplacian of a function does not involve deriva-
tives of the metric, as stated on page 75 of [Ba06]. Exercise 1.27.3(a) of [Fi18] states the formula

1

2
∆X,dfω

n = ni∂∂̄f ∧ ωn−1 (12)

where ∆X,d is the Laplacian stemming from the differential d and f is a smooth function, subject to
the normalizations of various operators as stated in [Fi18]. As a corollary of (12), one interpret (11) as
asserting that ∆X log ∥F∥2ω is a non-zero constant away from D.

2.6 The heat and Poisson kernel

The heat kernel acting on smooth functions on X can be defined formally as

KX(z, w; t) =

∞∑
k=0

e−λktψk(z)ψk(w),

where {ψj} are eigenfunctions associated to the eigenvalue λj . As a consequence of Weyl’s law and the
sup-norm bound for eigenfunctions, the series which defines the heat kernel converges for all t > 0 and
z, w ∈ X. Furthermore, if z ̸= w, then the heat kernel has exponential decay when t approaches zero; see
page 198 of [Ch84].

For any Z ∈ C with Re(Z) ≥ 0, the translated by −Z Poisson Kernel PX,−Z(z, w;u), for z, w ∈ X
and u ∈ C with Re(u) ≥ 0 is defined by

PX,−Z(z, w;u) =
u√
4π

∫ ∞

0

KX(z, w; t)e−Zte−u2/(4t)t−1/2 dt

t
. (13)
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The translated Poisson kernel PX,−Z(z, w;u) is a fundamental solution associated to the differential
operator ∆X + Z − ∂2u. For certain considerations to come, we will choose a constant ρ0 ≥ 0, which
will depend on the geometry of X, and write each eigenvalue of ∆X as λj = ρ20 + t2j . Thus, we divide

the spectral expansion of the heat kernel KX into two subsets: The finite sum for λj < ρ20, so then
tj ∈ (0, iρ0], and the sum over λj ≥ ρ20, so then tj ≥ 0. Using (5), we get the spectral expansion

PX,−Z(z, w;u) =
∑

λk<ρ2
0

e−u
√
λk+Zψk(z)ψk(w) +

∑
λk≥ρ2

0

e−u
√
λk+Zψk(z)ψk(w). (14)

By Theorem 5.2 and Remark 5.3 of [JLa03], PX,−Z(z, w;u) admits an analytic continuation to Z = −ρ20.
In analogy with [JvPS16], we can deduce that that the continuation of PX,−Z(z, w;u) for Z = −ρ20, with
Re(u) > 0 and Re(u2) > 0 is given by

PX,ρ2
0
(z, w;u) =

∑
λk<ρ2

0

e−u
√

λk−ρ2
0ψk(z)ψk(w) +

∑
λk≥ρ2

0

e−utkψk(z)ψk(w), (15)

where
√
λk − ρ20 = tk ∈ (0, iρ0] is taken to be the branch of the square root obtained by analytic

continuation through the upper half-plane.

As stated, if z ̸= w, then the heat kernel has exponential decay as t approaches zero. From this, one
can show that the Poisson kernel PX,−Z(z, w;u) is bounded as u approaches zero for any Z.

At this point, we would like to define the (translated by ρ20) wave kernel by defining

WX,ρ2
0
(z, w;u) = PX,ρ2

0
(z, w; iu) + PX,ρ2

0
(z, w;−iu),

for some branch of the meromorphic continuation of PX,ρ2
0
(z, w;u) to all u ∈ C. However, because of

convergence issues, we cannot simply replace u by iu in the expression for the Poisson kernel. As a result,
we define the wave distribution via the spectral expansion for the analytic continuation of PX,ρ2

0
in (15).

2.7 An elementary, yet important, rescaling observation

By writing the Laplacian as in the beginning of section 2.3, we have established specific conventions
regarding various scales, or multiplicative constants, in our analysis. However, there is one additional
scaling which could be considered. Specifically, one could consider the heat equation ∆z + c∂t for any
positive constant c. The associated heat kernel would be KX(z, w; t/c), if the heat kernel associated to
∆z + ∂t is KX(z, w; t). In doing so, we would replace (13) by

PX,−Z(z, w;u) =
u√
4π

∫ ∞

0

KX(z, w; t/c)e−Zt/ce−u2/(4t)t−1/2 dt

t
. (16)

for some positive constant c. In effect, we are changing the parameterize for the positive real axis R+

from the parameter t to t/c for any positive constant c. In this manner, we rescale the data from the
beginning of our consideration so that when we study the translation of the heat kernel, we can, provided
ρ20 > 0, choose c appropriately so that translation ρ20/c is always equal to 1/4.

In the examples we develop, the choice of the ρ20 will be determined by a “non-spectral” representation
of the heat kernel, after which we choose c = 1/(4ρ20), provided ρ0 ̸= 0. As it turns out, the translation
by 1/4 matters. This point will become relevant in section 6 below.

3 The wave distribution

For z, w ∈ X and function g ∈ C∞
c (R+), we formally define the wave distribution WX,ρ2

0
(z, w)(g) applied

to g by the series

WX,ρ2
0
(z, w)(g) =

∑
λj≥0

H(tj , g)ψj(z)ψj(w), (17)

where H(tj , g) is given by (6) and tj =
√
λj − ρ20 if λj ≥ ρ20, otherwise tj ∈ (0, iρ0].

7



Definition 1 For a ∈ R+ and m ∈ N, let S′
m(R+, a) be the set of Schwartz functions on R+ with

g(k)(0) = 0 for all odd integers k with 0 ≤ k ≤ m+ 1 and where eua|g(u)| is dominated by an integrable
function on R+.

The following proposition addresses the question of convergence of (17).

Theorem 1 Fix z, w ∈ X, with z ̸= w, there exists a continuous, real-valued function Fz,w(u) on R+

and an integer m sufficiently large such that the following assertions hold.

(i) One has that Fz,w(u) = (−1)m+1
∑

λj<ρ2
0
eu
√

ρ2
0−λj · t−(m+1)

j ψj(z)ψj(w) +O(um+1) as u→ ∞.

(ii) For any non-negative integer j ≤ m, we have the bound ∂juFz,w(u) = O(um+1−j) as u→ 0+.

(iii) For any g ∈ S′
m(R+, ρ0) such that ∂jug(u) exp(ρ0u) has a limit as u → ∞ and is bounded by some

integrable function on R+ for all non-negative integers j ≤ m+ 1, we have

WX,ρ2
0
(z, w)(g) =

∞∫
0

Fz,w(u)∂
m+1
u g(u)du. (18)

The implied constants in the error terms in statements (i) and (ii) depend on m and the distance between
z and w.

Proof: Choose an integer m ≥ 4N + 1, where N is the complex dimension of X. To begin, we claim
the following statement: For every integer k with 0 ≤ k ≤ m, there is a polynomial hk,m(x) of degree at
most m such that

hk,m(sin(x)) =
xk

k!
+Om(xm+1) as x→ 0.

