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The purpose of this note is to desribe the analyti theory of L-funtions for uspidal

automorphi representations of GL

n

over a global �eld. There are two approahes to L-

funtions of GL

n

: via integral representations or through analysis of Fourier oeÆients of

Eisenstein series. In this note we will disuss the theory via integral representations.

The theory of L-funtions of automorphi forms (or modular forms) via integral repre-

sentations has its origin in the paper of Riemann on the �-funtion. However the theory

was really developed in the lassial ontext of L-funtions of modular forms for ongru-

ene subgroups of SL

2

(Z) by Heke and his shool. Muh of our urrent theory is a diret

outgrowth of Heke's. L-funtions of automorphi representations were �rst developed by

Jaquet and Langlands for GL

2

. Their approah followed Heke ombined with the loal-

global tehniques of Tate's thesis. The theory for GL

n

was then developed along the same

lines in a long series of papers by various ombinations of Jaquet, Piatetski-Shapiro, and

Shalika. In addition to assoiating an L-funtion to an automorphi form, Heke also gave a

riterion for a Dirihlet series to ome from a modular form, the so alled onverse theorem

of Heke. In the ontext of automorphi representations, the onverse theorem for GL

2

was

developed by Jaquet and Langlands, extended and signi�antly strengthened to GL

3

by

Jaquet, Piatetski-Shapiro, and Shalika, and then extended to GL

n

with Piatetski-Shapiro.

What we have attempted to present here is a synopsis of this work. An expanded version of

this note an be found in [1℄.

There is another body of work on integral representations of L-funtions for GL

n

whih

developed out of the lassial work on zeta funtions of algebras. This is the theory of

prinipal L-funtions for GL

n

as developed by Godement and Jaquet [15, 20℄. This approah

is related to the one pursued here, but we have not attempted to present it.

The other approah to these L-funtions is via the Fourier oeÆients of Eisenstein series.

This approah also has a lassial history. In the ontext of automorphi representations,

and in a broader ontext than GL

n

, this approah was originally laid out by Langlands [29℄

but then most fruitfully pursued by Shahidi. Some of the major papers of Shahidi on this

subjet are [35, 36, 37, 38, 39, 40, 41℄. In partiular, in [38℄ he shows that the two approahes

give the same L-funtions for GL

n

. We will not pursue this approah in these notes.

1. Fourier expansions

In this setion we let k denote a global �eld, A , its ring of adeles, and  will denote a

ontinuous additive harater of A whih is trivial on k.
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We begin with a uspidal automorphi representation (�; V

�

) of GL

n

(A ). For us, auto-

morphi forms are assumed to be smooth (of uniform moderate growth) but not neessarily

K

1

{�nite at the arhimedean plaes. This is most suitable for the analyti theory. For

simpliity, we assume the entral harater !

�

of � is unitary. Then V

�

is the spae of

smooth vetors in an irreduible unitary representation of GL

n

(A ). We will always use

uspidal in this sense: the smooth vetors in an irreduible unitary uspidal automorphi

representation. (Any other smooth uspidal representation � of GL

n

(A ) is neessarily of

the form � = �

Æ


 j det j

t

with �

Æ

unitary and t real, so there is really no loss of generality

in the unitarity assumption. It merely provides us with a onvenient normalization.) By

a usp form on GL

n

(A ) we will mean a funtion lying in a uspidal representation. By a

uspidal funtion we will simply mean a smooth funtion ' on GL

n

(k)nGL

n

(A ) satisfying

R

U(k)nU(A )

'(ug) du � 0 for every unipotent radial U of standard paraboli subgroups of

GL

n

.

The basi referenes for this setion are the papers of Piatetski-Shapiro [31, 32℄ and Shalika

[42℄.

1.1. The Fourier expansions. If f(�) is a holomorphi usp form on the upper half plane

H, say with respet to SL

2

(Z), then f is invariant under integral translations, f(�+1) = f(�)

and thus has a Fourier expansion of the form

f(�) =

1

X

n=1

a

n

e

2�in�

:

If '(g) is a smooth usp form on GL

2

(A ) then the translations orrespond to the maximal

unipotent subgroup N

2

=

�

n =

�

1 x

0 1

��

and '(ng) = '(g) for n 2 N

2

(k). So, if  is any

ontinuous harater of knA we an de�ne the  -Fourier oeÆient or  -Whittaker funtion

by

W

'; 

(g) =

Z

knA

'

��

1 x

0 1

�

g

�

 

�1

(x) dx:

We have the orresponding Fourier expansion

'(g) =

X

 

W

'; 

(g):

(Atually from abelian Fourier theory, one has

'

��

1 x

0 1

�

g

�

=

X

 

W

'; 

(g) (x)

as a periodi funtion of x 2 A . Now set x = 0.)

If we �x a single non-trivial harater  of knA , then the additive haraters of the

ompat group knA are isomorphi to k via the map  2 k 7!  



where  



is the harater

 



(x) =  (x). An elementary alulation shows that W

'; 



(g) = W

': 

��



1

�

g

�

if
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 6= 0. If we set W

'

=W

'; 

for our �xed  , then the Fourier expansion of ' beomes

'(g) = W

'; 

0

(g) +

X

2k

�

W

'

��



1

�

g

�

:

Sine ' is uspidal

W

'; 

0

(g) =

Z

knA

'

��

1 x

0 1

�

g

�

dx � 0

and the Fourier expansion for a usp form ' beomes simply

'(g) =

X

2k

�

W

'

��



1

�

g

�

:

We will need a similar expansion for usp forms ' on GL

n

(A ). The translations still

orrespond to the maximal unipotent subgroup

N

n

=

8

>

>

>

>

>

<

>

>

>

>

>

:

n =

0

B

B

B

B

B

�

1 x

1;2

�

1

.

.

.

.

.

.

.

.

.

1 x

n�1;n

0 1

1

C

C

C

C

C

A

9

>

>

>

>

>

=

>

>

>

>

>

;

;

but now this is non-abelian. This diÆulty was solved independently by Piatetski-Shapiro

[31℄ and Shalika [42℄. We �x our non-trivial ontinuous harater  of knA as above. Extend

it to a harater of N

n

by setting  (n) =  (x

1;2

+ � � � + x

n�1;n

) and de�ne the assoiated

Fourier oeÆient or Whittaker funtion by

W

'

(g) = W

'; 

(g) =

Z

N

n

(k)nN

n

(A )

'(ng) 

�1

(n) dn:

Sine ' is ontinuous and the integration is over a ompat set this integral is absolutely

onvergent, uniformly on ompat sets. The Fourier expansion takes the following form.

Theorem 1.1. Let ' 2 V

�

be a usp form on GL

n

(A ) and W

'

its assoiated  -Whittaker

funtion. Then

'(g) =

X

2N

n�1

(k)nGL

n�1

(k)

W

'

��



1

�

g

�

with onvergene absolute and uniform on ompat subsets.

The proof of this fat is an indution. It utilizes the miraboli subgroup P

n

of GL

n

whih

seems to be ubiquitous in the study of automorphi forms on GL

n

. Abstratly, a miraboli

subgroup of GL

n

is simply the stabilizer of a non-zero vetor in (either) standard representa-

tion of GL

n

on k

n

. We denote by P

n

the stabilizer of the row vetor e

n

= (0; : : : ; 0; 1) 2 k

n

.

So

P

n

=

�

p =

�

h y

1

�

�

�

h 2 GL

n�1

; y 2 k

n�1

�

' GL

n�1

nY

n

where

Y

n

=

�

y =

�

I

n�1

y

1

�

�

�

y 2 k

n�1

�

' k

n�1

:
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Simply by restrition of funtions, a usp form on GL

n

(A ) restrits to a smooth uspidal

funtion on P

n

(A ) whih remains left invariant under P

n

(k). (A smooth funtion ' on

P

n

(A ) whih is left invariant under P

n

(k) is alled uspidal if

R

U(k)nU(A )

'(up) du � 0 for

every standard unipotent subgroup U � P

n

.) Sine P

n

� N

n

we may de�ne a Whittaker

funtion attahed to a uspidal funtion ' on P

n

(A ) by the same integral as on GL

n

(A ),

namely

W

'

(p) =

Z

N

n

(k)nN

n

(A )

'(np) 

�1

(n) dn:

One proves by indution on n that for a uspidal funtion ' on P

n

(A ) we have

'(p) =

X

2N

n�1

(k)nGL

n�1

(k)

W

'

��

 0

0 1

�

p

�

with onvergene absolute and uniform on ompat subsets.

To obtain the Fourier expansion on GL

n

from this, if ' is a usp form on GL

n

(A ), then

for g 2 
 a ompat subset the funtions '

g

(p) = '(pg) form a ompat family of uspidal

funtions on P

n

(A ). So we have

'

g

(1) =

X

2N

n�1

(k)nGL

n�1

(k)

W

'

g

��

 0

0 1

��

with onvergene absolute and uniform. Hene

'(g) =

X

2N

n�1

(k)nGL

n�1

(k)

W

'

��

 0

0 1

�

g

�

again with absolute onvergene, uniform for g 2 
.

1.2. Whittaker models and multipliity one. Consider now the funtionsW

'

appearing

in the Fourier expansion of a usp form '. These are all smooth funtions W (g) on GL

n

(A )

whih satisfy W (ng) =  (n)W (g) for n 2 N

n

(A ). If we let W(�;  ) = fW

'

j ' 2 V

�

g then

GL

n

(A ) ats on this spae by right translation and the map ' 7! W

'

intertwines V

�

with

W(�;  ). W(�;  ) is alled the Whittaker model of �.

The notion of a Whittaker model of a representation makes perfet sense over a loal �eld.

