
DUAL GROUPS AND LANGLANDS FUNCTORIALITY
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Langlands never separated the Langlands onjetures for GL

n

from his general priniple

of funtoriality [30℄. In partiular, he formulated a orrespondene between ertain Galois

representations and admissible or automorphi representations for any onneted redutive

algebrai group G. For GL

n

there was a orrespondene between ertain n-dimensional

Galois representations, that is, representations into GL

n

(C ), and admissible representations

of GL

n

(k) or automorphi representations of GL

n

(A ) [4℄. For general G we understand what

to replae the automorphi side with: admissible representations of G(k) or automorphi

representations of G(A ). But what replaes the target GL

n

(C ) on the Galois side? Based

on the Satake parameterization of unrami�ed representations [33℄ and his lassi�ation of

representations of algebrai tori [24℄ Langlands introdued his idea of a dual group, now

known as the Langlands dual group or L-group ,

L

G to play the role of GL

n

(C ). The role of

the n-dimensional Galois representations is taken by ertain admissible homomorphisms of

the Galois group into this L-group. For the purposes of funtoriality, it is most onvenient to

view these loal and global orrespondenes for G as giving an arithmeti parameterization

of the admissible or automorphi representations of G in terms of these admissible Galois

homomorphisms to

L

G.

Langlands priniple of funtoriality states that any L-homomorphism

L

H !

L

G should

determine a transfer or lifting of admissible or automorphi representations of H to admis-

sible or automorphi representations of G. One one has a parameterization, then this is

oneptually done by omposing the parameterizing homomorphism for the representation

of H with the L-homomorphism to obtain a parameterizing homomorphism for a represen-

tation of G. If one takes H = f1g, then

L

H is simply the Galois group or a losely related

group and one in essene reovers the loal or global Langlands orrespondene for G from

this priniple of funtoriality.

There have been many fundamental examples of funtoriality established by trae formula

methods: yli base hange, yli automorphi indution, lifting between inner forms.

Reently however there has been muh progress in global funtorialities to GL

n

obtained

using the onverse theorem for GL

n

. These inlude the tensor produt lifting from GL

2

�GL

2

to GL

4

by Ramakrishnan [31℄ and from GL

2

� GL

3

to GL

6

by Kim and Shahidi [21℄, the

symmetri ube and symmetri fourth power lifts from GL

2

to GL

4

and GL

5

by Kim and

Shahidi [20, 21, 22℄, and the lifting from split lassial groups to GL

N

with Kim, Piatetski-

Shapiro, and Shahidi [5, 6℄.

In this paper we �rst desribe the onstrution of the L-group and the formulation of

the loal and global Langlands onjetures for a general redutive group G [2℄. We next

outline Langlands' priniple of funtoriality and its relation to the loal and global Langlands
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2 J.W. COGDELL

orrespondenes. We then turn to examples. We briey onsider some of the examples of

funtoriality mentioned above that were established using the trae formula. We then give

a more detailed desription of the new funtorialities to GL

n

and how one uses the onverse

theorem as a means for establishing these liftings.

I would like to thank the referee for helping to larify ertain issues related to this paper.

1. The Dual Group

Begin with G a onneted redutive algebrai group de�ned over k, k a loal or global

�eld. Let k be a separable algebrai losure of k and G

k

= Gal(k=k) the Galois group.

Over k, G beomes split and is lassi�ed by its root data [2, 36℄. Take in G

=k

a Borel

subgroup B and maximal torus T , both de�ned and split over k. Let X = X

�

(T ) denote

the set of k-rational haraters of T , � = �(G; T ) � X the root system assoiated to G

and T , and � � � the set of simple roots orresponding to B. Dual to the triple (X;�;�)

we have the triple (X

_

;�

_

;�

_

) onsisting of the lattie X

_

= X

�

(T ) of o-haraters, or

k-rational one-parameter subgroups, the o-root system �

_

, and the simple o-roots �

_

.

The quadruple 	(G) = (X;�; X

_

;�

_

) is the root data for G over k and the quadruple

	

0

(G) = (X;�; X

_

;�

_

) is the based root data for G over k [2, 36℄. The basi struture for

onneted redutive k-groups is the following [36℄.

Theorem 1.1. The root data 	(G) determines G up to k{isomorphism.

For the relative struture theory, there is a split exat sequene

1 ���! Int(G) ���! Aut(G) ���! Aut(	

0

(G)) ���! 1:

A splitting is given by making a hoie of root vetor x

�

for eah � 2 �, whih then de�nes

a splitting (G;B; T; fx

�

g

�2�

) of G and gives a anonial isomorphism

Aut(	

0

(G))! Aut(G;B; T; fx

�

g) � Aut(G):

If G is de�ned over k, there is an ation of G

k

on G

=k

giving the k-struture. Hene we have

homomorphisms

G

k

! Aut(G

=k

)! Aut(	

0

(G)):

So G

=k

determines the two piees of data onsisting of the root data 	(G), determining the

group over k, and the homomorphism G

k

! Aut(	

0

(G)).

To de�ne

L

G one simply dualizes this struture theory. Let 	

0

(G)

_

= (X

_

;�

_

; X;�) be

the dual based root data. This de�nes a onneted redutive algebrai group

L

G

0

over C .