Indeed, one begins by initially setting h
(0)
k,m(x) = xk/k!. The function h

(0)
k,m(sin(x)) has a Taylor series

expansion near zero of the form

h
(0)
k,m(sin(x)) =

xk

k!
+ cℓx

ℓ +Oℓ(x
ℓ+1) as x→ 0

for some real number cℓ and integer ℓ ≥ k + 1. Now set h
(1)
k,m(x) to be h

(1)
k,m(x) = h

(0)
k,m(x)− cℓx

ℓ so then

h
(1)
k,m(sin(x)) =

xk

k!
+ cpx

p +Op(x
p+1) as x→ 0

for some real number cp and integer p ≥ ℓ + 1 ≥ k + 2. One can continue to subtract multiplies of
monomials of higher degree, thus further reducing the order of the error term until the claimed result is
obtained; it is elementary to complete the proof of the assertion with the appropriate proof by induction
argument.

Having proved the above stated assertion, we then have for any ζ ∈ C \ {0} that

e−tζ −
m∑

k=0

hk,m(sin(t))(−ζ)k = Oζ(t
m+1) as t→ 0. (19)

For t > 0 we define

Pm(t, ζ) :=
e−tζ −

∑m
k=0 hk,m(sin(t))(−ζ)k

(−t)m+1
(20)

and set Pm(0, ζ) = limt→0 Pm(t, ζ); the existence of this limit is ensured by (19). For Re(ζ) ≥ 0, we
have Pm(t, ζ) = O(t−m−1) as t→ ∞. Hence, the bounds for the eigenvalue growth (8) and sup-norm for
eigenfunctions (9), together with the choice of m, imply that the series

F̃z,w(ζ) =
∑
λj≥0

Pm(tj , ζ)ψj(z)ψj(w) (21)
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converges uniformly and absolutely on X for ζ in the closed half-plane Re(ζ) ≥ 0.

Furthermore, any of the first m + 1 derivatives of F̃z,w(ζ) in ζ converges uniformly and absolutely
when Re(ζ) > 0. This allows us to differentiate the series above term by term, and by doing so m + 1
times and using that

dm+1

dζm+1
Pm(tj , ζ) = e−tjζ

we conclude that for Re(ζ) > 0, one has the identity

dm+1

dζm+1
F̃z,w(ζ) = PM,ρ2

0
(z, w; ζ), (22)

where PM,ρ2
0
is defined in (15). Set P(0)(z, w; ζ) = PX,ρ2

0
(z, w; ζ), and define inductively for Re(ζ) > 0

the function

P(k)(z, w; ζ) =

∫ ζ

0

P(k−1)(z, w; ξ) dξ,

where the integral is taken over a ray contained in the upper half plane. Note that

P(k)(z, w; ζ) = Oz,w,k(ζ
k) as ζ → 0. (23)

From (22), we have that
P(m+1)(z, w; ζ)− F̃z,w(ζ) = qm(z, w; ζ), (24)

where qm(z, w; ζ) is a degree m polynomial in ζ with coefficients which depend on z and w. Using this,
for u ∈ R+ we define

Fz,w(u) =
1

2i

[(
F̃z,w(iu) + qm(z, w; iu)

)
−
(
F̃z,w(−iu) + qm(z, w;−iu)

)]
(25)

Assertions (i) and (ii) follow immediately from the above construction of F and its relation to the
Poisson kernel. Since the expansion (21) converges uniformly for Re(ζ) = 0, property (iii) will follow
directly from (i), (ii) and (m+ 1) term-by-term integration by parts. �

4 A basic test function

The building block for our Kronecker limit formula is obtained by applying the wave distribution to the
function cosh−(s−ρ0)(u). As stated above, we will choose ρ0 depending on the geometry of X and then
re-scale the time variable in the heat kernel so that ultimately we have either ρ0 = 0 or ρ0 = 1/2. For
the time being, let us work out the results for a general ρ0.

Proposition 1 For s ∈ C with Re(s) > 2ρ0, the wave distribution of g(u) = cosh−(s−ρ0)(u) exists and
admits the spectral expansion

WX,ρ2
0
(z, w)(cosh−(s−ρ0)) =

∑
λj≥0

cj,(s−ρ0)ψj(z)ψj(w), (26)

where

cj,(s−ρ0) =
2s−ρ0−1

Γ(s− ρ0)
Γ

(
s− ρ0 − itj

2

)
Γ

(
s− ρ0 + itj

2

)
. (27)

Furthermore, for any z, w ∈ X, the series (26) converges absolutely and uniformly in s on any compact
subset of the half-plane Re(s) > 2ρ0.

Proof: If Re(s) > 2ρ0, then the conditions of Theorem 1 apply. The spectral coefficients are computed
using (3) and (4). Finally, Stirling’s formula (2) implies that the factor (27) decays exponentially as
tj → ∞. When combined with the sup-norm bound (9) on the eigenfunctions ψj , the assertion regarding
uniform convergence follows. �
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Corollary 1 For z, w ∈ X with z ̸= w and s ∈ C with Re(s) > 2ρ0 let

KX;ρ2
0
(z, w; s) :=

Γ(s− ρ0)

Γ(s)
WX,ρ2

0
(z, w)(cosh−(s−ρ0)).

Then the function Γ(s)Γ−1(s − ρ0)KX;ρ2
0
(z, w; s) admits a meromorphic continuation to all s ∈ C with

poles at points s = ρ0± itj −2m for any integer m ≥ 0. Furthermore, the function KX;ρ2
0
(z, w; s) satisfies

the differential-difference equation

(∆X + s(s− 2ρ0))KX;ρ2
0
(z, w; s) = s(s+ 1)KX;ρ2

0
(z, w; s+ 2). (28)

Proof: By Proposition 1, KX;ρ2
0
(z, w; s) is well defined for Re(s) > 2ρ0. Keeping Re(s) > 2ρ0, we have

KX;ρ2
0
(z, w; s) =

Γ(s− ρ0)

Γ(s)

∑
λj≥0

H(tj , cosh
−(s−ρ0))ψj(z)ψj(w). (29)

For ν ∈ C, Re(ν) > ρ0, r ∈ R+ or r ∈ [0, iρ0] and non-negative integer n, one has that

H(r, cosh−(ν+2n)) = H(r, cosh−ν)
22n

(
ν+ir
2

)
n

(
ν−ir
2

)
n

(ν)2n
. (30)

Indeed, the evaluation of H(tj , cosh
−(s−ρ0)) in terms of the Gamma function is stated in (27). One then

can use that Γ(s+ 1) = sΓ(s) and the definition of the Pochammer symbol (s)n to arrive at (30). With
this, we can write, for any positive integer n,

22nΓ(s)

Γ(s− ρ0)
KX;ρ2

0
(z, w; s) =

Γ(s− ρ0 + 2n)

Γ(s− ρ0)

∑
λj≥0

H(tj , cosh
−(s−ρ0+2n))

Qn(tj , s− ρ0)
ψj(z)ψj(w), (31)

where

Qn(r, ν) =

(
ν + ir

2

)
n

(
ν − ir

2

)
n

.

For n ≥ ⌊ρ0⌋+1, the right-hand-side of (31) defines a meromorphic function in the half-plane Re(s) >
2ρ0 − 2n with possible poles at the points s = ρ0 ± itj − 2l, for l ∈ 0, ..., n− 1. Therefore, the function
Γ(s)Γ−1(s − ρ0)KX;ρ2

0
(z, w; s) admits a meromorphic continuation to all ν ∈ C with poles at points

s = ρ0 ± itj − 2m for integers m ≥ 0.

