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Abstract

An integral representation for the exterior square L-function for GLn was given by
Jacquet and Shalika in 1990. Recently there has been renewed interest in both the
local and global theory of the exterior square L-function via this integral representa-
tion. In an earlier work, the second author used his results on the connection between
linear periods and Shalika periods to analyze the local exterior square L-functions via
Bernstein-Zelevinsky derivatives and prove the local functional equation in the case of
GL2m(F ), for F a nonarchimedean local field. In this paper we complete this work and
derive the local functional equation for the exterior square L-function for GL2m+1(F )
by similar methods, and extending the functional equation in both cases to non-generic
representations. With these results, we have the local functional equation of the exterior
square L-function for irreducible admissible representations of GLn(F ), for any n, for
use in future applications.

1. Introduction

An integral representation for the exterior square L-function for GLn was given by Jacquet
and Shalika in 1990 [9]. In the mid 1990’s the first author, with Piatetski-Shapiro, embarked
on the local analysis of the exterior square L-function via this integral representation in
conjunction with their project to establish functoriality from SO2n+1 to GL2n via the con-
verse theorem and integral representations [4]. The approach there was by the Bernstein-
Zelevinsky theory of derivatives as in [3]. This was set aside and never published, other than
[4].

Recently there has been renewed interest in the local and global theory of the exterior
square L-function via this integral representation [1, 10, 11]. In particular, in [14] the
second author used his results on the connection between linear periods [13] and Shalika
periods to analyze the local exterior square L-functions via Bernstein-Zelevinsky derivatives
and prove the local functional equation in the case of GL2m. This approach seems simpler
than the approach used in [4].
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In this paper we complete the work in [14] and derive the local functional equation for
the exterior square L-function for GL2m+1. In their original paper, Jacquet and Shalika
considered the odd case only briefly in their last section, Section 9. We deduce the shape
of the local functional equation from the global one in [9] and then prove it using a purely
local approach. As in [14], this is based on the Bernstein-Zelevinsky theory of derivatives
and the theory of linear periods [7] extended to the odd case. Our method allows us to
extend our results, and those of [14], to any irreducible admissible representation of GLn via
the use of representations of Whittaker type. We should point out that our version of the
global and local functional equation in the odd case is different from that given by Kewat
and Raghunathan in [11]; we will address this discrepancy in the last section of the paper.

The local functional equation of the exterior square L-function is now available for irre-
ducible representations of GLn, for any n. We will use these local functional equations in the
future to prove the inductivity, or multiplicativity, of the local exterior square L-function
and γ-factor, and then complete the local nonarchimedean theory of the exterior square
L-function at the ramified places.

We should point out that the exterior square L-function is available from the Langlands-
Shahidi method [16] and the main result of [11] is that for discrete series representations the
L-functions from the Langlands-Shahidi method and the integral representation of Jacquet
and Shalika agree.

We would like to take this opportunity to thank the referee for several comments and
suggestions that improved the overall exposition of the paper.

2. Preliminaries

Let F be a nonarchimedean local field, with ring of integers O, prime ideal P, and fix
a uniformizer $ so that P = ($). Let q = |O/P| denote the cardinality of the residue
class field. We let val : F× → Z be the associated discrete valuation with val($) = 1 and
normalize the absolute value so that |a| = q−val(a).

LetMk denote the algebra of k× k square matrices with entries in F andMa,b the a× b
matrices with entries in F .

We denote GLn(F ) by Gn for n ≥ 1. We will denote | det(g)| by |g| for a matrix in
Gn. The group Nn will be the unipotent radical of the standard Borel subgroup Bn of Gn

given by upper triangular matrices. For n ≥ 2 we denote by Un the group of matrices

u(x) =

(
In−1 x

1

)
for x in F n−1.

For n > 1, the map g 7→
(
g

1

)
is an embedding of the group Gn−1 in Gn. We denote by

Pn the subgroup Gn−1Un of Gn. This is the mirabolic subgroup of Gn. We fix a nontrivial



EXTERIOR SQUARE FUNCTIONAL EQUATION 3

additive character θ of F , and denote by θ again the character

n 7→ θ

(
n−1∑
i=1

ni,i+1

)
of Nn. The normalizer of θ|Un in Gn−1 is then Pn−1.

Suppose n = 2m is even. Let σn ∈ Gn be the permutation matrix for the permutation
given by

σn =

(
1 2 · · · m | m+ 1 m+ 2 · · · 2m
1 3 · · · 2m− 1 | 2 4 · · · 2m

)
.

In this case we denote by Mn the standard Levi of Gn associated to the partition (m,m) of
n. Let wn = σn and then let Hn = wnMnw

−1
n .

Suppose n = 2m + 1 is odd. In this case we let σn be the permutation matrix in Gn

associated to the permutation

σ2m+1 =

(
1 2 · · · m | m+ 1 m+ 2 · · · 2m 2m+ 1
1 3 · · · 2m− 1 | 2 4 · · · 2m 2m+ 1

)
,

so that σ2m = σ2m+1|G2m and let w2m+1 = w2m+2|GL2m+1 so that

w2m+1 =

(
1 2 · · · m+ 1 | m+ 3 m+ 4 · · · 2m+ 1
1 3 · · · 2m+ 1 | 2 4 · · · 2m− 2

)
.