We an transfer the Galois struture sine

Aut(	

0

(

L

G

0

)) = Aut(	

0

(G)

_

) = Aut(	

0

(G))

and a splitting of the exat sequene above for

L

G

0

gives a map � : G

k

! Aut(	

0

(

L

G

0

)) !

Aut(

L

G

0

) whih �xes the orresponding splitting (

L

G

0

;

L

B

0

;

L

T

0

; fx

�

_

g

�

_

2�

_

) of

L

G

0

and

hene a G

k

ation on the omplex redutive group

L

G

0

whih enodes some of the origi-

nal k-struture of G.
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De�nition 1.1. The (Langlands) dual group, or L-group, of G is

L

(G

=k

) =

L

G =

L

G

0

o G

k

:

Remarks. 1. Sometimes it is onvenient use the Weil form of the dual group. Sine there

is a natural map W

k

! G

k

one may form instead

L

G =

L

G

0

oW

k

, but there is no essential

di�erene. One ould also use a Weil-Deligne form for ertain purposes.

2. If G

0

is a k-group whih is isomorphi to G over k, then G and G

0

are inner forms of eah

other i�

L

G is isomorphi to

L

G

0

over G

k

[2℄. So the dual group does not quite distinguish

between k-forms; it distinguishes only up to inner forms. It does ompletely determine a

quasi-split form.

In pratie, this duality preserves the types A

n

and D

n

and interhanges the types B

n

and C

n

. In addition it interhanges the adjoint and simply onneted forms of the relevant

groups.

G

L

G

0

GL

n

GL

n

(C )

SO

2n+1

Sp

2n

(C )

Sp

2n

SO

2n+1

(C )

SO

2n

SO

2n

(C )

adjoint type simply onneted

simply onneted adjoint type

The loal and global onstrutions are ompatible. So if G is de�ned over a global �eld k,

v is a plae of k, and we let G

v

to denote G as a group over k

v

, then there are natural maps

L

G

v

!

L

G.

2. Langlands Conjetures for G

2.1. Loal Langlands Conjeture. Let k be a loal �eld and let W

0

k

be the assoiated

Weil-Deligne group [4℄. If k is arhimedean, we simply take W

0

k

= W

k

to be the Weil group.

Following Borel [2℄ a homomorphism � : W

0

k

!

L

G is alled admissible if

(i) � is a homomorphism over G

k

, i.e., the following diagram ommutes:

W

0

k

�

���!

L

G

?

?

y

?

?

y

G

k

G

k
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(ii) � is ontinuous, �(G

a

) is unipotent in

L

G

0

, and � maps semisimple elements to

semisimple elements.

(iii) If �(W

0

k

) is ontained in a Levi subgroup of a proper paraboli subgroup P of

L

G

then P is relevant.

For all unde�ned onepts, suh as relevant, we refer the reader to Borel [2℄. IfG = GL

n

the

admissible homomorphisms are preisely the Frobenius-semisimple omplex representations

of W

0

k

[4℄.

Following Borel [2℄ and Langlands [26℄ we let �(G) denote the set of all admissible ho-

momorphisms � : W

0

k

!

L

G modulo inner automorphisms by elements of

L

G

0

(not to be

onfused with the earlier [4℄ use of � as a geometri Frobenius). Note that if G and G

0

are

inner forms of one another, so that

L

G =

L

G

0

, it need not be true that �(G) = �(G

0

) sine

the ondition (iii) above sees the k strutures. If G is the quasi-split form, then one does

have �(G

0

) � �(G).

To state the loal Langlands onjeture for G there are two supplemental onstrutions

that are needed, for whih we refer the reader to Borel [2℄. First, for every � 2 �(G) there is

a way to onstrut a harater !

�

of the enter C(G) of G. Next, if we let C(

L

G

0

) denote the

enter of

L

G

0

, then to every � 2 H

1

(W

0

k

;C(

L

G

0

)) there is assoiated a harater �

�

of G(k).

If we write � 2 �(G) as � = (�

1

; �

2

) with �

1

(w) 2

L

G

0

and �

2

(w) 2 G

k

then �

1

is a oyle

on W

0

k

with values in

L

G

0

and the map � 7! �

1

gives an embedding of �(G) ,! H

1

(W

0

k

;

L

G

0

).

Then H

1

(W

0

k

;C(

L

G

0

)) ats naturally on H

1

(W

0

k

;

L

G

0

) and this ation preserves �(G).

With these onstrutions, we an state the loal Langlands onjeture for G [2℄. As before,

let A(G) = A(G(k)) denote the set of equivalene lasses of irreduible admissible omplex

representations of G(k).

Loal Langlands Conjeture: Let k be a loal �eld. Then there is a surjetive map

A(G)! �(G) with �nite �bres whih partitions A(G) into disjoint �nite sets A

�

= A

�

(G)

satisfying

(i) If � 2 A

�

then the entral harater !

�

of � is equal to !

�

;

(ii) Compatibility with twisting, i.e., if � 2 H

1

(W

0

k

;C(

L

G

0

)) and �

�

is the assoiated

harater of G(k) then A

���

= f��

�

j� 2 A

�

g;

(iii) One element � 2 A

�

is square integrable modulo C(G) i� all � 2 A

�

are square

integrable modulo C(G) i� �(W

0

k

) does not lie in a proper Levi subgroup of

L

G;

(iv) One element � 2 A

�

is tempered i� all � 2 A

�

are tempered i� �(W

k

) is bounded;

(v) If H is a redutive onneted k-group and � : H(k) ! G(k) is a k morphism with

ommutative kernel and o-kernel, then there is a required ompatibility between de-

ompositions for G(k) and H(k). Namely, � indues a natural map

L

� :

L

G !

