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1. INTRODUCTION

Investigations about the distribution of values of L-functions at s = 1 (in this paper, all L-
functions are normalized so that the center of the critical strip is s = 1/2) began with the works
of Chowla and Chowla/Erdös in the case of L-functions associated to the family of real Dirich-
let characters. Via Dirichlet’s class number formula these have implications to the study of the
distribution and extreme values of class numbers of imaginary quadratic fields of large discrimi-
nants (see also the recent works by Duke on extreme values of class number of number fields of
higher degree [2, 3]). The case of degree 1 L-functions was further investigated by several peo-
ple including notably Barban, Lavrik, Eliott and more recently Montgomery/Vaughan [23] and
Granville/Soundararajan [8].

The distribution of values at s = 1 of higher degree L-functions has been investigated only
recently, in the work of Luo: motivated by problems in spectral deformation theory, he consid-
ered the case of symmetric square L-functions of Maass forms having large eigenvalue [21] to
show that the set of values at s = 1 of such L-function is unbounded. One main difficulty here
is precisely that the L-functions are Euler products of degree > 1 (degree 3 for symmetric square
L-functions), so that the Dirichlet coefficients of the L-functions do not form a completely mul-
tiplicative function. The loss of complete multiplicativity then makes the combinatorial analysis
in the asymptotics of the moments somewhat more complicated than in the degree 1 case. Luo’s
work was extended and developed further in a recent series of paper by Royer and his collabo-
rators who considered the first two symmetric power L-functions attached to holomorphic cusp
forms with large squarefree level [30, 31, 32, 9]. In these papers, Royer et al. found beautiful
combinatorial interpretations of the asymptotic value of the integral moments in terms of the
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numbers of Riordan and Dyck paths. These interpretations enabled them to evaluate the cor-
responding generating series and to provide precise estimates for the extreme values at s = 1.
However these methods look somewhat ad-hoc and seem difficult to generalize to complex mo-
ments or to higher symmetric power L-functions.

The purpose of the present work is to propose a hopefully more conceptual approach to an-
alyzing the distribution of values at s = 1 of automorphic L-functions for appropriate families
of automorphic forms. We illustrate this by computing arbitrary complex moments of arbitrary
symmetric power L-functions of holomorphic forms of large (prime) level (assuming that the
corresponding L-functions are automorphic, as is predicted by the Langlands functoriality con-
jectures and effectively proved for the symmetric powers up to 4 [5, 15, 16, 14]) and provide a
natural probabilistic interpretation of these computations. It will be clear that such an approach
will generalize to quite arbitrary L-functions of appropriate families of automorphic forms (higher
symmetric power L-functions of Maass forms with large eigenvalues as in [21] for example).

1.1. Modular forms and their symmetric power L-functions. For q ! 1 a square-free integer,
we denote by Sp

2(q) the set of arithmetically normalized primitive holomorphic cusp forms for
Γ0(q) of weight 2 with trivial nebentypus: any f ∈ Sp

2(q) has a Fourier expansion at infinity of the
form

f(z) =
∑

n!1

λf (n)
√

ne(nz)

with λf (1) = 1 and λf (n) denoting the n-th eigenvalue of the (normalized) Hecke operator Tn;
in particular λf (n) is a multiplicative function. By a well known recipe, to each f ∈ Sp

2(q) is
associated an automorphic cuspidal representation πf of GL2(AQ). This representation factors
as a restricted tensor product of local GL2 representations πf = ⊗′

vπf,v (v running over all places
of Q) and has the following properties

• πf has trivial central character and conductor q.
• πf,∞ ≃ D2 the discrete series representation of GL2(R) of weight 2.
• If p divides q, then πf,p ≃ χp ⊗ St2,p where χp is an unramified character of order at most

2 and St2,p is the Steinberg representation of GL2(Qp); one has λf (p) = χp(p)p−1/2.
• If p ̸ | q, πf,p is an unramified principal series representation, and one associates to it a

semi-simple SL2(C)-conjugacy class

g♮
f (p) =

(
βf,p 0
0 β−1

f,p

)♮

,

such that for any α ! 0,

λf (pα) =
α∑

i=0

βi
f,pβ

−(α−i)
f,p = tr(Symα(gf (p))),

where Symα denote the symmetric α-th power representation of the standard represen-
tation of GL2.

• Moreover, by a result of Deligne (Eichler/Igusa in this case) πf,p is tempered: one has
|βf,p| = 1 or in other words gf (p) ∈ SU(2).