It remains to prove the difference-differential equation. As stated, the right-hand-side of the equation
(29) converges absolutely and uniformly on compact subsets of the right half plane Re(s) > 2ρ0. When
viewed as a function of z ∈ X, the convergence is uniform on X. Therefore, when restricting s to
Re(s) > 2ρ0, we can interchange the action of ∆X and the sum in (29) to get

∆XKX;ρ2
0
(z, w; s) =

Γ(s− ρ0)

Γ(s)

∑
λj≥0

(t2j + ρ20)H(tj , cosh
−(s−ρ0))ψj(z)ψj(w).

Applying (30) with n = 1 we can write the above equation, for sufficiently large Re(s) as

∆XKX;ρ2
0
(z, w; s) =

Γ(s+ 2− ρ0)

Γ(s)

∑
λj≥0

(t2j + ρ20)

(s− ρ0)2 + t2j
H(tj , cosh

−(s+2−ρ0))ψj(z)ψj(w).

Let n = 1 in (31) and multiply by 2−2s(s− 2ρ0)Γ(s− ρ0)Γ
−1(s) to get

s(s− 2ρ0)KX;ρ2
0
(z, w; s) = s(s+ 1)

Γ(s+ 2− ρ0)

Γ(s+ 2)

∑
λj≥0

H(tj , cosh
−(s+2−ρ0))

s2 − 2sρ0
(s− ρ0)2 + t2j

ψj(z)ψj(w).

Adding up the last two equations, we obtained the desired result for sufficiently large Re(s), and then
for all s by meromorphic continuation. �

Remark 1 It is necessary to assume that z ̸= w when considering the wave distribution of the test
function g(u) = cosh−(s−ρ0)(u). Only after one computes the spectral expansion of KX;ρ2

0
(z, w; s) is one

able to extend the function to z = w.
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5 Two series expansions

We will define two series using the function KX;ρ2
0
(z, w; s). The first, in the next Theorem, is shown to

equal the resolvent kernel, which is integral kernel that inverts the operator (∆X + s(s− 2ρ0)) for almost
all values of s. As a reminder, the resolvent kernel can be realized as an integral transform of the heat
kernel KX(z, w; t), namely

∞∫
0

KX(z, w; t)e−s(s−2ρ0)tdt,

provided z ̸= w and Re(s(s − 2ρ0)) > 0. In that instance, the heat kernel decays exponentially as t
approaches zero, so then

∞∫
0

KX(z, w; t)e−s(s−2ρ0)tdt = lim
ϵ→0

∞∫
ϵ

KX(z, w; t)e−s(s−2ρ0)tdt

= lim
ϵ→0

∑
λj≥0

1

(s− ρ0)2 + t2j
ψj(z)ψj(w) · e−ϵ(s(s−ρ0)+λj). (32)

Theorem 2 For z, w ∈ X, z ̸= w and s ∈ C with Re(s) > 2ρ0 consider the function

GX;ρ2
0
(z, w; s) =

2−s−1+ρ0Γ(s)

Γ(s+ 1− ρ0)

∞∑
k=0

(
s
2

)
k

(
s
2 + 1

2

)
k

k!(s+ 1− ρ0)k
KX;ρ2

0
(z, w; s+ 2k). (33)

Then we have the following results.

i) The series defining GX;ρ2
0
(z, w; s) is holomorphic in the half-plane Re(s) > 2ρ0 and continues

meromorphically to the whole s-plane.

ii) The function GX;ρ2
0
(z, w; s) admits the spectral expansion

GX;ρ2
0
(z, w; s) =

∑
λj≥0

1

(s− ρ0)2 + t2j
ψj(z)ψj(w)

which is conditionally convergent, in the sense of (32), for z ̸= w and for all s ∈ C provided
s(s− ρ0) + λj ̸= 0 for some λj.

iii) The function GX;ρ2
0
(z, w; s) satisfies the equation

(∆X + s(s− 2ρ0))GX;ρ2
0
(z, w; s) = 0, (34)

for all s ∈ C provided s(s− ρ0) + λj ̸= 0 for some λj.

Proof: Let us study each term in the series (33), which is

2−s−1+ρ0Γ(s)

Γ(s+ 1− ρ0)

(
s
2

)
k

(
s
2 + 1

2

)
k

k!(s+ 1− ρ0)k
KX;ρ2

0
(z, w; s+ 2k)

= 2−1+ρ0
2−(s+2k)Γ(s+ 2k − ρ0)

Γ(k + 1)Γ(s+ 1− ρ0 + k)
WX,ρ2

0
(z, w)(cosh−(s+2k−ρ0)). (35)

For now, let us assume that Re(s) > 2ρ0. A direct computation using Stirling’s formula (1) yields
that

2−1+ρ0
2−(s+2k)Γ(s+ 2k − ρ0)

Γ(k + 1)Γ(s+ 1− ρ0 + k)
= Os(k

−3/2) as k → ∞. (36)
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It remains to determine the asymptotic behavior of the factor in (35) involving the wave distribution.
For this, Theorem 1 implies that for any δ > 0, there is a C > 1 depending upon the distance between z
and w such that we have the bound

∞∫
δ

Fz,w(u)∂
m+1
u

(
cosh−(s+2k−ρ0)(u)

)
du = Os,z,w(C

−(s+2k−ρ0)) as k → ∞,

where the implied constant depends on the distance between z and w and m ≥ 4N + 1 is a sufficiently
large, fixed integer. Since z ̸= w, we can combine equations (22), (23), (24) and (25) together with
integration by parts to write, for some C1 > 1

δ∫
0

Fz,w(u)∂
m+1
u

(
cosh−(s+2k−ρ0)(u)

)
du = (−1)m+1

δ∫
0

(
∂m+1
u Fz,w(u)

)
cosh−(s+2k−ρ0)(u)du (37)

+Os,z,w(C
−(s+2k−ρ0)
1 ) as k → ∞.

In essence, the use of Theorem 1 ensures that the boundary term at u = 0 vanishes, so then the constant
C1 comes from the evaluation of the boundary terms at u = δ and depends on the distance between z
and w. To finish, we may use (7) where h(t) = − log(cosh(t)), so then λ = 1 and ν = 2, to conclude that

δ∫
0

(
∂m+1
u Fz,w(u)

)
cosh−(s+2k−ρ0)(u)du = Os,z,w(k

−1/2) as k → ∞, (38)

where, again, the implied constant depends on the distance between z and w, and we assume that z ̸= w.
If we combine (36), (37), and (38), we obtain that (35) is of order Os,z,w(k

−2). Therefore, the series
(33) converges uniformly and absolutely for s in compact subsets in a right half plane Re(s) > 2ρ0, and
z, w ∈ X provided z and w are uniformly bounded apart.

At this point, we have the convergence of the series defining GX;ρ2
0
(z, w; s) for Re(s) > 2ρ0. In order

to obtain the meromorphic continuation of (33), re-write the series as a finite sum of terms for k ≤ n
and an infinite sum for k > n, for any integer n. For the finite sum, the meromorphic continuation is
established in Corollary 1. For the infinite sum, the above argument applies to prove the convergence in
the half-plane Re(s) > 2ρ0 − n. With this, we have completed the proof of assertion (i).

