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One of the priniple goals of modern number theory is to understand the Galois group

G

k

= Gal(k=k) of a loal or global �eld k, suh as Q for example. One way to try to

understand the group G

k

is by understanding its �nite dimensional representation theory. In

the ase of a number �eld, to every �nite dimensional representation � : G

k

! GL

n

(C ) Artin

attahed a omplex analyti invariant, its L-funtion L(s; �). One approah to understanding

� is through this invariant. For one dimensional � this idea was fundamental for the analyti

approah to abelian lass �eld theory and the understanding of G

ab

k

. To obtain a more

omplete understanding of G

k

we would hope for a more omplete understanding of the

L(s; �) for higher dimensional representations.

There is another lass of objets whih possess similar analyti invariants. These are the

automorphi representations � of GL

n

(A ), where A is the adele ring of k. The analyti prop-

erties of the L-funtions L(s; �) attahed to automorphi representations are well understood

[13℄.

The Langlands onjetures predit the existene of a orrespondene between the n-

dimensional representations of G

k

and the automorphi representations of GL

n

(A ) whih

preserves these analyti invariants. There is a onomitant orrespondene between n-

dimensional representations of G

k

for a loal �eld k and the admissible representations of

GL

n

(k), the loal Langlands onjeture. There are two ways to view suh orrespondenes.

If one views the passage of information from the automorphi side to the Galois side, as we

have done above, this is a loal or global non-abelian lass �eld theory. If one views the

passage if information from the Galois side to the automorphi side this is an arithmeti

parameterization of admissible or automorphi representations.

Over the past ten years there has been signi�ant progress made in the understanding

of these Langlands onjetures. It began in the early nineties with the proof of the loal

Langlands onjeture for loal �elds k of harateristi p by Laumon, Rapoport, and Stuhler

[44℄. In the late nineties it was followed by a proof of the loal Langlands onjeture for

non-arhimedean �elds of harateristi zero by Harris and Taylor [27℄, followed quikly by

a simpli�ed proof due to Henniart [30℄. Around the same time, following the program of

Drinfeld from his proof of the Langlands onjeture for GL

2

over a global funtion �eld [23℄,

L. La�orgue established the global Langlands onjeture for GL

n

in the funtion �eld ase

[35℄.

In this survey we would like to present an overview of these results, emphasizing their om-

mon features. There are already several exellent surveys on the individual works, namely

those of Carayol for the loal onjetures [9, 10℄ and Laumon for the global onjetures
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[42, 43℄ and we refer the reader to these for more in depth overage. The �rst two se-

tions of this paper disuss Galois representations, automorphi representations, and their

L-funtions. We next disuss the loal Langlands onjetures in both the representation

theoreti version, proved by Langlands in the arhimedean ase around 1973 [38℄, and the

L-funtion version, whih was the version established by Laumon, Rapoport, Stuhler, Har-

ris, Taylor, and Henniart in the non-arhimedean ase. Finally we disuss the version of the

global Langlands onjeture established by Drinfeld and La�orgue in harateristi p.

Although there has been little general progress on the global Langlands onjeture for

number �elds, there have been spetaular speial ases established reently. Most notable

among these is the proof by Wiles of the modularity of ertain 2-dimensional `-adi repre-

sentations of G

Q

assoiated to ellipti urves over Q , whih he established on his way to the

proof of Fermat's last theorem [59℄, and related results. Unfortunately, we will not disuss

these results here.

1. Galois Representations and their L-funtions

If G is a topologial group and F is a topologial �eld then let Rep

n

(G;F ) denote the set

of equivalene lasses of ontinuous representations � : G ! GL

n

(F ). Let Rep

0

n

(G;F ) be

the subset of irreduible representations. For the most part we will be interested in omplex

representations and so we will use Rep

n

(G) for Rep

n

(G; C ) and similarly for Rep

0

n

. At times

we will be interested in F = Q

`

and when we do, we will use the oeÆient �eld in the

notation.

If k is either a loal or global �eld we will let k be a separable algebrai losure of k. Let

G

k

= Gal(k=k) be the (absolute) Galois group and W

k

the (absolute) Weil group [51℄.

Let k be a non-arhimedean loal �eld. Let p be the harateristi and q the order of

its residue �eld �. Let I � G

k

be the inertia subgroup. If we let � denote a hoie of

geometri Frobenius element of G

k

then W

k

an be taken as the subgroup of G

k

algebraially

generated by � and I but topologized suh that I has the indued topology from G

k

, I is

open, and multipliation by � is a homeomorphism. This an also be given the struture of a

sheme over Q [51℄. Then we have a ontinuous homomorphism G

k

!W

k

with dense image.

Thus we have a natural inlusion Rep

n

(G

k

) ! Rep

n

(W

k

). The image, that is, the those

representations that fator through ontinuous representations of G

k

, are the representations

of W

k

of Galois type. We also have a natural harater !

s

2 Rep

1

(W

k

) de�ned by !

s

(I) = 1

and !

s

(�) = q

�s

. This is also denoted by !

s

(w) = kwk

�s

and gives a homomorphism

� : W

k

! Z de�ned by kwk = q

��(w)

. Then every irreduible representation � of W

k

is of

the form � = �

Æ


 !

s

where �

Æ

is of Galois type [49, 19℄.

The representations that arise most naturally in arithmeti algebrai geometry, for ex-

ample those assoiated with the `-adi ohomology of algebrai varieties, are not omplex

representations but rather representations in Rep

n

(G

k

;Q

`

), with ` 6= p, or Rep

n

(W

k

;Q

`

). The

representation theory for `-adi representations is riher than for omplex representations

due to the di�erene in topologies in the two �elds. Reognizing this, Deligne introdued
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what is now known as the Weil-Deligne group W

0

k

of the loal �eld so that its representation

theory is essentially algebrai, so in essene it doesn't distinguish between C and Q

`

, and

whose ategory of representations is the same that of the ontinuous `-adi representations of

G

k

or W

k

[19℄. Following Tate [51℄, let us de�ne W

0

k

to be the group sheme over Q whih is

the semidiret produt of the Weil groupW

k

with the additive group G

a

, i.e.,W

0

k

=W

k

nG

a

,

whereW

k

ats on G

a

by wxw

�1

= kwkx. If F is any �eld of harateristi 0, suh as Q

`

or C ,

the F -points of W

0

k

is just W

k

�F with omposition (w

1

; x

1

)(w

w

; x

2

) = (w

1

w

2

; x

1

+ kw

1

kx

2

).