For k ! 1 an integer, the symmetric k-th power L-function associated to f ∈ Sp
2(q) is the Euler

product of degree k + 1 given by

L(s,Symkf) =
∏

p

Lp(s,Symkf) =
∑

n!1

λk
f (n)
ns

,



ON THE COMPLEX MOMENTS OF SYMMETRIC POWER L-FUNCTIONS AT s = 1 3

with local factors given by

Lp(s,Symkf) = det(I − p−sSymk(gf (p)))−1,

if p ̸ | q and, if p|q, by

(1.1) Lp(s,Symkf) = (1 − (λf (p))kp−s)−1 = (1 − λf (pk)p−s)−1.

This L-function is absolutely convergent and non-vanishing for ℜe(s) >> 1 (in fact for ℜe(s) >
2) and is conjectured to have holomorphic continuation to C with a functional equation relating
L(s,Symkf) to L(1 − s,Symkf).

Such a conjecture is sufficient to define L(s,Symkf) at s = 1, but in order to be able to study the
distribution of the values L(1,Symkf) as f varies over Sp

2(q), we need to consider some stronger
assumptions which are discussed in the rest of this section.

Our main assumption is the following: given k ! 1 and f ∈ Sp
2(q) with q square-free,

Hypothesis Symk(f) . There exists a automorphic cuspidal self-dual representation, denoted by
Symkπf = ⊗′Symkπf,v, of GLk+1(AQ) whose local L-factors L(s,Symkπf,p) agree with the local
factors Lp(s,Symkf) given above; more precisely

• At the infinite place1, the local L-factor of Symkπf,∞ is given by

L(s,Symkπf,∞) =

⎧
⎪⎨

⎪⎩

π−s/2Γ
(

s
2

)
2m∏m

j=1(2π)−(s+j)Γ (s + j) m even

π−(s+1)/2Γ
(

s+1
2

)
2m∏m

j=1(2π)−(s+j)Γ (s + j) m odd

=: L∞(s,Symkf)

if k = 2m is even, and

L(s,Symkπf,∞) = 2m+1
m∏

j=0

(2π)−(s+j+ 1
2 )Γ

(
s + j +

1
2

)
=: L∞(s,Symkf)

if k = 2m + 1 is odd.
• For p ̸ | q, Symkπf,p is an unramified principal series associated to the conjugacy class

Symkg♮
f (p).

• For p|q, the local component Symkπf,p is isomorphic to (χp)k ⊗ Stk+1,p where χp is the un-
ramified character of order at most 2 appearing in πf,p and Stk+1,p denotes the Steinberg rep-
resentation of GLk+1. Consequently the conductor of Symkπf equals qk and L(s,Symkf) =
L(s,Symkπf ) satisfies the functional equation

(1.2) L∞(s,Symkf)L(s,Symkf) = ε(Symkf)qk(1−2s)/2L∞(1 − s,Symkf)L(1 − s,Symkf),

with

ε(Symkf) = ε(1
2 ,Symkπf,∞,ψ∞)

∏

p|q

ε(1
2 ,Symkπf,p,ψp)

= ±1
∏

p|q

[
(−1)kχp(p)k

2
]

= ±1.

1In this paper, the very precise form of the local factors at ∞ and at p|q is not strictly necessary but for reference we
carry out the explicit computation of these local factors and root numbers — via the local Langlands correspondence—
in Section 3.
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Remark 1. Hypothesis Symk(f) is known unconditionally for k up to 4: it is tautological if k = 1
and follows from the work of Gelbart/Jacquet for k = 2 and from the more recent works of
Kim/Shahidi and Kim when k = 3, 4 [5, 15, 16, 14].

Also by combining these results with Rankin/Selberg theory, Kim/Shahidi established the func-
tional equation (1.2) and the meromorphic continuation of L(s,Symkf) to C for k = 5, . . . , 9
and the holomorphy and non-vanishing of L(s,Symkf) in the half-plane ℜe(s) ! 1, for k =
5, . . . , 8. In fact, the standard zero free regions for L-functions (à la Hadamard/de la Vallée-
Poussin) show that for k = 5, . . . , 8, L(s,Symkf) is analytic in the slightly larger domain ℜe(s) !
1 − A/ log(q(|ℑm(s)| + 2)) for some absolute A > 0, except for a possible simple real pole (a
Landau/Siegel pole).

Clearly Hypothesis Symk(f) is carries much more information than the analytic continuation
and functional equation of L(s,Symkf) alone. From the automorphy of the L(s,Symkf) one can
deduce three analytic ingredients:

• Individual upper bounds. A first (mostly technical) consequence of Hypothesis Symk(f) is
the standard but useful individual upper bound (see Lemma 4.1)

(1.3) L(1,Symkf) ≪k (log q)k+1.