L

H

and if we set �

0

=

L

� Æ � for � 2 �(G) then any � 2 A

�

(G), when viewed as a

H(k) module, deomposes into a diret sum of �nitely many irreduible admissible

representations belonging to A

�

0

(H).
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The sets A

�

(G) for � 2 �(G) are alled L-pakets. The version I of the loal Langlands

onjeture in [4℄ was the speialization of this to the group GL

n

. In that ase, the L-pakets

are all singletons and the map from A(G) to �(G) was a bijetion. This onjeture gives an

arithmeti parameterization of the irreduible admissible representations of G(k).

Other than the results for GL

n

, the following is known towards this onjeture.

1. If the loal �eld k is arhimedean, i.e., k = R or C , then this was ompletely established

by Langlands [26℄.

2. If k is non-arhimedean and G is quasi-split over k and split over a �nite Galois

extension then one knows how to parameterize the unrami�ed representations of G(k) via

the unrami�ed admissible homomorphisms [2℄. This is a rephrasing in this language of the

Satake lassi�ation [33℄.

3. If k is non-arhimedean then Kazhdan and Lusztig have shown how to parameterize

those representations of G(k) having an Iwahori �xed vetor in terms of admissible homo-

morphisms of the Weil-Deligne group [19℄.

4. Reently, in the ase of k non-arhimedean of harateristi zero and G the split SO

2n+1

,

Jiang and Soudry have given the parameterization of generi representations of SO

2n+1

(k)

in terms of admissible homomorphisms of the Weil-Deligne group [16, 17℄. They obtain this

parameterization as an outgrowth of reent work on global funtoriality from split SO

2n+1

to GL

2n

, to be disussed later, by pulling bak the parameterization for GL

2n

(k).

If one thinks of this version of the loal Langlands onjeture as providing an arithmeti

parameterization of the irreduible admissible representations of G(k), then one an use

this parameterization to de�ne loal L-funtions assoiated to arbitrary � 2 A(G). One

needs a seond parameter, namely a representation r :

L

G! GL

n

(C ), by whih we mean a

ontinuous homomorphism whose restrition to

L

G

0

is a morphism of omplex Lie groups.

Then for any admissible homomorphism � 2 �(G) the omposition r Æ � : W

0

k

! GL

n

(C ) is

a ontinuous omplex representation of the Weil-Deligne group as onsidered in [4℄ and to it

we an assoiate an L-fator L(s; r Æ �) and "-fator "(s; r Æ �;  ) for an additive harater

 of k.

De�nition 2.1. If � 2 A

�

is in the L-paket de�ned by the admissible homomorphism �

then we set

L(s; �; r) = L(s; r Æ �) and "(s; �; r;  ) = "(s; r Æ �;  ):

Aording to this de�nition, one annot distinguish between the representations � lying in

a given L-paket A

�

in terms of their L-funtions and "-fators, hene the terminology. At

present these L-funtions are well de�ned only for those � for whih the parameterization is

known, for example if � is unrami�ed.

If one takes this as the de�nition of the loal L-funtions attahed to an admissible repre-

sentation, then version II of the loal Langlands onjeture presented in [4℄ would be phrased

in terms of mathing L- and "-fators de�ned in an analyti nature, as in [3℄ for GL

n

, with
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those de�ned here. I have not seen a formulation in these terms for general redutive groups,

however in the work of Jiang and Soudry ited above this is what they ahieve. To eah

generi representation � of SO

2n+1

(k) they attah an admissible homomorphism �

�

suh that

for the standard embedding r : Sp

2n

(C ) ,! GL

2n

(C ) they have an equality

L(s; � � �

0

) = L(s; � � �

0

; r 
 id) = L(s; (r Æ �

�

)
 �

�

0

)

with the similar equality of "-fators where �

0

is an irreduible admissible representation of

GL

m

(k), �

�

0

is the assoiated representation of W

0

k

from the loal Langlands onjeture for

GL

m

, and L(s; � � �

0

) is the analyti L-funtion de�ned by Shahidi [34℄.

2.2. Global Langlands Conjeture. Now take k to be a global �eld and A its ring of

adeles. For G a redutive algebrai group over k, let A(G) = A(G(A )) denote the set of irre-

duible automorphi representations of G(A ). As with GL

n

, to formulate a global Langlands

onjeture we would replae the Weil-Deligne group W

0

k

by the onjetural Langlands group

L

k

and onsider the set of admissible homomorphisms � : L

k

!

L

G. These homomorphisms

should then parameterize irreduible automorphi representations of G(A ) in some way. The

exat form this would take is quite speulative at the moment.

Not knowing what this should look like, one still expets to have global{loal ompatibility.

If one begins an irreduible automorphi representation � = 


0

�

v

of G(A ) then, assuming

the loal Langlands onjeture for eah loal group G(k

v

), one an attah to � the olletion

f�

v

g of loal parameters �

v

= �

�

v

: W

0

k

v

!

L

G

v

given by the loal omponents �

v

. If we

ompose these with the natural ompatibility maps for the dual groups �

v

:

L

G

v

!