Let k

v

be a loal �eld (a ompletion of k for example) and let (�

v

; V

�

v

) be an irreduible

admissible smooth representation of GL

n

(k

v

). Fix a non-trivial ontinuous additive harater

 

v

of k

v

. Let W( 

v

) be the spae of all smooth funtions W (g) on GL

n

(k

v

) satisfying

W (ng) =  

v

(n)W (g) for all n 2 N

k

(k

v

), that is, the spae of all smooth Whittaker funtions

on GL

n

(k

v

) with respet to  

v

. This is also the spae of the smooth indued representation

Ind

GL

n

N

v

( 

v

). GL

n

(k

v

) ats on this by right translation. If we have a non-trivial ontinuous

intertwining V

�

v

! W( 

v

) we will denote its image by W(�

v

;  

v

) and all it a Whittaker

model of �

v

.

Whittaker models for a representation (�

v

; V

�

v

) are equivalent to ontinuous Whittaker

funtionals on V

�

v

, that is, ontinuous funtionals �

v

satisfying �

v

(�

v

(n)�

v

) =  

v

(n)�

v

(�

v

)
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for all n 2 N

n

(k

v

). To obtain a Whittaker funtional from a model, set �

v

(�

v

) = W

�

v

(e),

and to obtain a model from a funtional, set W

�

v

(g) = �

v

(�

v

(g)�

v

). This is a form of

Frobenius reiproity, whih in this ontext is the isomorphism between Hom

N

n

(V

�

v

; C

 

v

)

and Hom

GL

n

(V

�

v

; Ind

GL

n

N

n

( 

v

)) onstruted above.

The fundamental theorem on the existene and uniqueness of Whittaker funtionals and

models is the following.

Theorem 1.2. Let (�

v

; V

�

v

) be a smooth irreduible admissible representation of GL

n

(k

v

).

Let  

v

be a non-trivial ontinuous additive harater of k

v

. Then the spae of ontinuous

 

v

{Whittaker funtionals on V

�

v

is at most one dimensional. That is, Whittaker models, if

they exist, are unique.

This was �rst proven for non-arhimedean �elds by Gelfand and Kazhdan [14℄ and their

results were later extended to arhimedean loal �elds by Shalika [42℄.

A smooth irreduible admissible representation (�

v

; V

�

v

) of GL

n

(k

v

) whih possesses a

Whittaker model is alled generi or non-degenerate. Gelfand and Kazhdan in addition

show that �

v

is generi i� its ontragredient e�

v

is generi, in fat that e� ' �

�

where � is the

outer automorphism g

�

=

t

g

�1

, and in this ase the Whittaker model for e�

v

an be obtained

as W(e�

v

;  

�1

v

) = f

f

W (g) = W (w

n

t

g

�1

) jW 2 W(�;  

v

)g.

As a onsequene of the loal uniqueness of the Whittaker model we an onlude a global

uniqueness. If (�; V

�

) is an irreduible smooth admissible representation of GL

n

(A ) then �

fators as a restrited tensor produt of loal representations � ' 


0

�

v

taken over all plaes

v of k [10, 13℄. Consequently we have a ontinuous embedding V

�

v

,! V

�

for eah loal

omponent. Hene any Whittaker funtional � on V

�

determines a family of loal Whittaker

funtionals �

v

on eah V

�

v

and onversely suh that � = 


0

�

v

. Hene global uniqueness

follows from the loal uniqueness. Moreover, one we �x the isomorphism of V

�

with 


0

V

�

v

and de�ne global and loal Whittaker funtions via � and the orresponding family �

v

we

have a fatorization of global Whittaker funtions

W

�

(g) =

Y

v

W

�

v

(g

v

)

for � 2 V

�

whih are fatorizable in the sense that � = 


0

�

v

orresponds to a pure tensor.

As we will see, this fatorization, whih is a diret onsequene of the uniqueness of the

Whittaker model, plays a most important role in the development of Eulerian integrals for

GL

n

.

Now let us see what this means for our uspidal representations (�; V

�

) of GL

n

(A ). We

have seen that for any smooth usp form ' 2 V

�

we have the Fourier expansion

'(g) =

X

2N

n�1

(k)nGL

n�1

(k)

W

'

��



1

�

g

�

:
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We an thus onlude that W(�;  ) 6= 0 and that � is (globally) generi with Whittaker

funtional

�(') = W

'

(e) =

Z

'(ng) 

�1

(n) dn:

Thus ' is ompletely determined by its assoiated Whittaker funtionW

'

. From the unique-

ness of the global Whittaker model we an derive the Multipliity One Theorem of Piatetski-

Shapiro [32℄ and Shalika [42℄.

MultipliityOne: Let (�; V

�

) be an irreduible smooth admissible representation of GL

n

(A ).

Then the multipliity of � in the spae of usp forms on GL

n

(A ) is at most one.

2. Eulerian integral representations

Let f(�) again be a holomorphi usp form of weight k on H for the full modular group

with Fourier expansion

f(�) =

X

a

n

e

2�in�

:

Then Heke [18℄ assoiated to f an L-funtion

L(s; f) =

X

a

n

n

�s

and analyzed its analyti properties, namely ontinuation, order of growth, and funtional

equation, by writing it as the Mellin transform of f

�(s; f) = (2�)

�s

�(s)L(s; f) =

Z

1

0

f(iy)y

s

d

�

y:

An appliation of the modular transformation law for f(�) under the transformation � 7!

�1=� gives the funtional equation

�(s; f) = (�1)

k=2

�(k � s; f):

Moreover, if f is an eigenfuntion of all Heke operators then L(s; f) has an Euler produt

expansion

L(s; f) =

Y

p

(1� a

p

p

�s

+ p

k�1�2s

)

�1

:

There is a similar theory for uspidal automorphi representations (�; V

�

) of GL

n

(A ). For

appliations to the Langlands onjetures and to funtoriality via the Converse Theorem we

will need not only the standard L-funtions L(s; �) but the twisted L-funtions L(s; �� �

0

)

for (�

0

; V

�

0

) a uspidal automorphi representation of GL

m

(A ) for m < n as well.

The basi referenes for this setion are Jaquet-Langlands [21℄, Jaquet, Piatetski-Shapiro,

and Shalika [22℄, and Jaquet and Shalika [25℄.
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2.1. Integral representations for GL

2

. Let us �rst onsider the L-funtions for uspidal

automorphi representations (�; V

�

) of GL

2

(A ) with twists by an idele lass harater �,

or what is the same, a (uspidal) automorphi representation of GL

1

(A ), as in Jaquet-

Langlands [21℄.

Following Jaquet and Langlands, who were following Heke, for eah ' 2 V

�

we onsider

the integral

I(s;'; �) =

Z

k

�

nA

�

'

�

a

1

�

�(a)jaj

s�1=2

d

�

a:

Sine a usp form on GL

2

(A ) is rapidly dereasing upon restrition to A

�

as in the integral, it

follows that the integral is absolutely onvergent for all s, uniformly for Re(s) in an interval.

Thus I(s;'; �) is an entire funtion of s, bounded in any vertial strip a � Re(s) � b.

Moreover, if we let e'(g) = '(

t

g

�1

) = '(w

n

t

g

�1

) then e' 2 V

e�

and the simple hange of

variables a 7! a

�1

in the integral shows that eah integral satis�es a funtional equation of

the form

I(s;'; �) = I(1� s; e'; �

�1

):

So these integrals individually enjoy rather nie analyti properties.

If we replae ' by its Fourier expansion from Setion 1 and unfold, we �nd

I(s;'; �) =

Z

k

�

nA

�

X

2k

�

W

'

�

a

1

�

�(a)jaj

s�1=2

d

�

a

=

Z

A

�

W

'

�

a

1

�

�(a)jaj

s�1=2

d

�

a

where we have used the fat that the funtion �(a)jaj

s�1=2

is invariant under k

�

. By stan-

dard gauge estimates on Whittaker funtions [22℄ this onverges for Re(s) >> 0 after the

unfolding. As we have seen in Setion 1, if W

'

2 W(�;  ) orresponds to a deomposable

vetor ' 2 V

�

' 


0

V

�

v

then the Whittaker funtion fators into a produt of loal Whittaker

funtions

W

'

(g) =

Y

v

W

'

v

(g

v

):

Sine the harater � and the adeli absolute value fator into loal omponents and the

domain of integration A

�

also fators we �nd that our global integral naturally fators into

a produt of loal integrals

Z

A

�

W

'

�

a

1

�

�(a)jaj

s�1=2

d

�

a =

Y

v

Z

k

�

v

W

'

v

�

a

v

1

�

�

v

(a

v

)ja

v

j

s�1=2

d

�

a

v

;

with the in�nite produt still onvergent for Re(s) >> 0, or

I(s;'; �) =

Y

v

	

v

(s;W

'

v

; �

v

)

with the obvious de�nition of the loal integrals

	

v

(s;W

'

v

; �

v

) =

Z

k

�

v

W

'

v

�

a

v

1

�

�

v

(a

v

)ja

v

j

s�1=2

d

�

a

v

:

Thus eah of our global integrals is Eulerian.
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In this way, to � and � we have assoiated a family of global Eulerian integrals with

nie analyti properties as well as for eah plae v a family of loal integrals onvergent for

Re(s) >> 0.

2.2. Integral representations for GL

n

�GL

m

with m < n. Now let (�; V

�

) be a uspidal

representation of GL

n

(A ) and (�

0

; V

�

0

) a uspidal representation of GL

m

(A ) with m < n.

Take ' 2 V

�

and '

0

2 V

�

0

. At �rst blush, a natural analogue of the integrals we onsidered

for GL

2

with GL

1

twists would be

Z

GL

m

(k)nGL

m

(A )

'

�

h

I

n�m

�

'

0

(h)j det(h)j

s�(n�m)=2

dh:

This family of integrals would have all the nie analyti properties as before (entire funtions

of �nite order satisfying a funtional equation), but they would not be Eulerian exept in

the ase m = n � 1, whih proeeds exatly as in the GL

2

ase. The problem is that the

restrition of the form ' to GL

m

is too brutal to allow a nie unfolding when the Fourier

expansion of ' is inserted. Instead we will introdue projetion operators from usp forms

on GL

n

(A ) to uspidal funtions on on P

m+1

(A ) whih are given by part of the unipotent

integration through whih the Whittaker funtion is de�ned.