In the odd case, σ2m+1 6= w2m+1. We let Mn denote the standard parabolic associated to the
partition (m+ 1,m) of n and set Hn = wnMnw

−1
n as in the even case.

Note that the Hn are compatible in the sense that Hn ∩Gn−1 = Hn−1.

We will need the work of Bernstein and Zelevinsky concerning the classification of irre-
ducible representations of Gn. We first define the following functors following [2]:

• The functor Φ+ from Alg(Pk−1) to Alg(Pk) such that, for π in Alg(Pk−1), one has

Φ+π = indPkPk−1Uk
(δ

1/2
Uk
π ⊗ θ).

• The functor Ψ+ from Alg(Gk−1) to Alg(Pk), such that for π in Alg(Gk−1), one has

Ψ+π = indPkGk−1Uk
(δ

1/2
Uk
π ⊗ 1) = δ

1/2
Uk
π ⊗ 1. (Note that in this case Pk = Gk−1Uk, so the

induction itself is trivial.)

We recall the following proposition which follows from Propositions 3.1 and 3.2 of [13] (in
which one has injections instead of isomorphisms, but they are actually isomorphisms):

Proposition 2.1. Let σ belong to Alg(Pn−1), and χ be a character of Pn ∩ Hn. Then
there is a character χ′ of Pn−1 ∩Hn−1, independent of σ, such that

HomPn∩Hn(Φ+σ, χ) ' HomPn−1∩Hn−1(σ, χχ
′).

As a corollary we have the following.
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Corollary 2.1. Let n = 2m+ 1 be an odd integer. Let ρ be an irreducible representation
of Gk for k ≤ n− 1, and χ be a character of Hn ∩ Pn. Then

HomHn∩Pn((Φ+)n−k−1Ψ+(ρ), χ) ' HomHk(ρ, χµ
k
n)

for a character µkn of Hk independent of ρ.

Proof. By the previous propositions we have

HomHn∩Pn((Φ+)n−k−1Ψ+(ρ), χ) ' HomPk+1∩Hk+1
(Ψ+(ρ), χµ′)

for an appropriate character µ′. Ψ+ is just twisting by | det(·)|1/2, and then extending a
representation of Hk to Pk+1 by 1 on Uk+1, so it is quite straight forward that a linear form
on Ψ+(ρ) quasi-invariant under Pk+1∩Hk+1 is just a linear form on a twist of ρ by a character,
quasi-invariant under Hk. q.e.d.

3. The functional equation of the local exterior square L-function, when n is
odd

In this section, n = 2m+ 1 is odd.

3.1. An action of the Shalika subgroup on C∞c (Fm). We consider the Shalika subgroup
Sn of Gn:

Sn =


g z y

g
x 1

∣∣g ∈ Gm, x ∈M1,m, y ∈Mm,1, z ∈Mm

 .

We recall that

Θ

Im z
Im

1

g g
1

Im y
Im

1

 = θ(Tr(z))

defines a character of Pn ∩ Sn. We claim that Sn admits a certain linear representation
on the space C∞c (Fm). In the following we view x ∈ Fm ' M1,m as a row vector so, for
g ∈ Gm, xg is simply matrix multiplication and for y0 a column vector in Fm ' Mm,1 we
set 〈x, y0〉 = xy0, again matrix multiplication.

Proposition 3.1. There is a linear representation Rθ of Sn on the space C∞c (Fm), such
that:

• Rθ

g g
1

φ(x) = φ(xg).

• Rθ

Im z0

Im
1

φ(x) = θ(Tr(−z0))φ(x).
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• Rθ

Im y0

Im
1

φ(x) = θ(〈x, y0〉)φ(x).

• Rθ

Im Im
x0 1

φ(x) = φ(x+ x0);

in fact, Rθ is simply the model of indSnPn∩Sn(Θ−1), given by the restriction

f ∈ indSnPn∩Sn(Θ−1) 7→ φ ∈ C∞c (Fm),

where φ(x) = f

Im Im
x 1

.

Proof. One just checks that this is indeed the model of indSnPn∩Sn(Θ−1) given by the re-
striction map defined in the statement above. q.e.d.

Let τ = τn be the matrix

 Im
Im

1

. For h ∈ Gn, we denote by hτ the matrix

τhτ−1. One can check, using the generators of Sn given in Proposition 3.1, that the map
s 7→ t(s−1)τ = ts−τ defines an automorphism of the group Sn.

Proposition 3.2. For φ in C∞c (Fm), we denote by

φ̂(y) =

∫
u∈Fm

φ(u)θ−1(〈u, y〉)du

for du such that the Fourier inversion formula holds. We denote by F the operator φ 7→ φ̂
on C∞c (Fm). Then it satisfies

F(Rθ(s)φ) = |s|−1/2Rθ−1(ts−τ )F(φ).

Proof. One checks this on the generators given in Proposition 3.1. q.e.d.