• Individual lower bounds. We will also need lower bounds for L(1,Symkf), and these are
usually furnished by non-trivial zero-free regions for L(s,Symkf): when L(s,Symkf) is
automorphic, standard methods show ([22] for instance) that L(s,Symkf) has at most
one zero in the domain

(1.4) {s : ℜe(s) ! 1 − Ak/ log(q(|ℑm(s)| + 2))};
moreover, this zero, whenever it exists is simple, real and is usually called the exceptional
(or Landau/Siegel) zero. In fact, the exceptional zero whenever it exists is unique amongst
all L(s,Symkf) for f ∈ Sp

2(q). This is the content of the following Landau/Page type result
which is a direct consequence of the multiplicity one type result given in Corollary 5.2 and
of Theorem A of [11]:

Lemma 1.1. Given q squarefree such that Hypothesis Symk(f) holds for any f ∈ Sp
2(q),

there exists Ak > 0, depending on k only, and a set Sp
2,ex(q) ⊂ Sp

2(q) with at most one
element, such that for any f ∈ Sp

2(q)\Sp
2,ex(q), L(s,Symkf) has no zeros on the real interval

[1 − Ak/ log q, 1].

The exceptional zero being very rare, it won’t be too harmful; but on some occasions
(in particular to get cleaner statements) we will also consider the additional assumption
that there is no exceptional zero at all:

Hypothesis LSZk(q) . There exists a constant Ak depending on k only such that L(s,Symkf)
has no zeros on the real interval [1 − Ak/ log q, 1]. In other words Sp

2,ex(q) = ∅.

Remark 2. Remarkably (by comparison with the exceptional zero problem for L-functions
of quadratic characters) Hypothesis LSZk(q) is known unconditionally for a few k’s: for
k = 1, 2 by the works of Hoffstein/Lockhart, Goldfeld/Hoffstein/Lieman and Hoffstein/-
Ramakrishnan [10, 6, 11] and for k = 4 by the work of Ramakrishnan/Wang [27]. In
fact, all their proofs use, in one way or another, some consequences of the automorphy of
Symk′

(f) for several k′ > k and so Hypothesis LSZk(q) is related to Hypothesis Symk(f) .
For instance, using the method of [11], it is not difficult to see that for k > 2, Hypothesis
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LSZk(q) follows from the Hypotheses Symk′
(f) for all k′ " k + 2 (even weaker assump-

tions are sufficient). The case k = 3, however, seems to escape a purely unconditional
treatment; we explain below (Proposition 4.5) how to conclude the non-existence of an
exceptional zero from the absence of a real pole too close to 1 for L(s,Sym5f) (which is
a weak consequence of Hypothesis Sym5(f)).

In the present paper, the most useful consequence of L(s,Symkf) having no exceptional
zero is the lower bound (see Lemma 4.2)

(1.5) L(1,Symkf) ≫k (log q)−Ck ,

for some constant Ck > 0 depending on k only.
• Good approximation of L(1,Symkf) on average. The last analytic ingredient needed is

the most serious: to evaluate successfully the distribution of L(1,Symkf) on average,
we require approximations of these L-values by very short Dirichlet polynomials. Such
approximations cannot be reached with standard zero free regions like (1.4), but could
be obtained with the Generalized Riemann Hypothesis. Fortunately, we will not need
to make such a strong assumption: classical methods from analytic number theory are
capable of providing unconditional substitutes which are as strong as GRH (for the present
purpose at least). These methods build on density estimates for zeros in families of L-
functions (see Proposition 5.3) and use Rankin/Selberg theory for pairs of automorphic
representations in {Symkπf | f ∈ Sp

2(q)}; so the automorphy of the L(s,Symkf) is used
very strongly at this point.

1.2. Moments of symmetric power L-functions. For simplicity, we now restrict to forms of
prime level q. Our goal will be to evaluate L(1,Symkf)z, for some z ∈ C, on average over
f ∈ Sp

2(q).
Given a sequence (αf )f∈Sp

2 (q), the harmonic average is defined as the sum
∑h

f∈Sp
2 (q)

αf =
∑

f∈Sp
2 (q)

αf

4π⟨f, f⟩

and if S ⊂ Sp
2(q) then we will let |S|h denote the “harmonic measure” of S, that is,

|S|h =
∑h

f∈S

1.

Such averaging is natural in view of the following consequence of the Petersson trace formula
(Proposition 1.4 below)

∑h

f∈Sp
2 (q)

1 = |Sp
2(q)|h = 1 + O

(
log(q)
q3/2

)
.

This shows that the weights 1/(4π⟨f, f⟩) define asymptotically a probability measure on Sp
2(q)

when q is prime.

