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Abstract. We analyze reducibility points of representations of p-adic groups

of classical type, induced from generic supercuspidal representations of max-

imal Levi subgroups, both on and off the unitary axis. We are able to give
general, uniform results in terms of local functorial transfers of the generic

representations of the groups we consider. The existence of the local transfers
follows from global generic transfers that were established earlier.

1. Introduction

In this paper we prove some general, uniform results on reducibility of rep-
resentation induced from irreducible, generic, supercuspidal representations of the
Levi subgroups of the maximal parabolics of p-adic groups. Some special cases
of these results have been known for some time. Our main contribution in this
work is to cast these results in a general setup in the framework of local Langlands
Funcotriality from groups of classical type (cf. Section 2.1) to the general linear
groups. This allows us to prove quite general, uniform results using information
about poles of local L-functions and image of local functorial transfers. Moreover,
this agrees with the conjecture on arithmetic R-groups, defined by Langlands and
Arthur [1, §7], through Local Langlands Correspondence (cf. [8]).

Let F denote a p-adic field of characteristic zero. Consider a maximal Levi
subgroup of the form M = GL(m)×G(n) in a larger group G(m+n), a connected
linear algebraic group over F, of the same type as G. We take the group G(n) to be
any of the split semi-simple groups SO(2n+ 1), Sp(2n), SO(2n), the split reductive
groups GSpin(2n + 1), GSpin(2n), or the non-split quasi-split groups SOE/F (2n),
UE/F (2n) or UE/F (2n + 1). Here E/F is a quadratic extension over which our
quasi-split group splits. These groups all have the property that their connected
L-group has a classical derived group.

Given a connected reductive group H over F, let H = H(F ). In particular, we
let G = G(F ) and M = M(F ), where G and M are as in the previous paragraph.
Let B = TU be a Borel subgroup of G with M ⊃ T. Denote by P = MN the
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parabolic subgroup of G, standard via N ⊂ U or P ⊃ B. Let A0 ⊂ T be the
maximal split subtorus of T and let A ⊂ A0 be the split component of M.

If α is the unique simple root of A0 in Lie(N), we set α̃ = 〈ρ, α∨〉−1ρ, where
ρ is half the sum of the roots of A0 in Lie(N) as in [44, §1.2], α∨ is the coroot of
the root α, and 〈·, ·〉 denotes the pairing between roots and coroots. Then, α̃ ∈ a∗,
where a is the real Lie algebra of A and a∗ is its dual (cf. [44]). Let s be a
complex number. Then sα̃ ∈ a∗ ⊗R C. Now let τ be an irreducible supercuspidal
representation of M. We are interested in understanding reducibility of the unitarily
induced representation

(1.1) I(sα̃, τ) = IndGMN

(
τ ⊗ q〈sα̃,HM (·)〉 ⊗ 1

)
,

where HM : M −→ a = Hom (X(M)F ,R) is defined as in [44, §3.3] by

(1.2) q〈χ,HM (m)〉 = |χ(m)|F , ∀m ∈M,

where X(M)F is the group of the F -rational characters of M, χ ∈ X(M)F and
〈·, ·〉 is the pairing between X(M)F and a.

The aim of this paper is to determine the reducibility points for I(sα̃, τ) for all
s ∈ C, whenever τ is generic, i.e., it has a Whittaker model, in the setting of a pair
(G,M) of classical type, in terms of functoriality as we now explain.

By assumption M = GL(m)×G(n) and in each case LG embeds into GL(N,C)×
WF for a minimal N, with an image with a classical derived group (cf. (2.3) for
more detail). Write τ = σ ⊗ π. By local transfer, π transfers to Π = Π1 � · · ·� Πd

on GL(N,F ) (Theorem 3.2 here, [7, 12, 13, 30, 31]).
Our main tool is to consider the poles of the intertwining operators (thus ze-

ros of Plancherel measures), as proposed by Harish-Chandra [19, 46], which we
determine through poles of certain L-functions [39] (Theorem 2.2 and Corollary
2.3 here). Local transfer allows us to show that these poles exist only when σ is
quasi-self-dual (conjugate-self-dual when G(n) is unitary) and σ is of the opposite
type to the L-group of G (i.e., orthogonal versus symplectic, see Section 4) or σ is
among the Πi when it is of the same type as the L-group of G.

This provides us with complete information about reducibility points on the
unitary axis for all groups of classical type. The reducibility off the unitary axis
follows from [39, Theorem 8.1] (Theorem 4.5 here). These results are stated as
Theorem 4.2 and summarized for individual groups as Propositions 4.6 – 4.11.

The case of induction from other discrete series representation of M must also
be addressed and it is left for the future. One should also verify the equality of the
arithmetic R-groups, defined by Langlands and Arthur [1, §7], with the analytic
R-groups, defined by Knapp and Stein [8], as conjectured by Langlands and Arthur.

The poles of intertwining operators can also be determined by direct calcula-
tions and there is a large body of work on this topic, starting with [42, 43, 16,
17, 18] and ending with some recent work [45, 48, 34, 10], where the connection
to functoriality is fully established in some rather general cases (SO(2n+ 1, F )).

The theory developed in [39] (Theorem 4.5 here) applies to any quasi-split
group and in [33], Jing Feng Lau has determined the complete reducibility results
for exceptional groups E6, E7, and E8, where Mder is a product of three SL-groups,
using poles of triple product L-functions which are of Artin type [32]. The case of
exceptional group G2 was fully treated in [39]
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This paper is organized as follows. In Section 2 we introduce our notation
and review the local L-functions from the Langlands-Shahidi method and their
connection to reducibility of induced representations of p-adic groups of classical
type that we consider. In Section 3 we give a proof of the generic local transfer
of supercuspidal representations of the p-adic groups of classical type. Our main
uniform result on reducibility is given as Theorem 4.2. The purpose of Section 4.3 is
then simply to summarize all the information we have, both on and off the unitary
axis, for each individual group in the hopes that it helps the interested reader see
what our results give for each individual group and, at the same time, it indicates
the scope of these results covering all groups of classical type.

Dedication. The first and third named authors would like to dedicate their
contributions to this paper to their coauthor, Jim Cogdell. We are very fortunate
to have Jim as a friend and collaborator and have very much benefited from his
kindness and generosity and it is our pleasure to submit this paper to this volume
in his honor.
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2. Local Representations and L-functions

2.1. Notation. Let F be a non-archimedean local field of characteristic zero,
with | · |F denoting its p-adic absolute value, normalized so that |$|F = 1/q, where
$ is a fixed uniformizer of F and q is the the cardinality of the residue field of
F. For later use, let us also fix a quadratic extension E/F. Let δE/F denote the

non-trivial quadratic character of F× associated with E/F via Class Field Theory.
We denote the Weil group of F and E by WF and WE , respectively. Also, we let
x 7→ x̄ denote the non-trivial element of Gal(E/F ).

Let G denote a connected, reductive, quasi-split, linear, algebraic group over
F . We fix a splitting (B,T, {X}) for G, where B is a Borel subgroup of G, T is a
maximal torus in B, and {X} is a collection of root vectors, one for each simple root
of T in B. Recall that G is quasi-split over F if and only if it has an F -splitting,
i.e., one preserved under Gal(F/F ).

We will assume G = G(n) to be one of the following groups: the split groups
SO(2n+1), Sp(2n), SO(2n), GSpin(2n+1), GSpin(2n), or the quasi-split non-split
groups UE/F (2n), UE/F (2n + 1), SOE/F (2n), or GSpinE/F (2n), where E/F is a
quadratic extension. We refer to these groups as groups of classical type, i.e., those
whose connected L-groups have classical derived groups. The groups UE/F (2n) and

UE/F (2n+ 1) are of type 2An and SOE/F (2n) and GSpinE/F (2n) are of type 2Dn.
We write B = TU, where U is the unipotent radical of B. Unless stated

otherwise, all the parabolic subgroups we encounter will be assumed to be standard,
i.e., they contain B.
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Any standard, maximal, parabolic subgroups P of G has a Levi decomposition
P = MN with M ∼= GL(m) × G(n − m), if G is orthogonal or symplectic, or
M ∼= ResE/F GL(m)×G(n−m), if G is unitary.