3.2. The integral representation for the exterior square L-function. Let π be an ir-
reducible admissible representation of Gn. If π is generic, we letW(π, θ) denote its Whittaker
model; if not, then π is an irreducible quotient of an induced representation Ξ of Langlands
type which has a Whittaker model and we set W(π, θ) = W(Ξ, θ) [8]. Following Section 9
of [9] we now define two families of integrals, for W in W(π, θ), φ in C∞c (Fm), and s in C:

Jθ(s,W ) =

∫
W

σn
Im z

Im
1

g g
1

 θ(Tr(−z))|g|s−1dzdg,

where g is integrated over Nm\Gm, and z over Nn\Mn, where Nn is the space of upper
triangular matrices, and

Jθ(s,W, φ) = Jθ(s, ρ(φ)W ),
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where

ρ(φ)W (g) =

∫
Fm

W

g
Im Im

x 1

φ(x)dx.

Notice that in fact, ρ(φ)W is a finite sum of right translates of W .

It is proved in [9] that there exists rπ in R, such that the integrals Jθ(s,W ) converge for
Re(s) > rπ, and that they are in fact elements of C(q−s). This implies the same property
for the integrals Jθ(s,W, φ). It is moreover proved in [15] that the integrals Jθ(s,W ) span a
fractional ideal Jπ of C[q±s], generated by an Euler factor L(s, π,∧2).

Lemma 3.1. The integrals Jθ(s,W, φ) also span Jπ = L(s, π,∧2)C[q±s].

Proof. One has 〈Jθ(s,W, φ)〉 ⊂ 〈Jθ(s,W )〉, as ρ(φ)W is a finite sum of right translates
of W . Conversely, for φ the characteristic function of a small enough subgroup of Fm,
the integral Jθ(s,W, φ) becomes equal to a positive multiple of Jθ(s,W ) by smoothness of
W(π, θ), hence 〈Jθ(s,W, φ)〉 ⊃ 〈Jθ(s,W )〉. q.e.d.

We now check that the integrals Jθ(s,W, φ) define invariant bilinear forms under the group
Sn.

Lemma 3.2. The map Bs,π,θ : (W,φ) 7→ Jθ(s,W, φ)/L(s, π,∧2) defines a bilinear form on
W(π, θ)× C∞c (Fm), which satisfies the relation Bs,π,θ(ρ(h)W,Rθ(h)φ) = |h|−s/2Bs,π,θ(W,φ).

Proof. We recall that, for σ = σn,

Jθ(s,W, φ) =

∫
W

σ
Im z

Im
1

g g
1

Im Im
x 1

φ(x)θ(Tr(−z))|g|s−1dxdzdg

which is absolutely convergent for s large enough. One just needs to check the invariance of
Bs,π,θ under the generators of Sn given in Lemma 3.1. This follows from a simple change of
variables. q.e.d.

Let w = wn be longest Weyl element of of Gn, represented by the antidiagonal matrix

with ones along the second diagonal, i.e., w =

 1
. . .

1

. We denote by W̃ the map on

Gn defined by W̃ (g) = W (wtg−1). Then W 7→ W̃ is a vector space isomorphism between
W(π, θ) and W(π∨, θ−1), where π∨ denotes the (admissible) contragredient of π, which sat-

isfies ρ̃(h)W = ρ(th−1)W̃ . Now, Proposition 3.2 has the following consequence.

Lemma 3.3. The bilinear form Cs,π,θ : (W,φ) 7→ B1−s,π∨,θ−1(ρ(τ)W̃ , φ̂) on W(π, θ) ×
C∞c (Fm) also belongs to the space HomSn(W(π, θ)⊗ C∞c (Fm), |.|−s/2).
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Proof. By definition, for h ∈ Sn we have

Cs,π,θ(ρ(h)W,Rθ(h)φ) = B1−s,π∨,θ−1(ρ(τ)ρ̃(h)W,F(Rθ(h)φ)).

If we now use Proposition 3.2 and Lemma 3.2 to compute the right hand side we have

B1−s,π∨,θ−1(ρ(τ)ρ̃(h)W,F(Rθ(h)φ)) = B1−s,π∨,θ−1(ρ(τ)ρ(th−1)W̃ , |h|−1/2Rθ−1(th−τ )φ̂)

= |h|−1/2B1−s,π∨,θ−1(ρ(th−τ )ρ(τ)W̃ , Rθ−1(th−τ )φ̂)

= |h|−s/2Cs,π,θ(W,φ).

q.e.d.

The functional equation will then follow if we can prove that for almost all s, the space
HomSn(W(π, θ) ⊗ C∞c (Fm), |.|−s/2) is of dimension at most 1. That is what we do in the
next section.

3.3. The local functional equation. We denote by Ln the maximal (non-standard) Levi
subgroup of Gn of type (m+ 1,m), given by

Ln =


g1 u

g2

v λ

 ∈ Gn

∣∣u ∈Mm,1, v ∈M1,m, λ ∈ F, g1, g2 ∈ Gm

 .