But what is really important is the representation theory ofW

0

k

. An n-dimensional represen-

tation of W

0

k

over F is a pair �

0

= (�;N) onsisting of (i) an n-dimensional F -vetor spae

V with a group homomorphism � : W

k

! GL(V ) whose kernel ontains an open subgroup

of I, that is, whih is ontinuous for the disrete topology on GL(V ), and (ii) a nilpotent

endomorphism N of V suh that �(w)N�(w)

�1

= kwkN [19, 49, 51℄.

If �

0

= (�;N) is a representation of W

0

k

, there is a unique unipotent automorphism u of V

whih ommutes with both N and �(W

k

) and suh that e

aN

�(w)u

��(w)

is semisimple for all

a 2 F and all w 2 W

k

� I [19, 51℄. The � semisimpli�ation of �

0

is then �

0

ss

= (�u

��

; N). �

0

is alled �-semisimple (or Frobenius semisimple) if �

0

= �

0

ss

, for in this ase u is the identity

and all the Frobeniuses at semisimply. This is equivalent to the representation � being

semisimple in the ordinary sense.

We will let Rep

n

(W

0

k

;F ) denote the equivalene lasses of n-dimensional �-semisimple F -

representations of the Weil-Deligne group W

0

k

. When F = C we will simply write Rep

n

(W

0

k

)

for Rep

n

(W

0

k

; C ).

The importane of the Weil-Deligne group is in that it lets us apture, in an algebrai way,

the ontinuous `-adi representations of G

k

or W

k

[19, 49, 51℄: for every semisimple `-adi

representation �

`

2 Rep

n

(W

k

;Q

`

) there is an open subgroup of the inertia group I on whih

�

`

is trivial and hene �

`

gives rise to an (ordinary) �-semisimple Q

`

-representation �

0

ofW

0

k

.

Note that by ondition (ii) in the de�nition of a representation of W

0

k

the topology on

F plays no role, so that if we have a �xed isomorphism � : Q

`

! C we may identify

Rep

n

(W

0

k

;Q

`

) ' Rep

n

(W

0

k

; C ) = Rep

n

(W

0

k

). Furthermore, note that in an irreduible rep-

resentation of W

0

k

we must have that N = 0, sine the kernel of N would be an invariant

subspae, and so Rep

0

n

(W

0

k

) = Rep

0

n

(W

k

).

If �

0

= (�;N) 2 Rep

n

(W

0

k

;F ) is an representation of W

0

k

on the vetor spae V , let

V

I

N

= (Ker N)

�(I)

be the invariants of the inertia subgroup I on the kernel of N . The we

an de�ne the loal L-fator by setting

Z(t; V ) = det(1� t�(�)jV

I

N

)

�1

2 F (t)

to be the inverse of the harateristi polynomial of � ating on V

I

N

and if we have an

embedding F ,! C , so if F = C or we use the isomorphism � : Q

`

! C , then we view F as

a sub�eld of C and set

L(s; �

0

) = Z(q

�s

; �

0

):

The de�nition of the loal onstants "(s; �

0

;  ), with  an additive harater of k, is more

deliate and we refer the reader to Deligne [19℄, Rohrlih [49℄ or Tate [51℄ for their preise
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de�nition. Of ourse, in the ase N = 0 these are the usual loal Artin-Weil L-funtions and

"-fators.

If the loal �eld k is arhimedean, so k = R or C , then we are interested only in omplex

representations of G

k

or W

k

. When k = C the Weil group is simply C

�

while if k = R then

W

R

' C

�

`

jC

�

where j

2

= �1 and jj

�1

=  for  2 C

�

. In either ase we have

1 ���! C

�

���! W

k

���! G

k

���! 1:

There is no arhimedean Weil-Deligne group, so for onsisteny we will setW

0

k

= W

k

in these

ases. The L-and "-fators are then de�ned in terms of the lassial �-funtion and a loal

funtional equation [51℄.

When k is a global �eld we will at least be interested in the representations of the global

Galois group G

k

, the global Weil group W

k

, or possibly the onjetural Langlands group L

k

[46℄.

When F = Q

`

we will let Rep

n

(G;Q

`

) denote the set of global `-adi representations in the

following sense. They should be ontinuous, algebrai (in the sense that they take values in

GL(E

�

) for a �nite dimensional extension E

�

=Q

`

), and almost everywhere unrami�ed (in the

sense that there is a �nite set of plaes S(�) of k suh that for all v =2 S(�) the representation

� is unrami�ed at v).

For any global representation � of G

k

or W

k

we have a loal representation �

v

for eah

ompletion v of k obtained by omposing � with the natural maps G

k

v

! G

k

or W

k

v

!W

k

.

The onjetural Langlands group L

k

should have similar loal-global ompatibility with the

loal Weil-Deligne groups.

To any n-dimensional omplex or `-adi representation of either the Galois group or the

Weil group we have attahed a global omplex analyti invariant, the global L-funtion

L(�; s) de�ned by the Euler produt

L(s; �) =

Y

v

L(s; �

v

) "(s; �) =

Y

v

"(s; �

v

;  

v

)

where  =

Q

v

 

v

is an additive harater of k.

These global analyti invariants are onjetured to be nie in the sense that

(1) L(s; �) should have a meromorphi ontinuation with at most a �nite number of

poles, entire if � is irreduible but not trivial;

(2) these ontinuations should be bounded in vertial strips;

(3) they satisfy the funtional equation L(s; �) = "(s; �)L(1� s; ~�).