For later use we define the positive integer N = NG to be the dimension of the

first fundamental representation, or the standard representation, of LG0 = Ĝ(C),
the connected component of L-group of G. To be more explicit, for G = G(n) as
above, we have

(2.1) N = NG =



2n if G = UE/F (2n),

2n+ 1 if G = UE/F (2n+ 1),

2n if G = SO(2n+ 1),GSpin(2n+ 1),

2n+ 1 if G = Sp(2n),

2n if G = SO(2n),GSpin(2n),

2n if G = SOE/F (2n),GSpinE/F (2n).

In each case the standard representation is a representation of LG0 on CN and
there is an associated representation of LG on CN , or CN × CN in the unitary
group cases, giving rise to a natural L-homomorphism

(2.2) ι : LG −→ LH(N),

where

(2.3) H(N) =

{
GL(N) if G is orthogonal or symplectic,

ResE/F GL(N) if G is unitary.

We refer to [14, §1] for a detailed description of ι.
Let A0 denote the maximal split torus in T and denote by Φ = Φ(A0,G)

the restricted roots of A0 in G containing positive roots Φ+. Also, let ∆ ⊂ Φ+

denote the set of simple roots. Given a standard maximal parabolic P there exists
a unique α ∈ ∆ such that P = Pθ is determined by the subset θ = ∆ \ {α} of
∆. Let w0 = wGw

−1
M denote the longest element of the Weyl group of G modulo

that of M. By abuse of notation, we employ the same symbol for a Weyl group
element and its representative in the quotient group. We then have w0(θ) ⊂ ∆ and
w0(α) < 0.

A maximal standard parabolic P = Pθ is called self-associate if w0(θ) = θ.

Remark 2.1. The only non-self-associate case among those we consider above
is the following (cf. [27, §4]):

• Dn with n odd and θ = ∆−{αn}. This corresponds to the Levi subgroup
GL(n) in SO(2n) or GL(n)×GL(1) in GSpin(2n) with n odd.

2.2. The Langlands-Shahidi Local L-functions. Let P = Pθ be a maxi-
mal parabolic in G as above and let ρ = ρP denote half of the sum of positive roots
in N. Also, let

(2.4) α̃ = 〈ρ, α∨〉−1ρ.
We have LP = LMLN and we let r denote the adjoint action of LM on the Lie
algebra Ln = Lie(LN). Let Vi be the subspace of Ln spanned by the root vectors
Xβ∨ satisfying 〈α̃, β∨〉 = i. Then we have an irreducible decomposition

(2.5) r =
⊕
i

ri,
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where ri denotes the restriction of r to Vi.
We fix a non-trivial additive character ψ of F throughout. We can use ψ

to define a multiplicative character of U(F ), denoted again by ψ. Let τ be an
irreducible ψ-generic representation of M(F ) and let s ∈ C. Having fixed ψ, we
often simply say generic to mean ψ-generic in the remainder. Let

(2.6) HM : M(F ) −→ a = Hom(X(M)F ,R)

denote the Harish-Chandra homomorphism defined via

(2.7) q〈χ,HM(m)〉 = |χ(m)|F , m ∈M(F ), χ ∈ X(M)F .

If τ is unramified, then it is given by a semisimple conjugacy class {Aτ} in LM and
we set

(2.8) L(s, τ, ri) = det
(
IVi
− ri({Aτ})q−s

)−1
.

2.2.1. Intertwining Operators. Let W = W (A0) = NG(A0)/T and denote the
longest element of W by w`. Also, let wM

` ∈ WM(A0). Then w0 = w`w
M
` . Set

N′ = w0N
−w−10 . We define the induced representation

(2.9) I(s, τ) = Ind
G(F )
M(F )N(F )

(
τ ⊗ q〈sα̃,HM(·)〉 ⊗ 1

)
,

where ρ denotes half of the sum of positive roots in N and α̃ = 〈ρ, α∨〉−1ρ. Here,
〈·, ·〉 denotes the Z-pairing between characters and cocharacters of (G,T). We also
set

(2.10) I(τ) = I(0, τ).

Define the intertwining operator

(2.11) A(s, τ, w0) =

∫
N′(F )

f(w−10 n′g)dn′ : I(s, τ) −→ I (w0(s), w0(τ)) .

If τ is generic, then, via the Langlands-Shahidi method, the L-functions L(s, τ, ri)
are always defined, whether τ is unramified or not, and agree with the definition in
the unramified case given above.

The following two results are well-known (cf. [39, §7]).

Theorem 2.2. Assume that P is a self-associate maximal parabolic and let τ
be generic, unitary, supercuspidal. Then

L(s, τ, r̃1)−1L(2s, τ, r̃2)−1A(s, τ, w0)

is a holomorphic, non-vanishing operator on all of C.

A consequence of this theorem is the following, which is what we will use later.

Corollary 2.3. Suppose that τ is generic, sucpercuspidal and unitary.

(a) If w0(τ) 6∼= τ , then I(τ) is irreducible. (In particular, induction from a
non-self-associate parabolic is always irreducible.)

(b) If P is self-associate and w0(τ) ∼= τ , then I(τ) is irreducible if and only
if exactly one of L(s, τ, r̃1) or L(s, τ, r̃2) has a pole at s = 0.

(We allow for the second L-function not to appear at all. This does occasionally
occur in the case of Siegel Levi subgroups, as we will explain later.)
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3. Generic Local Transfers - Supercuspidal Case

One consequence of the generic global functoriality is that we can draw con-
clusions about transfer of local representations, once it is known that the image of
the global functorial transfer is an isobaric sum of unitary cuspidal representations.
Given that the local transfers are completely understood at the archimedean places,
we will focus on the non-archimedean local transfers.

Definition 3.1. Let F, G and N = NG be as before. Let π be an irreducible
generic representation of G(F ). We say an irreducible representation Π of GL(N,F )
is a local transfer of π if

L(s, π × ρ) = L(s,Π× ρ) and ε(s, π × ρ, ψ) = ε(s,Π× ρ, ψ)

or equivalently

L(s, π × ρ) = L(s,Π× ρ) and γ(s, π × ρ, ψ) = γ(s,Π× ρ, ψ)

for all irreducible, unitary, supercuspidal representations ρ of GL(m,F ), 1 ≤ m ≤
N − 1. The L-, ε-, and γ-factors on the left hand side are those of the Langlands-
Shahidi method while those on the right hand side are defined via parameters of
the Local Langlands Correspondence.

We recall that the GL×GL factors on the right hand side are known to equal
those defined via the Rankin-Selberg or the Langlands-Shahidi methods.

We describe the local transfer for irreducible generic supercuspidal representa-
tions in the theorem below. This is what we need for our results on reducibility of
local representation in Section 4. This result is a consequence of the global generic
functoriality and was proved in many of the cases we cover below along with the
global results. We give the details in the proof below.

Theorem 3.2. Let G = G(n) and E/F be as before. Let π be an irreducible,
generic, supercuspidal, representations of G(F ). Then π has a unique local transfer
Π to GL(N,F ) if G is symplectic or orthogonal, or to GL(N,E) if G is unitary.
Moreover, it is of the form

Π = Π1 � · · ·� Πd = Ind (Π1 ⊗ · · · ⊗Πd) ,

where each Πi is an irreducible, unitary, supercuspidal representation of GL(Ni, F )
or GL(Ni, E), as appropriate, and the induction is from the standard parabolic
subgroup of GL(N) with Levi component of type (N1, . . . , Nd) with N1 + · · ·+Nd =
N. Furthermore,

• if G = SO(2n + 1), then each Ni is even, each Πi satisfies Πi
∼= Π̃i,

L(s,Πi,∧2) has a pole at s = 0, and Πi 6∼= Πj for i 6= j.
• if G = SO(2n) or SOE/F (2n), n ≥ 2, or G = Sp(2n), then each Πi

satisfies Πi
∼= Π̃i, L(s,Πi,Sym2) has a pole at s = 0, and Πi 6∼= Πj for

i 6= j.