Going further, one can follow the argument given above using (2) for any positive integer ℓ and
conclude that for z ̸= w, s in some compact subset of the half-plane Re(s) > 2ρ0, we have

∂ℓs

(
2−s−1+ρ0Γ(s)

Γ(s+ 1− ρ0)

(
s
2

)
k

(
s
2 + 1

2

)
k

k!(s+ 1− ρ0)k
KX;ρ2

0
(z, w; s+ 2k)

)
= Os,z,w(k

−2−ℓ/2) as k → ∞,

where the implied constant depends on the distance between z and w and the compact set which con-
tains s. Namely, repeated differentiation of Gamma factors ℓ times reduces the exponent by ℓ, while
differentiation of (37), after application of formula (7), reduces the exponent by ℓ/2.

The convergence of the series (33) for Re(s) > 2ρ0 as well as the series of derivatives allows us to
interchange differentiation and summation. Therefore, for z ̸= w, Re(s) > 2ρ0 and any ℓ ≥ 0 we get

∂ℓs

( ∞∑
k=0

(
s
2

)
k

(
s
2 + 1

2

)
k

k!(s+ 1− ρ0)k
KX;ρ2

0
(z, w; s+ 2k)

)
=

∞∑
k=0

∂ℓs

( (
s
2

)
k

(
s
2 + 1

2

)
k

k!(s+ 1− ρ0)k
KX;ρ2

0
(z, w; s+ 2k)

)
. (39)

Now, we would like to include the case z = w. Recall that

KX;ρ2
0
(z, w; s) =

Γ(s− ρ0)

Γ(s)

∑
λj≥0

cj,(s−ρ0)ψj(z)ψj(w),

where the spectral coefficients cj,(s−ρ0) are given by (27). The coefficients cj,(s−ρ0) are exponentially

decreasing in tj =
√
λj − ρ20, as j → ∞ and differentiable with respect to s, with the derivatives also
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exponentially decreasing in tj . Moreover, the application of the the sup-norm bound for the eigenfunctions
ψj and the Stirling formula for coefficients cj,(s+2k−ρ0) shows that, uniformly in z, w ∈ X for s in a compact
subset of the half-plane Re(s) > 2ρ0, one has∣∣∣WX,ρ2

0
(z, w)(cosh−(s+2k−ρ0))

∣∣∣ = Os,z,w(k
N+1),

where N is the complex dimension of X. In addition, repeated differentiation of the coefficients with
respect to s reduces the exponent of k by one each time. Therefore, for sufficiently large ℓ

∞∑
k=0

∣∣∣∣∣∂ℓs
( (

s
2

)
k

(
s
2 + 1

2

)
k

k!(s+ 1− ρ0)k
KX;ρ2

0
(z, w; s+ 2k)

)∣∣∣∣∣ = Os,z,w(1),

where Re(s) > 2ρ0, and the bound is uniform in z, w ∈ X. Hence, we may interchange the sum and the
integral to get, for sufficiently large ℓ∫

X

∂ℓs

( ∞∑
k=0

(
s
2

)
k

(
s
2 + 1

2

)
k

k!(s+ 1− ρ0)k
KX;ρ2

0
(z, w; s+ 2k)

)
ψj(w)µ(w)

=

∞∑
k=0

∂ℓs

( (
s
2

)
k

(
s
2 + 1

2

)
k

k!(s+ 1− ρ0)k

∫
X

KX;ρ2
0
(z, w; s+ 2k)ψj(w)µ(w)

)

= ∂ℓs

( ∞∑
k=0

(
s
2

)
k

(
s
2 + 1

2

)
k

k!(s+ 1− ρ0)k

∫
X

KX;ρ2
0
(z, w; s+ 2k)ψj(w)µ(w)

)
,

where the last equation above follows from the absolute and uniform convergence of the series over k,
derived in the previous lines.

From the spectral expansion of KX;ρ2
0
(z, w; s) we immediately get∫

X

KX;ρ2
0
(z, w; s+ 2k)ψj(w)µ(w)

=
2s+2k−ρ0−1

Γ(s+ 2k)
Γ

(
s+ 2k − ρ0 − itj

2

)
Γ

(
s+ 2k − ρ0 + itj

2

)
ψj(z)

=
2s+2k−ρ0−1

Γ(s+ 2k)

(
s− ρ0 − itj

2

)
k

(
s− ρ0 + itj

2

)
k

Γ

(
s− ρ0 − itj

2

)
Γ

(
s− ρ0 + itj

2

)
ψj(z).

An application of the doubling formula for the Gamma function yields that

2s+2k−ρ0−1
(
s
2

)
k

(
s
2 + 1

2

)
k

Γ(s+ 2k)
=

2s−1−ρ0

Γ(s)
.

Therefore,(
s
2

)
k

(
s
2 + 1

2

)
k

k!(s+ 1− ρ0)k

∫
X

KX;ρ2
0
(z, w; s+ 2k)ψj(w)µ(w)

= Γ

(
s+ 2k − ρ0 − itj

2

)
Γ

(
s+ 2k − ρ0 + itj

2

)
ψj(z)

=
2s−1−ρ0

Γ(s)

(
s−ρ0−itj

2

)
k

(
s−ρ0+itj

2

)
k

k!(s+ 1− ρ0)k
Γ

(
s− ρ0 − itj

2

)
Γ

(
s− ρ0 + itj

2

)
ψj(z).

Observe that Re
(

s−ρ0−itj
2 +

s−ρ0+itj
2 − (s+ 1− ρ0)

)
= −1 < 0, so then the hypergeometric function

∞∑
k=0

(
s−ρ0−itj

2

)
k

(
s−ρ0+itj

2

)
k

k!(s+ 1− ρ0)k
= F

(
s− ρ0 − itj

2
,
s− ρ0 + itj

2
, s+ 1− ρ0; 1

)
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is uniformly and absolutely convergent. From [GR07], formula 9.122.1 we get

F

(
s− ρ0 − itj

2
,
s− ρ0 + itj

2
, s+ 1− ρ0; 1

)
=

Γ(s+ 1− ρ0)

Γ
(

s−ρ0+itj
2

)
Γ
(

s−ρ0−itj
2

) · 4

(s− ρ0)2 + t2j
.

Therefore,

∞∑
k=0

(
s
2

)
k

(
s
2 + 1

2

)
k

k!(s+ 1− ρ0)k

∫
X

KX;ρ2
0
(z, w; s+ 2k)ψj(w)µ(w) =

2s+1−ρ0Γ(s+ 1− ρ0)

Γ(s)((s− ρ0)2 + t2j )
ψj(z).

This, together with the definition of the function GX;ρ2
0
(z, w; s) yields

∫
X

∂ℓs

(
GX;ρ2

0
(z, w; s)

)
ψj(w)µ(w) = ∂ℓs

(
1

(s− ρ0)2 + t2j

)
ψj(z), (40)

for sufficiently large positive integer ℓ.