L

G one

gets a olletion f�

v

Æ �

v

g of loal parameters �

v

Æ �

v

: W

0

k

v

!

L

G.

Suh a system of maps must ome out of a global parameter � : L

k

!

L

G for the loal

and global theories to be onsistent. This system of loal parameters an often be used as

a substitute for a global parameter �. For example, this olletion of loal data is suÆient

to de�ne the global L-funtion and "-fator attahed to �. If r :

L

G ! GL

n

(C ) then the

omposition r

v

= r Æ �

v

:

L

G

v

! GL

n

(C ) gives representations of the loal dual groups.

De�nition 2.2. If � = 


0

�

v

is an irreduible automorphi representation of G(A ) and

r :

L

G! GL

n

(C ) we set

L(s; �; r) =

Y

v

L(s; �

v

; r

v

) =

Y

v

L(s; r Æ �

v

Æ �

v

)

and

"(s; �; r) =

Y

v

"(s; �

v

; r

v

;  

v

) =

Y

v

"(s; r Æ �

v

Æ �

v

;  

v

)

where  = 
 

v

is an additive harater of A trivial on k.

To de�ne the full L-funtion as above requires the solution of the loal Langlands onje-

ture at all plaes, something only known for GL

n

. However, for any irreduible automorphi

representation � there is a �nite set of plaes S = S(�) suh that for all v =2 S the represen-

tation �

v

is unrami�ed and hene the loal parameterization problem has been solved. Then
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the partial L-funtion

L

S

(s; �; r) =

Y

v=2S

L(s; �

v

; r

v

)

is always well de�ned and Langlands has shown that this Euler produt is always absolutely

onvergent in a right half plane [25℄.

3. Funtoriality

As one an tell from his reent writings [29, 30℄ Langlands has always viewed the \priniple

of funtoriality" as entral to his view of automorphi representations. It enompasses what

is referred to above as the \loal and global Langlands onjetures" as speial ases of this

priniple.

Let k denote either a loal or global �eld and let H and G be two onneted redutive

groups de�ned over k. We have de�ned their assoiated dual groups

L

H and

L

G. A homo-

morphism u :

L

H !

L

G is alled an L-homomorphism if (i) it is a homomorphism over G

k

,

that is, we have the ommutation of the following diagram

L

H

u

���!

L

G

?

?

y

?

?

y

G

k

G

k

(ii) u is ontinuous, and (iii) the restrition of u to

L

H

0

is a omplex analyti homomorphism

u :

L

H

0

!

L

G

0

.

If in addition G is quasi-split, then for any admissible homomorphism � 2 �(H) the

omposition u Æ � is again an admissible homomorphism in �(G). So the map � 7! u Æ �

de�nes a map �(u) : �(H) ! �(G). If k is a global �eld and v a plae of k then, sine

G

k

v

an be viewed naturally as a subgroup of G

k

, we an view

L

G

v

as a subgroup of

L

G.

Then, upon restrition to

L

H

v

, u will indue an L-homomorphism of the loal dual groups

u

v

:

L

H

v

!

L

G

v

and hene a loal map �(u

v

) : �(H

v

)! �(G

v

).

The priniple of funtoriality an now be roughly formulated as follows [30℄.

The Priniple of Funtoriality: If k is a loal (respetively global) �eld, H and G on-

neted redutive k-groups with G quasi-split, then to eah L-homomorphism u :

L

H !

L

G

there is assoiated a transfer or lifting of admissible (resp. automorphi) representations of

H to admissible (resp. automorphi) representations of G.

If we assume the loal and global Langlands onjetures, so that we have an arithmeti

parameterization of A(H) and A(G) then this proess of lifting is easy to desribe.
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3.1. Loal funtoriality. First, take k to be a loal �eld, u :

L

H !

L

G a loal L-

homomorphism. If we take � 2 A(H) an irreduible admissible representation of H(k)

then this is parameterized by an admissible homomorphism � = �

�

: W

0

k

!

L

H. In

fat, � parameterizes an entire loal L-paket A

�

(H). If we ompose � with u we ob-

tain �

0

= �(u)(�) = u Æ � 2 �(G), an admissible homomorphism of W

0

k

to

L

G. Then �

0

parameterizes a loal L-paket A

�

0

(G) and this L-paket (or sometimes any element � of it)

is the funtorial lift (or transfer, or Langlands lift, or ...) of � or of the paket A

�

(H).

In general, we then \understand" the loal funtoriality in the ases where we understand

the loal parameterization:

1. k = R or C , H any onneted redutive k-group and G any quasi-split onneted

redutive k-group.

2. k a non-arhimedean loal �eld, H = GL

m

and G = GL

n

(and related examples { see

Setion 4).

3. Suppose that k is non-arhimedean with ring of integers O. Suppose both H and G

are quasi-split and there is a �nite extension K of k suh that both H and G split over

K and have an O struture so that both H(O) and G(O) are speial maximal ompat

subgroups. Let � be an unrami�ed representation of H(k) with a non-trivial H(O) vetor

and unrami�ed parameter � = �

�

2 �(H). Then for any L-homomorphism u :

L

H !

L

G

the parameter �

0

= u Æ � is unrami�ed and de�nes an L-paket A

�

0

(G) whih ontains a

(unique) representation � of G(k) whih is unrami�ed with respet to G(O) [2℄. � is alled

the natural unrami�ed lift of �.