In GL

n

, let Y

n;m

be the unipotent radial of the standard paraboli subgroup attahed to

the partition (m+1; 1; : : : ; 1). If  is our standard additive harater of knA , then  de�nes

a harater of Y

n;m

(A ) trivial on Y

n;m

(k) sine Y

n;m

� N

n

. The group Y

n;m

is normalized

by GL

m+1

� GL

n

and the miraboli subgroup P

m+1

� GL

m+1

is the stabilizer in GL

m+1

of

the harater  .

If '(g) is a usp form on GL

n

(A ) de�ne the projetion operator P

n

m

from usp forms on

GL

n

(A ) to uspidal funtions on P

m+1

(A ) by

P

n

m

'(p) = j det(p)j

�

�

n�m�1

2

�

Z

Y

n;m

(k)nY

n;m

(A )

'

�

y

�

p

I

n�m�1

��

 

�1

(y) dy

for p 2 P

m+1

(A ). As the integration is over a ompat domain, the integral is absolutely

onvergent. One an easily hek that P

n

m

'(p) is indeed uspidal on P

m+1

(A ). From Setion

1, we know that uspidal funtions on P

m+1

(A ) have a Fourier expansion summed over

N

m

(k)nGL

m

(A ). Applying this expansion to our projeted usp form on GL

n

(A ) we �nd

that for h 2 GL

m

(A ), P

n

m

'

�

h

1

�

has the Fourier expansion

P

n

m

'

�

h

1

�

= j det(h)j

�

�

n�m�1

2

�

X

2N

m

(k)nGL

m

(k)

W

'

��

 0

0 I

n�m

��

h

I

n�m

��

with onvergene absolute and uniform on ompat subsets.

We now have the prerequisites for writing down a family of Eulerian integrals for usp

forms ' on GL

n

twisted by automorphi forms on GL

m

for m < n. Let ' 2 V

�

be a usp

form on GL

n

(A ) and '

0

2 V

�

0

a usp form on GL

m

(A ). (Atually, we ould take '

0

to be an
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arbitrary automorphi form on GL

m

(A ).) Consider the integrals

I(s;'; '

0

) =

Z

GL

m

(k)nGL

m

(A )

P

n

m

'

�

h 0

0 I

n�m

�

'

0

(h)j det(h)j

s�1=2

dh:

The integral I(s;'; '

0

) is absolutely onvergent for all values of the omplex parameter s,

uniformly in ompat subsets, sine the usp forms are rapidly dereasing. Hene it is entire

and bounded in any vertial strip as before.

Let us now investigate the Eulerian properties of these integrals. We �rst replae P

n

m

' by

its Fourier expansion to obtain

I(s;'; '

0

) =

Z

GL

m

(k)nGL

m

(A )

X

2N

m

(k)nGL

m

(k)

W

'

�

h 0

0 I

n�m

�

'

0

(h)j det(h)j

s�(n�m)=2

dh:

Sine '

0

(h) is automorphi on GL

m

(A ) and j det()j = 1 for  2 GL

m

(k) we may interhange

the order of summation and integration for Re(s) >> 0 and then reombine to obtain

I(s;'; '

0

) =

Z

N

m

(k)nGL

m

(A )

W

'

�

h 0

0 I

n�m

�

'

0

(h)j det(h)j

s�(n�m)=2

dh:

This integral is absolutely onvergent for Re(s) >> 0 by the gauge estimates of [22, Setion

13℄ and this justi�es the interhange. Let us now integrate �rst over N

m

(k)nN

m

(A ). Reall

that for n 2 N

m

(A ) � N

n

(A ) we have W

'

(ng) =  (n)W

'

(g). Hene we obtain

I(s;'; '

0

) =

Z

N

m

(A )n GL

m

(A )

W

'

�

h 0

0 I

n�m

�

W

0

'

0

(h)j det(h)j

s�(n�m)=2

dh

= 	(s;W

'

;W

0

'

0

)

where W

0

'

0

(h) is the  

�1

-Whittaker funtion on GL

m

(A ) assoiated to '

0

, i.e.,

W

0

'

0

(h) =

Z

N

m

(k)nN

m

(A )

'

0

(nh) (n) dn;

and we retain absolute onvergene for Re(s) >> 0.

From this point, the fat that the integrals are Eulerian is a onsequene of the uniqueness

of the Whittaker model for GL

n

. Take ' a smooth usp form in a uspidal representation

� of GL

n

(A ). Assume in addition that ' is fatorizable, i.e., in the deomposition � =




0

�

v

of � into a restrited tensor produt of loal representations, ' = 
'

v

is a pure

tensor. Then as we have seen there is a hoie of loal Whittaker models so that W

'

(g) =

Q

W

'

v

(g

v

). Similarly for deomposable '

0

we have the fatorization W

0

'

0

(h) =

Q

W

0

'

0

v

(h

v

).

If we substitute these fatorizations into our integral expression, then sine the domain of

integration fators N

m

(A )nGL

m

(A ) =

Q

N

m

(k

v

)nGL

m

(k

v

) we see that our integral fators

into a produt of loal integrals as

I(s;'; '

0

) = 	(s;W

'

;W

0

'

0

) =

Y

v

	

v

(s;W

'

v

;W

0

'

0

v

)

where the loal integrals are given by

	

v

(s;W

'

v

;W

0

'

0

v

) =

Z

N

m

(k

v

)nGL

m

(k

v

)

W

'

v

�

h

v

0

0 I

n�m

�

W

0

'

0

v

(h

v

)j det(h

v

)j

s�(n�m)=2

v

dh

v

:
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The individual loal integrals onverge for Re(s) >> 0 by the gauge estimate of [22, Prop.

2.3.6℄. We now see that we now have onstruted a family of Eulerian integrals.

Now let us return to the question of a funtional equation. As in the ase of GL

2

, the

funtional equation is essentially a onsequene of the existene of the outer automorphism

g 7! �(g) = g

�

=

t

g

�1

of GL

n

. If we de�ne the ation of this automorphism on automorphi

forms by setting e'(g) = '(g

�

) = '(w

n

g

�

) and let

e

P

n

m

= � ÆP

n

m

Æ � then our integrals naturally

satisfy the funtional equation

I(s;'; '

0

) =

e

I(1� s; e'; e'

0

)

where

e

I(s;'; '

0

) =

Z

GL

m

(k)nGL

m

(A )

e

P

n

m

'

�

h

1

�

'

0

(h)j det(h)j

s�1=2

dh:

We have established the following result.

Theorem 2.1. Let ' 2 V

�

be a usp form on GL

n

(A ) and '

0

2 V

�

0

a usp form on GL

m

(A )

with m < n. Then the family of integrals I(s;'; '

0

) de�ne entire funtions of s, bounded in

vertial strips, and satisfy the funtional equation

I(s;'; '

0

) =

e

I(1� s; e'; e'

0

):

Moreover the integrals are Eulerian and if ' and '

0

are fatorizable, we have

I(s;'; '

0

) =

Y

v

	

v

(s;W

'

v

;W

0

'

0

v

)

with onvergene absolute and uniform for Re(s) >> 0.

The integrals ourring in the right hand side of our funtional equation are again Eulerian.

One an unfold the de�nitions to �nd �rst that

e

I(1� s; e'; e'

0

) =

e

	(1� s; �(w

n;m

)

f

W

'

;

f

W

0

'

0

)

where the unfolded global integral is

e

	(s;W;W

0

) =

Z Z

W

0

�

h

x I

n�m�1

1

1

A

dx W

0

(h)j det(h)j

s�(n�m)=2

dh

with the h integral over N

m

(A )nGL

m

(A ) and the x integral over M

n�m�1;m

(A ), the spae of

(n�m� 1)�m matries, � denoting right translation, and w

n;m

the Weyl element w

n;m

=

�

I

m

w

n�m

�

with w

n�m

=

0

�

1

.

.

.

1

1

A

the standard long Weyl element in GL

n�m

. Also,

for W 2 W(�;  ) we set

f

W (g) = W (w

n

g

�

) 2 W(e�;  

�1

). The extra unipotent integration

is the remnant of

e

P

n

m

. As before,

e

	(s;W;W

0

) is absolutely onvergent for Re(s) >> 0. For

' and '

0

fatorizable as before, these integrals

e

	(s;W

'

;W

0

'

0

) will fator as well. Hene we

have

e

	(s;W

'

;W

0

'

0

) =

Y

v

e

	

v

(s;W

'

v

;W

0

'

0

v

)
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where

e

	

v

(s;W

v

;W

0

v

) =

Z Z

W

v

0

�

h

v

x

v

I

n�m�1

1

1

A

dx

v

W

0

v

(h

v

)j det(h

v

)j

s�(n�m)=2

dh

v

where now with the h

v

integral is over N

m

(k

v

)nGL

m

(k

v

) and the x

v

integral is over the

matrix spae M

n�m�1;m

(k

v

). Thus, oming bak to our funtional equation, we �nd that the

right hand side is Eulerian and fators as

e

I(1� s; e'; e'

0

) =

e

	(1� s; �(w

n;m

)

f

W

'

;

f

W

0

'

0

) =

Y

v

e

	

v

(1� s; �(w

n;m

)

f

W

'

v

;

f

W

0

'

0

v

):

2.3. Integral representations for GL

n

�GL

n

. The paradigm for integral representations

of L-funtions for GL

n

�GL

n

is not Heke but rather the lassial papers of Rankin [33℄ and

Selberg [34℄. These were �rst interpreted in the framework of automorphi representations

by Jaquet for GL

2

�GL

2

[20℄ and then Jaquet and Shalika in general [25℄.