The above computations are valid provided Re(s) > 2ρ0. The arguments could be repeated with
the portion of the series in (33) with k > n, for an arbitrary positive integer n, from which one would
arrive at a version of (40) where the right-hand-side would have a finite sum of terms subtracted with the
restriction that Re(s) > 2ρ0 − n. However, there is no problem interchanging sum and differentiation for
the finite sum of terms in (40) obtained by considering those with k ≤ n, from which we conclude that
(40) holds for all s with Re(s) > 2ρ0 − n provided s is not a pole of (33).

There is a unique meromorphic function G̃(z, w; s) which is symmetric in z and w and satisfies
(∆X + s(s− 2ρ0))G̃(z, w; s) = 0. Indeed, for Re(s(s− 2ρ0)) > 0 one can express G̃(z, w; s) as an integral
transform of the heat kernel, namely

G̃(z, w; s) =

∞∫
0

KX(z, w; t)e−s(s−2ρ0)tdt.

At this point, we have that G̃(z, w; s) = GX;ρ2
0
(z, w; s) + pℓ(s), where pℓ(s) is a polynomial of degree ℓ.

The asymptotic behavior as s tends to infinity can be computed for GX;ρ2
0
(z, w; s) using Stirling’s formula,

and that of G̃(z, w, s) using the above integral expression. By combining, we get that pℓ(s) = o(1) as s
tends to infinity, thus pℓ(s) = 0.

This proves that GX;ρ2
0
(z, w; s) coincides with the conditionally convergent series given as a limit

(32) for Re(s) > 2ρ0. Moreover, since both GX;ρ2
0
(z, w; s) and the resolvent kernel G̃(z, w; s) possess

meromorphic continuation to the whole complex C−plane, they must coincide.

With all this, assertions (ii) and (iii) are established. �

Theorem 3 Let

EX;ρ2
0
(z, w; s) =

Γ((s+ 1− 2ρ0)/2)

Γ(s/2)

∞∑
k=0

(
s
2

)
k

k!
KX;ρ2

0
(z, w; s+ 2k)

for z, w ∈ X, z ̸= w. Then EX;ρ2
0
(z, w; s) converges to a meromorphic function for Re(s) < 0 away

from the poles of any KX;ρ2
0
(z, w; s+2k) and negative integers. Furthermore, EX;ρ2

0
(z, w; s) extends to a

meromorphic function for all s and satisfies the differential-difference equation

(∆X + s(s− 2ρ0))EX;ρ2
0
(z, w; s) = −s2EX;ρ2

0
(z, w; s+ 2) (41)

Proof: The estimates in the proof of Theorem 2, namely (36), (37), and (38) combine to show that(
s
2

)
k

k!
KX;ρ2

0
(z, w; s+ 2k) = Os,z,w(k

s/2−ρ0−3/2) as k → ∞,
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where the implied constant depends upon s and upon the distance between points z and w. Therefore,
the series converges for s with Re(s) < 0 provided no term has a pole. Set

ẼX;ρ2
0
(z, w; s) =

∞∑
k=0

(
s
2

)
k

k!
KX;ρ2

0
(z, w; s+ 2k).

Using the difference-differential equation for KX;ρ2
0
(z, w; s), as established in Corollary 1, we can prove

such an equation for ẼX;ρ2
0
(z, w; s). Indeed, for Re(s) ≪ 0 begin by writing

(∆X + s(s− 2ρ0))ẼX;ρ2
0
(z, w; s) =

∞∑
k=0

((
s
2

)
k

k!
∆XKX;ρ2

0
(z, w; s+ 2k) +

(
s
2

)
k

k!
s(s− 2ρ0)KX;ρ2

0
(z, w; s+ 2k)

)

=
∞∑
k=0

(
s
2

)
k

k!

(
−(s+ 2k)(s+ 2k − 2ρ0)KX;ρ2

0
(z, w; s+ 2k) + (s+ 2k)(s+ 2k + 1)KX;ρ2

0
(z, w; s+ 2k + 2)

)
+

∞∑
k=0

(
s
2

)
k

k!
s(s− 2ρ0)KX;ρ2

0
(z, w; s+ 2k)

=

∞∑
k=1

(
s
2

)
k

k!
(−(s+ 2k)(s+ 2k − 2ρ0) + s(s− 2ρ0))KX;ρ2

0
(z, w; s+ 2k)

+
∞∑
k=0

(
s
2

)
k

k!
(s+ 2k)(s+ 2k + 1)KX;ρ2

0
(z, w; s+ 2k + 2)

=

∞∑
n=0

(
s
2

)
n+1

(n+ 1)!
(−(s+ 2n+ 2)(s+ 2n+ 2− 2ρ0) + s(s− 2ρ0))KX;ρ2

0
(z, w; s+ 2n+ 2)

+

∞∑
n=0

(
s
2

)
n

n!
(s+ 2n)(s+ 2n+ 1)KX;ρ2

0
(z, w; s+ 2n+ 2).

Since
−(s+ 2n+ 2)(s+ 2n+ 2− 2ρ0) + s(s− 2ρ0) = −(2n+ 2)(2s+ 2n+ 2− 2ρ0),

the coefficient of KX;ρ2
0
(z, w; s+ 2n+ 2) in the last expression is

−
(
s
2

)
n+1

(n+ 1)!
(2n+ 2)(2s+ 2n+ 2− 2ρ0) +

(
s
2

)
n

n!
(s+ 2n)(s+ 2n+ 1).

Using the definition of the Pochhammer symbol, it is elementary to show that

−
(
s
2

)
n+1

(n+ 1)!
(2n+ 2)(2s+ 2n+ 2− 2ρ0) +

(
s
2

)
n

n!
(s+ 2n)(s+ 2n+ 1) =

(
s+2
2

)
n

n!
(−s(s+ 1− 2ρ0)),

hence we arrive at the equation

(∆X + s(s− 2ρ0))ẼX;ρ2
0
(z, w; s) = −s(s+ 1− 2ρ0)ẼX;ρ2

0
(z, w; s+ 2).

Notice that

EX;ρ2
0
(z, w; s) =

Γ((s+ 1− 2ρ0)/2)

Γ(s/2)
ẼX;ρ2

0
(z, w; s),

so then

(∆X + s(s− 2ρ0))EX;ρ2
0
(z, w; s) =

Γ((s+ 1− 2ρ0)/2)

Γ(s/2)
(−s(s+ 1− 2ρ0)) ẼX;ρ2

0
(z, w; s+ 2)

= −s2Γ((s+ 1− 2ρ0)/2)

Γ(s/2)

(s+ 1− 2ρ0)/2

s/2
ẼX;ρ2

0
(z, w; s+ 2)

= −s2Γ(((s+ 2) + 1− 2ρ0)/2)

Γ((s+ 2)/2)
ẼX;ρ2

0
(z, w; s+ 2)

− s2EX;ρ2
0
(z, w; s+ 2),

as asserted. �
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Remark 2 The motivation of the series in Theorem 3 is the following elementary formula first employed
in the context of elliptic Eisenstein series in [vP10]. For any x with |x| < 1 and complex s, one has the
convergent Taylor series

(1− x)−s/2 =
∞∑
k=0

(
s
2

)
k

k!
xk.

By setting x = (coshu)−2, one then gets that

(1− (coshu)−2)−s/2 =
∞∑
k=0

(
s
2

)
k

k!
(coshu)−2k.