Remark 3. In fact from the well known relations between ⟨f, f⟩ and L(1,Sym2f) [12] and from
the upper and lower bounds (1.3) and (1.5) for L(1,Sym2f) (with C2 = 1 [6]), one has

(1.6) q(log q)−1 ≪ 4π⟨f, f⟩ ≪ q(log q)3

so that the harmonic weight 1/(4π⟨f, f⟩) is not far from the natural weight 1/|Sp
2 (q)|. In fact there

is a procedure to convert a harmonic type average into a uniform one (see [18, 12, 30]), however
for simplicity we consider only the harmonic averaging.
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We consider now the probability space Sp
2(q), with each f weighted by (4π⟨f, f⟩|Sp

2(q)|h)−1,
and the Random variable f → L(1,Symkf). Given z ∈ C, our main result (Theorem 1.2 below)
consists in computing asymptotically the z-moment of this variable (ie. the expectation of f →
L(1,Symkf)z),

Lz
q(1,Symk) :=

1
|Sp

2(q)|h

∑h

f∈Sp
2 (q)

L(1,Symkf)z

(say) as q → +∞ over the primes.
To describe the answer, we consider the compact group G = SU(2) endowed with its natural

Haar measure µG; we then let G♮ be the set of conjugacy classes of G endowed with the Sato/Tate
measure µst (i.e. the direct image of µG by the canonical projection). By Weyl’s integration
formula, the map

θ → g(θ)♮ =
(

eiθ 0
0 e−iθ

)♮

identifies G♮ with the interval [0,π] and µst with the measure

dµst(θ) =
2
π

sin2(θ)dθ.

For z, s in C, such that ℜe(s) > 0 we set

Lz(s,Symk) =
∏

p

Lz
p(s,Symk),

with

Lz
p(s,Symk) =

∫

G♮
det(I − p−sSymk(g♮))−zdµst(g♮)

=
∫

[0,π]
det(I − p−sSymk(g(θ)))−zdµst(θ).

For ℜe(s) > 1/2, this product is absolutely convergent and has the following probabilistic inter-
pretation. Consider (Ω, µ) a probability space and {g♮

p(ω)}p!2 a sequence of independent random
variables indexed by the prime numbers, with values in G♮ and distributed according to the mea-
sure µst. For ℜe(s) > 1/2, the Euler product

L(s,Symk,ω)z =
∏

p

det(I − p−sSymkg♮
p(ω))−z

turns out to be absolutely convergent a.s. and then

E(L(s,Symk, ·)z) =
∫

Ω
L(s,Symk,ω)zdµ(ω) =

∏

p

E(Lp(s,Symk, ·)z) = Lz(s,Symk).

Theorem 1.2. Let k ! 1 be an integer and q be a prime such that Hypothesis Symk(f) holds for all
f ∈ Sp

2(q) and Hypothesis LSZk(q) holds. Then there exists C = C(k) > 0 and δ = δ(k) > 0 such
that for any complex number z satisfying |z| " C log q/(log3 q log2 q), one has

(1.7) Lz
q(1,Symk) = Lz(1,Symk) + Ok

(
exp

(
−δ

log q

log2 q

))
,

the implied constant depending on k only.
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Above and below we denote by log2 q = log(log q) and more generally logr(q) = log(log(. . . ))
the r-th iterated logarithm.

Remark 4. Observe that for k = 1, 2, 4, Hypothesis Symk(f) holds for all f ∈ Sp
2(q) and that

Hypothesis LSZk(q) holds as well (cf. Remarks 1 and 2) so (1.7) is unconditional for such k.
Moreover, Hypothesis LSZk(q) is used only to cover the case when ℜe(z) is negative and large,
so if we restrict to z such that ℜez ! 0, (1.7) is unconditional for k = 3 as well. More generally,
one can dispose completely of Hypothesis LSZk(q) at the expense of removing (at most) one
exceptional f : replacing the use of Hypothesis LSZk(q) by Lemma 1.1, one has the following
theorem.

Theorem 1.3. Given k ! 1 an integer and q a prime such that Hypothesis Symk(f) holds for any
f ∈ Sp

2(q), there exists C = C(k) > 0 and δ = δ(k) > 0 and a set Sp
2,ex(q) ⊂ Sp

2(q) with at most one
element such that, for any complex number z satisfying |z| " C log q/(log3 q log2 q), one has

1
|Sp

2(q)\Sp
2,ex(q)|h

∑h

f∈Sp
2 (q)\Sp

2,ex(q)

L(1,Symkf)z = Lz(1,Symk) + Ok

(
exp

(
−δ

log q

log2 q

))
,

the implied constant depending on k only.

In particular the latter result is unconditional also for k = 3. As it’s proof is very similar to that
of Theorem 1.2 we will not give it here.

Remark 5. One key ingredient of the proof of Theorems 1.2 and 1.3 is the Petersson trace formula
(see [12]) and one of its consequences:

Proposition 1.4. For q a prime and n ! 1, one has
∑h

f∈Sp
2 (q)

λf (n) =
∑

f∈Sp
2 (q)

λf (n)
4π⟨f, f⟩ = δn,1 + O

(
log(qn)n1/2

q3/2

)
.