3.2. Global funtoriality. If we now onsider k a global �eld, then, in priniple, funtorial

lifting should work as it does in the loal situation in terms of global parameterization. But

now we are again at a disadvantage sine we don't really understand the parameterizing

group L

k

. In its stead, we fall bak on the desired loal-global ompatibility. So let H

be a onneted redutive k-group, G a quasi-split onneted redutive k-group and u :

L

H !

L

G an L-homomorphism. For eah plae v of k we have the assoiated loal L-

homomorphism u

v

:

L

H

v

!

L

G

v

desribed above. Now let � 2 A(G), � = 


0

�

v

, be an

irreduible automorphi representation of H(A ). If v is arhimedean then by the work of

Langlands we know how to parameterize �

v

with a loal parameter �

v

: W

0

k

v

!

L

H

v

. If v is

a non-arhimedean plae, then for almost all v the loal group H

v

is quasi-split, split over

a �nite extension of k

v

, and the representation �

v

is unrami�ed with respet to a speial

maximal ompat subgroup. So we are in the situation where we have a loal parameter

�

v

: W

0

k

v

!

L

H

v

for �

v

. In either of these situations, we an form a loal lift �

v

as a

representation of G(k

v

) assoiated to the parameter �

0

v

= u

v

Æ �

v

, that is, a loal lift as

de�ned above.

De�nition 3.1. Let H be a onneted redutive k-group and let � = 


0

�

v

be an irreduible

automorphi representation of H(A ). Let G be a quasi-split onneted redutive k-group and

let u :

L

H !

L

G be an L-homomorphism. Then an automorphi representation � = 


0

�

v

of G(A ) is a (weak) funtorial lift of � (with respet to u) if for all arhimedean plaes and
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almost all �nite plaes where �

v

is unrami�ed we have that �

v

is a loal funtorial lift with

respet to u

v

as desribed above. � is a (strong) funtorial lift of � if �

v

is a loal funtorial

lift of �

v

for all plaes of k.

Note that as a onsequene of this de�nition, if � is an automorphi representation of

H(A ), u :

L

H !

L

G an L-homomorphism, and � a funtorial lift of � to an automorphi

representations of G(A ), then for every representation r :

L

G! GL

n

(C ) we have an equality

of L-funtions and "-fators

L

S

(s; �; r Æ u) = L

S

(s;�; r) "

S

(s; �; r Æ u;  ) = "

S

(s;�; r;  )

where S is the �nite (possibly empty) set of plaes where we do not know how to loally lift

�

v

.

In fat, we need to do this on the level of L-pakets. This is easy enough to formulate,

but given the partial state of our knowledge, there seems to be little gained in doing this at

this time. But the ambiguity in the loal lifts and hene the global lifts oming from the

phenomenon of loal and global L-pakets should always be kept in mind.

4. Examples

We have noted that Langlands views funtoriality as enompassing the loal and global

Langlands onjetures and their onsequenes, suh as the strong Artin onjeture. One

reason for this is the following example.

Consider the ase where H = f1g. Begin with k a loal �eld. Sine there is a natural map

from the Weil-Deligne groupW

0

k

to G

k

we may onsider the Weil-Deligne form of the L-group:

L

G =

L

G

0

oW

0

k

. Then

L

H = W

0

k

. If we take for example G = GL

n

then u :

L

H !

L

G is an

admissible homomorphism in �(G) or a omplex representation of the Weil-Deligne group

and funtoriality for these groups enompasses the loal Langlands onjetures. If one takes

k a global �eld and leaves

L

G as the Galois form of the L-group, then again taking H = f1g

and G = GL

n

we obtain a global Langlands onjeture for GL

n

.

The other examples of funtoriality I wish to disuss fall into what I view as two types:

Galois theoreti and group theoreti. The �rst inlude base hange, automorphi indution,

and lifting between inner forms. The seond are all liftings to GL

n

and inlude the tensor

produt liftings, symmetri powers liftings, and liftings from lassial groups. I will not touh

on the important lass of liftings known as endosopi, even though some of the example we

disuss an be interpreted as examples of (possibly twisted) endosopy. Endosopi liftings

are those in whih the L-homomorphism u :

L

H !

L

G realizes

L

H

0

as the �xed points of an

involution in

L

G

0

, or a twisted suh. The signi�ane of these liftings ome primarily from

their neessity in understanding the trae formula, whih we are not in a position to disuss.

Instead, we refer the reader to the work of Langlands [28, 30℄ and of Kottwitz and Shelstad

[23℄ and the referenes therein.
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4.1. Galois theoreti examples. In these examples, the L-homomorphisms have their

origins in Galois theory.