We first show that if π is an irreducible representation of Gn, then there is an injection of
the vector space HomPn∩Sn(W(π, θ),Θ) into HomPn∩Ln(W(π, θ), χ) for some character χ of
Ln. This will be a consequence of the technique in Paragraph 6.2 in [7]. This will then give
us a multiplicity one result which we can apply to the functionals Bs,π,θ and Cs,π,θ above to
obtain the functional equation.

Let Π = W(π, θ). Recall that if π is generic then W(π, θ) ' π while if π is not generic
then W(π, θ) ' Ξ where Ξ is the induced representations of Langlands type having π as its
unique irreducible quotient. If L is an element of the space HomPn∩Sn(Π,Θ) and v belongs
to Π, we denote by SL,v the function on Gn defined as SL,v(g) = L(Π(g)v). If we formally
set

I(SL,v, s) =

∫
Gm

SL,v(diag(g, Im+1))|g|sdg

and
ΓL(v) = I(SL,v, s)

then a simple change of variables in the integral gives that ΓL ∈ HomPn∩Ln(Π, χs) where

χs

g1 u
g2

1

 =

(
|g1|
|g2|

)−s
. To actually implement this we need to first understand the

convergence of I(SL,v, s) and then in the realm of convergence show that the map L 7→ ΓL
is indeed injective.

We begin with convergence. We write U ′i for the unipotent radical of the standard parabolic
of type (i, n− i) = (i, 2m+ 1− i). In what follows all that is important is that Π has finite
length.
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Proposition 3.3. For a in (F×)m, we denote by m(a) the matrix diag(b1, . . . , bm, Im+1),
with bi = ai . . . am. For 1 ≤ i ≤ m, there is a finite set XΠ,i of characters of F× (namely
the central characters of the irreducible sub-quotients of the Jacquet modules ΠU ′i

of Π), such
that if SL,v is as above, and |ai| ≤ 1 when i is between 1 and m − 1, then SL,v(m(a)) is a
sum of functions of the form

m∏
i=1

χi(ai)val(ai)
miϕ(a)

with χi ∈ XΠ,i, integers mi ≥ 0, and ϕ a Schwartz function on Fm. This implies that there
is a real number rΠ, such that the integral

I(SL,v, s) =

∫
Gm

SL,v(diag(g, Im+1))|g|sdg

is absolutely convergent for Re(s) > rΠ.

Proof. Let V be the space of Π. As in p.118 of [7], we see that there is c = cL,v > 0, such
that |am| ≥ c, and |ai| ≤ 1 for i ∈ {1, . . . ,m − 1} implies SL,v(m(a)) = 0, thanks to the
relation L(π(a)π(u)v) = Θ(aua−1)L(π(a)v) for u ∈ U ′m ⊂ Sn.

Lemma 6.2. of [7], which asserts that if i is a positive integer ≤ m and if v ∈ V (U ′i) =
{π(u)v′ − v′ | v′ ∈ V, u ∈ U ′i}, then SL,v(diag(m(a)) vanishes if |ai| is small enough, and
|aj| ≤ 1 for 1 ≤ j ≤ m, is also valid in our case. This lemma only uses the quasi-invariance
of SL,v under the Shalika subgroup Sn, and its right smoothness. We indicate the notational
changes to be made in Lemma 6.2 of [7] for our situation: a = m(a) := diag(b1, . . . , bm, Im+1)

instead of diag(b1, . . . , bm, Im), u1 :=

(
Im Z

Im+1

)
, u2 :=

(
u′

Im+1

)
, u′ is the same, and(

Im
bu′−1b−1

)
replaced by

Im bu′−1b−1

1

 . Notice that there is a typo in [7], equality

at the top of p.120, where the second π(a) should stand just before v0. This shows that the
lemma applies in our situation.

Now, let Hi be the group {diag(tIi, Im+1−i), t ∈ F×}, H1
i = {diag(tIi, Im+1−i), t ∈ O− 0},

H =
∏m

i=1Hi, and H1 =
∏m

i=1H
1
i . For i ≤ m, the Jacquet module VU ′i = V/V (U ′i) has finite

length and Hi acts by a character on each irreducible subquotient. Fix L ∈ HomPn∩Sn(Π,Θ),
and call V the space of maps φL,v : a ∈ H 7→ SL,v(m(a)) for v ∈ V . V is certainly a smooth
H-module. Let Vi denotes the Hi-submodule of functions φ in V , such that there is cφ > 0,
which satisfies that ρ(hi)φ vanishes on H1 when |hi| ≤ cφ (with hi ∈ Hi ' F×). Then, V/Vi
is a quotient of VU ′i (thanks to our version of Lemma 6.2), and we can apply Lemma 3.4

below, which tells us that for any v ∈ V , φL,v restricts to H1 as we expect. Now, let (zβ)β
be a finite set of representatives of {am ∈ Hm | 1 ≤ |am| ≤ cL,v}/U for a U compact open
subgroup of Hm fixing φL,v. We can then write 1{1≤|am|≤cL,v}φL,v(a1, . . . , am−1, am) as∑

β

φL,v(a1, . . . , am−1, zβ)1zβU(am) =
∑
β

φL,π(zβ)v(a1, . . . , am−1, 1)1zβU(am).
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We now conclude (as 1 ∈ H1
m), thanks to the relation

φL,v(a1, . . . , am−1, am) = 1{|am|≤1}φL,v(a1, . . . , am−1, am) + 1{1≤|am|≤cL,v}φL,v(a1, . . . , am−1, am)

for |ai| ≤ 1 when i ≤ m− 1.