In the sequel it will be useful to rewrite this formula in the normalized form

(1.8)
1

|Sp
2(q)|h

∑h

f∈Sp
2 (q)

λf (n) = δn,1 + O

(
log(qn)n1/2

q3/2

)
.

The formula (1.8) can be interpreted as follows: writing the prime factorization of n as n =
pα1
1 . . . pαr

r , one has the identity

λf (n) = λf (pα1
1 ) · · · λf (pαr

r ) = tr(Symα1(gf (p1))) · · · tr(Symαr(gf (pr))).

Fix now r ! 1 and p1, . . . , pr, r distinct prime numbers. Then by the identity above, by the
Peter/Weyl theorem and by Weyl’s equidistribution criterion, the equality (1.8) applied to integers
n divisible only by primes in {p1, . . . , pr} yields the equidistribution of the r-tuple of conjugacy
classes {(g♮

f (p1), . . . , g♮
f (pr))}f∈Sp

2 (q) (appropriately weighted by 1/4π⟨f, f⟩) into the product of r

copies of G♮ as q → +∞ over the primes. This is a variant of the “Vertical” Sato/Tate Law; we
refer to [34, 1, 29] for other applications of this law. Varying r and the set of primes {p1, . . . , pr},
one can even view this as the equidistribution (in an appropriate sense), as q → +∞, of the family
of tuples of conjugacy classes

{(g♮
f (2), g♮

f (3), . . . , g♮
f (p), . . . )}f∈Sp

2 (q)

inside the ”infinite solenoid” (SU(2)♮)P indexed by the set of all primes P.
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Now, s = 1 being at the limit of the zone of absolute convergence, the following factorization
is “almost” valid

L(1,Symkf)z =
∏

p

det(I − p−1Symk(g♮
f (p)))−z ,

and then, by the equidistribution law described above, it is natural to expect that the average of
the L(1,Symkf)z converges to Lz(1,Symk).

Remark 6. From the definition of the symmetric k-th power of a diagonal matrix, the local factor
Lz

p(s,Symk) has an elementary expression

Lz
p(s,Symk) =

(
1 − 1

ps

)−zδ2|k ∫

[0,π]

∏

0"j<k/2

(
1 − 2 cos((k − 2j)θ)

ps
+

1
p2s

)−z 2
π

sin2 θdθ,

where δ2|k = 1 if k is even and 0 otherwise. In particular, for z an integer, one has

Lz
p(s,Symk) = Fk,z(p−s)

where Fk,z(X) ∈ Q(X) is a rational function (depending on k and z) with rational coefficients,
satisfying Fk,z(0) = 1 and with its poles located at k-th roots of unity; moreover, if z is a negative
integer, Fk,z(X) a self-reciprocal (palindromic) polynomial. These facts are easy consequence of
the change of variable u = eiθ and of the residue theorem. This generalizes to any integer k
(for which Hypothesis Symk(f) holds for all f ∈ Sp

2(q)) results of Royer and his collaborators
[30, 31, 32, 9], obtained in the case k = 1, 2 by somewhat ad-hoc methods.

Remark 7. Specializing to k = 1, 2 one has

Lz
p(s,Sym1) =

∫

[0,π]

(
1 − 2 cos(θ)

ps
+

1
p2s

)−z 2
π

sin2 θdθ

=
16
π

∫

[0,π/2]

(
1 − 2(1 − 2 sin2 θ)

ps
+

1
p2s

)−z

sin2 θ cos2 θdθ

on making the change of variable θ′ = θ/2 and

Lz
p(s,Sym2) =

(
1 − 1

ps

)−z ∫

[0,π/2]

(
1 − 2 cos(2θ)

ps
+

1
p2s

)−z 4
π

sin2 θdθ

=
(

1 − 1
ps

)−z 4
π

∫

[0,π/2]

(
1 − 2(1 − 2 sin2 θ)

ps
+

1
p2s

)−z

sin2 θdθ.

Changing the variable to u = sin2 θ one gets

Lz
p(s,Sym1) = (1 − X)−2z 8

π

∫

[0,1]

(
1 +

4X
(1 − X)2

u

)−z

u1/2(1 − u)1/2du

= (1 − X)−2zF

(
z,

3
2
, 3;− 4X

(1 − X)2

)
,

and

Lz
p(s,Sym2) = (1 − X)−3z 2

π

∫

[0,1]

(
1 +

4X
(1 − X)2

u

)−z

u1/2(1 − u)−1/2du

= (1 − X)−3zF

(
z,

3
2
, 2;− 4X

(1 − X)2

)
,
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where X = p−s and

F (a, b, c; d) =
Γ(c)

Γ(b)Γ(c − b)

∫

[0,1]
xb−1(1 − u)c−b−1(1 − du)−adu

denotes the hypergeometric function. Again, we retrieve the results of [29, 32, 9] which where
established for z an integer.