Let (�; V

�

) and (�

0

; V

�

0

) be two uspidal representations of GL

n

(A ). Let ' 2 V

�

and

'

0

2 V

�

0

be two usp forms. The analogue of the onstrution above would be simply

Z

GL

n

(k)nGL

n

(A )

'(g)'

0

(g)j det(g)j

s

dg:

This integral is essentially the L

2

-inner produt of ' and '

0

and is not suitable for de�ning

an L-funtion, although it will our as a residue of our integral at a pole. Instead, follow-

ing Rankin and Selberg, we use an integral representation that involves a third funtion:

an Eisenstein series on GL

n

(A ). This family of Eisenstein series is onstruted using the

miraboli subgroup one again.

To onstrut our Eisenstein series we return to the observation that P

n

nGL

n

' k

n

�f0g.

If we let S(A

n

) denote the Shwartz{Bruhat funtions on A

n

, then eah � 2 S de�nes a

smooth funtion on GL

n

(A ), left invariant by P

n

(A ), by g 7! �((0; : : : ; 0; 1)g) = �(e

n

g). Let

� be a unitary idele lass harater. (For our appliation � will be determined by the entral

haraters of � and �

0

.) Consider the funtion

F (g;�; s; �) = j det(g)j

s

Z

A

�

�(ae

n

g)jaj

ns

�(a) d

�

a:

If we let P

0

n

= Z

n

P

n

be the paraboli of GL

n

assoiated to the partition (n�1; 1) and extend �

to a harater of P

0

n

by �(p

0

) = �(d) for p

0

=

�

h y

0 d

�

2 P

0

n

(A ) with h 2 GL

n�1

(A ) and d 2 A

�

we have that F (g;�; s; �) is a smooth setion of the normalized indued representation

Ind

GL

n

(A )

P

0

n

(A )

(Æ

s�1=2

P

0

n

�). Sine the induing harater Æ

s�1=2

P

0

n

� of P

0

n

(A ) is invariant under P

0

n

(k)

we may form Eisenstein series from this family of setions by

E(g;�; s; �) =

X

2P

0

n

(k)nGL

n

(k)

F (g;�; s; �):

This is absolutely onvergent for Re(s) > 1 [25℄.
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If we replae F in this sum by its de�nition and unfold we an rewrite this Eisenstein

series as

E(g;�; s; �) = j det(g)j

s

Z

k

�

nA

�

�

0

�

(a; g)jaj

ns

�(a) d

�

a:

This seond expression essentially gives the Eisenstein series as the Mellin transform of the

Theta series

�

�

(a; g) =

X

�2k

n

�(a�g);

where in the above we have written

�

0

�

(a; g) =

X

�2k

n

�f0g

�(a�g) = �

�

(a; g)� �(0):

This allows us to obtain the analyti properties of the Eisenstein series from the Poisson

summation formula for �

�

. Poisson summation gives

E(g;�; s; �) = j det(g)j

s

Z

jaj�1

�

0

�

(a; g)jaj

ns

�(a) d

�

a

+ j det(g)j

s�1

Z

jaj�1

�

0

^

�

(a;

t

g

�1

)jaj

n(1�s)

�

�1

(a) d

�

a+ Æ(s)

where the Fourier transform

^

� on S(A

n

) is de�ned by

^

�(x) =

Z

A

�

�(y) (y

t

x) dy

and

Æ(s) =

(

0 if � is rami�ed

��(0)

j det(g)j

s

s+i�

+ 

^

�(0)

jdet(g)j

s�1

s�1+i�

if �(a) = jaj

in�

with � 2 R

with  a non-zero onstant.

From this we derive easily the basi properties of our Eisenstein series [25, Setion 4℄. The

Eisenstein series E(g;�; s; �) has a meromorphi ontinuation to all of C with at most simple

poles at s = �i�; 1 � i� when � is unrami�ed of the form �(a) = jaj

in�

. As a funtion of g

it is smooth of moderate growth and as a funtion of s it is bounded in vertial strips (away

from the possible poles), uniformly for g in ompat sets. Moreover, we have the funtional

equation

E(g;�; s; �) = E(g

�

;

^

�; 1� s; �

�1

)

where g

�

=

t

g

�1

. Note that under the enter the Eisenstein series transforms by the entral

harater �

�1

.

Now let us return to our Eulerian integrals. Let � and �

0

be our irreduible uspidal

representations. Let their entral haraters be ! and !

0

. Set � = !!

0

. Then for eah pair

of usp forms ' 2 V

�

and '

0

2 V

�

0

and eah Shwartz-Bruhat funtion � 2 S(A

n

) set

I(s;'; '

0

;�) =

Z

Z

n

(A ) GL

n

(k)nGL

n

(A )

'(g)'

0

(g)E(g;�; s; �) dg:

Sine the two usp forms are rapidly dereasing on Z

n

(A )GL

n

(k)nGL

n

(A ) and the Eisenstein

is only of moderate growth, we see that the integral onverges absolutely for all s away from
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the poles of the Eisenstein series and is hene meromorphi. It will be bounded in vertial

strips away from the poles and satis�es the funtional equation

I(s;'; '

0

;�) = I(1� s; e'; e'

0

;

^

�);

oming from the funtional equation of the Eisenstein series, where we still have e'(g) =

'(g

�

) = '(w

n

g

�

) 2 V

e�

and similarly for e'

0

.

These integrals will be entire unless we have �(a) = !(a)!

0

(a) = jaj

in�

is unrami�ed. In

that ase, the residue at s = �i� will be

Res

s=�i�

I(s;'; '

0

;�) = ��(0)

Z

Z

n

(A ) GL

n

(A )n GL

n

(A )

'(g)'

0

(g)j det(g)j

�i�

dg

and at s = 1� i� we an write the residue as

Res

s=1�i�

I(s;'; '

0

;�) = 

^

�(0)

Z

Z

n

(A ) GL

n

(k)nGL

n

(A )

e'(g)e'

0

(g)j det(g)j

i�

dg:

Therefore these residues de�ne GL

n

(A ) invariant pairings between � and �

0


 j det j

�i�

or

equivalently between e� and e�

0


 j det j

i�

. Hene a residues an be non-zero only if � '

e�

0


 j det j

i�

and in this ase we an �nd ', '

0

, and � suh that indeed the residue does not

vanish.

We have yet to hek that our integrals are Eulerian. To this end we take the integral,

replae the Eisenstein series by its de�nition, and unfold we �nd

I(s;'; '

0

;�) =

Z

P

n

(k)nGL

n

(A )

'(g)'

0

(g)�(e

n

g)j det(g)j

s

dg:

We next replae ' by its Fourier expansion and unfold as before to �nd

I(s;'; '

0

;�) = 	(s;W

'

;W

0

'

0

;�) =

Z

N

n

(A )n GL

n

(A )

W

'

(g)W

0

'

0

(g)�(e

n

g)j det(g)j

s

dg:

This expression onverges for Re(s) >> 0.

To ontinue, we assume that ', '

0

and � are deomposable tensors under the isomorphisms

� ' 


0

�

v

, �

0

' 


0

�

0

v

, and S(A

n

) ' 


0

S(k

n

v

) so that we have W

'

(g) =

Q

v

W

'

v

(g

v

), W

0

'

0

(g) =

Q

v

W

0

'

0

v

(g

v

) and �(g) =

Q

v

�

v

(g

v

). Then, sine the domain of integration also naturally

fators we an deompose this last integral into an Euler produt and now write

	(s;W

'

;W

0

'

0

;�) =

Y

v

	

v

(s;W

'

v

;W

0

'

0

v

;�

v

);

where

	

v

(s;W

'

v

;W

0

'

0

v

;�

v

) =

Z

N

n

(k

v

)nGL

n

(k

v

)

W

'

v

(g

v

)W

0

'

0

v

(g

v

)�

v

(e

n

g

v

)j det(g

v

)j

s

dg

v

;

still with onvergene for Re(s) >> 0 by the loal gauge estimates. One again we see that

the Euler fatorization is a diret onsequene of the uniqueness of the Whittaker models.
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Theorem 2.2. Let ' 2 V

�

and '

0

2 V

�

0

usp forms on GL

n

(A ) and let � 2 S(A

n

). Then

the family of integrals I(s;'; '

0

;�) de�ne meromorphi funtions of s, bounded in vertial

strips away from the poles. The only possible poles are simple and our i� � ' e�

0


 j det j

i�

with � real and are then at s = �i� and s = 1� i� with residues as above. They satisfy the

funtional equation

I(s;'; '

0

;�) = I(1� s;

f

W

'

;

f

W

0

'

0

;

^

�):

Moreover, for ', '

0

, and � fatorizable we have that the integrals are Eulerian and we have

I(s;'; '

0

;�) =

Y

v

	

v

(s;W

'

v

;W

0

'

0

v

;�

v

)

with onvergene absolute and uniform for Re(s) >> 0.

We remark in passing that the right hand side of the funtional equation also unfolds as

I(1� s; e'; e'

0

;

^

�) =

Z

N

n

(A )n GL

n

(A )

f

W

'

(g)

f

W

0

'

0

(g)

^

�(e

n

g)j det(g)j

1�s

dg

=

Y

v

	

v

(1� s;

f

W

'

;

f

W

0

'

0

;

^

�)

with onvergene for Re(s) << 0.

3. Loal L-funtions

If (�; V

�

) is a uspidal representation of GL

n

(A ) and (�

0

; V

�

0

) is a uspidal representation

of GL

m

(A ) we have assoiated to the pair (�; �

0

) a family of Eulerian integrals fI(s;'; '

0

)g

(or fI(s;'; '

0

;�)g if m = n) and through the Euler fatorization we have for eah plae v of

k a family of loal integrals f	

v

(s;W

v

;W

0

v

)g (or f	

v

(s;W

v

;W

0

v

;�

v

)g) attahed to the pair

of loal omponents (�

v

; �

0

v

). In this setion we would like to attah a loal L-funtion (or

loal Euler fator) L(s; �

v

� �

0

v

) to suh a pair of loal representations through the family of

loal integrals and analyze its basi properties, inluding the loal funtional equation.