ForG = G

k

orW

k

and F = C these are the lassial Artin-WeilL-funtions and by Brauer's

Theorem are known to onverge in a right half plane, have meromorphi ontinuation to C ,

and satisfy a funtional equation.



LANGLANDS CONJECTURES FOR GL

n

5

If k is a global funtion �eld, with onstant �eld of order q, and � is an `-adi representation

of G

k

as above, then Grothendiek has shown that the L-funtion is in fat a rational funtion

of q

�s

and satis�es a funtional equation and Deligne later showed that the "-fator of the

funtional equation had a loal fatorization and was given as above [51℄.

2. Automorphi representations and their L-funtions

On the automorphi side, if k is a loal �eld, we let A

n

(k) denote the set of equiva-

lene lasses of irreduible admissible omplex representations of GL

n

(k). When k is non-

arhimedean loal, we let A

0

n

(k) denote the subset of equivalene lasses of superuspi-

dal representations of GL

n

(k). By the theory of Godement{Jaquet [24℄, or the theory of

Jaquet{Piatetski-Shapiro{Shalika outlined in [13℄, there a omplex analyti invariant at-

tahed to every � 2 A

n

(k), namely its L-funtion L(s; �) and a loal "-fator "(s; �;  )

depending on a hoie of additive harater. If in addition we have an irreduible admissible

representation �

0

of GL

m

(k) then we have the loal Rankin-Selberg onvolution L-funtions

L(s; � � �

0

) and "-fator "(s; � � �

0

;  ).

If k is a global �eld we let A denote its ring of adeles. Let A

n

(k) denote the set of

irreduible automorphi representations of GL

n

(A ) and A

0

n

(k) the subset of uspidal au-

tomorphi representations. If � = 


0

�

v

is an automorphi representation of GL

n

(A ) and

�

0

= 


0

�

0

v

an automorphi representation of GL

m

(A ) then we have its assoiated L-funtion

and "-fator de�ned by Euler produts

L(s; � � �

0

) =

Y

v

L(s; �

v

� �

0

) "(s; � � �

0

) =

Y

v

"(s; �

v

� �

0

v

;  

v

):

As we have seen [13℄, these invariants are known to be nie, that is if � and �

0

are unitary

uspidal representations, then

(1) L(s; � � �

0

) has an analyti ontinuation to all of C with at most simple poles at

s = 0; 1 i� �

0

= ~�;

(2) these ontinuations are bounded in vertial strips;

(3) they satisfy the funtional equation L(s; � � �

0

) = "(s; � � �

0

)L(1� s; ~� � ~�

0

).

When onsidering representations that our in `-adi ohomologies it is most natural to

use Q

`

-valued automorphi forms and representations, whih we denote by A

n

(k;Q

`

). For

example, we will need to onsider the spae of Q

`

-valued uspidal representations whose

entral harater is of �nite order, whih we will denote by A

0

n

(k;Q

`

)

f

. These are the

representations of GL

n

(A ), or the assoiated Heke algebra H of loally onstant Q

`

-valued

funtions of ompat support on GL

n

(A ), in the spae of ertain Q

`

-valued usp forms on

GL

n

(A ). For the onveniene of the reader, we will review the de�nition from [42℄ for the

ase of funtion �elds over �nite �elds. The Q

`

-valued usp form on GL

n

(A ) of interest is a

funtion ' : GL

n

(A ) ! Q

`

suh that

(i) '(g) = '(g) for all  2 GL

n

(k);
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(ii) There is a ompat open subgroup K

'

� K = GL

n

(O

k

) suh that '(gk) = '(g) for

all k 2 K

'

;

(iii) There is an a 2 A

�

with deg(a) 6= 0 suh that '(ag) = '(g);

(iv) ' is uspidal in the usual sense that the integral

R

U

'(ug) du � 0 for eah unipotent

radial U of a maximal paraboli subgroup of GL

n

(A ).

Note that the ondition (iii) implies that the entral harater of ' is of �nite order. The

theory an essentially be identi�ed with the omplex theory through the isomorphism � :

Q

`

! C and the natural L-funtions an be identi�ed with the usual omplex analyti ones

or they an be left as `-adi valued rational funtions as in the appendix of [35℄ .

3. The Loal Langlands Conjeture

In its most basi form, the loal Langlands onjeture is a non-abelian generalization of

(abelian) loal lass �eld theory. The onjeture as �rst formulated by Langlands was in

terms of the Weil group. An early formulation, possibly the �rst, an be found in [36℄.

Langlands never restrited himself to GL

n

but always formulated in terms of redutive

algebrai groups in general. Deligne �rst pointed the neessity of passing to what is now

known as the Weil-Deligne group to be able to inlude the speial representations of GL

2

(k)

for a loal �eld k [18℄. The urrent formulation of the onjeture whih is losest to Langlands

original is to be found in Borel's artile in Corvallis [4℄.

Loal Langlands Conjeture I: Let k be a loal �eld. Then there are a series of natural

bijetions

Rep

n

(W

0

k

)$A

n

(k) � = �

�

$ � = �

�

satisfying a set of representation theoreti desiderata, inluding:

(i) For n = 1 it should be given by the loal lass �eld theory isomorphism.

(ii) The entral harater of �

�

orresponds to the determinant det(�) under the n = 1

orrespondene;

(iii) Compatibility with twisting, i.e., if � is a harater of k

�

then �

�
�

= �
 �;

(iv) �

�

is square integrable i� �(W

0

k

) does not lie in a proper Levi subgroup of GL

n

(C );

(v) �

�

is tempered i� �(W

k

) is bounded.

(vi) If H is a redutive onneted k-group and H(k) ! GL

n

(k) is a k morphism with

ommutative kernel and o-kernel, then there is a required ompatibility between these

bijetions for GL

n

(k) and similar maps for H(k).

For more details on the the ompatibility ondition (vi), see the artile of Borel in Cor-

vallis [4℄ or the aompanying artile [14℄. This is related to Langlands' general funtoriality

onjeture. Langlands himself never separated this version of his onjeture from his gen-

eral priniple of funtoriality [40℄. Note that there is no mention of L-funtions in this

formulation.