• if G = GSpin(2n+1), then each Ni is even, each Πi satisfies Πi
∼= Π̃i⊗ω,

where ω = ωπ is the central character of π, L(s,Πi,∧2 ⊗ ω−1) has a pole
at s = 0, and Πi 6∼= Πj for i 6= j.

• if G = GSpin(2n) or GSpinE/F (2n), n ≥ 2, then each Πi satisfies Πi
∼=

Π̃i⊗ω, where ω = ωπ is again the central character of π, L(s,Πi,Sym2⊗
ω−1) has a pole at s = 0, and Πi 6∼= Πj for i 6= j.
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• if G = UE/F (2n + 1), then each Πi satisfies Πi
∼= Π̃i, the local Asai

L-function L(s,Πi, rA) has a pole at s = 0, and Πi 6∼= Πj for i 6= j.

• if G = UE/F (2n), then each Πi satisfies Πi
∼= Π̃i, the local twisted Asai

L-function L(s,Πi, rA ⊗ δE/F ), has a pole at s = 0, and Πi 6∼= Πj for i 6= j.

Here, Π̃i denotes the contragredient of Πi and Πi denotes the Gal(E/F )-action
on the representation Π, i.e., Π(g) = Π(ḡ).

Proof. For G = SO(2n + 1), Sp(2n), or SO(2n), this is [13, Theorem 7.3].
For G = UE/F (2n) this is [30, Proposition 8.4] and for G = UE/F (2n+1) it is [31,
Proposition 4]. For G = GSpin(2n + 1) or GSpin(2n) this is [20, Theorem 4.7].
All of these results are based on a local-global argument, using the fact that one
can embed the generic supercuspidal representation π as the local component of a
global generic representation to which one can apply the global generic transfer,
possibly several times, to obtain the result. Let us give some of the details now to
indicate that a similar argument works for all the groups we are considering.

We first show the existence of one local transfer Π. If π is unramified, then
the choice of Π is clear; we simply take the irreducible, unramified representation
determined by the semi-simple conjugacy class in GL(N,C) generated by the image
of the class of π under the natural embedding ι as in (2.2). We then know, as can
be seen directly and is verified in the proof of the global generic transfer in the
cases we are considering, that we have the requirement of Definition 3.1, i.e., that
the local L- and ε-factors of π and Π twisted by irreducible, unitary, supercuspidal
representations ρ of GL(m,F ) for m up to N − 1 are equal.

Next, assume that π is a general (not necessarily unramified) generic super-
cuspidal representation. Since π is generic and supercuspidal, by [39, Proposition
5.1], there exist a number field k, a non-archimedean place v0 of k, and a globally
generic cuspidal automorphic representation σ of G(Ak) such that kv0 = F, and
σv0 = π, and for all non-archimedean places v 6= v0 of k the local representations
σv is unramified. Here, σ is generic with respect to a global generic character Ψ
whose local component at v0 is out fixed ψ. (In the non-split quasi-split cases, we
have a quadratic extension K/k of number fields, and a place w of K lying above
the place v of k such that Kw = E.)

We recall the globally generic automorphic representation σ of G(Ak) is known
to have a transfer Σ to GL(N,Ak) for each of the groups we are considering, as
proved in [5, 7, 12, 13, 30, 31]. To be more precise, Σv is the transfer of σv
as above for v outside a finite set of places and σv unramified. In particular the
twisted L- and ε-factors are equal for Σv and σv for such v. Now, just take Π to be
the local component of Σ at v0.

To show this Π satisfies the requirements of Definition 3.1, we again note that
if ρ is an irreducible, unitary, supercuspidal representation of GL(m,F ), 1 ≤ m ≤
N − 1, then we may again use [39, Proposition 5.1] to embed ρ in a global cuspidal
representation τ ′ of GL(m,Ak) such that τ ′v0 = ρ and τ ′v is unramified for all non-
archimedean v 6= v0.

Let S be a finite set of non-archimedean places of k such that σv is unramified
for v 6∈ S and let S′ = S − {v0}. Choose an idele class character η such that ηv0
is trivial and ηv is highly ramified at v ∈ S′. By a general result, usually referred
to as stability of γ-factors, and used in the establishing the global generic transfer
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results for each of the groups above, for v ∈ S′ we have

(3.1) γ(s, σv × (τ ′v ⊗ ηv),Ψv) = γ(s,Σv × (τ ′v ⊗ ηv),Ψv).

Let τ = τ ′ ⊗ η. Since ηv0 is trivial, we have τv0 = τ ′v0 = ρ. On the other hand,
we have the global functional equations

(3.2) L(s, σ × τ) = ε(s, σ × τ)L(1− s, σ̃ × τ̃)

and

(3.3) L(s,Σ× τ) = ε(s,Σ× τ)L(1− s, Σ̃× τ̃),

which we can rewrite as

(3.4) γ(s, π × ρ, ψ) =

(∏
v∈S′

γ(s, σv × τv,Ψv)
−1

)
LS(s, σ × τ)

εS(s, σ × τ,Ψ)LS(1− s, σ̃ × τ̃)

and

(3.5) γ(s,Π×ρ, ψ) =

(∏
v∈S′

γ(s,Σv × τv,Ψv)
−1

)
LS(s,Σ× τ)

εS(s,Σ× τ,Ψ)LS(1− s, Σ̃× τ̃)
.

Now, the fractions on the right hand sides of (3.4) and (3.5) are equal by the
unramified case mentioned above and the two products on the right hand sides are
also equal as in (highly-ram) above. Hence, the left hand sides of (3.4) and (3.5)
must be equal, which means that Π is indeed a local transfer.

The uniqueness of Π follows from the “local converse theorem for GL(N)”
which means that an irreducible, generic representation of GL(N,F ) (or GL(N,E)
as the case may be) is uniquely determined by its γ-factors twisted by supercuspidal
representations of all smaller rank general linear groups (cf. Remark after the
Corollary of [23, Theorem 1.1]).

It remains to show that Π is of the form stated in the theorem. Being a
local component of a globally generic automorphic representation, Π is a generic,
unitary irreducible representation of GL(N,F ) or GL(N,E) as the case may be.
By classification of unitary generic representations of the general linear groups [49]
we have

(3.6) Π = Ind
(
δ1ν

r1 ⊗ · · · δkνrk ⊗Π1 ⊗ · · · ⊗Πd ⊗ δ1ν−rk ⊗ · · · δkν−r1
)
,

where each δj and each Πi is a discrete series representation and 0 < rk ≤ · · · ≤
r1 <

1
2 . Here, ν(·) = |det(·)|.

Recall that

(3.7) γ(s, π × ρ, ψ) = γ(s,Π× ρ, ψ)

for any unitary, supercuspidal representation ρ of GL(m) for m up to N−1. In fact,
multiplicativity of γ-factors implies that (3.7) holds for ρ discrete series as well. To
see this, note that if ρ is discrete series, then it can be realized as the irreducible
quotient of an induced representation

(3.8) Ind
(
ρ0ν
− t−1

2 ⊗ · · · ⊗ ρ0ν
t−1
2

)
,
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where ρ0 is unitary supercuspidal and t is a positive integer. Then,

γ(s, π × ρ, ψ) =

t−1∏
j=1

γ(s+
t− 1

2
− j, π × ρ0, ψ)

=

t−1∏
j=1

γ(s+
t− 1

2
− j,Π× ρ0, ψ)

= γ(s,Π× ρ, ψ),

i.e., (3.7) holds with ρ any discrete series representation of GL(m) for m up to
N − 1.