Now write
(1− (coshu)−2)−s/2 = (coshu)s((coshu)2 − 1)−s/2 = (coshu)s(sinhu)−s

from which we obtain the identity

sinh−s(u) =

∞∑
k=0

(
s
2

)
k

k!
cosh−(s+2k)(u).

In this way, we can study the function obtained by applying the wave distribution to g(u) = sinh−s(u),
even though this function does not satisfy the conditions of Theorem 1. Indeed, this observation is the
motivation behind the definition of EX;ρ2

0
(z, w; s).

6 Kronecker limit formulas

We now prove the Kronecker limit formulas for GX;ρ2
0
(z, w; s) and EX;ρ2

0
(z, w; s), meaning we analyze

the first two terms in the Laurent series at s = 0. We will continue assuming that ρ0 ≥ 0 is arbitrary.
The choice of ρ0 plays no role in the analysis of GX;ρ2

0
(z, w; s). However, in the approach taken in this

section, the case when ρ0 = 1/2 will be particularly interesting when studying EX;ρ2
0
(z, w; s).

Corollary 2 If ρ0 ̸= 0, then the function GX;ρ2
0
(z, w; s) has the asymptotic behavior

GX;ρ2
0
(z, w; s) =

−1/(2ρ0)

volω(X)
s−1 +GX;ρ2

0
(z, w) +

1/(2ρ0)
2

volω(X)
+O(s) as s→ 0

where GX;ρ2
0
(z, w) is the Green’s function associated to the Laplacian ∆X acting on the space of smooth

functions on X which are orthogonal to the constant functions. If ρ0 = 0, then we have the expansion

GX;ρ2
0
(z, w; s) =

1

volω(X)
s−2 +GX;ρ2

0
(z, w) +O(s) as s→ 0

Proof: The result follows directly from part (ii) of Theorem 2 having noted that the eigenfunction
associated to the zero eigenvalue is 1/(volω(X))1/2 and that

1

s(s− 2ρ0)
=

−1/(2ρ0)

s
+

−1/2ρ0
s− 2ρ0

=
−1/(2ρ0)

s
+

1

(2ρ0)2
+O(s) as s→ 0

in the case ρ0 ̸= 0. If ρ0 = 0, the assertion follows immediately from part (ii) of Theorem 2. �

Remark 3 Corollary 2 is, in some sense, elementary and well-known. Indeed, using (32), we can write

GX;ρ2
0
(z, w; s) =

∞∫
0

(
KX(z, w; t)e−s(s−2ρ0)t − 1

volω(X)

)
dt+

1

s(s− 2ρ0)

1

volω(X)
.

As s approaches zero while Re(s(s − 2ρ0)) > 0, the above integral converges to the Green’s function
GX;ρ2

0
(z, w). Nonetheless, the novel aspect of Theorem 2 is the expression of the resolvent kernel as a

series.
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Remark 4 The statement of Corollary 2 highlights the difference between the cases when ρ0 = 0 and
ρ0 ̸= 0. The difference determines the order of the singularity of the resolvent kernel GX;ρ2

0
(z, w; s) at

s = 0. Of course, one could re-write Corollary 2 as

GX;ρ2
0
(z, w; s) =

1

volω(X)

1

s(s− 2ρ0)
+GX;ρ2

0
(z, w) +O(s) as s→ 0,

which includes both ρ0 = 0 and ρ0 ̸= 0.

Theorem 4 Let D be the divisor of a holomorphic form FD on X, and assume that D is smooth up to
codimension two in X. Then, for z /∈ D, there exist constants c0 and c1 such that∫

D

GX;ρ2
0
(z, w; s)µD(w) =

volω(D)

volω(X)

1

s(s− 2ρ0)
+ c0 log ∥FD(z)∥2ω + c1 +O(s) as s→ 0. (42)

Proof: For now, assume that z /∈ D and w ∈ D. By part (i) of Theorem 2, the function GX;ρ2
0
(z, w; s)

is holomorphic in s for Re(s) > 2ρ0, so then the integral in (42) exists for Re(s) > 2ρ0. The integral has a
meromorphic continuation in s, again by part (i) of Theorem 2, and the Laurent expansion of the integral
near s = 0 can be evaluated integrating over D the expansion given in Corollary 2. The singularity of the
Green’s function GX;ρ2

0
(z, w) as z approaches w is known; see, for example, page 94 of [Fo76] as well as

[JK98] and [JK01]. In the latter references, the authors carefully evaluate the integrals of functions with
Green’s function type singularities; see section 3 of [JK98]. From those arguments, we conclude that∫

D

GX;ρ2
0
(z, w; s)µD(w)

has a logarithmic singularity as z approaches D.

Throughout this discussion the Laplacian ∆X acts on the variable z. From the equation

(∆X + s(s− 2ρ0))GX;ρ2
0
(z, w; s) = 0,

as proved in Theorem 2, and the expansion in Corollary 2, we conclude that for z ̸= w, we have

∆XGX;ρ2
0
(z, w) =

2

volω(X)
. (43)

Let us consider the difference∫
D

GX;ρ2
0
(z, w; s)µD(w)− volω(D)

volω(X)

1

s(s− 2ρ0)
− c0 log ∥FD(z)∥2ω (44)

near s = 0. For any c0, the difference is holomorphic in s near s = 0. From section 2.5, we have that
∆X log ∥FD(z)∥2ω is a non-zero constant. Choose c0 so that

c0∆X log ∥FD(z)∥2ω =
2

volω(X)
.

By combining (43) and (12), we conclude that

ddc
∫
D

GX;ρ2
0
(z, w)µD(w) = δD′ − ω

where D′ is a divisor whose support is equal to the support of D. It remains to show that D′ = D.

Consider the difference

RX;ρ2
0
(z;D) :=

∫
D

GX;ρ2
0
(z, w)µD(w)− c0

volω(X)
log ∥FD(z)∥2ω. (45)

which satisfies
ddcRX;ρ2

0
(z;D) = δD′ − nδD,
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which means that RX;ρ2
0
(z;D) is harmonic away from the support of D and has logarithmic growth as

z approaches D. If X is an algebraic curve, then D is a finite sum of points, say D =
∑
mjDj , with

multiplicities mj . In this case,∫
D

GX;ρ2
0
(z, w)µD(w) =

∑
mjGX;ρ2

0
(z,Dj).

It follows that D′ = D. By the Riemann removable singularity theorem, the difference (45) is harmonic
on all of X, hence bounded, which implies that RX;ρ2

0
(z;D) is a constant. The argument for general

X is only slightly different. Again, write D =
∑
mjDj where each Dj is irreducible. Choose a smooth

point P on D, hence on some Dj . One can express the integral in (45) near P using suitably chosen
local coordinates in X, as in section 3 of [JK98]. By doing so, one again concludes that the value of the
integral of GX;ρ2

0
(z, w) as P approaches D is equal to the coefficient of Dj . Therefore, the difference (44)

is bounded as z approaches P . Since D is smooth in codimension two, we can again apply the Riemann
removable singularity theorem (see Corollary 7.3.2, page 262 of [Kr82]) to conclude that RX;ρ2

0
(z;D) is

bounded and harmonic on X, hence constant. �

Remark 5 The constant c0 can be expressed as a function of the weight of the form FD. The constant
c1 of (42) can be determined by integrating both sides of (42) with respect to z, using that the integral
of the Green’s function GX;ρ2

0
(z, w) is zero. This will express c1 as an integral of log ∥FD(z)∥2ω.