For non-arhimedean loal �elds, it was in the book by Jaquet and Langlands [31℄ and

then in the work of Deligne [18℄ that a version of the loal Langlands onjeture was phrased
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not in terms of representation theoreti properties, but rather in terms of the omplex

analyti invariants, or L-funtions, of the two sets in question. Deligne gave the omplete

formulation for GL

2

. It was in this paper that he utilized for the �rst time the Weil-Deligne

group, whih he had introdued in [19℄ in the ontext of `-adi representations, in order to

have a orret formulation on the ase of GL

2

over a non-arhimedean loal �eld.

Loal Langlands Conjeture II: Let k be a non-arhimedean loal �eld. For eah n � 1

there exists a bijetive map A

n

(k)! Rep

n

(W

0

k

) denoted � 7! �

�

with the following properties.

(i) For n = 1 the bijetion is given by loal lass �eld theory, normalized so that the

uniformizer of k orresponds to the geometri Frobenius.

(ii) For any � 2 A

n

(k) and �

0

2 A

n

0

(k) we have

L(s; �

�


 �

�

0

) = L(s; � � �

0

) "(s; �

�


 �

�

0

;  ) = "(s; � � �

0

;  ):

(iii) For any � 2 A

n

(k) the determinant of �

�

orresponds to the entral harater of �

under loal lass �eld theory.

(iv) For any � in A

n

(k) we have �

~�

= e�

�

.

(v) for any � 2 A

n

(k) and any harater � of k

�

of �nite order we have �

�
�

= �

�


 �.

There are two ways to think about what these onjetures o�er. If one views the pri-

mary passage of information to be from A

n

(k) to Rep

n

(W

0

k

), then this an be thought of

as Langlands formulation of a non-abelian loal lass �eld theory. If one views the primary

passage of information from Rep

n

(W

0

k

) to A

n

(k) then this gives an arithmeti parameteri-

zation of irreduible admissible representations of GL

n

(k). This is the arithmeti Langlands

lassi�ation of A

n

(k).

3.1. k loal arhimedean, i.e., k = R or C . In this ase G

k

is well understood; it is either

Z=2Z or trivial. So the passage of information in this ase is in the opposite diretion. This

was done in great generality by Langlands about 1973 [38℄, and not only for GL

n

but for

general real redutive groups. For arhimedean loal �elds there is no Weil-Deligne group.

The representation theoreti version is what is now known as the Langlands lassi�ation

or the Langlands parameters for representations of real groups. In fat, Langlands did

this in onjuntion with the arithmeti parameterization in terms of Rep

n

(W

k

) for GL

n

(or

admissible homomorphisms W

k

!

L

G for general G). The deep and interesting part is

the lassi�ation of representations in term of the information obtained from these maps,

partiularly their relation with the onstrution of the disrete series.

Theorem 3.1. Let k be R or C . Then there are a are a series of natural bijetions

Rep

n

(W

k

)$ A

n

(k)

satisfying the properties (i){(vi) of version I of the loal Langlands onjeture.

For the preise relation with the usual Langlands lassi�ation for real algebrai groups,

see [38℄. The statement proved is of ourse that originally given by Langlands and this may

well have motivated the preise onditions in the onjeture. Note again that the onditions

are representation theoreti and the L-funtions and "-fators play no role.
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3.2. k loal non-arhimedean. Reently, this seond version of the loal Langlands on-

jeture has been established for non-arhimedean loal �elds, �rst by Laumon, Rapoport,

and Stuhler in the positive harateristi ase in 1993 [44℄ and then in the harateristi

0 ase by by Harris and Taylor [27℄ in 1999 and by Henniart [30℄ in 2000. In both ases,

the orrespondene is established at the level of a orrespondene between irreduible Ga-

lois representations and superuspidal representations. Muh of the original representation

theoreti desiderata of the original onjeture has been replaed by an equality of twisted

L-funtions, i.e., of the assoiated families of omplex analyti invariants.

Let A

0

n

(k)

f

denote the set of isomorphism lasses of irreduible admissible representations

of GL

n

(k) having entral harater of �nite order. Then the theorem of Laumon, Rapoport,

and Stuhler is the following [44℄.

Theorem 3.2. Let k be a loal �eld of harateristi p > 0. For eah n � 1 there exists

a bijetive map A

0

n

(k)

f

! Rep

0

n

(G

k

) denoted � 7! �

�

satisfying the onditions (i){(v) of

version II of the loal Langlands onjeture.

When the loal �eld k is of harateristi 0 the loal Langlands onjeture established by

Harris and Taylor [27℄ and Henniart [28℄ has preisely the same statement.

Theorem 3.3. Let k be a loal �eld of harateristi 0. For eah n � 1 there exists a

bijetive map A

0

n

(k)

f

! Rep

0

n

(G

k

) denoted � 7! �

�

satisfying onditions (i){(v) of version II

of the loal Langlands onjeture.

The proofs involve the use of Q

`

-representations on both the Galois and automorphi side,

and is translated into the statements above in terms of omplex analyti L-funtions through

the isomorphism � of Q

`

with C .

3.2.1. Redutions and Construtions. In any of the non-arhimedean loal ases, the

proof passes through a hain of idential redutions whih redues one to proving the ex-

istene of a single map having the desired properties. The three proofs then di�er in the

onstrutions used to prove the existene of at least one orrespondene.

There are essentially three steps in the redution. Assume that we have any orrespondene

A

0

n

(k)

f

! Rep

0

n

(G

k

), still denoted � 7! �

�

, whih satis�es (i){(v) of the theorem.

1. Injetivity: Poles of L-funtions. For � and �

0

in Rep

0

n

(G

k

) we have that L(s; � 
 �

0

)

has a pole at s = 0 i� �

0

�

=

e�. Similarly, if � and �

0

are both in A

0

n

(k) then L(s; � � �

0

)

has a pole at s = 0 i� �

0

' e�. Thus we see that any suh orrespondene satisfying (ii) is

automatially injetive.