Now, up to a monomial factor coming from the ε-factors, the numerator of
γ(s,Π× ρ, ψ) is given by

(3.9)

 k∏
j=1

L(s+ rj , δj × ρ)L(s− rj , δj × ρ)

d∏
i=1

L(s,Πi × ρ)

−1 .
Since neither of L(s, δj × ρ) or L(s,Πi × ρ) has a pole in <(s) > 0 this numerator
can have zeros only in <(s) < 1

2 .
Similarly, the denominator of γ(s,Π× ρ, ψ) is the polynomial

(3.10)

 k∏
j=1

L(1− s− rj , δ̃j × ρ̃)L(1− s+ rj , δ̃j × ρ̃)

d∏
i=1

L(1− s, Π̃i × ρ̃)

−1 ,
which can only have zeros in the region <(s) > 1

2 .
Hence, the numerator and denominator in the factorization coming from the

multiplicativity of the γ-factor have not common zeros and, consequently, we con-
clude from the equality of the γ-factors that

(3.11) L(s, π × ρ) =

k∏
j=1

L(s+ rj , δj × ρ)L(s− rj , δj × ρ)

d∏
i=1

L(s,Πi × ρ).

On the other hand, we know [26] that the same expression gives L(s,Π×ρ). There-
fore,

(3.12) L(s, π × ρ) = L(s,Π× ρ),

with ρ discrete series.

Fix 1 ≤ i ≤ k. We apply (3.12) with ρ = δ̃j . Since δj and π are both tempered

we know that L(s, π × δ̃j) is holomorphic for <(s) > 0. In general, this is the
third author’s Tempered L-function Conjecture [39, Conj. 7.1]. Many cases of this
conjecture were proved by several authors [3, 11, 22, 28, 29, 36] and a proof in
the general case has now appeared in [22]. On the other hand, we have

(3.13) L(s,Π× δ̃j) =

k∏
j=1

L(s+ rj , δj × δ̃i)L(s− rj , δj × δ̃i)
d∏
j=1

L(s,Πj × δ̃i).

The term L(s − ri, δi × δ̃i) produces a pole at s = ri which results in a pole

of L(s,Π × δ̃i) at s = ri > 0 as the local L-factors are never zero. This is a
contradiction unless k = 0, i.e., there are no δi’s in (3.6). Hence,

(3.14) Π = Ind (Π1 ⊗ · · ·Πd)
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is a full induced representation from unitary discrete series representations Πi. In
particular, Π is tempered.

In fact, we claim that each Πi is unitary supercuspidal. To see this, we can
again realize the discrete series representation Πi as the irreducible quotient of the
induced representation

(3.15) Ind
(

Π0
i ν
− ti−1

2 ⊗ · · · ⊗Π0
i ν

ti−1

2

)
associated with the segment [Π0

i ν
− ti−1

2 ,Π0
i ν

ti−1

2 ] where Π0
i is unitary supercuspidal

and ti is a positive integer [9, 50]. Applying (3.12) again with ρ = Π̃i we have

(3.16) L(s, π × Π̃i) = L(s,Π× Π̃i).

Let us calculate both sides of this equality. On the right hand side we have

(3.17) L(s,Π× Π̃i) =
d∏
j=1

L(s,Πj × Π̃i)

and

(3.18) L(s,Πi × Π̃i) =

ti−1∏
k=0

L(s+ k,Π0
i × Π̃0

i ).

(The last equation is verified, for example, in [28, p. 575].) The local L-function

L(s,Π0
i × Π̃0

i ) has a pole at s = 0 so that L(s + ti − 1,Π0
i × Π̃0

i ) has a pole at
s = −(ti − 1). Since local L-functions are never zero, this pole persists to give a

pole of L(s,Π× Π̃i) at s = 1− ti.
As for the left hand side, from [39] we have

(3.19) L(s, π × Π̃i) = L(s+
ti − 1

2
, π × Π̃i)

since π is supercuspidal. Since L(s, π × Π̃i) can have poles only for <(s) = 0, we

see that L(s, π × Π̃i) can only have poles on the line <(s) = −(ti − 1)/2. These
locations of poles are inconsistent unless ti = 1, i.e., Πi = Π0

i is supercuspidal, as
we desire.

Finally, we show that the conditions in terms of the L-functions in the statement
of the theorem hold. Consider the case of the general spin groups first. Let ω = ωπ
denote the central character of π. Consider the equality

(3.20) L(s, π × Π̃i) = L(s,Π× Π̃i).

The right hand side has a pole at s = 0 as before. For the left hand side to have a
pole at s = 0, from the general properties of these local L-functions (cf. [39, Cor.
7.6], for example) we must have Π⊗ π ∼= w0(Π⊗ π) as representations of GL×G.
By Lemma 4.4 below we this implies that

(3.21) Πi
∼= Π̃i ⊗ ω.

Moreover, the order of pole at s = 0 on the left hand side of (3.20) is one while
the order of the pole on the right hand side is the number of j such that Πj

∼= Πi.
Hence, Πi 6∼= Πj if i 6= j.

Furthermore, assuming that we are in the odd general spin group case, [39]
implies that the product

(3.22) L(s, π ×Πi)L(s,Πi,Sym2 ⊗ ω−1)
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has a simple pole at s = 0 in this situation. This pole is already accounted for by
the pole at s = 0 of L(s, π × Πi). Therefore, L(s,Πi,Sym2 ⊗ ω−1) has no pole at
s = 0. However,

(3.23) L(s,Πi×Π̃i) = L(s,Πi×Πi⊗ω−1) = L(s,Πi,Sym2⊗ω−1)L(s,Πi,∧2⊗ω−1),

which implies that L(s,Πi,∧2 ⊗ ω−1) has a pole at s = 0 (which can only happen
if Ni is even). If we are in the even general spin groups, the same argument works
with the roles of Sym2 and ∧2 switched.

We end the proof by mentioning that a similar argument, with minor modi-
fications replacing ω-self-dual with self-dual or conjugate-self-dual as appropriate,
establishes the L-function condition for the remaining groups in the statement of
the theorem. We will not repeat those arguments as they are similar and have
already appeared in the literature. For orthogonal and symplectic groups, this is
done in [13, p. 203]. For unitary groups, it is verified in [30] and [31]. �

We should note here that the conditions that the transfers Π need to satisfy in
the theorem above in fact determine the image of the transfer. In other words, every
Π satisfying these conditions is the transfer of an irreducible, generic, supercuspidal
π from the appropriate group G to GL(N). For this one needs the “local descent”
for all the groups we are considering. For symplectic and orthogonal groups, as
well as the unitary groups, these facts have already been established [47, 15] and
for the general spin groups this is a work in progress of Jing Feng Lau.

4. Reducibility of Local Representations

As an application of our results on the generic local transfer in Section 3, we
now give some uniform results on reducibility of local induced representations.

4.1. Reducibility on the Unitary Axis. To state our main uniform results
on irreducibility, we first define the orthogonal/symplectic representations of general
linear groups.

Let F and ψ be as before. Let η be a character of F× and let σ be an irreducible
supercuspidal representation of GL(m,F ). Let

(4.1) φ : WF −→ GL(m,C)

be the parameter of σ and set

L(s, σ,Sym2 ⊗ η) := L(s,Sym2φ · η),(4.2)

L(s, σ,∧2 ⊗ η) := L(s,∧2φ · η).(4.3)

When η = 1, these reduce to the usual untwisted L-factors.
Similarly, with E/F as before, let σ be an irreducible supercuspidal represen-

tation of GL(m,E). Let

(4.4) φ : WE −→ GL(m,C)

be the parameter of σ and set

L(s, σ, rA) := L(s, rA ◦ φ),(4.5)

L(s, σ, rA ⊗ δE/F ) := L(s, rA ◦ φ · δE/F ).(4.6)

Here, rA is denote the Asai representation. For details about the Asai representation
and the corresponding L-function we refer to [30, §5 and §8].
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The representation σ of GL(m,F ) is said to be η-self-dual if it satisfies

(4.7) σ̃ ∼= σ ⊗ η.