Remark 6 In effect, the proof of Theorem 4 requires that the norm ∥FD∥ω is such that the Laplacian ∆X

of its logarithm is constant, so then a certain linear combination of the Green’s function and log ∥FD∥ω
has Laplacian equal to zero away from D. This statement can hold in settings not covered by the
conditions stated of Theorem 4. In this setting, the forms FD one studies are determined by the condition
that log |FD| are harmonic even in the setting when a complex structure does not exist. In fact, this
requirement is true for quotients of hyperbolic n-spaces of any dimension n ≥ 2.

Remark 7 Suppose we are given a codimension one subvariety D of X, and assume that D is smooth
in codimension one. Then one can realize the log norm of the form FD which vanishes along D by (42).
In this manner, we can construct FD when D has been given. The form FD need not be a holomorphic
form, but rather a section of the canonical bundle twisted by a flat line bundle. The parameters of the
flat line bundle can be viewed as a generalization of Dedekind sums since classical Dedekind sums stem
from attempting to drop the absolute values from the Kronecker limit function associated to the parabolic
Eisenstein series for PSL(2,Z).

Let us now extend the development of Kronecker limit functions to EX;ρ2
0
(z, w; s). To do so, we first

proof that for certain ρ20, the functions GX;ρ2
0
(z, w; s) and EX;ρ2

0
(z, w; s) have the same expansion at s = 0

out to O(s2).

Proposition 2 For z, w ∈ X, z ̸= w consider the difference

DX;ρ2
0
(z, w; s) := EX;ρ2

0
(z, w; s)− 2s+1−ρ0

Γ(s+ 1− ρ0)Γ((s+ 1− 2ρ0)/2)

Γ(s)Γ(s/2)
GX;ρ2

0
(z, w; s).

Then for all ρ0 ≥ 0, such that ρ0 ̸= m or ρ0 ̸= m+1/2, for integers m ≥ 1 we have that DX;ρ2
0
(z, w; s) =

O(s2) as s→ 0.

Proof: The factor

2s+1−ρ0
Γ(s+ 1− ρ0)Γ((s+ 1− 2ρ0)/2)

Γ(s)Γ(s/2)
(46)

of GX;ρ2
0
(z, w; s) was chosen so that the k = 0 term in the series expansions for EX;ρ2

0
(z, w; s) and

GX;ρ2
0
(z, w; s) agree. For any k ≥ 1, the k-th term in the series expansion for the difference DX;ρ2

0
(z, w; s)

is
Γ((s+ 1− 2ρ0)/2)

Γ(s/2)

(
s
2

)
k

k!

(
1−

(
s
2 + 1

2

)
k

(s+ 1− ρ0)k

)
KX;ρ2

0
(z, w; s+ 2k) (47)
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From the spectral expansion in Proposition 1, the function KX;ρ0(z, w; s+2k) is holomorphic at s = 0 for
any integer k ≥ 1. When ρ0 is distinct from any positive half-integer, the function Γ((s+1−2ρ0)/2) is also

holomorphic at s = 0, while
( s

2+
1
2 )k

(s+1−ρ0)k
is holomorphic at s = 0 for ρ0 distinct from any positive integer.

Since there is a factor of Γ−2(s/2) in the above coefficient, it follows that the function DX;0(z, w; s) is
O(s2) as s approaches zero, for all ρ0 different from positive integers or half-integers.

It remains to prove the statement for ρ0 = 1/2, in which case (47) becomes(
s
2

)
k

k!

(
1−

(
s
2 + 1

2

)
k

(s+ 1/2)k

)
KX;1/4(z, w; s+ 2k) =

(
s
2

)
k

k!

(
(s+ 1/2)k −

(
s
2 + 1

2

)
k

(s+ 1/2)k

)
KX;1/4(z, w; s+ 2k)

For k ≥ 1, the factor (s/2)k vanishes at s = 0, as does the difference (s + 1/2)k − (s/2 + 1/2)k, so it
follows that the function DX;1/4(z, w; s) is O(s2) as s approaches zero. �

Corollary 3 For z, w ∈ X, z ̸= w and ρ0 > 0 which is not equal to a positive integer or half-integer,
EX;ρ2

0
(z, w; s) = O(s), as s→ 0. When ρ0 = 1/2, there are constants b0, b1 and b2 such that the function

EX;1/4(z, w; s) has the asymptotic behavior

EX;1/4(z, w; s) = b0 + (b1 + b2GX;1/4(z, w))s+O(s2) as s→ 0

where GX;ρ2
0
(z, w) is the Green’s function associated to the Laplacian ∆X acting on the space of smooth

functions on X which are orthogonal to the constant functions.

Proof: When ρ0 > 0 is not equal to a positive integer or half-integer, the functions Γ(s + 1 − ρ0)
and Γ((s + 1 − 2ρ0)/2) are holomorphic at s = 0, hence the factor (46) is O(s2) as s approaches zero.
Combining this with Proposition 2 and Corollary 2 yields the statement.

When ρ0 = 1/2

2s+1−ρ0
Γ(s+ 1− ρ0)Γ((s+ 1− 2ρ0)/2)

Γ(s)Γ(s/2)
= 2s+1/2Γ(s+ 1/2)

Γ(s)
= a1s+ a2s

2 +O(s3)

so the statement of Proposition 2 becomes

EX;1/4(z, w; s) = (a1s+ a2s
2 +O(s3))

(
1

volω(X)
s−1 +GX;1/4(z, w) +O(s)

)
+O(s2),

as s→ 0. Multiplying the above expression we deduce the statement. �

Remark 8 When ρ0 = 0 the term in (46) is
√
πs2 +O(s3) as s→ 0. When combined with Proposition

2 and Corollary 2, one gets that

EX;0(z, w; s) =
√
π/Volω(X) +O(s2) as s→ 0.

Remark 9 In the case when X is a hyperbolic Riemann surface, the result of Proposition 2 is stated
in Corollary 7.4 of [vP16], with a slightly different renormalization constant

√
2π in front of the Green’s

function, which stems from a different constant term in the definition of the corresponding series. However,
in their proof, the author used special function identities which are specific to that setting.

Remark 10 The constants b0, b1 and b2 in case when ρ0 = 1/2 are easily evaluated using asymptotic
behavior of the factor (46) near s = 0, which are not so significant to us at this point. What does matter
is that for ρ0 = 1/2, we have that EX;1/4(z, w; s) admits a Kronecker limit formula. In the notation of
Theorem 4, there are constants c0, c1 and c2 such that∫

D

EX;1/4(z, w; s)dµD(w) = c0volω(D) +
(
c1 log ∥FD(z)∥2µ + c2

)
s+O(s2) as s→ 0.
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Remark 11 It is important to note that we have not excluded the possibility of a “nice” Kronecker
limit function for EX;ρ2

0
(z, w; s) when ρ0 ̸= 1/2. The approach we took in this article was to compare the

Kronecker limit function of EX;ρ2
0
(z, w; s) to that of the resolvent kernel GX;ρ2

0
(z, w; s). We find it quite

interesting that the comparison yields a determination of the Kronecker limit function of EX;ρ2
0
(z, w; s)

only in the case when ρ0 = 1/2.