1. Base hange (or automorphi restrition). Suppose that K is a �nite extension of k.

Then on the level of Weil groups we have W

K

� W

k

so that any representation of W

k

gives

a representation of W

K

by restrition. The analogous lifting on the level of admissible or

automorphi representations is the following. Let H be onneted, redutive and split over

k. Then we may onsider H as a group over K as well and if we let G = R

K=k

(H) be Weil's

restrition of salars from K to k, so G(k) = H(K), then G is the group over k determined

by H

=K

. There is then a natural embedding

u :

L

H =

L

H

0

� G

k

! (

Y

G

K

nG

k

L

H

0

)o G

k

=

L

G;

where G

k

ats on

Q

L

H

0

via permutations of the index set, whih is the diagonal map on

L

H

0

and the identity on G

k

. In the ase where k is a loal �eld, then the indued map

�(u) : �(H) ! �(G) is indeed the restrition map, viewing W

0

K

as an open subgroup of

W

0

k

. Funtoriality oming from this L-homomorphism would begin with a representation

� of H(k) or H(A

k

) and produe a representation of G(k) = H(K) or H(A

K

) alled the

base hange of �. This program has been arried out when H = GL

n

and the extension

K=k is solvable, �rst for n = 2 by Langlands [27℄ and then general n by Arthur and Clozel

[1℄. Their tehnique was the twisted trae formula. In addition, when H = GL

2

Jaquet,

Piatetski-Shapiro, and Shalika have obtained a non{normal ubi base hange by onverse

theorem methods [14℄.

2. Automorphi indution. We still take K a �nite separable extension of k of degree d, so

that W

K

� W

k

. If one starts with a representation of W

K

then one obtains a representation

of W

k

simply by indution. The analogous lifting on the level of admissible or automorphi

representations is now the following. Take H = R

K=k

(GL

n

) to be GL

n

(K) viewed as a

k-group as above and let G = GL

dn

(k). Now one has an L-homomorphism

u :

L

H = (

Y

G

K

nG

k

GL

n

(C )) o G

k

!

L

G = GL

dn

(C ) � G

k

by sending

L

H

0

= GL

n

(C )�� � ��GL

n

(C ) into

L

G

0

= GL

dn

(C ) as blok diagonal matries and

extending to an L-homomorphism by letting G

k

at on GL

dn

(C ) via permutation matries

fromS

d

. The loal or global funtorialities oming from suh an L-homomorphism are alled

automorphi indution. The map �(u) on the sets of admissible homomorphisms should be

indution. Again, when the extension K=k is solvable this was analyzed loally and globally

by Arthur and Clozel [1℄ using the twisted trae formula, preeded by Jaquet and Langlands

for n = 2 [15℄. Henniart and Herb, building on earlier work by Kazhdan in the n = 1 ase

[18℄, gave the �rst de�nition and analysis of loal automorphi indution for GL

n

in terms

of loal harater identities [13℄. This work uses a simpler version of the trae formula than

either [1℄ or [18℄ and allows �elds of positive harateristi.

3. Inner forms. Let G be onneted, redutive, and quasi-split over a loal or global k

and let H be an inner form of G. Then

L

H =

L

G, the identity map u :

L

H !

L

G is an

L-homomorphism, and we should have a orresponding lifting. Note that if k is a loal �eld
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we have �(H) � �(G), while if k is a global �eld we in fat have H

v

= G

v

for almost all

plaes so that �(H

v

) = �(G

v

). In the ase of G = GL

2

and H = D

�

the multipliative group

of a rank 2 division algebra over k the lifting from representations of D

�

to representations

of GL

2

is the so-alled Jaquet-Langlands orrespondene, established in [15℄. If we take

G = GL

n

and H = GL

m

(D) where D is a entral simple division algebra of rank d with

dm = n then the loal funtoriality has been analysed by Rogawski [32℄ in the ase m = 1

and by Deligne, Kazhdan, and Vigneras [10℄ utilizing the trae formula.

4.2. Group theoreti examples. In this set of examples, the groups H involved are all

split and the target group G is always a general linear group GL

n

, so the Galois theory plays

little role. The L-homomorphism is a natural map from group theory. There has been muh

progress in this family of funtorialities reently based on using the onverse theorem for

GL

n

as the primary tool for establishing global funtorialities to GL

n

.

1. Tensor produts. Let k be either a loal of global �eld and let H = GL

m

�GL

n

. Then

L

H

0

= GL

m

(C ) � GL

n

(C ) and

L

H =

L

H

0

� G

k

. If we take G = GL

mn

then

L

G

0

= GL

mn

(C )

and

L

G =

L

G

0

� G

k

. The simple tensor produt map 
 : GL

m

(C ) � GL

n

(C ) ! GL

mn

(C ),

extended by the identity map on G

k

, de�nes an L-homomorphism u




:

L

H !

L

G. The

assoiated funtoriality is the tensor produt lifting. Note that if k is a loal �eld, then

the loal lifting is now understood in priniple sine the loal parameterization problem

(loal Langlands onjeture) for GL

n

has been solved. So the interesting question is the

global funtoriality. This has been reently solved in the ases of GL

2

� GL

2

to GL

4

by

Ramakrishnan [31℄ and GL

2

�GL

3

to GL

6

by Kim and Shahidi [21℄.

2. Symmetri powers. Let k be either a loal or global �eld and let H = GL

2

, so

L

H

0

= GL

2

(C ) and

L

H =

L

H

0

� G

k

. We take G = GL

n+1

for n � 1, so

L

G

0

= GL

n+1

(C )

and

L

G =

L

G

0

� G

k

. For eah n � 1 there is the natural symmetri n-th power map

sym

n

: GL

2

(C ) ! GL

n+1

(C ). If we extend this symmetri power map by the identity map

on the Galois group we obtain an L-homomorphism sym

n

:

L

H !