If σ is η-self-dual, then we have

L(s, σ × σ̃) = L(s, σ × σ ⊗ η)

= L(s, σ,∧2 ⊗ η) · L(s, σ,Sym2 ⊗ η)(4.8)

and exactly one of the two local L-function on the right hand side of (4.8) has a
pole at s = 0. Conversely, if one of the L-functions on the right hand side of (4.8)
has a pole at s = 0, then σ is η-self-dual. Again, when η = 1 the representation σ
is said to be self-dual and the (untwisted) exterior/symmetric square L-functions
replace the twisted ones above.

Analogously, a representation σ of GL(m,E) is said to be conjugate-self-dual
if it satisfies

(4.9) σ̃ ∼= σ.

We recall that x 7→ x denotes the action of Gal(E/F ) on the representation σ of
GL(m,E) and σ denotes the corresponding action on σ. For σ conjugate-self-dual,
we have

L(s, σ × σ̃) = L(s, σ × σ)

= L(s, σ, rA) · L(s, σ, rA ⊗ δE/F ),(4.10)

where the local L-functions on the right hand side are, as before, the Asai L-function
and its twist by the quadratic character δE/F . Again, the L-function on the left
hand side of (4.10) has a pole at s = 0 which implies that exactly one of those on
the right hand side of (4.10) has a pole at s = 0.

Definition 4.1. An irreducible, unitary, supercuspidal representation σ of
GL(m,F ) is said to be η-symplectic if L(s, σ,∧2 ⊗ η) has a pole at s = 0, and it is
said to be η-orthogonal if L(s, σ,Sym2 ⊗ η) has a pole at s = 0. When η = 1, then
σ is simply called symplectic or orthogonal.

Similarly, an irreducible, unitary, supercuspidal representation σ of GL(m,E)
is said to be conjugate-orthogonal if L(s, σ, rA) has a pole at s = 0, and it is said
to be conjugate-symplectic if L(s, σ, rA ⊗ δE/F ) has a pole at s = 0.

Note that if a representation σ of GL(m,F ) is either η-symplectic or η-orthogonal,
then (4.8) implies that σ is η-self-dual. Moreover, in the η-symplectic case, m must
be even. In the following theorem we use these notions with η = ω−1, where ω = ωπ
denotes the central character of a representation of G(F ). Similarly, if a represen-
tation σ of GL(m,E) is either conjugate-symplectic or conjugate-orthogonal, then
(4.10) implies that σ is conjugate-self-dual.

Let G = G(n) be as in Section 2.1, i.e., G is one of the groups SO(2n +
1), Sp(2n), SO(2n), GSpin(2n + 1), GSpin(2n), or SOE/F (2n),GSpinE/F (2n), or

UE/F (2n + 1),UE/F (2n), where E/F is a quadratic extension. Let Ĝ denote the

connected component of its Langlands L-group LG. We define the type of Ĝ as
follows:
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G Ĝ type of Ĝ

SO(2n+ 1) Sp(2n,C) symplectic

Sp(2n) SO(2n+ 1,C) orthogonal

SO(2n) SO(2n,C) orthogonal

GSpin(2n+ 1) GSp(2n,C) symplectic

GSpin(2n) GSO(2n,C) orthogonal

SOE/F (2n) SO(2n,C) orthogonal

GSpinE/F (2n) GSO(2n,C) orthogonal

UE/F (2n) GL(2n,C) (conjugate) symplectic

UE/F (2n+ 1) GL(2n+ 1,C) (conjugate) orthogonal

Theorem 4.2. Let n ≥ 0 and m ≥ 1 be integers. Let G = G(n) and
E/F be as before. Let σ be an irreducible, unitary, supercuspidal representation
of GL(m,F ) if G is orthogonal or symplectic type, or of GL(m,E) when G is
unitary. Let π be an irreducible, generic, unitary, supercuspidal representation
of G(n, F ) with central character ω = ωπ. Consider τ = σ ⊗ π, an irreducible,
generic, unitary, supercuspidal representation of M(F ), where M = GL(m)×G(n)
or M = ResE/F GL(m) × G(n), as appropriate, is a standard Levi subgroup of
a maximal parabolic subgroup P in the larger quasi-split group G(m + n). Let
I(τ) = I(σ ⊗ π) be the induced representation of G(m+ n, F ) as in (2.10).

If P is not self-associate (cf. Remark 2.1), then I(τ) is irreducible .
If P is self-associate, then for G orthogonal, symplectic or a general spin group,

we have the following statements:

(a) If σ is not ω−1-self-dual, then I(σ ⊗ π) is irreducible.

(b) If σ is ω−1-self-dual and of the type opposite to Ĝ, then I(σ ⊗ π) is
irreducible.

(c) If σ is ω−1-self-dual and of the same type as Ĝ, then I(σ⊗π) is irreducible
if and only if σ appears as a component of the transfer of π to GL(N,F )
as in Theorem 3.2. In particular, if m > N, then I(σ ⊗ π) is always
reducible.

Analogously, for G unitary, we have the following statements:

(d) If σ is not conjugate-self-dual, then I(σ ⊗ π) is irreducible.

(e) If σ is conjugate-self-dual and of the type opposite to Ĝ, then I(σ ⊗ π) is
irreducible.

(f) If σ is conjugate-self-dual and of the same type as Ĝ, then I(σ ⊗ π) is
irreducible if and only if σ appears as a component of the transfer of π to
GL(N,E) as in Theorem 3.2. In particular, if m > N, then I(σ ⊗ π) is
always reducible.

Proof. The theorem essentially follows from Corollary 2.3 combined with the
local transfer results Theorem 3.2 as we now explain.

If P is not self-associate, then clearly w0(τ) 6∼= τ and I(τ) is irreducible by
Corollary 2.3.
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Next, assume that P is self-associate. We then have

(4.11) w0(σ ⊗ π) ∼= σ̃ · ωπ ⊗ π.

when G is orthogonal, symplectic, or a general spin group. Similarly,

(4.12) w0(σ ⊗ π) ∼= σ̃ ⊗ π.

when G is unitary (cf. Lemma 4.4).
Therefore, if G is orthogonal or symplectic type and σ is not ω−1-self-dual, or

if G is unitary and σ is not conjugate-self-dual, then w0(σ ⊗ π) 6∼= σ ⊗ π, and part
(a) of Corollary 2.3 implies that I(σ⊗π) is irreducible. This proves statements (a)
and (d).

Now, let G = G(n) = SO(2n+1) or GSpin(2n+1) and let M = GL(m)×G(n)

as a Levi in G(m + n). Then Ĝ is of symplectic type. Consider the case of n ≥ 1
(non-Siegel Levi) first. Assume that σ is ω−1-self-dual. Then σ is either ω−1-

orthogonal or ω−1-symplectic (cf. Definition 4.1). If σ is of the type opposite to Ĝ,
then σ is ω−1-orthogonal, which means that the local L-function L(s, σ,Sym2⊗ω−1)
has a pole at s = 0. This local L-function is the second L-function appearing in
Theorem 2.2 or part (b) of Corollary 2.3. On the other hand, if σ is of the same type

as Ĝ, then it is ω−1-symplectic and, hence, L(s, σ,∧2 ⊗ ω−1) has a pole at s = 0
and L(s, σ,Sym2 ⊗ ω−1) does not. Now, the other (first) L-function in part (b) of
Corollary 2.3 would have a pole at s = 0 if and only if σ appears as a component
in the transfer Π of π. To see this, note that the other L-function is

(4.13) L(s, σ̃ × π) = L(s, σ̃ ×Π) =

d∏
i=1

L(s, σ̃ ×Πi),

where Πi’s are the components of the transfer Π of π as in Theorem 3.2.
If n = 0, the group G(0) is either trivial in which case π is trivial, or isomorphic

to GL(1) in which case π = ωπ is just a character. This is the Siegel Levi case and
in this case only one L-function, L(s, σ,Sym2⊗ω−1), appears in Corollary 2.3. The
above argument still holds in the following sense. If σ is ω−1-orthogonal, then the
first (and only) local L-function in Corollary 2.3 has a pole at s = 0 and I(σ ⊗ π)
is irreducible. If σ is ω−1-symplectic, then I(σ ⊗ π) is reducible. Neither does
any L-function in Corollary 2.3 have a pole at s = 0, nor does σ appear as a
component of transfer Π of π. This proves (b) and (c) for G = G(n) = SO(2n+ 1)
or GSpin(2n+ 1).