2. Bijetivity: Numerial Loal Langlands. For � 2 Rep

0

n

(G

k

) let a(�) denote the exponent

of the Artin ondutor of � [51℄. This is determined by the "{fator "(s; �;  ). Let � : k

�

!

C

�

be identi�ed with a harater of the Galois group via loal lass �eld theory. If we let

Rep

0

n

(G

k

)

m;�

denote the set of � 2 Rep

0

n

(G

k

) with a(�) = m and det(�) = � then this set is

�nite. Similarly, we let A

0

n

(k)

m;�

denote the set of � 2 A

0

n

(k) with f(�) = m and entral
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harater !

�

= �, where now f(�) is the exponent of the ondutor of Jaquet, Piatetski-

Shapiro, and Shalika [13℄, and this set is also �nite. The statement of the numerial loal

Langlands onjeture, whih had been established by Henniart in 1988 [30℄, is that for �xed

m 2 Z

+

and multipliative harater � of �nite order we have jRep

0

n

(G

k

)

m;�

j = jA

0

n

(k)

m;�

j.

Sine (ii) and (iii) guarantee that our orrespondene preserves the harater � and the

ondutors, then one we know that the orrespondene is injetive, the numerial loal

Langlands onjeture gives that the orrespondene is surjetive and hene bijetive.

3. Uniqueness: The Loal Converse Theorem. The uniqueness of a orrespondene sat-

isfying (i){(v) is a onsequene of the loal onverse theorem for GL(n). This result was

�rst stated by Jaquet, Piatetski-Shapiro, and Shalika [32℄ but the �rst published proof was

by Henniart [29℄ with preisely this appliation in mind. The statement is the following.

Suppose that � and �

0

are both elements of A

0

n

(k) and that the twisted "{fators agree, that

is

"(s; � � �;  ) = "(s; �

0

� �;  );

for all � 2 A

0

m

(k) with 1 � m � n� 1. Then �

�

=

�

0

. (Note that the orresponding twisted

L-funtions are all identially 1 [13℄.) From this, by indution on n, one sees that any suh

(now bijetive) orrespondene satisfying (i){(v) must be unique.

These three steps then redue the loal Langlands onjeture to the question of existene

of some orrespondene satisfying (i){(v). It is this existene problem that was solved by

Laumon, Rapoport, and Stuhler in positive harateristi and by Harris and Taylor and then

Henniart in the harateristi zero ase.

4. Existene: Global Geometri Construtions. In all ases, the loal existene is based

on establishing ertain instanes of a global orrespondene of Galois representations and

automorphi representations. Note that we now work with `-adi representations on both

the Galois and automorphi side.

For k of harateristi p > 0, Laumon, Rapoport, and Stuhler begin with a loal represen-

tation � 2 A

0

n

(k). They realize k as a loal omponent of a global �eld K of harateristi p,

so k = K

v

for some plae v of K, and then embed � as the loal omponent at v of a uspidal

representation � of a global division algebra D(A ) of rank n suh that D

�

(K

v

) = GL

n

(k)

and �

v

= �. They globally realize an ation of G

K

� D

�

(A ) on the `-adi ohomology of

the moduli spae of D-ellipti modules (D an order in D) suh that in the deomposition

of this ohomology a representation R
 � of G

K

�D

�

(A ) ours. By onstrution �

v

= �

and they take R

v

= �

�

. By the nature of their onstrution they are able to verify that

(i){(v) are satis�ed. Thus they establish the needed loal existene statement via a global

geometri onstrution and a limited global orrespondene.

The proof of Harris and Taylor of the loal Langlands onjeture for non-arhimedean

�elds of harateristi 0 is similar in spirit to that of Laumon, Rapoport, and Stuhler in

harateristi p. They replae the moduli spae of D-ellipti modules with ertain \simple

Shimura varieties" assoiated to unitary groups U

n

of Kottwitz. They realize k as a loal

omponent of a number �eld K, so k = K

v

for some plae v of K, and then embed � as the

loal omponent at v of a uspidal representation � of a ertain (twisted) unitary group of
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rank n. They then realize a global orrespondene between these uspidal representations and

global Galois representations in the `-adi ohomology of the assoiated Shimura varieties.

By studying the resulting orrespondene loally at a plae of bad redution they �nd a loal

representation on whih they have an irreduible ation of GL

n

(k) � D

�

n

(k) � W

k

, where

D is the division algebra over k of rank n and Hasse invariant 1=n, by � 
 JL(�) 
 �

�

,

where JL(�) is the image of � under the loal Jaquet-Langlands orrespondene and �

�

is thus de�ned. Again, from their onstrution they an verify that this orrespondene

satis�es onditions (i){(v). Note that not only do they get a geometri realization of the

loal Langlands orrespondene, they get a simultaneous realization of the loal Jaquet-

Langlands orrespondene.

Henniart, in his proof of the loal Langlands onjeture for non-arhimedean �elds of har-

ateristi 0, again uses a global onstrution but in a far less serious way. In partiular, he

does not give a geometri realization of the orrespondene. For Henniart, both the state-

ment and the proof most naturally give a bijetion from the Galois side to the automorphi

side � 7! �

�

. Henniart begins with an irreduible representation � of G

k

with �nite order

determinant. This then fators through a representation of Gal(F=k) for a �nite dimensional

extension F of k. Using Brauer indution, he writes � as a sum of monomial representations.

The haraters an be lifted to the automorphi side by loal lass �eld theory, and so he

must show that the orresponding sum of automorphially indued representations exists

and is superuspidal. The resulting superuspidal representation is then �

�

. This he does

again by embedding the loal situation into a global one and then appealing to ertain weak

ases of global automorphi indution that had been earlier established by Harris [25℄. Har-

ris's result relies on the theory of base hange and the assoiation of `-adi representations

to automorphi representations of GL

n

(A ) by Clozel [12℄, whih in turn relies on the work of

Kottwitz on the good redution of ertain unitary Shimura varieties. So at the bottom there

is in fat a global geometri onstrution, but it is of a simpler type than used by Harris and

Taylor. Henniart's proof makes more use of L-funtions and less use of geometry. His proof

is shorter and more analyti, but does not give a geometri realization of the orrespondene.