We prove two estimates concerning the behavior of Lz(1,Symk) as |z| → +∞.

Theorem 1.5. For real r > 0, one has for r → +∞,

(1.9) log L±r(1,Symk) = Symk
±r log log r + Symk,1

± r + O(r/ log r),

where Symk
±, Symk,1

± are constants depending on k only. More precisely one has

Symk
+ = k + 1 and Symk,1

+ = (k + 1)γ;

moreover, if k is odd

Symk
− = k + 1 and Symk,1

− = (k + 1)(γ − log ζ(2)),

while
Sym2

− = 1 and Sym2,1
− = (γ − 2 log ζ(2)).

More generally one has, for any k,

Symk
± = max

g∈SU(2)
±tr(Symkg) > 0.

For t ∈ R, one has, as |t| → +∞,

(1.10) Lit(1,Symk) " exp
(
−ck

|t|
log2 |t|

)

for some constant ck > 0 depending on k only.

Taking r = C(k) log q
log2 q log3 q in (1.9), we infer the following

Corollary 1.6. Under the assumptions of Theorem 1.2, there exists f, g ∈ Sp
2(q) such that

L(1,Symkf) ! (eγ)k+1(log log q)k+1(1 + ok(1)),

L(1,Symkg) " e−Symk,1
− (log log q)−Symk

−(1 + ok(1)).

Remark 8. These bounds are (probably) best possible (up to the multiplicative constant): under
GRH for L(s,Symkf), one has

(log log q)−Symk
− ≪k L(1,Symkf) ≪k (log log q)k+1;

indeed by a standard argument of Littlewood (see [2] Proposition 5), one has (under GRH)

log
(
L(1,Symkf)−1

)
=

∑

p"log1/2(qk)

λk
f (p)
p

+ Ok(1)

and the bounds follows since

−Symk
− " λk

f (p) = tr(Symkgf (p)) " Symk
+ = k + 1.

Remark 9. In view of Remark 4 and Theorem 1.3 the Corollary 1.6 is unconditional if k = 1, 2, 3
or 4.
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For t ∈ R, the map t → Lit(1,Symk) is the characteristic function of the random variable
ω → log L(1,Symk,ω). We denote by F (Symk, x) the distribution function of log L(1,Symk,ω):

F (Symk, x) := Prob({L(1,Symk,ω)} " ex}).
Similarly t → Lit

q (1,Symk) can be interpreted as the characteristic function of the random variable
f → log L(1,Symkf) on Sp

2(q), each f being weighted by (4π⟨f, f⟩|Sp
2(q)|h)−1. We denote by

Fq(Symk, x) :=
1

|Sp
2(q)|h

∑h

f∈Sp
2 (q)

L(1,Symkf)"ex

1

the corresponding distribution function.
The rapid decay of Lit(1,Symk) given in (1.10) implies that F (Symk, x) is smooth with uni-

formly bounded derivative, hence by Theorem 1.2 and the Berry-Esseen inequality, we obtain
that the distribution function Fq(Symk, x) converges to F (Symk, x) uniformly for x ∈ R; more
precisely

Corollary 1.7. Given q a prime such that Hypothesis Symk(f) and Hypothesis LSZk(q) are satisfied
for any f ∈ Sp

2(q), one has, uniformly for x ∈ R,

Fq(Symk, x) = F (Symk, x) + Ok

(
log3 q log2 q

log q

)
.

1.3. Further comments.
• We have seen from Remark 5 that the main reason explaining the asymptotic formula

(1.7) is the equidistribution property of the conjugacy classes {g♮
f (p)}f∈Sp

2 (q) in G♮ as
q → +∞ which is proved via the Petersson formula (or via the Selberg trace formula as in
[34] if one is interested in the natural averaging). Of course, equidistribution makes sense
only under the Ramanujan/Petersson conjecture. Using this conjecture as a guide one
sees that, in the present case, the Petersson/Kuznetzov formula is sufficient to prove (1.7)
without assuming the Ramanujan/Petersson Conjecture. In particular the above is valid
for the case treated by Luo [21] of Maass forms with large Laplace eigenvalue; however,
the price to pay to avoid the Ramanujan/Petersson conjecture is that, apparently, the
analog of (1.7) is valid only for z ∈ C fixed (i. e. without uniformity with respect to the
parameters). More generally, we see that the method presented here would enable one to
compute the complex moments at s = 1 of general families of automorphic L-functions.
For this one requires a ”trace” formula for the family expressing the equidistribution of
the conjugacy classes of the corresponding automorphic forms inside some G♮, where G
is a compact group whose representation theory is sufficiently well understood.