Next, let G = G(n) = SO(2n), GSpin(2n) or their quasi-split forms. A similar

argument as above again holds, except that Ĝ is now of orthogonal type and if

σ is of the type opposite to Ĝ, then it is ω−1-symplectic, which means that the
local L-function L(s, σ,∧2 ⊗ ω−1) has a pole at s = 0. Now, this is the second L-

function appearing in part (b) of Corollary 2.3. And if σ is of the same type at Ĝ,
then it is σ−1-orthogonal and, hence, L(s, σ,Sym2 ⊗ ω−1) has a pole at s = 0 and
L(s, σ,∧2 ⊗ ω−1) does not. Now, in a similar way, the other L-function in part (b)
of Corollary 2.3 would have a pole at s = 0 if and only if σ appears as a component
of the transfer Π of π. When n = 0 a similar situation occurs with one one local
L-function appearing again.

When G = G(n) = Sp(2n), the above paragraph holds again. The difference is
just that the transfer Π is a representation of GL(2n+ 1, F ). When n ≥ 1 there are
two L-functions, namely, L(s, σ×π) and L(s, σ,∧2). When n = 0, there are actually
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again two L-functions appearing, namely, L(s, σ) (the standard L-function) which
does not produce any poles at s = 0, and L(s, σ,∧2) which behaves the same way
as above.

Hence, we have proved parts (b) and (c) for G = Sp(2n),SO(2n),GSpin(2n)
and their quasi-split forms.

Finally, let G = G(n) = UE/F (2n) or UE/F (2n + 1) and assume that the
representation σ of GL(m,E) is conjugate-self-dual. Then σ is either conjugate-
orthogonal or conjugate-symplectic (cf. Definition 4.1).

Consider G = UE/F (2n) first. Now, Ĝ is (conjugate) symplectic. If σ is of type

opposite to Ĝ, then it is conjugate-orthogonal, which means that the local Asai L-
function L(s, σ, rA) has a pole at s = 0. This L-function is the second L-function
appearing in Theorem 2.2 or part (b) of Corollary 2.3. On the other hand, if σ is of

the same type as Ĝ, then it is conjugate-symplectic and, hence, L(s, σ, rA ⊗ δE/F )
has a pole at s = 0 and L(s, σ, rA) does not. Now, in a similar way as above, the
other L-function in part (b) of Corollary 2.3 would have a pole at s = 0 if and only
if σ appears as a component of the transfer Π of π.

The argument for G = UE/F (2n + 1) is exactly the same with the words
(conjugate) symplectic and (conjugate) orthogonal switched.

Therefore, we have also proved (e) and (f) for G = UE/F (2n) and UE/F (2n+1),
which finishes the proof of the theorem. �

Remark 4.3. It is worth pointing out that in the case of G = GSp(2n), if
the representation σ is ω−1-self-dual, then ω = 1 (cf. [41, p. 286]). The case of
non-trivial ω may occur for general spin groups.

Lemma 4.4. Let m and n be non-negative integers and let G = G(m+ n) and
E/F be as before. Let θ = ∆ − {α}, where ∆ denotes the set of simple roots of
G and α is a fixed simple root. Consider the standard maximal parabolic subgroup
P = Pθ = MN with the Levi M ∼= GL(m) ×G(n) if G is one of the non-unitary
groups we are considering, or M ∼= ResE/F GL(m)×G(n) if G is unitary. Let w0

be the unique element in the Weyl group of G such that w0(θ) ⊂ ∆ and w0(α) < 0.
We assume that P is self-associate, i.e., w0(θ) = θ (cf. Remark 2.1).

Let σ be a representation of GL(m,F ), or of GL(m,E) when G is unitary, and
let π be a representation of G(n, F ).

Then,

w0(σ ⊗ π) ∼= σ̃ ⊗ π.
when G = SO(2n+ 1),SO(2n), or SOE/F (2n), and

w0(σ ⊗ π) ∼= σ̃ · ωπ ⊗ π.
when G = GSpin(2n+ 1),GSpin(2n), or GSpinE/F (2n).

For G = UE/F (2n) or UE/F (2n+ 1), we have

w0(σ ⊗ π) ∼= σ̃ ⊗ π.

Proof. One verifies this lemma by considering the effect of conjugation by
the Weyl group element w0 on an element of the Levi M. For special orthogonal,
symplectic, or unitary groups, we can do this by a standard matrix calculation,
noting that the action of w0 is to simply switch the upper left m ×m block with
the lower right block of the same size in the usual matrix representation of these
groups.
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For the general spin groups essentially the same observation works, except that
one expresses it in terms of root data due to lack of a convenient matrix realization
and follows the action of the Weyl group element w0. Let us give some details for
this case.

Consider G = G(m+ n) = GSpin(2m+ 2n+ 1). Using the Bourbaki notation,
a detailed description of the root data for G is given in [7, §1] which we use below.
Let

(4.14) X = Z〈e0, e1, . . . , em+n〉
and

(4.15) X∨ = Z〈e∗0, e∗1, . . . , e∗m+n〉
denote the character and cocharacter lattices of G, respectively, with the standard
Z-pairing. With the simple roots ∆ = {α1, . . . , αm+n} and the simple coroots
∆∨ = {α∨1 , . . . , α∨m+n} defined as in [7, §1], we have θ = ∆ − {αm} with w0 as in
Section 2.1. Let M = Mθ be the maximal standard Levi subgroup corresponding
to θ.Then

(4.16) M ∼= GL(m)×G(n)

with X = X1 ⊕X2 and X∨ = X∨1 ⊕X∨2 , where

(4.17) X1 = Z〈e1, . . . , em〉 X2 = Z〈e0, em+1, . . . , em+n〉
and

(4.18) X∨1 = Z〈e∨1 , . . . , e∨m〉 X∨2 = Z〈e∨0 , e∨m+1, . . . , e
∨
m+n〉.

Now if we translate the action of w0 on the root data from M to GL(m) ×G(n)
via the isomorphism (4.16), we can conclude that for m = (A, g) with A ∈ GL(m)
and g ∈ G(n) we have

(4.19) w0(m) = (µ · tA−1, g),

where µ = e0(g) is the “similitude character”. This proves the statement of the
lemma in this case.

The case of even general spin groups is similar. However, in the even case (4.19)
holds provided that we are in the self-associate case (cf. Remark 2.1). This proves
the lemma. �

4.2. Reducibility off the Unitary Axis. Theorem 4.2 determines the re-
ducibility of representations of classical groups induced from unitary, generic, su-
percuspidal representation of a maximal Levi in a satisfactory way. The analogous
question for when the inducing representation is non-unitary is fortunately reduced
to the unitary case thanks to the following rather general theorem, a well-known
result in the Langlans-Shahidi method (cf. [39, Theorem 8.1] or [41, Theorem 5.1],
for example.)

Theorem 4.5. Let G, P = MN, τ = σ ⊗ π and w0 be as before. Assume that
w0(τ) ∼= τ and that I(τ) is irreducible. Let i = 1 or 2 be the unique index such that
L(s, τ, r̃i) has a pole at s = 0 as in Corollary 2.3. Then, the induced representation
I(s, τ) of (2.9) is

(a) irreducible for 0 < s < 1/i.
(b) reducible for s = 1/i.
(c) irreducible for s > 1/i.
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If w0(τ) ∼= τ and I(τ) reduces, then I(s, τ) is irreducible for s > 0.