A more omplete synopsis of these results an be found in the S�eminaire Bourbaki reports

of Carayol [9, 10℄.

3.3. Complements. In order to omplete the loal Langlands orrespondene one needs to

onsider all suitable representations of the Weil-Deligne group on the Galois theoreti side

and all irreduible admissible representations of GL

n

(k) on the automorphi side. In order to

do this, the �rst step is to remove the ondition of �nite-order on the entral harater. This

is obtained by simply replaing the Galois group by the Weil group on the Galois side of the

orrespondene. On the automorphi side one still has superuspidal representations. Then

to pass to all admissible representations of GL

n

(k) one uses the representations of the Weil-

Deligne group. Representation theoretially, the passage from representations of the Weil

group to representations of the Weil-Deligne group on the Galois side mirrors the passage

from superuspidal representations to irreduible representations on the automorphi side,

as was shown by Bernstein and Zelevinsky (see [1, 60℄, partiularly Setion 10 of [60℄, or

[47℄). Thus from the results of Laumon, Rapoport, Stuhler, Harris, Taylor, and Henniart

the full loal Langlands orrespondene follows.
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In spite of these results, the work on the loal Langlands onjeture ontinues. The

proofs above give the existene of the orrespondene and in some ases provides an expliit

geometri model. It provides a mathing of ertain invariants, like the ondutor, and the

loal L-funtions. However, for appliations, it would be desirable to have an expliit version

of the loal Langlands orrespondene, partiularly for the superuspidal representations of

GL

n

in terms of the Bushnell-Kutzko ompat indution data [6℄. The searh for an expliit

loal Langlands orrespondene is urrently being pursued by Bushnell, Henniart, Kutzko,

and others.

4. The Global Langlands Conjeture

As in the loal ase, in its most basi form, the global Langlands onjeture should be a

non-abelian generalization of (abelian) global lass �eld theory. When Deligne pointed out

the neessity of introduing the Weil-Deligne group in the loal non-arhimedean regime, it

was realized that there seemed to be no natural global version of the Weil-Deligne group.

This lead to a searh for a global group to replae the Weil-Deligne group. This was one of the

purposes of Langlands' artile [39℄. It is now believed that this group, whih Ramakrishnan

alls the onjetural Langlands group L

k

, should be related to the equally onjetural motivi

Galois group of k, M

k

[46℄.

4.1. k a global �eld of harateristi p > 0. In spite of these diÆulties, Drinfeld for-

mulated and proved a version of the global Langlands onjeture for global funtion �elds

[23℄ whih related the irreduible 2-dimensional representations of the Galois group itself

with the irreduible uspidal representations of GL

2

(A ). This is the global analogue of the

loal theorem of Laumon, Rapoport, and Stuhler for whih the Weil-Deligne group was

not needed. We should emphasize that the results of Drinfeld were obtained in the 1970's,

though published only later, and so predate those of Laumon, Rapoport, and Stuhler by

several years. Reently the work of Drinfeld has been extended by L. La�orgue to give a

proof of the global Langlands onjeture for GL

n

over a funtion �eld [35℄.

The formulation of the global Langlands onjeture established by Drinfeld and La�orgue

is essentially the same as in the loal non-arhimedean ase above with a few modi�ations

that we would now like to explain. Take k to be the funtion �eld of a smooth, projetive,

geometrially onneted urve X over a �nite �eld F of harateristi p. Fix a prime ` whih

is di�erent from p and an isomorphism � : Q

`

! C .

On the Galois side, they onsider isomorphism lasses of irreduible ontinuous `-adi

representations � : G

k

! GL

n

(Q

`

) whih are unrami�ed outside a �nite number of plaes,

as desribed in Setion 1, and whose determinant is of �nite order. We will denote these

by Rep

0

n

(G

k

;Q

`

)

f

. On the automorphi side they onsider the spae of Q

`

-valued uspidal

representations whose entral harater is of �nite order A

0

n

(k;Q

`

)

f

, as desribed in Setion

2. A reasonable formulation of a global Langlands onjeture in analogy with what we have

in the loal situation is the following.
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Global Langlands Conjeture in harateristi p: For eah n � 1 there exists a bijetive

map A

0

n

(k;Q

`

)

f

! Rep

0

n

(G

k

;Q

`

)

f

denoted � 7! �

�

with the following properties.

(i) For n = 1 the bijetion is given by global lass �eld theory.

(ii) For any � 2 A

0

n

(k;Q

`

)

f

and �

0

2 A

0

n

0

(k;Q

`

)

f

we have

L(s; �

�


 �

�

0

) = L(s; � � �

0

) "(s; �

�


 �

�

0

) = "(s; � � �

0

):

(iii) For any � 2 A

0

n

(k;Q

`

)

f

the determinant of �

�

orresponds to the entral harater

of � under global lass �eld theory.

(iv) For any � in A

0

n

(k : Q

`

)

f

we have �

~�

= e�

�

.

(v) for any � 2 A

0

n

(k;Q

`

)

f

and any harater � of k

�

of �nite order we have �

�
�

=

�

�


 �;

(vi) the global bijetions should be ompatible with the loal bijetions of the loal Langlands

onjeture.

If we take a uspidal representation � 2 A

0

n

(k;Q

`

)

f

, let S(�) denote the �nite set of plaes

x 2 jXj suh that �

x

is unrami�ed for all x =2 S(�). For x =2 S(�) the loal representation �

x

is ompletely determined by a semi-simple onjugay lass A

�

x

in GL

n

(Q

`

), whih we identify

with GL

n

(C ) via �, alled the Satake lass or Satake parameter of �

x

[4℄. As this parameter

determines and is determined by a harater of the assoiated unrami�ed Heke algebra

H

x

at x [50℄ the eigenvalues of A

�

x

, denoted z

1

(�

x

); : : : ; z

n

(�

x

), are also alled the Heke

eigenvalues of �

x

. These Heke eigenvalues ompletely determine �

x

. Then by the strong

multipliity one theorem for GL

n

[13℄ the olletion of Heke eigenvalues fz

1

(�

x

); : : : ; z

n

(�

x

)g

for almost all x =2 S(�) ompletely determine �.