The asymptotic expansion implies the convergence of the integral as on the top of p.119 of
[7], as we can here as well write L(Π(h)v) = L(Π(m(a)k)v (see [7]), because {diag(g, g, 1),∈
Gm} fixes L. (This part was a problem in the even case [14].) q.e.d.

We are left with proving Lemma 3.4 below. This lemma is very similar to Lemma 2.2.1
of [6]. We will give a slightly different proof, based on [12], where the exponents of the
representation appear.

Lemma 3.4. Let H be a torus of dimension m, decomposed as H =
∏m

i=1 Hi with each
Hi ' F×. Let H1

i ⊂ Hi be the inverse image of O− {0} in Hi and set H1 =
∏m

i=1 H
1
i . Let

V be a space of uniformly smooth functions on H, that is, each fixed by some open subgroup
of H, and for each i set

Vi = {φ ∈ V | there exists cφ > 0 such that φ(a) = 0 for all a ∈ H1 with |ai| < cφ}.
Suppose each quotient module Qi = V/Vi has a finite filtration 0 ⊂ Q1,i ⊂ · · · ⊂ Qni,i =
Qi, such that Hi acts by a character on each successive subquotient Ql+1,i/Ql,i. Let Xi be
the finite family of such characters. Then there is a finite collection of functions ξ(a) =∏m

i=1 χi(ai)val(ai)
ni with χi ∈ Xi and ni ∈ N such that for all φ ∈ V and a ∈ H1 we have

φ(a) =
∑
ξ

ξ(a)ϕξ(a)

with ϕξ a Schwarts function on Om.

Proof. We will do an induction on m. This will be based on the following construction.
Let φ ∈ V and let φ be its image in Qm = V/Vm. Then Qm is a module for Hm ' F× with
a filtration as in the statement of the Lemma. As such, it satisfies the hypotheses of Lemma
2.1 of [12], and so φ generates a finite dimensional submodule of Qm under the reduction

of right translation. Let B = {e1, . . . , er} be a basis of the submodule 〈ρ(h)φ | h ∈ Hm〉
generated by φ. For each i let ei ∈ V be a lift of ei. By Proposition 2.8 of [12], if we let
M(h) = MatB(ρ(h)) be the matrix representing right translation by h ∈ Hm with respect
to the basis B, then M(h) is upper triangular with entries of the form χ(h)P (val(h)), for χ
in Xm and P a polynomial. Let e = t(e1, . . . , er) ∈ Vr, so that if φ =

∑r
i=1 xiei. Then the

difference

d(a1, . . . , am−1, h) = φ(a1, . . . , am−1, h)− (x1, . . . , xr)e(a1, . . . , am−1, h)

vanishes for all ai ∈ H1
i , i = 1, . . . ,m− 1, and |h| ≤ q−t for some t ≥ 0, that is,

φ(a1, . . . , am−1, h) = (x1, . . . , xr)e(a1, . . . , am−1, h) (1)

for all ai ∈ H1
i , i = 1, . . . ,m− 1, and |h| ≤ q−t for some t ≥ 0.

For any a in Hm, there is na ∈ N, such that for any l in {1, . . . , r}, the map ρ(a)el −∑
kM(a)k,lek vanishes on the set (

∏m−1
i=1 H1

i )×{h ∈ Hm | |h| ≤ q−na}. Let $ be a uniformizer
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of F×, and U a compact open subgroup of O× such that (1, . . . , 1, U) fixes e, as well as the
representation h 7→ M(h) of Hm ' F× on Cr. Choose a set u1, . . . , ul of representatives
of O×/U , and let n′ = max(nui , n$). Fix z with |z| = q−n

′
. If am ∈ H1

m, we can write it
am = $ruiu for some r ≥ 0, i ∈ {1, . . . , l}, and u ∈ U . We then have, for ai ∈ H1

i , the
equalities

e(a1, . . . , am−1, zam) = e(a1, . . . , am−1, z$
rui) =tM(ui)e(a1, . . . , am−1, z$

r)

because |z$r| ≤ |z| ≤ q−nui . If r ≥ 1, we then have

e(a1, . . . , am−1, z$
r) = tM($)(a1, . . . , am−1, z$

r−1)

because |z$r−1| ≤ |z| ≤ q−n$ . Repeating this last step as needed, we find that

e(a1, . . . , am−1, zam) = tM($rui)e(a1, . . . , am−1, z) = tM(am)e(a1, . . . , am−1, z).

If we then set N = max(n′, t), then for |am| ≤ q−N and ai ∈ H1
i , we have

e(a1, . . . , am−1, am) = tM(z−1)tM(am)e(a1, . . . , am−1, z). (2)

We now begin the induction. Let m = 1 so that H = H1 = F× and H1 = H1
1 = O − 0.