• In term of uniformity in q, our Theorem 1.2 is an (slightly stronger) analog of [8] Theorem
2, which was obtained for the family of L-functions of quadratic characters. In this case
the corresponding underlying group is Z/2Z whose representation theory is trivial. In
fact, for this peculiar setting, Granville and Soundararajan obtained several results which
are far more precise than the ones presented here:

The first ones concerns the study of the behavior of the corresponding distribution func-
tion F (Z/2Z, x) when |x| → +∞. In our present context it would probably be interesting
to have more precise results about the behavior of F (Symk, x): this amounts to evaluating
more precisely Lz(1,Symk) as |z| → +∞. The latter can be done by a more sophisticated
use of the stationary phase method along with some basic facts from the representation
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theory of SU(2) (or for k = 1, 2 by using the closed formulas of Remark 7). In fact, one
should even be able to develop general arguments valid when (Symk, SU(2)) is replaced
by any (ρ, G) where G is a general compact connected Lie group and ρ is an irreducible
finite dimensional representation of G (for instance Theorem 1.5 can be extended to this
more general setting without any particular difficulty).

The second type of sharp results obtained in [8] concern the study of extreme values
of the corresponding L-functions at s = 1 (in some sense the precise shape of the analog
of the term (1 + ok(1)) in Corollary 1.6). To proceed, the authors use quite delicate tech-
niques which exploit several peculiar features of the quadratic characters: the quadratic
reciprocity law, Graham/Ringrose estimates for short characters sums of highly composite
moduli. We do not see the analog of these features in the case of modular forms; however
there is certainly room for improvements and it would be interesting to try to get, as close
as possible, the analogs of the conjectures of Montgomery/Vaughan on extreme values
at s = 1 of families of quadratic characters L-functions [23] (which have been partially
proven in [8]). For the interested reader, we note that at least one feature might be trans-
posed to the context of symmetric power L-functions of modular forms: namely the large
sieve type inequalities for large powers of sums of Hecke eigenvalues of the form

∑h

f∈Sp
2 (q)

∣∣∣
∑

n"N

an

λk
f (n)
n

∣∣∣
2l

where the (an) are arbitrary complex coefficients and l ! 1 is an integer. In the case
of characters, the complete multiplicativity readily converts such sums into a standard
quadratic type sum. The case of coefficient attached to symmetric power lifts seem more
problematic, however for the symmetric second power, analog of such large sieve inequal-
ities have been developed in [18] for different yet somewhat related purposes.

Acknowledgments. This works was started when the authors visited the Fields Institute for
Research in the Mathematical Sciences on the occasion of the 2003-Thematic Program on Au-
tomorphic Forms. We would like to thank this institution as well as the organizers (Henry Kim
and Ram Murty) for the very pleasant working conditions. We would like to thank Henry Kim,
Wenzhi Luo, Dinakar Ramakrishnan and Emmanuel Royer for several discussions related to this
work. We also wish to acknowledge that it was the various beautiful combinatorial structures
that Royer and his collaborators discovered while investigating the moments of small symmetric
powers L-functions that led us to try to find a more general approach.

2. REMARKS ON REPRESENTATIONS OF COMPACT GROUPS

Let G be a compact group and ρ be an irreducible finite dimensional representation of G of
dimension d. Since G is compact, for any g ∈ G, the eigenvalues of ρ(g) have modulus 1; in
particular

D(X, ρ, g) := det(I − X.ρ(g))−1

(the inverse of the characteristic polynomial of ρ(g)) is holomorphic and non-vanishing in the
complex disc D<1 := {X ∈ C, |X| < 1}. Consequently, for any complex number z,

D(X, ρ, g)z := det(I − X.ρ(g))−z = exp(z log D(X, ρ, g))

is holomorphic for |X| < 1. We consider the Taylor expansion of D(X, ρ, g)z near X = 0:

(2.1) D(X, ρ, g)z =
∑

α!0

λz,α
ρ (g)Xα.
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From the standard identity

log det(I − X.ρ(g))−1 =
∑

α!1

tr(ρ(gα))
α

Xα

and the trivial bound
|tr(ρ(gα))| " d = tr(ρ(eG))

it follows that |λz,α
ρ (g)| is bounded by the α-th coefficient in the Taylor expansion at X = 0 of

(2.2) exp

⎛

⎝d|z|
∑

α!1

Xα

α

⎞

⎠ = D(X, ρ, eG)|z| = (1 − X)−d|z|;

in other words one has

(2.3) |λz,α
ρ (g)| " Γ(d|z| + α)

Γ(d|z|)(α!)
=: λ|z|,α

ρ (eG) = λd|z|,α
1 (eG),

(here 1 denotes the trivial representation). One deduces from these bounds that the Taylor ex-
pansion (2.1) is convergent for all X ∈ D<1, that for such X one has

|D(X, ρ, g)z | " (1 − |X|)−d|z|,

and that for any A ! −1

(2.4) D(X, ρ, g)z =
∑

α"A

λz,α
ρ (g)Xα + OA

(
(d|z||X|)A+1

)

uniformly for |X| " 1/(d|z|).
We denote by R⟨G⟩ the (sub-)ring of central functions on G generated by the characters of

G; abusing notation we will consider freely such functions as functions on the set of conjugacy
classes G♮. R⟨G⟩ is equipped with the inner product

⟨F,G⟩ =
∫

G
F (g)G(g)dg =

∫

G♮
F (g♮)G(g♮)dg♮.