If we take a Galois representation � 2 Rep

0

n

(G

k

;Q

`

)

f

then we also have a �nite set of plaes

S(�) suh that � is unrami�ed at all x =2 S(�). For x =2 S(�) the image �(�

x

) of a geometri

Frobenius �

x

at x is a well de�ned semi-simple onjugay lass in GL

n

(Q

`

) ' GL

n

(C ).

The eigenvalues of �(�

x

), denoted z

1

(�

x

); : : : ; z

n

(�

x

), are alled the Frobenius eigenvalues of

�

x

. These Frobenius eigenvalues ompletely determine �

x

and by the Chebotarev density

theorem the olletion of Frobenius eigenvalues fz

1

(�

x

); : : : ; z

n

(�

x

)g for almost all x =2 S(�)

ompletely determine � itself.

The result established by Drinfeld for n = 2 [23℄ and La�orgue for n � 3 [35℄, whih as

we will outline below is equivalent to the statement above, is the following.

Theorem 4.1. Let k be a global funtion �eld of harateristi p as above. For eah n � 1

there exists a unique bijetive map A

0

n

(k;Q

`

)

f

! Rep

0

n

(G

k

;Q

`

)

f

denoted � 7! �

�

suh that

for every uspidal � 2 A

0

n

(k;Q

`

)

f

we have the equality of Heke and Frobenius eigenvalues

fz

1

(�

x

); : : : ; z

n

(�

x

)g = fz

1

(�

�;x

); : : : ; z

n

(�

�;x

)g

for all x =2 S, a �nite set of plaes ontaining S(�) [ S(�

�

), or equivalently we have the

equality of the partial omplex analyti L-funtions

L

S

(s; �) = L

S

(s; �

�

):
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To see that this does indeed give the statements of the onjeture as presented above, note

�rst that for all x =2 S, the equality of the equality of the assoiated Heke and Frobenius

eigenvalues at these plaes is onsistent with the loal Langlands onjeture at the unrami�ed

plaes. Hene (vi) is satis�ed at these plaes. Next, for � 2 A

0

n

(k;Q

`

)

f

we have an Euler

produt fatorization for the L-funtion L(s; �) =

Q

x2jXj

L(s; �

x

) and for all x =2 S(�)

the loal L-funtion is given by L(s; �

x

) = det(1 � �(A

�

x

)q

�s

)

�1

[13℄. Hene the Heke

eigenvalues for �

x

, x =2 S(�), are determined by the loal L-fator at these plaes and

onversely. Similarly, for � 2 Rep

0

n

(G

k

;Q

`

)

f

we again have a fatorization of the global

L-funtion L(s; �) =

Q

x2jXj

L(s; �

x

) where now L(s; �

x

) = det(1 � �(�(�

x

))q

�s

x

)

�1

. Hene

now the loal eigenvalues of Frobenius for �(�

x

), x =2 S(�), are determined by the loal

L-fator at these plaes and onversely. Hene we do have the equality of partial L-funtions

L

S

(s; �) = L

S

(s; �

�

) for a �nite set S � S(�) [ S(�

�

) as stated. Using the global funtional

equation for both L(s; �) and L(s; �

�

) and the loal fatorization of the global "{fators,

standard L-funtion tehniques give that in fat S(�) = S(�

�

), that L(s; �

x

) = L(s; �

�;x

)

at these plaes, and that in general the restrition of �

�

to the loal Galois group of k at x

orresponds to �

x

under the loal Langlands onjeture. Thus (vi) is satis�ed in general and

from this (ii){(v) follow from the Euler produt fatorizations and the analogous statements

from the loal onjeture.

4.1.1. Redutions and Construtions. As in the loal situation, the proof passes through

a hain of redutions that redues one to proving the existene of a single map having the

desired properties. The existene is then established by a global onstrution using the

ohomology of a ertain moduli sheme on whih GL

n

ats.

1. Uniqueness and bijetivity. Given the existene of one global bijetion as above, the

uniqueness of the bijetion has long been known to follow from an appliation of the strong

multipliity one theorem on the automorphi side [13℄ and the Chebotarev density theorem

on the Galois side. These strong uniqueness priniples also imply that any suh maps � 7! �

�

and � 7! �

�

satisfying the onditions of the theorem must be reiproal bijetions.

2. The indutive proedure of Piatetski-Shapiro and Deligne. This indutive priniple was

outlined by Deligne in an IHES seminar in 1980 and then later reorded in [41℄. It redues

the proof of the theorem to the following seemingly weaker existene statement.

Theorem 4.2. For eah n � 1 there exists a map A

0

n

(k;Q

`

)

f

! Rep

0

n

(G

k

;Q

`

)

f

denoted

� 7! � = �

�

suh that we have the equality of Heke and Frobenius eigenvalues

fz

1

(�

x

); : : : ; z

n

(�

x

)g = fz

1

(�

�;x

); : : : ; z

n

(�

�;x

)g

for almost all x =2 S(�) [ S(�

�

).

Indeed, suppose one has established the existene of the map � 7! �

�

for � 2 A

0

r

(k;Q

`

)

f

for r = 1; : : : ; n � 1. Then utilizing the global funtional equation of Grothendiek, the

fatorization of the global Galois "-fator [41℄, and the onverse theorem for GL

n

[13, 15, 16℄

one obtains for free the inverse map � 7! �

�

for � 2 Rep

0

r

(G

k

;Q

`

)

f

for r = 1; : : : ; n.
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3. Existene [23, 35℄. It had been known sine Weil that there is a natural moduli problem

assoiated to GL

n

over a funtion �eld, namely the set of isomorphism lasses of rank n vetor

bundles on the urve X are parameterized by the double osets GL

n

(k)nGL

n

(A )=GL

n

(O).