The formula (1) becomes the statement that there exists t > 0 such that

φ(a) = (x1, . . . , xr)e(a)

when |a| ≤ qt. From equation (2) we deduce that there exists z ∈ H1 and N ∈ N such that

e(a) =tM(z−1)tM(a)e(z)

for |a| ≤ q−N . Hence, if we set N ′ = max(N, t), we obtain

φ(a) = (x1, . . . , xr)e(a) = (x1, . . . , xr)
tM(z−1a)e(z)

for |a| ≤ q−N
′
. Hence for a ∈ H1 we have

φ(a) = 1{|a|≤q−N′}(x1, . . . , xr)
tM(z−1)tM(a)e(z) + 1{q−N′≤|h|≤1}φ(a)

which is of the desired form since the xi and z are fixed and the non-zero entries of M(a)
are of the form χ(a)P (val(a)) for χ ∈ X1.

To complete the induction, we assume the result for H ′ =
∏m−1

i=1 Hi. Then, considering
H =

∏m
i=1Hi, by (1) we know there is a t ≥ 0 such that

φ(a1, . . . , am−1, am) = (x1, . . . , xr)e(a1, . . . , am−1, am)

for all ai ∈ H1
i , i = 1, . . . ,m − 1, and |am| ≤ q−t. From equation (2) we deduce that there

exists z ∈ H1
m and N ∈ N such that

e(a1, . . . , am−1, am) = tM(z−1)tM(am)e(a1, . . . , am−1, z).

for |am| ≤ q−N and ai ∈ H1
i . Hence, if we set N ′ = max(N, t), and let

f(a1, . . . , am−1, am) = (x1, . . . , xr)
tM(z−1)tM(am)e(a1, . . . , am−1, z),

then

φ(a1, . . . , am−1, am) = 1{|am|≤q−N′}f(a1, . . . , am−1, am) + 1{q−N′≤|am|≤1}φ(a1, . . . , am−1, am).

for ai ∈ H1
i .
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Now, if we fix y in H1
m, and denote by Vy the space of functions on H ′ =

∏m−1
i=1 Hi of the

form h′ 7→ φ(h′, y) for φ ∈ V . As y belongs to H1
m and as Qy,i = Vy/Vy,i is a quotient of

Qi = V/Vi for i between 1 and m−1, we can apply our induction hypothesis to this space, so
any function φy in Vy is a sum of functions of the form a′ 7→

∏m−1
i=1 χi(a

′
i)val(a

′
i)
miϕ(a′), for

χi ∈ Xi, mi ∈ N, and ϕ a Schwartz function on Om−1. As z belongs to H1
m, and h′ 7→ ei(h

′, z)
belongs to Vz for i ∈ {1, . . . , r}, we deduce that the map 1{|am|≤q−N′}f(a1, . . . , am−1, am) is

of the desired form on H1.

It remains to show that the same is true for the map 1{q−N′≤|am|≤1}φ(a1, . . . , am−1, am)

on H1. However, taking U an open subgroup of O× such that (1, . . . , 1, U) fixes φ, and
representatives (zα)α of {q−N ≤ |am| ≤ 1}/U , we can write

1{q−N′≤|am|≤1}φ(a1, . . . , am−1, am) =
∑
α

1zαU(am)φ(a1, . . . , am−1, zα)

and we conclude by the induction hypothesis again applied to the Vzα , that

1{q−N′≤|am|≤1}(a1, . . . , am−1, am)

is of the desired form as well, which concludes the proof. q.e.d.

Let s0 be a real number strictly greater than rΠ. Given L ∈ HomPn∩Sn(Π,Θ) and v ∈ VΠ,
set

ΓL(v) = I(SL,v, s0).

This now converges and, as noted above, a simple change of variables in the integral defining

I(SL,v, s0) gives that ΓL ∈ HomPn∩Ln(Π, χs0) where χs0

g1 u
g2

1

 =

(
|g1|
|g2|

)−s0
.

Proposition 3.4. Suppose s0 is a real number greater than rΠ. The map L 7→ ΓL gives a
linear injection of HomPn∩Sn(Π,Θ) into the space HomPn∩Ln(Π, χs0).

Proof. We only need to check that if ΓL is zero, then so is L. So we suppose that ΓL is zero.
Consider Φ(y) the function on Mm, equal to SL,v(diag(·, Im+1))| · |s0−m on Gm, and to zero
outside Gm. Then Φ(y) is L1 for a Haar measure on Mm, because SL,v(diag(g, Im+1))|g|s0
is L1 for a Haar measure on Gm andMm −Gm is of measure zero inMm, and we have the
equality ∫

Mm

Φ(y)dy =

∫
Gm

SL,v(diag(g, Im+1))|g|s0dg.

More generally, for any x in Mm, we have the equalities of absolutely convergent integrals:∫
Gm

S

L,π


Im x

Im
1

v
(diag(g, Im+1))|g|s0dg =

∫
Gm

θ(Tr(gx))SL,v(diag(g, Im+1))|g|s0dg

=

∫
Mm

θ(Tr(xy))Φ(y)dy = Φ̂(x).
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But ΓL being zero implies that the first integral in this series of equality is zero, hence Φ’s
Fourier transform on Mm is zero. In particular, Φ is zero almost everywhere on Mm, but
as it is continuous on Gm, it must be zero on Gm. This implies that SL,v(In) = L(v) is zero
for every v, i.e. that L is zero. q.e.d.