Recall that for the groups we are considering, we always have i = 1 or i = 2.
Hence, the reducibility point of the induced representation I(s, τ) is always at
either s = 1/2 or s = 1, if any, in the region s > 0. In Section 4.3 we specify these
reducibility points for each group individually.

Moreover, we also recall, as one checks easily using the roots of G in each case,
that the following equalities are immediate from (2.9):

(4.20) I(s, τ) =


I (νsσ ⊗ π) if G(n) is of type A (unitary),

I (νsσ ⊗ π) if G(n) is of type B or D and n ≥ 1,

I
(
νs/2σ ⊗ π

)
if G(n) is of type B or D and n = 0,

I (νsσ ⊗ π) if G(n) is of type C.

Here, ν = |det| denotes the p-adic absolute value of the determinant character on
GL(m,F ) (or GL(m,E) as the case may be). When we summarize our reducibility
results for each individual group in Section 4.3, we will state them in terms of det
rather than α̃ in (2.9).

4.3. Reducibility for Groups of Classical Type. We now summarize our
results on reducibility points of the induced representations for each of the groups we
consider in this article. Below F continues to denote a non-archimedean local field
of characteristic zero and, when appropriate, E/F denotes a quadratic extension,
as before.

Proposition 4.6. Reducibility for SO(2n+ 1).
Let m ≥ 1 and let σ be an irreducible, unitary, supercuspidal representation of
GL(m,F ). Let n ≥ 0 and let π be an irreducible, generic, unitary, supercuspidal
representation of SO(2n + 1, F ). Let I(s) = Ind (|det |sσ ⊗ π) denote the paraboli-
cally induced representation of SO(2m+ 2n+ 1, F ). The following hold:

• If σ is not self-dual, then I(s) is irreducible for s ≥ 0.
• If σ is self-dual and L(s, σ,Sym2) has a pole at s = 0, then I(s) is irre-

ducible for 0 ≤ s < 1/2, reducible for s = 1/2, and irreducible for s > 1/2.
(The reducibility point is the same whether n = 0 or n ≥ 1.)

• If σ is self-dual, L(s, σ,∧2) has a pole at s = 0 and n = 0, then I(s) is
reducible for s = 0 and irreducible for s > 0.

• If σ is self-dual, L(s, σ,∧2) has a pole at s = 0, n ≥ 1, and σ appears as a
component of the transfer of π to GL(2n, F ), then I(s) is irreducible for
0 ≤ s < 1, reducible for s = 1, and irreducible for s > 1.

• If σ is self-dual, L(s, σ,∧2) has a pole at s = 0, n ≥ 1 and σ does not
appear as a component of the transfer of π, then I(s) is reducible for s = 0
and irreducible for s > 0.

Proposition 4.7. Reducibility for GSpin(2n+ 1).
Let m ≥ 1 and let σ be an irreducible, unitary, supercuspidal representation of
GL(m,F ). Let n ≥ 0 and let π be an irreducible, generic, unitary, supercuspidal
representation of GSpin(2n + 1, F ) with central character ω = ωπ. Let I(s) =
Ind (|det |sσ ⊗ π) denote the parabolically induced representation of GSpin(2m +
2n+ 1, F ). The following hold:

• If σ is not ω−1-self-dual, then I(s) is irreducible for s ≥ 0.
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• If σ is ω−1-self-dual and L(s, σ,Sym2 ⊗ ω−1) has a pole at s = 0, then
I(s) is irreducible for 0 ≤ s < 1/2, reducible for s = 1/2, and irreducible
for s > 1/2. (The reducibility point is the same whether n = 0 or n ≥ 1.)

• If σ is ω−1-self-dual, L(s, σ,∧2⊗ω−1) has a pole at s = 0 and n = 0, then
I(s) is reducible for s = 0 and irreducible for s > 0.

• If σ is ω−1-self-dual, L(s, σ,∧2 ⊗ ω−1) has a pole at s = 0, n ≥ 1, and
σ appears as a component of the transfer of π to GL(2n, F ), then I(s) is
irreducible for 0 ≤ s < 1, reducible for s = 1, and irreducible for s > 1.

• If σ is ω−1-self-dual, L(s, σ,∧2 ⊗ ω−1) has a pole at s = 0, n ≥ 1 and σ
does not appear as a component of the transfer of π, then I(s) is reducible
for s = 0 and irreducible for s > 0.

Proposition 4.8. Reducibility for Sp(2n).
Let m ≥ 1 and let σ be an irreducible, unitary, supercuspidal representation of
GL(m,F ). Let n ≥ 0 and let π be an irreducible, generic, unitary, supercuspidal
representation of Sp(2n, F ). Let I(s) = Ind (|det |sσ ⊗ π) denote the parabolically
induced representation of Sp(2m+ 2n, F ). The following hold:

• If σ is not self-dual, then I(s) is irreducible for s ≥ 0.
• If σ is self-dual and L(s, σ,∧2) has a pole at s = 0, then I(s) is irreducible

for 0 ≤ s < 1/2, reducible for s = 1/2, and irreducible for s > 1/2. (The
reducibility point is the same whether n = 0 or n ≥ 1.)
• If σ is self-dual, L(s, σ,Sym2) has a pole at s = 0 and n = 0, then I(s) is

reducible for s = 0 and irreducible for s > 0.
• If σ is self-dual, L(s, σ,∧2) has a pole at s = 0, n ≥ 1, and σ appears as a

component of the transfer of π to GL(2n, F ), then I(s) is irreducible for
0 ≤ s < 1, reducible for s = 1, and irreducible for s > 1.
• If σ is self-dual, L(s, σ,∧2) has a pole at s = 0, n ≥ 1 and σ does not

appear as a component of the transfer of π, then I(s) is reducible for s = 0
and irreducible for s > 0.

Proposition 4.9. Reducibility for G(n) = SO(2n) or SOE/F (2n).
Let m ≥ 1 and let σ be an irreducible, unitary, supercuspidal representation of
GL(m,F ). Let n ≥ 0 and let π be an irreducible, generic, unitary, supercuspidal
representation of G(n, F ). Let I(s) = Ind (|det |sσ ⊗ π) denote the parabolically
induced representation of G(m+ n, F ).

If n = 0 and m is odd, i.e., non-self-associate parabolic (cf. Remark 2.1), then
I(s) is always irreducible. Otherwise, the following hold:

• If σ is not self-dual, then I(s) is irreducible for s ≥ 0.
• If σ is self-dual and L(s, σ,∧2) has a pole at s = 0, then I(s) is irreducible

for 0 ≤ s < 1/2, reducible for s = 1/2, and irreducible for s > 1/2. (The
reducibility point is the same whether n = 0 or n ≥ 1.)

• If σ is self-dual, L(s, σ,Sym2) has a pole at s = 0 and n = 0, then I(s) is
reducible for s = 0 and irreducible for s > 0.

• If σ is self-dual, L(s, σ,Sym2) has a pole at s = 0, n ≥ 1, and σ appears
as a component of the transfer of π to GL(2n, F ), then I(s) is irreducible
for 0 ≤ s < 1, reducible for s = 1, and irreducible for s > 1.

• If σ is self-dual, L(s, σ,Sym2) has a pole at s = 0, n ≥ 1 and σ does not
appear as a component of the transfer of π, then I(s) is reducible for s = 0
and irreducible for s > 0.
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Proposition 4.10. Reducibility for G(n) = GSpin(2n) and GSpinE/F (2n).
Let m ≥ 1 and let σ be an irreducible, unitary, supercuspidal representation of
GL(m,F ). Let n ≥ 0 and let π be an irreducible, generic, unitary, supercuspidal rep-
resentation of G(n, F ) with central character ω = ωπ. Let I(s) = Ind (|det |sσ ⊗ π)
denote the parabolically induced representation of G(m+ n, F ).