L

G. The assoiated

funtoriality is the symmetri power lifting from representations of GL

2

to representations

of GL

n+1

. One again, if k is a loal �eld the loal symmetri powers liftings are understood

in priniple thanks to the solution of the loal Langlands onjeture for GL

n

. So one again

the interesting funtoriality is the global one. The global symmetri square lifting, so GL

2

to GL

3

, is an old theorem of Gelbart and Jaquet [11℄. Reently, Kim and Shahidi have

shown the existene of the global symmetri ube lifting from GL

2

to GL

4

[21, 22℄ and

then Kim followed with the global symmetri fourth power lifting from GL

2

to GL

5

[20, 22℄.

The ahievement of symmetri power funtoriality for all n would lead to a proof of the

Ramanujan onjeture for GL

2

.

3. Classial groups. Again, k is either a loal or global �eld. Take H to be a split lassial

group over k, more spei�ally, the split form of either SO

2n+1

, Sp

2n

, or SO

2n

. The onneted

omponent of the L-group are then Sp

2n

(C ), SO

2n+1

(C ), or SO

2n

(C ) and there are natural

embeddings into an appropriate general linear group.
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H

L

H

0

u

0

:

L

H

0

,!

L

G

0

L

G

0

G

SO

2n+1

Sp

2n

(C ) Sp

2n

(C ) ,! GL

2n

(C ) GL

2n

(C ) GL

2n

Sp

2n

SO

2n+1

(C ) SO

2n+1

(C ) ,! GL

2n+1

(C ) GL

2n+1

(C ) GL

2n+1

SO

2n

SO

2n

(C ) SO

2n

(C ) ,! GL

2n

(C ) GL

2n

(C ) GL

2n

These homomorphisms extend to L-homomorphisms by extending them with the identity

map on the Galois groups. Assoiated to eah should be a lifting of admissible or automorphi

representations from A(H) to A(G). In ollaboration with Kim, Piatetski-Shapiro, and

Shahidi, we established a weak global lift for generi uspidal representations from SO

2n+1

to

GL

2n

over a number �eld k using onverse theorem methods [5℄. Soon thereafter, Ginzburg,

Rallis, and Soudry showed that our weak lift was indeed a strong lift and haraterized the

image [12℄. The results of Jiang and Soudry on the loal Langlands onjeture for SO

2n+1

over a p-adi �eld ited above [16, 17℄ were then obtained as a loal onsequene of this

global funtoriality. Reently we have been able to extend our funtoriality results to the

other split lassial groups as well [6℄.

We would like to explain the onverse theorem method for obtaining global funtorialities

to general linear groups. We begin with a group H de�ned over a number �eld k. Take

� = 
�

v

a uspidal representation ofH(A ). For eah loal plae v we apply loal funtoriality

to onstrut a loal representation �

v

of G(k

v

) = GL

N

(k

v

) for an appropriate N . If we are in

example 1 or 2 above, we an do this for all v sine the loal Langlands onjeture is known

for GL

n

(k

v

) [4℄. For the ases of the lassial groups we an perform this at all arhimedean

plaes v and at the non-arhimedean plaes v where �

v

is unrami�ed. The method is simply

omposing the loal parameter map �

v

for �

v

with the L-homomorphism as desribed above.

In the ase of lassial groups we must �nesse the loal liftings at the remaining plaes v to

onstrut a loal lift �

v

. But assume for now that we understand the loal lifts at all plaes.

Then by onstrution we have an equality of loal L-fators

L(s; �

v

; r

v

) = L(s; r

v

Æ �

v

) = L(s; u

v

Æ �

v

) = L(s;�

v

; �

v

)

with a similar equality for loal "-fators. Here we may take r = u

0

viewed as a omplex

representation r :

L

H ! GL

N

(C ) and � :

L

G! GL

N

(C ) is just projetion onto the �rst fator

L

G

0

. Hene, if we set � = 


0

�

v

as an irreduible admissible representation of GL

N

(A ) then

we globally have

L(s; �; r) = L(s;�; �) and "(s; �; r) = "(s;�; �):

Additionally, if �

0

= 
�

0

v

is a uspidal representation of GL

m

(A ) with m � N � 2 then we

similarly have

L(s; �

v

� �

0

v

; r

v


 �

v

) = L(s;�

v

� �

0

v

; �

v


 �

v

)

and hene

L(s; � � �

0

; r 
 �) = L(s;�� �

0

; �
 �) = L(s;�� �

0

)
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with similar equalities for loal and global "-fators. As outlined in [3℄, to apply the onverse

theorem for GL

N

we must ontrol the analyti properties of the twisted L-funtions L(s;��

�

0

) = L(s;���

0

; �
�) for a suÆient family of uspidal twists �

0

. But from our equality of L-

and "-fators, we have that these are ontrolled by the analyti properties of the automorphi

L-funtions L(s; ���

0

; r
�) for the group H(A ) with twisting by GL

m

(A ). So one suÆient

analyti ontrol of these L-funtions is known, one simply applies the onverse theorem [3℄

for GL

N

and onludes that � is automorphi. In most ases to date, this analyti ontrol

of the L(s; � � �

0

; r 
 �) has been ahieved by the Langlands-Shahidi method of analyzing

the L-funtions through the Fourier oeÆients of Eisenstein series.

Let us now revisit our examples above in light of this sketh.