3.1. Non-arhimedean loal fators. For this setion let k denote a non-arhimedean

loal �eld. We will let o denote the ring of integers of k and p the unique prime ideal of

o. Fix a generator $ of p. We let q be the residue degree of k, so q = jo=pj = j$j

�1

.

We �x a non-trivial ontinuous additive harater  of k. (�; V

�

) and (�

0

; V

�

0

) will now be

the smooth vetors in irreduible admissible unitary generi representations of GL

n

(k) and

GL

m

(k) respetively, as is true for loal omponents of uspidal representations. We will let

! and !

0

denote their entral haraters. The basi referene here is the paper of Jaquet,

Piatetski-Shapiro, and Shalika [23℄.

For eah pair of Whittaker funtions W 2 W(�;  ) and W

0

2 W(�

0

;  

�1

) and in the ase

n = m eah Shwartz-Bruhat funtion � 2 S(k

n

) we have de�ned loal integrals 	(s;W;W

0

),

e

	(s;W;W

0

) in the ase m < n and 	(s;W;W

0

;�) in the ase n = m, both onvergent for
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Re(s) >> 0. To make the notation more onvenient for what follows, in the ase m < n for

any 0 � j � n�m� 1 let us set

	

j

(s : W;W

0

) =

Z

N

m

(k)nGL

m

(k)

Z

M

j;m

(k)

W

0

�

h

x I

j

I

n�m�j

1

A

dx W

0

(h)j det(h)j

s�(n�m)=2

dh;

so that 	(s;W;W

0

) = 	

0

(s;W;W

0

) and

e

	(s;W;W

0

) = 	

n�m�1

(s;W;W

0

), whih is still

absolutely onvergent for Re(s) >> 0.

We need to understand what type of funtions of s these loal integrals are. To this end, we

need to understand the loal Whittaker funtions. So let W 2 W(�;  ). Sine W is smooth

there is a ompat open subgroup K so that W (gk) =W (g) for all k 2 K. W transforms on

the left under N

n

(k) via  . So the Iwasawa deomposition on GL

n

(k) gives that it suÆes to

understand a general Whittaker funtion on the torus. Let �

i

, i = 1; : : : ; n � 1, denote the

standard simple roots of GL

n

, so that if a =

0

�

a

1

.

.

.

a

n

1

A

2 A

n

(k) then �

i

(a) = a

i

=a

i+1

.

The fundamental result on the asymptotis of Whittaker funtions [22℄ is that there is a

�nite set of �nite funtions X(�) = f�

i

g on A

n

(k), depending only on �, so that for every

W 2 W(�;  ) there are Shwartz {Bruhat funtions �

i

2 S(k

n�1

) suh that for all a 2 A

n

(k)

with a

n

= 1 we have

W (a) =

X

X(�)

�

i

(a)�

i

(�

1

(a); : : : ; �

n�1

(a)):

By a �nite funtion on A

n

(k) we mean a ontinuous funtion whose translates span a �nite

dimensional vetor spae [21, 22, Setion 2.2℄. For the �eld k

�

itself the �nite funtions

are spanned by produts of haraters and powers of the valuation map. The �nite set of

�nite funtions X(�) whih our in the asymptotis near 0 of the Whittaker funtions ome

from analyzing the Jaquet module W(�;  )=h�(n)W �W jn 2 N

n

i whih is naturally an

A

n

(k){module. Note that due to the Shwartz-Bruhat funtions, the Whittaker funtions

vanish whenever any simple root �

i

(a) beomes large.

Several nie onsequenes follow from inserting these formulas forW andW

0

into the loal

integrals 	

j

(s;W;W

0

) or 	(s;W;W

0

;�) [22, 23℄.

(1) Eah integral onverges for Re(s) >> 0. For � and �

0

unitary, as we have assumed,

they onverge absolutely for Re(s) � 1. For � and �

0

tempered, we have absolute

onvergene for Re(s) > 0.

(2) Eah integral de�nes a rational funtion in q

�s

and hene meromorphially extends

to all of C .

(3) Eah suh rational funtion an be written with a ommon denominator whih de-

pends only on the �nite funtions X(�) and X(�

0

) and hene only on � and �

0

.

Let I

j

(�; �

0

) denote the omplex linear span of the loal integrals 	

j

(s;W;W

0

) if m < n

and I(�; �

0

) the omplex linear span of the 	(s;W;W

0

;�) if m = n. In the ase m < n one

an show by a rather elementary although somewhat involved manipulation of the integrals
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that all of the ideals I

j

(�; �

0

) are the same [23℄, so we will write this ideal as I(�; �

0

). These

are then subspaes of C (q

�s

) whih have \bounded denominators" in the sense of (3). In

fat, these subspaes have more struture { eah I(�; �

0

) is a frational C [q

s

; q

�s

℄{ideal of

C (q

�s

). Sine C [q

s

; q

�s

℄ is a prinipal ideal domain eah frational ideal I(�; �

0

) has a single

generator and sine eah of these frational ideals ontain 1 we an always normalize our

generator to be of the form P

�;�

0

(q

�s

)

�1

where the polynomial P (X) satis�es P (0) = 1. This

gives us the de�nition of our loal L-funtion:

L(s; � � �

0

) = P

�;�

0

(q

�s

)

�1

is the normalized generator of the frational ideal I(�; �

0

) formed by the family of loal

integrals. If �

0

= 1 is the trivial representation of GL

1

(k) then we write L(s; �) = L(s; ��1).

One an show easily that the ideal I(�; �

0

) is independent of the harater  used in

de�ning the Whittaker models, so that L(s; � � �

0

) is independent of the hoie of  . So it

is not inluded in the notation. Also, note that for �

0

= � an automorphi representation

(harater) of GL

1

(A ) we have the identity L(s; � � �) = L(s; � 
 �) where � 
 � is the

representation of GL

n

(A ) on V

�

given by � 
 �(g)� = �(det(g))�(g)�.

We summarize the above in the following Theorem.

Theorem 3.1. Let � and �

0

be as above. The family of loal integrals form a C [q

s

; q

�s

℄{

frational ideal I(�; �

0

) in C (q

�s

) with generator the loal L-funtion L(s; � � �

0

).

Another useful way of thinking of the loal L-funtion is the following. L(s; � � �

0

) is

the minimal (in terms of degree) funtion of the form P (q

�s

)

�1

, with P (X) a polynomial

satisfying P (0) = 1, suh that the ratios

	(s;W;W

0

)

L(s; � � �

0

)

(resp.

	(s;W;W

0

;�)

L(s; � � �

0

)

) are entire for

all W 2 W(�;  ) and W

0

2 W(�

0

;  

�1

), and if neessary � 2 S(k

n

). That is, L(s; � � �

0

) is

the standard Euler fator determined by the poles of the funtions in I(�; �

0

).

One should note that sine the L-fator is a generator of the ideal I(�; �

0

), then in parti-

ular it lies in I(�; �

0

). Sine this ideal is spanned by our loal integrals then we an always

write

L(s; � � �

0

) =

X

i

	(s;W

i

;W

0

i

) or L(s; � � �

0

) =

X

i

	(s;W

i

;W

0

i

;�

i

):

with a �nite olletion of W

i

2 W(�;  ), W

0

i

2 W(�

0

;  

�1

), and if neessary �

i

2 S(k

n

).

This will be neessary for the global theory.

Either by analogy with Tate's thesis or from the orresponding global statement, we would

expet our loal integrals to satisfy a loal funtional equation. From the funtional equa-

tions for our global integrals, we would expet these to relate the integrals 	(s;W;W

0

) and

e

	(1�s; �(w

n;m

)

f

W;

f

W

0

) whenm < n and 	(s;W;W

0

;�) and 	(1�s;

f

W;

f

W

0

;

^

�) whenm = n.

This will indeed be the ase. These funtional equations will ome from interpreting the lo-

al integrals as families (in s) of quasi-invariant bilinear forms on W(�;  ) � W(�

0

;  

�1

)

or trilinear forms on W(�;  ) �W(�

0

;  

�1

) � S(k

n

) depending on the ase. One is able to

analyze suh funtional using Bruhat's theory and one shows that, exept for a �nite number
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if exeptional values of q

�s

suh bilinear funtionals are unique [23℄. Hene we obtain the

following loal funtional equation.

Theorem 3.2. There is a rational funtion (s; � � �

0

;  ) 2 C (q

�s

) suh that we have

e

	(1� s; �(w

n;m

)

f

W;

f

W

0

) = !

0

(�1)

n�1

(s; � � �

0

;  )	(s;W;W

0

) if m < n

or

	(1� s;

f

W;

f

W

0

;

^

�) = !

0

(�1)

n�1

(s; � � �

0

;  )	(s;W;W

0

;�) if m = n

for all W 2 W(�;  ), W

0

2 W(�

0

;  

�1

), and if neessary all � 2 S(k

n

).

An equally important loal fator, whih ours in the urrent formulations of the loal

Langlands orrespondene [2, 16, 19℄, is the loal "-fator, de�ned as the ratio

"(s; � � �

0

;  ) =

(s; � � �

0

;  )L(s; � � �

0

)

L(1� s; e� � e�

0

)

:

With the loal "-fator the loal funtional equation an be written in the form

e

	(1� s; �(w

n;m

)

f

W;

f

W

0

)

L(1� s; e� � e�

0

)

= !

0

(�1)

n�1

"(s; � � �

0

;  )

	(s;W;W

0

)

L(s; � � �

0

)

if m < n

or

	(1� s;

f

W;

f

W

0

;

^

�)

L(1� s; e� � e�

0

)

= !

0

(�1)

n�1

"(s; � � �

0

;  )

	(s;W;W

0

;�)

L(s; � � �

0

)

if m = n :

Analyzing the loal funtional equatin in this form allows one to prove that "(s; � � �

0

;  )

is a monomial funtion of the form q

�fs

. If we onsider a single �, take  unrami�ed,

and write "(s; �;  ) = "(0; �;  )q

�f(�)s

, then in [24℄ it is shown that f(�) is a non-negative

integer, f(�) = 0 i� � is unrami�ed, and in general the integer f(�) is the ondutor of �.