From here, we get the following multiplicity one result that is the key to proving the local
functional equation.

Proposition 3.5. For almost all s, the space HomSn(W(π, θ) ⊗ C∞c (Fm), |.|−s/2) is of
dimension at most 1.

Proof. We again let Π denote W(π, θ). Set χ = χs0 as in Proposition 3.4. We first prove
that for all values of q−s, except possibly a finite number, we have dim(HomPn∩Ln(Π, χ|.|s)) ≤
1. We can replace Pn∩Ln by Pn∩Hn in the statement we wish to prove, as both are conjugate
in Gn (and actually in Pn). Then according to Section 3.5 of [2], the restriction of Π to Pn
has a filtration by derivatives with each successive quotient of the form (Φ+)n−k−1Ψ+(τ) for
k ≤ n − 1 and τ = π(n−k) a representation of Gk, the (n − k)th derivative of π. Since the
functors Φ+ and Ψ+ are exact, we can replace each τ with its composition series (it is of
finite length) and assume a filtration with successive quotients of the form (Φ+)n−k−1Ψ+(τ)
with τ irreducible. For every irreducible representation τ of Gk, for k ≥ 1, from Corollary
2.1 we deduce that

HomPn∩Hn((Φ+)n−k−1Ψ+(τ), χ|.|s)) = HomHk(τ, χµ
k
n|.|s)

and this last space is zero except for a finite number of q−s as τ has a central character. For
all other values of q−s, we deduce that the functional must be non-zero on the bottom piece
of the Bernstein-Zelevinsky filtration which is (Φ+)n−1Ψ+(1). Thus for all but finitely many
values of q−s we have

dim(HomPn∩Hn(Π, χ|.|s)) ≤ dim(HomPn∩Hn((Φ+)n−1Ψ+(1), χ|.|s)).
Again by Corollary 2.1 we have HomPn∩Hn((Φ+)n−1Ψ+(1), χ|.|s) ' HomH0(1, χµ

n
n|.|s) which

has dimension one. Hence this proves our assertion about dim(HomPn∩Ln(Π, χ|.|s)).

Proposition 3.4 then implies that

dim(HomPn∩Sn(Π, |.|sΘ)) ≤ 1

for all values of q−s except a finite number. Now, we have the following series of isomorphisms:

HomSn(Π⊗ C∞c (Fm), |.|−s/2) ' HomSn(Π⊗ indSnPn∩Sn(Θ−1), |.|−s/2)

' HomSn(Π, IndSnSn∩Pn(|.|−s/2+1/2Θ))

' HomSn∩Pn(Π, |.|−(s−1/2)Θ)),

the last isomorphism by Frobenius reciprocity. Hence for all but finitely many values of q−s

the space HomSn(Π⊗ C∞c (Fm), |.|−s/2) is of dimension at most one. q.e.d.

This has as a consequence the functional equation of the exterior-square L-function in the
odd case.
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Theorem 3.1. Let π be an irreducible admissible representation of Gn. There exists an
invertible element ε(s, π,∧2, θ) of C[q±s], such that for every W in W(π, θ), one has the
following functional equation:

ε(s, π,∧2, θ)
Jθ(s,W, φ)

L(s, π,∧2)
=
Jθ−1(1− s, ρ(τ)W̃ , φ̂)

L(1− s, π∨,∧2)
.

Proof. As the bilinear forms Cs,π,θ and Bs,π,θ defined in Lemmas 3.2 and 3.3 belong to
HomSn(W(π, θ)⊗C∞c (Fm), |.|−s/2), Proposition 3.5 gives the existence of ε(s, π,∧2, θ) defined
for all but finitely many values of s, such that ε(s, π,∧2, θ)Bs,π,θ(W,φ) = Cs,π,θ(W,φ) for all
W and φ and almost all but finitely many s. Since Bs,π,θ(W,φ), Cs,π,θ(W,φ) ∈ C(q−s), then
this ε(s, π,∧2, θ) extends uniquely to a rational function ε(s, π,∧2, θ) ∈ C(q−s) satisfying the
equality in the statement.

As the integrals Jθ−1(1− s, W̃ , φ̂) span the fractional ideal L(1− s, π∨,∧2)C[q±s], one can
always find a finite set of Whittaker functions Wi, and Schwartz functions φi satisfying∑

i

Jθ−1(1− s, ρ(τ)W̃i, φ̂i) = L(1− s, π∨,∧2) ∈ C[q−s].

Therefore, for this choice of {(Wi, φi)} we have

ε(s, π,∧2, θ)

∑
i Jθ(s,Wi, φi)

L(s, π,∧2)
= 1,

and the factor ε(s, π,∧2, θ) is nonzero in C(q−s), with ε(s, π,∧2, θ)−1 ∈ C[q±s]. Now, there is
also a choice of a finite set of Whittaker functions Wj, and Schwartz functions φj satisfying∑

j Jθ(s,Wj, φj) = L(s, π,∧2), hence

ε(s, π,∧2, θ) =

∑
j Jθ−1(1− s, ρ(τ)W̃j, φ̂j)

L(1− s, π∨,∧2)
∈ C[q±s],

thus it ε(s, π,∧2, θ) is a unit in C[q±s]. q.e.d.