Remark 12 Ultimately, we are interested in the cases when X is the quotient of a symmetric space
G/K. In this setting, ρ0 is zero only when G/K is Euclidean. In all other cases, ρ20 is positive. (See
section 1.3.)

7 Examples

As stated above, we began our analysis with the heat kernel and obtained our results using its spec-
tral expansion. As one could imagine, any other representation of the heat kernel has the potential of
combining with our results to yield formulas of possible interest. We will proceed along these lines and
introduce three examples. It is our opinion that each example is of independent interest. Rather than
expanding upon any one example, we will present, in rather broad strokes, the type of formulas which
will result, and we will leave a detailed analysis for future work.

7.1 Abelian varieties

Let Ω be an N × N complex matrix which is symmetric and whose imaginary part is postive definite.
Let ΛΩ denote the Z-lattice formed by vectors in ZN and ΩZN . Let X be an abelian variety whose
complex points form the N -dimension complex torus CN/(ZN ⊗ΩZN ). Assume that X is equipped with
its natural flat metric induced from the Euclidean metric on CN . It can be shown that all eigenfunctions
on the associated Laplacian are exponential functions. In addition, the heat kernel on X can be obtained
by periodizing over ΛΩ the heat kernel on CN . By the uniqueness of the heat kernel on X, one obtains
a formula of the type

KX(z, w; t) =

∞∑
k=0

e−λktψk(z)ψk(w) =
∑
v∈ΛΩ

1

(4πt)N
e−∥z−w−v∥2/(4t)

where ∥ · ∥ denotes the absolute value in CN . In effect, the identity obtained by equating the above two
expressions for the heat kernel is the Poisson summation formula. In the setting of section 3, we take
ρ20 = 0, so then the Poisson kernel (13) becomes

PX,0(z, w;u) =
u√
4π

∫ ∞

0

KX(z, w; t)e−u2/(4t)t−1/2 dt

t
=
∑
v∈ΛΩ

uΓ(N + 1/2)

π(u2 + ∥z − w − v∥2)N+1/2
. (48)

As is evident, one cannot simply replace u by iu in (48) since then the sum would have singularities
whenever u2 = ∥z − w − v∥2. However, this is where the distribution theory approach is necessary and,
indeed, one will obtain the function KX;0(z, w; s). For now, one can formally express KX;0(z, w; s) as
the integral of cosh−s(u). In the notation of Theorem 4, one can take D to be the theta divisor of
the Riemann theta function Θ on X. The Kronecker limit formula for log ∥Θ∥ then could be viewed as
coming from the series over ΛΩ. Upon exponentiation, one would have a product formula, or regularized
product, formula for ∥Θ∥2. Certainly, the exploration of this example is worthy of study.

7.2 Complex projective space

Let ωFS denote the Fubini-Study metric on complex projective space CPn. The authors in [HI02] derived
an explicit expression for the heat kernel KCPn associated to the Laplacian of the Fubini-Study metric
on CPn. Specifically, it is proved that

KCPn(z, w; t) =
en

2t

2n−2πn+1

∫ π/2

r

−d(cosu)√
cos2 r − cos2 u

(
− 1

sinu

d

du

)n

[Θn+1(t, u)], (49)
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where z, w ∈ CPn, t > 0, and r = distgFS (z, w) = tan−1(|z−w|), and the function Θn+1(t, u) is given by

Θn+1(t, u) =

∞∑
ℓ=0

e−4t(ℓ+n/2)2 cos((2ℓ+ n)u).

Equivalently, one can write

KCPn(z, w, t) =
∞∑
ℓ=0

e−λℓtθℓ(r), (50)

where λℓ = 4ℓ(ℓ+ n), and

θℓ(r) =
1

2n−2πn+1

∫ π/2

r

sin τ√
cos2 r − cos2 τ

(
− 1

sin τ

d

dτ

)n

cos((2ℓ+ n)τ) dτ.

As in the previous example, the formula for the heat kernel is explicit, and all integral transforms
leading up to the resolvent kernel GX;ρ2(z, w; s) and EX;ρ2(z, w; s) can be evaluated, at least formally. It
seems as if one would also take ρ20 = 0 in this case, though it would be worthwhile to consider ρ20 = 1/2
as well. Of course, the divisors to consider would be the zeros of homogenous polynomials in N -variables,
and the norm of homogenous polynomials would be with respect to the Fubini-Study metric.

7.3 Compact quotients of symmetric spaces

Let G be a connected, non-compact semisimple Lie group with finite centrer, and let K be its maximal
compact subgroup. Let Γ be a discrete subgroup of G such that the quotient Γ \G is compact. Then the
quotient space X = Γ \G/K is also compact.

On page 160 of [Ga68], the author presents a formula for the heat kernel on G. In general terms, the
heat kernel KG(g; t) with singularity when g is the identity, is equal to the inverse spherical transform of
a Gaussian; see, Proposition 3.1 as well as [JLa01] in the case G = SLn(R).

In the case that G is complex, the inverse transform can be computed and the resulting formula is
particularly elementary; see Proposition 3.2 of [Ga68]. In this case, one has that ρ20 is equal to the norm
of 1/2 of the sum of the positive roots of the Lie algebra of G.

The heat kernel on X can be written, as in the notation of (4.2) of [Ga68], as the series

KX(z, w; t) =
∑
γ∈Γ

KG(z
−1γw; t).

The expressions from Proposition 3.1 and Proposition 3.2 of [Ga68] are such that the integral in (13) can
be computed term-by-term. As discussed in section 2.5, one should replace t by t/(4ρ20) so then one has
the Kronecker limit theorem as in Remark 10. One can be optimistic that the case of general G will not
be significantly different from G = SL2(R).

7.4 Concluding remarks

Though we began with the assumption that X is a Kähler variety, one could review the proofs we
developed and relax this condition. For example, if X is a hyperbolic n-manifold, meaning the compact
quotient of SO(n, 1), then the structure of the Laplacian associated to the natural hyperbolic metric
is such that all aspects of our proofs apply. In this case, the Kronecker limit function associated to
GX;ρ2

0
(z, w; s) would be a harmonic form with a singularity when z approaches w. Furthermore, the heat

kernel on the hyperbolic n-space has a particularly elementary expression; see, for example, [DGM76]
who attribute the result to Millson. In this case, ρ20 ̸= 0, so then would expect, as in the case when
n = 2, a generalization of the elliptic Eisenstein series as a sum over the uniformizing group. The study
of Poincaré series associated to SO(n, 1) is developed in [CLPS91], and it will be interested to connect
those results with the non-L2 series EX;ρ2

0
(z, w; s).
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Finally, we began with the heat kernel acting on smooth functions. Certainly, one could follow the
same construction when using a form-valued heat kernel. By doing so, one would perhaps not consider the
resolvent kernel, but rather focus on KX;ρ2

0
(z, w; s). In this case, one would integrate one of the variables

over a cycle γ on X, as in section 5 of [JvPS16], and study the resulting Kronecker limit function. It
seems plausible to expect that in this manner one would obtain a direct generalization of [KM79], whose
series admitted a Kronecker limit function which was the Poincaré dual to the γ.
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