Let us now turn to the alulation of the loal L-funtions. The �rst ase to onsider is

that where both � and �

0

are unrami�ed. Sine they are assumed generi, they are both

full indued representations from unrami�ed haraters of the Borel subgroup [49℄. So let

us write � ' Ind

GL

n

B

n

(�

1


 � � � 
 �

n

) and �

0

' Ind

GL

m

B

m

(�

0

1


 � � � 
 �

0

m

) with the �

i

and �

0

j

unrami�ed haraters of k

�

. The Satake parameterization of unrami�ed representations

assoiates to eah of these representation the semi-simple onjugay lasses [A

�

℄ 2 GL

n

(C )

and [A

�

0

℄ 2 GL

m

(C ) given by

A

�

=

0

�

�

1

($)

.

.

.

�

n

($)

1

A

A

�

0

=

0

�

�

0

1

($)

.

.

.

�

0

m

($)

1

A

:

(Reall that $ is a uniformizing parameter for k, that is, a generator of p.) In the Whit-

taker models there will be unique normalized K = GL(o){ �xed Whittaker funtions,

W

Æ

2 W(�;  ) and W

0

Æ

2 W(�

0

;  

�1

), normalized by W

Æ

(e) = W

0

Æ

(e) = 1. There is an

expliit formula for W

Æ

in terms of the Satake parameter A

�

due to Shintani [43℄. Utilizing

this formula, one obtains the following expliit omputation of the loal L-fator in this ase.
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Theorem 3.3. If �, �

0

, and  are all unrami�ed, then

L(s; � � �

0

) = det(I � q

�s

A

�


 A

�

0

)

�1

=

(

	(s;W

Æ

;W

0

Æ

) m < n

	(s;W

Æ

;W

0

Æ

;�

Æ

) m = n

and "(s; � � �

0

;  ) � 1.

The other basi ase is when both � and �

0

are superuspidal. For this alulation, one

must analyze the loal integrals in terms of the Kirillov models of the representations [11, 8℄.

Theorem 3.4. If � and �

0

are both (unitary) superuspidal, then L(s; � � �

0

) � 1 if m < n

and if m = n we have

L(s; � � �

0

) =

Y

(1� �q

�s

)

�1

with the produt over all � = q

s

0

with e� ' �

0


 j det j

s

0

.

In the other ases, we must rely on the Bernstein{Zelevinsky lassi�ation of generi

representations of GL

n

(k) [49℄. All generi representations an be realized as presribed

onstituents of representations parabolially indued from superuspidals. One an proeed

by analyzing the Whittaker funtions of indued representations in terms of Whittaker fun-

tions of the induing data as in [23℄ or by analyzing the poles of the loal integrals in terms

of quasi invariant pairings of derivatives of � and �

0

as in [8℄ to ompute L(s; ���

0

) in terms

of L-funtions of pairs of superuspidal representations. We refer you to those papers or [28℄

for the expliit formulas.

To onlude this setion, let us mention two results on the -fators. One is used in the

omputations of L-fators in the general ase. This is the multipliativity of -fators [23℄.

The seond is the stability of -fators [26℄. Both of these results are neessary in appliations

of the Converse Theorem to liftings.

Multipliativity of -fators: If � = Ind(�

1


 �

2

), with �

i

and irreduible admissible

representation of GL

r

i

(k), then

(s; � � �

0

;  ) = (s; �

1

� �

0

;  )(s; �

2

� �

0

;  )

and similarly for �

0

. Moreover L(s; � � �

0

)

�1

divides [L(s; �

1

� �

0

)L(s; �

2

� �

0

)℄

�1

.

Stability of -fators: If �

1

and �

2

are two irreduible admissible generi representations

of GL

n

(k), having the same entral harater, then for every suÆiently highly rami�ed

harater � of GL

1

(k) we have

(s; �

1

� �;  ) = (s; �

2

� �;  )

and

L(s; �

1

� �) = L(s; �

2

� �) � 1:

More generally, if in addition �

0

is an irreduible generi representation of GL

m

(k) then for

all suÆiently highly rami�ed haraters � of GL

1

(k) we have

(s; (�

1


 �)� �

0

;  ) = (s; (�

2


 �)� �

0

;  )
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and

L(s; (�

1


 �)� �

0

) = L(s; (�

2


 �)� �

0

) � 1:

3.2. The arhimedean loal fators. The treatment of the arhimedean loal fators par-

allels that of the non-arhimedean in many ways, but there are some signi�ant di�erenes.

The major work on these fators is that of Jaquet and Shalika in [27℄, whih we follow for

the most part without further referene, and in the arhimedean parts of [25℄.

One signi�ant di�erene in the development of the arhimedean theory is that the loal

Langlands orrespondene was already in plae when the theory was developed [30℄. The

orrespondene is very expliit in terms of the usual Langlands lassi�ation. Thus to � is

assoiated an n dimensional semi-simple representation � = �

�

of the Weil group W

k

of k

and to �

0

an m-dimensional semi-simple representation �

0

= �

0

�

of W

k

. Then �
 �

0

is an nm

dimensional representation of W

k

and to this representation of the Weil group is attahed

Artin-Weil L{ and "{fators [47℄, denoted L(s; �
�

0

) and "(s; �
�

0

;  ). In essene, Jaquet

and Shalika de�ne

L(s; � � �

0

) = L(s; �

�


 �

0

�

) and "(s; � � �

0

;  ) = "(s; �

�


 �

0

�

;  )

and then set

(s; � � �

0

;  ) =

"(s; � � �

0

;  )L(1� s; e� � e�

0

)

L(s; � � �

0

)

:

They then proeed to show that these funtions have the expeted relation to the loal

integrals. To this end, they de�ne M(� � �

0

) to be the spae of all meromorphi funtions

�(s) with the property that if P (s) is a polynomial funtion suh that P (s)L(s; � � �

0

) is

holomorphi in a vertial strip S[a; b℄ = fs a � Re(s) � bg then P (s)�(s) is bounded in

S[a; b℄. Note in partiular that if � 2 M(� � �

0

) then the quotient �(s)L(s; � � �

0

)

�1

is

entire. One then analyzes the loal integrals 	

j

(s;W;W

0

) and 	(s;W;W

0

;�), de�ned as

in the non-arhimedean ase for W 2 W(�;  ), W

0

2 W(�

0

;  

�1

), and � 2 S(k

n

), using

methods that are diret analogues of those used in [23℄ for the non-arhimedean ase.

Theorem 3.5. The integrals 	

j

(s;W;W

0

) or 	(s;W;W

0

;�) extend to meromorphi fun-

tions of s whih lie in M(� � �

0

). In partiular, the ratios

e

j

(s;W;W

0

) =

	

j

(s;W;W

0

)

L(s; � � �

0

)

or e(s;W;W

0

;�) =

	(s;W;W

0

;�)

L(s; � � �

0

)

are entire and in fat are bounded in vertial strips.

This statement has more ontent than just the ontinuation and \bounded denominator"

statements in the non-arhimedean ase. Sine it presribes the \denominator" to be the L

fator L(s; � � �

0

)

�1

it is bound up with the atual omputation of the poles of the loal

integrals. In fat, a signi�ant part of the paper of Jaquet and Shalika [27℄ is taken up with

the simultaneous proof of this and the loal funtional equations:
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Theorem 3.6. We have the loal funtional equations

	

n�m�j�1

(1� s; �(w

n;m

)

f

W;

f

W

0

) = !

0

(�1)

n�1

(s; � � �

0

;  )	

j

(s;W;W

0

)

or

	(1� s;

f

W;

f

W

0

;

^

�) = !

0

(�1)

n�1

(s; � � �

0

;  )	(s;W;W

0

;�):

The one fat that we are missing is the statement of \minimality" of the L-fator. That

is, we know that L(s; � � �

0

) is a standard arhimedean Euler fator (i.e., a produt of �-

funtions of the standard type) and has the property that the poles of all the loal integrals

are ontained in the poles of the L-fator, even with multipliity. But we have not established

that the L-fator annot have extraneous poles. In partiular, we do not know that we an

ahieve the loal L-funtion as a �nite linear ombination of loal integrals. Towards this

end, Jaquet and Shalika enlarge the allowable spae of loal integrals. Let � and �

0

be

the Whittaker funtionals on V

�

and V

�

0

assoiated with the Whittaker models W(�;  )

and W(�

0

;  

�1

). Then

^

� = � 
 �

0

de�nes a ontinuous linear funtional on the algebrai

tensor produt V

�

^


V

�

0

whih extends ontinuously to the topologial tensor produt V

�
�

0

=

V

�

^


V

�

0

, viewed as representations of GL

n

(k)�GL

m

(k). Now let

W(�

^


�

0

;  ) = fW (g; h) =

^

�(�(g)
 �

0

(h)�)j� 2 V

�
�

0

g:

Then W(�

^


�

0

;  ) ontains the algebrai tensor produt W(�;  )
W(�

0

;  

�1

) and is again

equal to the topologial tensor produt. Now we an extend all our loal integrals to the

spae W(�

^


�

0

;  ) by setting

	

j

(s;W ) =

Z Z

W

0

�

0

�

h

x I

j

I

n�m�j

1

A

; h

1

A

dx j det(h)j

s�(n�m)=2

dh

and

	(s;W;�) =

Z

W (g; g)�(e

n

g)j det(g)j

s

dh

for W 2 W(�

^


�

0

;  ). Sine the loal integrals are ontinuous with respet to the topology

on the topologial tensor produt, all of the above fats remain true, in partiular the

onvergene statements, the loal funtional equations, and the fat that these integrals

extend to funtions in M(�� �

0

). At this point, let I

j

(�; �

0

) = f	

j

(s;W )jW 2 W(� 
 �

0

)g

and let I(�; �

0

) be the span of the loal integrals f	(s;W;�)jW 2 W(�

^


�

0

;  ); � 2 S(k

n

)g.