1. Tensor produts. In the ase of Ramakrishnan [31℄, so the funtoriality from GL

2

�GL

2

to GL

4

, � = �

1


 �

2

with eah �

i

a uspidal representation of GL

2

(A ) and � is to be an

automorphi representation of GL

4

(A ). To apply the onverse theorem from [9℄ Ramakrish-

nan needs to ontrol the analyti properties of L(s;���

0

) for �

0

uspidal representations of

GL

1

(A ) and GL

2

(A ), that is , the Rankin triple produt L-funtions

L(s; � � �

0

; r 
 �) = L(s; �

1

� �

2

� �

0

):

This he was able to do using a ombination of the integral representation for this L-funtion

due to Garrett and then Rallis and Piatetski-Shapiro and the work of Shahidi on the

Langlands-Shahidi method. The ase of Kim and Shahidi [21℄ is similar, now with �

2

a

uspidal representation of GL

3

(A ). However, sine the lifted representation � is to be an au-

tomorphi representation of GL

6

(A ), to apply the onverse theorem of [9℄ they must ontrol

the analyti properties of

L(s;�� �

0

) = L(s; �

1

� �

2

� �

0

)

where now �

0

must run over appropriate uspidal representations of GL

m

(A ) with m =

1; 2; 3; 4. The ontrol of these triple produts is an appliation of the Langlands-Shahidi

method of analysing L-funtions and involves oeÆients of Eisenstein series on GL

5

, Spin

10

,

and the simply onneted E

6

and E

7

.

2. Symmetri powers. The original symmetri square lifting of Gelbart and Jaquet

indeed used the onverse theorem for GL

3

[11℄. One needs only ontrol twists by haraters

(automorphi forms on GL

1

) and the L-funtion that one must ontrol is the symmetri

square L-funtion for GL

2

sine

L(s;�) = L(s; �; sym

2

):

This they were able to do via an integral representation due to Shimura. For Kim and

Shahidi, the symmetri ube and fourth power liftings were dedued from the funtorial

GL

2

�GL

3

tensor produt lift above and the exterior square lift for GL

4

[20, 21, 22℄.

3. Classial groups. Here there is a seondary problem. If we begin with a generi uspidal

representation � = 
�

v

of H(A ), then there is a �nite set of �nite plaes S at whih one

does not know the loal parameterization for �

v

in terms of admissible homomorphisms,

and hene one does not know what the orret loal lift �

v

should be. In this ase, one

is able to take an arbitrary loal lift �

v

at those plaes, so long as it has trivial entral
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harater. To ompensate, one applies the form of the onverse theorem for GL

N

in whih

one �xes a single highly rami�ed idele lass harater �, the rami�ation depending on the

original representation � of H(A ) and the onstruted representation � of GL

N

(A ) (and

atually only on the loal omponents at the plaes v 2 S), and then twists by all uspidal

representations �

0

of GL

m

(A ), m � N � 1, of the form �

0

= � 
 � where � is unrami�ed at

all v 2 S [3, 5℄. This highly rami�ed twist plays two roles. First, it helps to ontrol global

poles of the twisted L-funtions L(s; � � �

0

) for H(A ) and seondly it allows one to math

the loal L- and "-fators at those v 2 S through the stability of the loal -fators under

highly rami�ed twists [3, 8, 5℄. So for these limited twists one indeed has

L(s; � � �

0

) = L(s; � � �

0

; r 
 �) = L(s;�� �

0

; �
 �) = L(s;�� �

0

)

with similar equalities for " fators. Sine we are able to ontrol the analyti properties of

the L(s; � � �

0

) via the Langlands-Shahidi method for our family of �

0

we may apply the

onverse theorem for GL

N

and onlude the existene of an automorphi representation �

0

of GL

N

(A ) suh that �

v

= �

0

v

for all v =2 S, that is, a weak lift �

0

of �.

Every step in this argument is now valid for general split lassial group of the type we

are onsidering. Originally the loal stability of -fators was known only for SO

2n+1

[8, 5℄.

Now, thanks to reent results of Shahidi expressing his loal oeÆients as Mellin transforms

of Bessel funtions [35℄, the tehniques of [8℄ an be used to establish the stability of the

loal -fators for the other split lassial groups as well. This then allows us to extend the

funtoriality results of [5℄ to these ases [6℄.

In the ase of SO

2n+1

, one we have the weak lift then the theory of Ginzburg, Rallis, and

Soudry [12℄ allows one to show that this weak lift is indeed a strong lift in the sense that the

loal omponents �

v

at those v 2 S are ompletely determined { there is in fat no possible

ambiguity. In onjuntion with this they are able to ompletely haraterize the image. One

one knows that these lifts are rigid, then one an begin to de�ne a loal lift by setting the

lift of �

v

to be the �

v

determined globally. This is the ontent of the papers of Jiang and

Soudry [16, 17℄. In essene they show that this loal lift satis�es the relations on L-funtions

that one expets from funtoriality and then uses this lift to pull bak the parameter �

�

v

of

the loal GL

N

(k

v

) representation, whih we know exists by the loal Langlands onjeture,

to obtain a parameter �

�

v

of the orret type, that is, �

�

v

: W

0

k

v

!

L

H

v

and thus deduing

the loal Langlands onjeture for H(k

v

). We refer you to their papers for more detail and

preise statements. We expet similar results will be forthoming for the other split lassial

groups.
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