To obtain the maps in question, one needs a bit more struture, and so Drinfeld and then

La�orgue onsidered the (ompati�ed) Deligne-Mumford stak V of rank n shtukas (with

level struture), whih is atually a stak over X�X. There is a natural ation of the global

Heke algebra H on this stak by orrespondenes and the orresponding `-adi ohomology

H

�



(k


k

V ;Q

`

) then a�ords a simultaneous representation ofH and G

k

�G

k

. One then uses the

geometri Grothendiek-Lefshetz trae formula to ompute the trae of this representation.

One then ompares this with the output of the Arthur-Selberg trae formula to prove that

indeed the derived representation �
�

�


 e�

�

of H�G

k

�G

k

ours in this ohomology. The

onstrution is indutive and essentially uses everything.

4.1.2. Complements. An immediate onsequene of this result is the Ramanujan-Petersson

onjeture for GL

n

. This had been earlier established by Drinfeld for n = 2 [22℄ and partially

by La�orgue for n � 3 [34℄. The omplete solution follows from the global Langlands

onjeture.

Theorem 4.3. For every � 2 A

0

n

(k)

f

and every plae x =2 S(�) we have jz

i

(�

x

)j = 1.

In addition, La�orgue [35℄ is able to dedue the following onjeture of Deligne [20℄.

Theorem 4.4. Every irreduible loal system � over a urve whose determinant is of �nite

order is pure of weight 0; moreover the symmetri polynomials in the eigenvalues of Frobenius

generate a �nite extension of Q .

In addition, La�orgue is able to onlude that over a urve the notion of an irreduible

loal `-adi system does not depend on the hoie of ` and to verify the assertion of desent

in the \geometri Langlands orrespondene".

A more omplete synopsis of these results an be found in the reports of Laumon [42, 43℄.

4.2. k a global �eld of harateristi 0. There is very little known of a general nature in

the number �eld ase. However, there are some rather spetaular examples of suh global

orrespondenes.

4.2.1. General onjetures. Reall that for n = 1 from global lass �eld theory we have a

anonial bijetion between the ontinuous haraters of G

k

and haraters of �nite order of

k

�

nA

�

. To obtain all haraters of k

�

nA

�

we must again replae the Galois group by the

global Weil group W

k

.

For n � 2, by analogy with the loal Langlands onjeture, we need a global analogue

of the Weil-Deligne group. But unfortunately no suh analogue is available. Instead the

onjetures are envisioned in terms of a onjetural Langlands group L

k

[46℄. At best, one
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hopes that L

k

�ts into an exat sequene

1 ���! L

0

k

���! L

k

���! G

k

���! 1

with L

0

k

omplex pro-redutive. This should �t into a ommutative diagram

1 ���! L

0

k

���! L

k

���! G

k

���! 1

?

?

y

?

?

y

?

?

y

?

?

y

?

?

y

1 ���! M

0

k

���! M

k

���! G

k

���! 1

where M

k

is the equally onjetural motivi Galois group [46℄.

In these terms, in general one expets/onjetures the following types of global orrespon-

denes [11, 46℄.

(i) The irreduible n-dimensional representations of G

k

should be in bijetive orrespon-

dene with the uspidal representations of GL

n

(A ) of Galois type. (This is a restri-

tion on �

1

.)

(ii) The irreduible n-dimensional representations ofM

k

should be in bijetive orrespon-

dene with the algebrai uspidal representations of GL

n

(A ). These are the analogues

of algebrai Heke haraters.

(iii) The irreduible n-dimensional representations of L

k

should be in bijetive orrespon-

dene with all uspidal representations of GL

n

(A ).

Of ourse, all of these orrespondenes should satisfy properties similar to those on the loal

onjetures, partiularly the preservation of L- and "- fators (with twists), ompatibility

with the loal orrespondenes, et.

In reality, very little is known of a truly general nature. One problem for the urrent

methods seems to be that there is no natural moduli problem for GL

n

over a number �eld.

4.2.2. Known results. There are many partial results of a general nature if one starts on

the automorphi side and tries to onstrut the assoiated Galois representation.

When n = 2 and k = Q we have the fundamental result of Deligne [17℄, based on founda-

tional work of Eihler and Shimura, whih assoiates to every uspidal representation � of

GL

2

(A

Q

) whih orresponds to a holomorphi new form of weight � 2 a ompatible system of

`-adi representations � = �

�

suh that L(s; �) = L(s; �). The Ramanujan-Petersson onje-

ture for suh forms followed. This was extended to weight one forms over Q in the lassial

ontext by Deligne and Serre [21℄. These results were extended to totally real �elds k, still

with n = 2, by a number of people, inluding Rogawski-Tunnell [48℄, Ohta [45℄, Carayol [8℄,

Wiles [58℄, Taylor [52, 54℄, and Blasius-Rogawski [3℄. For imaginary quadrati �elds there

is the work of Harris-Soudry-Taylor [26℄ and Taylor [53℄. For more omplete surveys, the

reader an onsult the surveys of Blasius [2℄ and Taylor [55℄.
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For general GL

n

and k a totally real number �eld Clozel has been able to attah a ompat-

ible system of `-adi representations to uspidal, algebrai, regular, self-dual representation

of GL

n

(A

k

) having loal omponents of a ertain type at one or two �nite plaes [12℄.

More spetaular are the results whih go in the opposite diretion, that is, starting with

a spei� Galois representation and showing that it is modular. The results we have in mind

are those of Langlands [37℄ and Tunnell [57℄, with partial results by Taylor, et. al, [7, 56℄, on

the modularity of degree 2 omplex Galois representations (the strong Artin onjeture) and

the results of Wiles [59℄ and then Breuil, Conrad, Diamond, and Taylor [5℄ on the modularity

of (the two dimensional Galois representation on the `-adi Tate module of) ellipti urves

over Q .
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