If n = 0 and m is odd, i.e., non-self-associate parabolic (cf. Remark 2.1), then
I(s) is always irreducible. Otherwise, the following hold:

• If σ is not ω−1-self-dual, then I(s) is irreducible for s ≥ 0.
• If σ is ω−1-self-dual and L(s, σ,∧2 ⊗ ω−1) has a pole at s = 0, then I(s)

is irreducible for 0 ≤ s < 1/2, reducible for s = 1/2, and irreducible for
s > 1/2. (The reducibility point is the same whether n = 0 or n ≥ 1.)

• If σ is ω−1-self-dual, L(s, σ,Sym2 ⊗ ω−1) has a pole at s = 0 and n = 0,
then I(s) is reducible for s = 0 and irreducible for s > 0.

• If σ is ω−1-self-dual, L(s, σ,Sym2 ⊗ ω−1) has a pole at s = 0, n ≥ 1, and
σ appears as a component of the transfer of π to GL(2n, F ), then I(s) is
irreducible for 0 ≤ s < 1, reducible for s = 1, and irreducible for s > 1.

• If σ is ω−1-self-dual, L(s, σ,Sym2⊗ω−1) has a pole at s = 0, n ≥ 1 and σ
does not appear as a component of the transfer of π, then I(s) is reducible
for s = 0 and irreducible for s > 0.

Proposition 4.11. Reducibility for G(n) = UE/F (2n) and UE/F (2n+ 1).
Let m ≥ 1 and let σ be an irreducible, unitary, supercuspidal representation of
GL(m,E). Let n ≥ 0 and let π be an irreducible, generic, unitary, supercuspidal
representation of G(n, F ). We may consider σ ⊗ π as a representation of M(F ),
where M ∼= ResE/F GL(m) ×G(n) is a maximal Levi subgroup in G(m + n). Let
I(s) = Ind (|det |sσ ⊗ π) denote the parabolically induced representation of G(m+
n, F ). The following hold:

• If σ is not conjugate-self-dual, then I(s) is irreducible for s ≥ 0.
• If σ is conjugate-self-dual and L(s, σ, rA) has a pole at s = 0 when G(n) =

UE/F (2n) or L(s, σ, rA⊗δE/F ) has a pole at s = 0 when G(n) = UE/F (2n+
1), then I(s) is irreducible for 0 ≤ s < 1/2, reducible for s = 1/2, and
irreducible for s > 1/2. (The reducibility point is the same whether n = 0
or n ≥ 1.)
• If σ is conjugate-self-dual, L(s, σ, rA ⊗ δE/F ) has a pole at s = 0 when

G(n) = UE/F (2n) or L(s, σ, rA) has a pole at s = 0 when G(n) =
UE/F (2n+ 1), and n = 0, then I(s) is reducible for s = 0 and irreducible
for s > 0.
• If σ is conjugate-self-dual, L(s, σ, rA ⊗ δE/F ) has a pole at s = 0 when

G(n) = UE/F (2n) or L(s, σ, rA) has a pole at s = 0 when G(n) =
UE/F (2n + 1), n ≥ 1, and σ appears as a component of the transfer
of π to GL(2n, F ) when G(n) = UE/F (2n) or to GL(2n + 1, F ) when
G(n) = UE/F (2n+ 1), then I(s) is irreducible for 0 ≤ s < 1, reducible for
s = 1, and irreducible for s > 1.

• If σ is conjugate-self-dual, L(s, σ, rA ⊗ δE/F ) has a pole at s = 0 when
G(n) = UE/F (2n) or L(s, σ, rA) has a pole at s = 0 when G(n) =
UE/F (2n+1), n ≥ 1, and σ does not appear as a component of the transfer
of π, then I(s) is reducible for s = 0 and irreducible for s > 0.
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We remark that some of the L-function conditions in the above propositions
can also be restated in other ways such as conditions on the parity of the integer
m.
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tations. Ann. Sci. École Norm. Sup. (4) 31 (1998), no. 4, 561–589.

12. J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro and F. Shahidi. On lifting from classical

groups to GLN . Publ. Math. Inst. Hautes Études Sci. No. 93 (2001), 5–30.

13. J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro and F. Shahidi. Functoriality for the

classical groups. Publ. Math. Inst. Hautes Études Sci. No. 99 (2004), 163–233.

14. J. W. Cogdell, I. I. Piatetski-Shapiro and F. Shahidi. Functoriality for the quasi-split
classical groups. In On Certain L-functions, Clay Math. Proc., 13 (2011), 117–140, AMS.

15. D. Ginzburg, S. Rallis and D. Soudry. The descent map from automorphic representations

of GL(n) to classical groups. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ,
2011.

16. D. Goldberg. Some results on reducibility for unitary groups and local Asai L-functions.

J. Reine Angew. Math. 448 (1994), 65–95.
17. D. Goldberg and F. Shahidi. On the tempered spectrum of quasi-split classical groups.

Duke Math. J. 92 (1998), no. 2, 255–294.
18. D. Goldberg and F. Shahidi. The tempered spectrum of quasi-split classical groups III:

The odd orthogonal groups. Forum Math. 26 (2014), no. 4, 1029–1069.

19. Harish-Chandra. Collected papers. Vol. IV. 1970–1983. Edited by V. S. Varadarajan.
Springer-Verlag, New York, 1984.

20. V. Heiermann and Y. Kim. On the generic local Langlands correspondence for GSpin

groups. Preprint.
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23. G. Henniart. Caractérisation de la correspondance de Langlands locale par les facteurs ε

de paires. Invent. Math. 113 (1993), no. 2, 339–350.
24. J. Hundley and E. Sayag. Descent construction for GSpin groups: main results and appli-

cations. Electron. Res. Announc. Math. Sci. 16 (2009), 30–36.

25. J. Hundley and E. Sayag. Descent construction for GSpin groups. Mem. Amer. Math. Soc.
To appear. Available at arXiv:math.NT/1110.6788 .



LOCAL TRANSFER AND REDUCIBILITY 21

26. H. Jacquet and I. I. Piatetski-Shapiro and J. A. Shalika. Rankin-Selberg convolutions.

Amer. J. Math. 105 (1983), no. 2, 367–464.

27. H. H. Kim. Automorphic L-functions. In Lectures on automorphic L-functions, 97–201,
Fields Inst. Monogr., 20, Amer. Math. Soc., Providence, RI, 2004.

28. H. H. Kim. On local L-functions and normalized intertwining operators. Canad. J. Math.

57 (2005), no. 3, 535–597.
29. H. H. Kim and W. Kim. On local L-functions and normalized intertwining operators II;

quasi-split groups. In On certain L-functions, volume in honor of F. Shahidi’s 60th birthday,

265–295, Clay Math. Proc., 13, Amer. Math. Soc., Providence, RI, 2011.
30. H. H. Kim and M. Krishnamurthy. Stable base change lift from unitary groups to GLn.

IMRP Int. Math. Res. Pap. 2005, no. 1, 1–52.

31. H. H. Kim and M. Krishnamurthy. Base change lift for odd unitary groups. In Functional
analysis VIII, 116–125, Various Publ. Ser. (Aarhus), 47, Aarhus Univ., Aarhus, 2004.

32. H. H. Kim and F. Shahidi. Functorial products for GL2 × GL3 and the symmetric cube
for GL2. With an appendix by Colin J. Bushnell and Guy Henniart. Ann. of Math. (2)

155 (2002), no. 3, 837–893.

33. J. F. Lau. Reducibility of certain induced representations of E6 and E7. J. Algebra 373
(2013), 183–206.

34. W. W. Li. On a pairing of Goldberg-Shahidi for even orthogonal groups. Represent. Theory

17 (2013), 337–381.
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