One again, in the ase m < n we have that the spae I

j

(�; �

0

) is independent of j and we

denote it also by I(�; �

0

). These are still independent of  . So we know from above that

I(�; �

0

) �M(���

0

). The remainder of [27℄ is then devoted to showing I(�; �

0

) =M(���

0

).

In the ases of m = n� 1 or m = n, Stade [44, 45℄ and Jaquet and Shalika (see [9℄) have

shown that one an indeed get the loal L-funtion as a �nite linear ombination of integrals

involving only K-�nite funtions in W(�;  ) and W(�

0

;  

�1

), that is, without going to the

ompletion of W(�;  )
W(�

0

;  

�1

).
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4. Global L-funtions

One again, we let k be a global �eld, A its ring of adeles, and �x a non-trivial ontinuous

additive harater  = 
 

v

of A trivial on k.

Let (�; V

�

) be an uspidal representation of GL

n

(A ) and (�

0

; V

�

0

) a uspidal representation

of GL

m

(A ). Sine they are irreduible we have restrited tensor produt deompositions

� ' 


0

�

v

and �

0

' 


0

�

0

v

with (�

v

; V

�

v

) and (�

0

v

; V

�

0

v

) irreduible admissible smooth generi

unitary representations of GL

n

(k

v

) and GL

m

(k

v

) [10, 13℄. Let ! = 


0

!

v

and !

0

= 


0

!

0

v

be

their entral haraters. These are both ontinuous haraters of k

�

nA

�

. Let S be the �nite

set of plaes of k, ontaining the arhimedean plaes S

1

, suh that for all v =2 S we have

that �

v

, �

0

v

, and  

v

are unrami�ed.

For eah plae v of k we have de�ned the loal fators L(s; �

v

� �

0

v

) and "(s; �

v

� �

0

v

;  

v

).

Then we an at least formally de�ne

L(s; � � �

0

) =

Y

v

L(s; �

v

� �

0

v

) and "(s; � � �

0

) =

Y

v

"(s; �

v

� �

0

v

;  

v

):

The produt de�ning the L-funtion is absolutely onvergent for Re(s) >> 0. For the "{

fator, "(s; �

v

��

0

v

;  

v

) � 1 for v =2 S so that the produt is in fat a �nite produt and there

is no problem with onvergene. The fat that "(s; �� �

0

) is independent of  an either be

heked by analyzing how the loal "{fators vary as you vary  , as is done in [5, Lemma

2.1℄, or it will follow from the global funtional equation presented below.

4.1. Basi analyti properties. Our �rst goal is to show that these L-funtions have nie

analyti properties.

Theorem 4.1. The global L{funtions L(s; � � �

0

) are nie in the sense that

(1) L(s; � � �

0

) has a meromorphi ontinuation to all of C ,

(2) the extended funtion is bounded in vertial strips (away from its poles),

(3) they satisfy the funtional equation

L(s; � � �

0

) = "(s; � � �

0

)L(1� s; e� � e�

0

):

To do so, we relate the L-funtions to the global integrals.

Let us begin with ontinuation. In the ase m < n for every ' 2 V

�

and '

0

2 V

�

0

we know

the integral I(s;'; '

0

) onverges absolutely for all s. From the unfolding in Setion 2 and

the loal alulation of Setion 3 we know that for Re(s) >> 0 and for appropriate hoies
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of ' and '

0

we have

I(s;'; '

0

) =

Y

v

	

v

(s;W

'

v

;W

'

0

v

) =

 

Y

v2S

	

v

(s;W

'

v

;W

'

0

v

)

!

L

S

(s; � � �

0

)

=

 

Y

v2S

	

v

(s;W

'

v

;W

'

0

v

)

L(s; �

v

� �

0

v

)

!

L(s; � � �

0

) =

 

Y

v2S

e

v

(s;W

'

v

;W

'

0

v

)

!

L(s; � � �

0

)

We know that eah ratio e

v

(s;W

v

;W

0

v

) is entire and hene L(s; � � �

0

) has a meromorphi

ontinuation. If m = n then for appropriate ' 2 V

�

, '

0

2 V

�

0

, and � 2 S(A

n

) we again have

I(s;'; '

0

;�) =

 

Y

v2S

e

v

(s;W

'

v

;W

0

'

0

v

;�

v

)

!

L(s; � � �

0

):

and so L(s; � � �

0

) has a meromorphi ontinuation.

Let us next turn to the funtional equation. This will follow from the funtional equation

for the global integrals and the loal funtional equations. We will onsider only the ase

where m < n sine the other ase is entirely analogous. The funtional equation for the

global integrals is simply

I(s;'; '

0

) =

~

I(1� s; e'; e'

0

):

One again we have for appropriate ' and '

0

I(s;'; '

0

) =

 

Y

v2S

	(s;W

v

;W

0

v

)

L(s; � � �

0

)

!

L(s; � � �

0

)

while on the other side

~

I(1� s; e'; e'

0

) =

 

Y

v2S

e

	(1� s; �(w

n;m

)

f

W

v

;

f

W

0

v

)

L(1� s; e� � e�

0

)

!

L(1� s; e� � e�

0

):

However, by the loal funtional equations, for eah v 2 S we have

e

	(1� s; �(w

n;m

)

f

W

v

;

f

W

0

v

)

L(1� s; e� � e�

0

)

= !

0

v

(�1)

n�1

"(s; �

v

� �

0

v

;  

v

)

	(s;W

v

;W

0

v

)

L(s; � � �

0

)

:

Combining these, we have

L(s; � � �

0

) =

 

Y

v2S

!

0

v

(�1)

n�1

"(s; �

v

� �

0

v

;  

v

)

!

L(1� s; e� � e�

0

):

Now, for v =2 S we know that �

0

v

is unrami�ed, so !

0

v

(�1) = 1, and also that "(s; �

v

��

0

v

;  

v

) �

1. Therefore

Y

v2S

!

0

v

(�1)

n�1

"(s; �

v

� �

0

v

;  

v

) = "(s; � � �

0

)

and we indeed have

L(s; � � �

0

) = "(s; � � �

0

)L(1� s; e� � e�

0

):

Note that this implies that "(s; � � �

0

) is independent of  as well.
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Let us now turn to the boundedness in vertial strips. For the global integrals I(s;'; '

0

)

or I(s;'; ';�) this simply follows from the absolute onvergene. For the L-funtion itself,

the paradigm is the following. For every �nite plae v 2 S we know that there is a hoie of

W

v;i

, W

0

v;i

, and �

v;i

if neessary suh that

L(s; �

v

� �

0

v

) =

X

	(s;W

v;i

;W

0

v

0

i

) or L(s; �

v

� �

0

v

) =

X

	(s;W

v;i

;W

0

v

0

i

;�

v;i

):

If m = n� 1 or m = n then by the work of Stade and Jaquet and Shalika we know that we

have similar statements for v 2 S

1

. Hene if m = n � 1 or m = n there are global hoies

'

i

, '

0

i

, and if neessary �

i

suh that

L(s; � � �

0

) =

X

I(s;'

i

; '

0

i

) or L(s; � � �

0

) =

X

I(s;'

i

; '

0

i

;�

i

):

Then the boundedness in vertial strips for the L-funtions follows from that of the global

integrals.

However, if m < n � 1 then all we know at those v 2 S

1

is that there is a funtion

W

v

2 W(�

v

^


�

0

v

;  

v

) = W(�

v

;  

v

)

^


W(�

0

v

;  

�1

v

) or a �nite olletion of suh funtions W

v;i

and of �

v;i

suh that

L(s; �

v

� �

0

v

) = I(s;W

v

) or L(s; �

v

� �

0

v

) =

X

I(s;W

v;i

;�

v;i

):

To make the above paradigm work for m < n � 1 we would need to rework the theory of

global Eulerian integrals for usp forms in V

�

^


V

�

0

. This is naturally the spae of smooth

vetors in an irreduible unitary uspidal representation of GL

n

(A )�GL

m

(A ). So we would

need extend the global theory of integrals parallel to Jaquet and Shalika's extension of the

loal integrals in the arhimedean theory. There seems to be no obstrution to arrying this

out, but we have not done this.

We should point out that if one approahes these L-funtion by the method of onstant

terms and Fourier oeÆients of Eisenstein series, then Gelbart and Shahidi have shown a

wide lass of automorphi L-funtions, inluding ours, to be bounded in vertial strips [12℄.

4.2. Poles of L-funtions. Let us determine where the global L-funtions an have poles.

The poles of the L-funtions will be related to the poles of the global integrals. Reall from

Setion 2 that in the ase of m < n we have that the global integrals I(s;'; '

0

) are entire

and that when m = n then I(s;'; '

0

;�) an have at most simple poles and they our at

s = �i� and s = 1� i� for � real when � ' e�

0


j det j

i�

. As we have noted above, the global

integrals and global L-funtions are related, for appropriate ', '

0

, and �, by

I(s;'; '

0

) =

 

Y

v2S

e

v

(s;W

'

v

;W

0

'

0

v

)

!

L(s; � � �

0

)

or

I(s;'; '

0

;�) =

 

Y

v2S

e

v

(s;W

'

v

;W

0

'

0

v

;�

v

)

!

L(s; � � �

0

):

On the other hand, for any s

0

2 C and any v there is a hoie of loal W

v

, W

0

v

, and �

v

suh

that the loal ratios e

v

(s

0

;W

v

;W

0

v

) 6= 0 or e

v

(s

0

;W

v

;W

0

v

;�

v

) 6= 0. So as we vary ', '

0

and �

at the plaes v 2 S we see that division by these fators an introdue no extraneous poles
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in L(s; � � �

0

), that is, in keeping with the loal haraterization of the L-fator in terms

of poles of loal integrals, globally the poles of L(s; � � �

0

) are preisely the poles of the

family of global integrals fI(s;'; '

0

)g or fI(s;'; '

0

;�)g. Hene from Theorems 2.1 and 2.2

we have.