3.4. Remarks on the local functional equation in the even case. In Theorem 4.1 of
[14], the second author proves the functional equation for generic irreducible representations
of Gn, with n = 2m even. To generalize to any irreducible admissible representation, one
must argue with the Whittaker model W(π, θ) as we do above. The proof uses Proposition
4.3 of the same paper, hence one needs to check that the irreducible representation π of
the statement of this Proposition can safely be replaced by the Whittaker model W(π, θ).
Looking at the proof of this Proposition, we see that we need to extend Proposition 4.2 of
[14], and its immediate Corollary 4.1, to W(π, θ). Proposition 4.2 is itself a consequence of
Proposition 4.1, so that the only point is to extend Proposition 4.1 of [14] from an irreducible
generic representation to a representation of the form Π = W(π, θ) ' ∆1 × · · · ×∆r which
is parabolically induced from irreducible generic representations ∆i of smaller linear groups.
Setting L(s,Π) =

∏
i L(s,∆i), the statement of Proposition 4.1 (and hence of Propositions

4.2 and 4.3) is still true for Π thanks to Section 3 of Godement-Jacquet’s first chapter [5].
All the other arguments in the proof of Theorem 4.1 are valid for any irreducible admissible
representation, just as in the proof of Theorem 3.1 above. There is however one point,
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namely that the ε factor is a unit, the proof of which is not correct in Theorem 4.1 of [14].
One just needs to modify this bit as in the proof of Theorem 3.1 above.

The conclusion of this discussion is that the local functional equation of the exterior square
L-function is now available for irreducible admissible representations of Gn, for any n.

3.5. Comparison with Kewat and Raghunathan. A local functional equation for the
exterior square L-function in the case of odd n = 2m+ 1 is given in the paper of Kewat and
Raghunathan [11] in their Theorem 8.1. That local functional equation differs from the one
we have presented here. Kewat and Raghunathan derive it, without detail, from a global
functional equation.

Let k be a global field and A the adeles of k. In [11], the global functional equation in
the case of odd n is given in their Theorem 3.11. Let π be a cuspidal representation of G(A)
with n = 2m+ 1 and let ϕ belong to the space Vπ of π. The global integral for the exterior
square L-function in the odd case is given in formula (3.4) of [11]:

I(s, ϕ) =

∫ ∫ ∫
ϕ

In X Y
In

1

g g
1

ψ(Tr(X))dXdY | det g|s−1dg,

where X and Y are integrated over Mm(F )\Mm(A) and km\Am, g over Gm(F )\Gm(A),
and ψ is a non-trivial character of k\A. The functional equation they claim in Theorem 3.11
is

I(s, ϕ) = I(1− s, ϕ′) (3)

for ϕ′ a suitable translate of ϕ̃(g) = ϕ(ιg). The right translate is not specified, but from

page 220 of [9] it seems it would be right translation by d(wm) =

wm wm
1

.

Let d(h) = diag(h, h, 1) for h in GLm(A). Then the left hand side of (3) is a linear form
on Vπ satisfying

I(s, ρ(d(h))ϕ) = | deth|1−sI(s, ϕ)

by a simple change of variables. If we write out the right hand side of (3) we find this is
again a linear functional on Vπ but now a change of variables gives

I(1− s, [ρ(d(h))ϕ]′) = | deth|−sI(1− s, ϕ′).
The only way to reconcile the quasi-invariances of the two sides is if the functionals are
both 0, which they aren’t. So the global functional equation found in [11] seems not to be
correct. This issue will persist to the local functional equation, the second part of Theorem
8.1 of [11], since it was derived from the global functional equation. So the local functional
equation of [11] is incorrect as well.

This is not the global functional equation that appears in Jacquet-Shalika [9]. The global
functional equation in the odd case is given on page 220 of [9] as

I(s, ϕ1) = I(1− s, ϕ′)
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where ϕ′ is a suitable translate of ϕ̃2. Here, if ϕ ∈ Vπ then ϕ1 and ϕ2 are defined on page
219 of [9]

ϕ1(g) =

∫
ϕ

g
In In

X 1

Φ(X) dX

and

ϕ2(g) =

∫
ϕ

g
In Y

In
1

 Φ̂(Y ) dY

where Φ ∈ S(An). Here we have the presence of extra unipotent integrations on the two
sides, much as in the usual Hecke integrals for GLn×GLm. The shape of the local functional
equation we obtain in our Theorem 3.1 is derived from this global functional equation.

Kewat and Raghunathan seem to have simply misinterpreted the formula in Jacquet and
Shalika [9]. Fortunately, the result in [11] doesn’t really depend on the shape of the functional
equation, just having local/global compatibility. So this error should not affect the main
result, Theorem 1.1, of [11].
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