Theorem 4.2. If m < n then L(s; �� �

0

) is entire. If m = n, then L(s; �� �

0

) has at most

simple poles and they our i� � ' e�

0


 j det j

i�

with � real and are then at s = �i� and

s = 1� i�.

There are two useful observationss that follow from this.

(1) L(s; � � e�) has simple poles at s = 0 and s = 1.

(2) For � and �

0

uspidal representations of GL

n

(A ), L(s; � � e�

0

) has a pole at s = 1 i�

� ' �

0

.

As a onsequene of this, we obtain the analyti proof of the Strong Multipliity One

Theorem [31, 25℄.

Strong Multipliity One: Let (�; V

�

) and (�

0

; V

�

0

) be two uspidal representations of

GL

n

(A ). Suppose there is a �nite set of plaes S suh that for all v =2 S we have �

v

' �

0

v

.

Then � = �

0

.

5. Converse Theorems

Let us return �rst to Heke. Reall that to a modular form

f(�) =

1

X

n�1

a

n

e

2�in�

for say SL

2

(Z) Heke attahed an L funtion L(s; f) and they were related via the Mellin

transform

�(s; f) = (2�)

�s

�(s)L(s; f) =

Z

1

0

f(iy)y

s

d

�

y

and derived the funtional equation for L(s; f) from the modular transformation law for f(�)

under the modular transformation law for the transformation � 7! �1=� . In his fundamental

paper [17℄ he inverted this proess by taking a Dirihlet series

D(s) =

1

X

n=1

a

n

n

s

and assuming that it onverged in a half plane, had an entire ontinuation to a funtion

of �nite order, and satis�ed the same funtional equation as the L-funtion of a modular

form of weight k, then he ould atually reonstrut a modular form from D(s) by Mellin

inversion

f(iy) =

X

i

a

n

e

�2�ny

=

1

2�i

Z

2+i1

2�i1

(2�)

�s

�(s)D(s)y

s

ds



ANALYTIC THEORY OF L-FUNCTIONS FOR GL

n

25

and obtain the modular transformation law for f(�) under � 7! �1=� from the funtional

equation for D(s) under s 7! k � s. This is Heke's Converse Theorem.

In this Setion we will present some analogues of Heke's theorem in the ontext of L-

funtions for GL

n

. Surprisingly, the tehnique is exatly the same as Heke's, i.e., inverting

the integral representation. This was �rst done in the ontext of automorphi representation

for GL

2

by Jaquet and Langlands [21℄ and then extended and signi�antly strengthened for

GL

3

by Jaquet, Piatetski-Shapiro, and Shalika [22℄. This setion is taken mainly from our

survey [7℄. Further details an be found in [5, 6℄.

Let k be a global �eld, A its adele ring, and  a �xed non-trivial ontinuous additive

harater of A whih is trivial on k. We will take n � 3 to be an integer.

To state these Converse Theorems, we begin with an irreduible admissible representation

� of GL

n

(A ). In keeping with the onventions of these notes, we will assume that � is

unitary and generi, but this is not neessary. It has a deomposition � = 


0

�

v

, where �

v

is

an irreduible admissible generi representation of GL

n

(k

v

). By the loal theory of Setion

3, to eah �

v

is assoiated a loal L-funtion L(s;�

v

) and a loal "-fator "(s;�

v

;  

v

). Hene

formally we an form

L(s;�) =

Y

v

L(s;�

v

) and "(s;�;  ) =

Y

v

"(s;�

v

;  

v

):

We will always assume the following two things about �:

(1) L(s;�) onverges in some half plane Re(s) >> 0,

(2) the entral harater !

�

of � is automorphi, that is, invariant under k

�

.

Under these assumptions, "(s;�;  ) = "(s;�) is independent of our hoie of  [5℄.

Our Converse Theorems will involve twists by uspidal automorphi representations of

GL

m

(A ) for ertain m. For onveniene, let us set A(m) to be the set of automorphi

representations of GL

m

(A ), A

0

(m) the set of uspidal representations of GL

m

(A ), and

T (m) =

m

a

d=1

A

0

(d). If we �x a �nite set of S of �nite plaes then we let T (S;m) denote

the subset of T (m) onsisting of representations that are unrami�ed at all plaes v 2 S.

Let �

0

= 


0

�

0

v

be a uspidal representation of GL

m

(A ) with m < n. Then again we an

formally de�ne

L(s;�� �

0

) =

Y

v

L(s;�

v

� �

0

v

) and "(s;�� �

0

) =

Y

v

"(s;�

v

� �

0

v

;  

v

)

sine again the loal fators make sense whether � is automorphi or not. A onsequene

of (1) and (2) above and the uspidality of �

0

is that both L(s;� � �

0

) and L(s;

e

� �

e

�

0

)

onverge absolutely for Re(s) >> 0, where

e

� and

e

�

0

are the ontragredient representations,

and that "(s;�� �

0

) is independent of the hoie of  .
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We say that L(s;� � �

0

) is nie if it satis�es the same analyti properties it would if �

were uspidal, i.e.,

(1) L(s;�� �

0

) and L(s;

e

��

e

�

0

) have analyti ontinuations to entire funtions of s,

(2) these entire ontinuations are bounded in vertial strips of �nite width,

(3) they satisfy the standard funtional equation

L(s;�� �

0

) = "(s;�� �

0

)L(1� s;

e

��

e

�

0

):

The basi Converse Theorem for GL

n

is the following [5, 4℄.

Theorem 5.1. Let � be an irreduible admissible representation of GL

n

(A ) as above. Let

S be a �nite set of �nite plaes. Suppose that L(s;� � �

0

) is nie for all �

0

2 T (S;n � 1).

Then � is quasi-automorphi in the sense that there is an automorphi representation �

0

suh that �

v

' �

0

v

for all v =2 S. If S is empty, then in fat � is a uspidal automorphi

representation of GL

n

(A ).

This result is of ourse valid for n = 2 as well.

For appliations [3℄, it is desirable to twist by as little as possible. There are essentially

two ways to restrit the twisting. One is to restrit the rank of the groups that the twisting

representations live on. The other is to restrit rami�ation.

When we restrit the rank of our twists, we an obtain the following result [6℄.

Theorem 5.2. Let � be an irreduible admissible representation of GL

n

(A ) as above. Let

S be a �nite set of �nite plaes. Suppose that L(s;� � �

0

) is nie for all �

0

2 T (S;n � 2).

Then � is quasi-automorphi in the sense that there is an automorphi representation �

0

suh that �

v

' �

0

v

for all v =2 S. If S is empty, then in fat � is a uspidal automorphi

representation of GL

n

(A ).

This result is stronger than Theorem 5.1, but its proof is more deliate.

In order to apply these theorems, one uses a good hoie of the set S in onjuntion with

twisting by a highly rami�ed harater �. The set S usually onsists of the �nite plaes

where �

v

is rami�ed. � is used in onjuntion with the loal stability of -fators mentioned

above. Then the following observation is a key ingredient in applying either of the above

theorems [7℄.

Observation . Let � be as in Theorem 5.1 or 5.2. Suppose that � is a �xed (highly rami�ed)

harater of k

�

nA

�

. Suppose that L(s;���

0

) is nie for all �

0

2 T 
�, where T is either of

the twisting sets of Theorem 5.1 or 5.2. Then � is quasi-automorphi as in those theorems.

The only thing to observe, say by looking at the loal or global integrals, is that if �

0

2 T

then L(s;� � (�

0


 �)) = L(s; (� 
 �) � �

0

) so that applying the Converse Theorem for

� with twisting set T 
 � is equivalent to applying the Converse Theorem for � 
 � with

the twisting set T . So, by either Theorem 5.1 or 5.2, whihever is appropriate, � 
 � is

quasi-automorphi and hene � is as well.
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The seond way to restrit our twists is to restrit the rami�ation at all but a �nite

number of plaes [5℄. Now �x a non-empty �nite set of plaes S whih in the ase of a

number �eld ontains the set S

1

of all arhimedean plaes. Let T

S

(m) denote the subset

onsisting of all representations �

0

in T (m) whih are unrami�ed for all v =2 S. Note that

we are plaing a grave restrition on the rami�ation of these representations.

Theorem 5.3. Let � be an irreduible admissible representation of GL

n

(A ) as above. Let

S be a non-empty �nite set of plaes, ontaining S

1

, suh that the lass number of the ring

o

S

of S-integers is one. Suppose that L(s;� � �

0

) is nie for all �

0

2 T

S

(n � 1). Then �

is quasi-automorphi in the sense that there is an automorphi representation �

0

suh that

�

v

' �

0

v

for all v 2 S and all v =2 S suh that both �

v

and �

0

v

are unrami�ed.

There are several things to note here. First, there is a lass number restrition. However,

if k = Q then we may take S = S

1

and we have a Converse Theorem with \level 1" twists.

As a pratial onsideration, if we let S

�

be the set of �nite plaes v where �

v

is rami�ed,

then for appliations we usually take S and S

�

to be disjoint. One again, we are losing all

information at those plaes v =2 S where we have restrited the rami�ation unless �

v

was

already unrami�ed there.

The proof of Theorem 5.1 with S empty essentially follows the lead of Heke, Weil, and

Jaquet{Langlands. It is based on the integral representations of L-funtions, Fourier ex-

pansions, Mellin inversion, and �nally a use of the weak form of Langlands spetral theory.

For Theorems 5.1, 5.2, and 5.3, where we have restrited our twists, we must impose ertain

loal onditions to ompensate for our limited twists. For Theorems 5.1 and 5.2 there are a

�nite number of loal onditions and for Theorem 5.3 an in�nite number of loal onditions.

We must then work around these by using results on generation of ongruene subgroups

and either weak or strong approximation.
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