From the identity

D(X, ρ, g)z = exp

⎛

⎝z log
(∑

α!0

tr(Symαρ(g))Xα
)
⎞

⎠ ,

where we denote by Symα the α-th symmetric power representation of GLd(C), it is clear that

λz,α
ρ (·) ∈ R⟨G⟩ ⊗Z Q[z].

For instance

(2.5) λz,0 = 1, λz,1
ρ (g) = ztrρ(g), λz,2

ρ (g) = 1
2z(z − 1)trρ⊗2(g) + ztr(Sym2ρ(g));

more generality we define the coefficients µz,α
ρ,ρ′ by the formulas

λz,α
ρ (g) =

∑

ρ′

µz,α
ρ,ρ′trρ

′(g)

where ρ′ ranges over the irreducible representations of G (note that the above sum is finite); we
can view these quantities as the multiplicities of ρ′ in the virtual representation with character
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g → λz,α
ρ (g). These multiplicities (which are polynomial in z with rational coefficients) are given

by

µz,α
ρ,ρ′ = ⟨λz,α

ρ , trρ′⟩ =
∫

G
λz,α

ρ (g)trρ′(g)dg.

We have the following bound on the multiplicities
Proposition 2.1. Let G be either a finite or a compact connected Lie group and let ρ be an irreducible
d dimensional representation of G. For any α ! 0 and z ∈ C one has,

∑

ρ′

|µz,α
ρ,ρ′ | " A(α + 1)r/2λd|z|,α

1 (eG);

here A > 0 is a constant depending on the pair (G, ρ) only and r denotes the rank of G (if G is finite,
one sets r = 0).
Proof. By Cauchy’s inequality

∑

ρ′

|µz,α
ρ,ρ′ | " (

∑

ρ′

|µz,α
ρ,ρ′ |

2)1/2(
∑

ρ′

δ(µz,α
ρ,ρ′ ̸= 0))1/2,

with δ(µz,α
ρ,ρ′ ̸= 0) = 1 if µz,α

ρ,ρ′ ̸= 0 and 0 otherwise. By Plancherel, one has

(2.6)
∑

ρ′

|µz,α
ρ,ρ′ |

2 =
∫

G
|λz,α

ρ (g)|2dg "
∣∣λ|z|,α

ρ (eG)
∣∣2 =

∣∣λd|z|,α
1 (eG)

∣∣2.

It remains to bound
∑

ρ′ δ(µ
z,α
ρ,ρ′ ̸= 0). If G is finite, this is bounded by the number (A say) of

irreducible representations of G. From now on, we assume that G is a connected compact Lie
group of rank r; we denote by (Φ, V, ⟨ , ⟩) the root system of G with its real inner product space
(we set |λ| = ⟨λ,λ⟩1/2); the choice of a lexicographic ordering on a basis of V determines a set of
positive roots and a system of simple roots, ∆ say. We denote by L ⊂ V the root lattice of V (the
lattice of algebraically integral weights), and λρ ∈ L the highest weight of ρ with respect to ∆.

By construction λz,α
ρ is given by a linear combination (with coefficients in Q[z]) of the characters

of representations of the form
Symα1(ρ) ⊗ · · ·⊗ Symαk(ρ)

with α1 + α2 + · · · + αk = α. Such representations are subrepresentations of the α-th tensor
product representation (ρ)⊗α , hence

∑
ρ′ δ(µ

z,α
ρ,ρ′ ̸= 0) is bounded by the number of irreducible

representations occurring in (ρ)⊗α .
To bound this last number, we observe that the weights of (ρ)⊗α are the linear integral combi-

nations of the form ∑

λ′

αλ′λ′

where λ′ ranges over the weights of ρ and the αλ′ are non-negative integers such that
∑

λ′ αλ′ = α.
Moreover, one has for any λ′

|λ′| " |λρ|.
It follows that the norm of any weight of (ρ)⊗α is bounded by α|λρ|; in particular, this is the case
of any of the highest weights of the irreducible representations occurring in (ρ)⊗α . Hence the
number of irreducible representations occurring in αλρ, is bounded by the number of points in L
with norm bounded by2 α|λρ|. Since the number of such lattice points in bounded by

A(α|λρ| + 1)r

2in fact such points are also contained in the positive cone defined by ∆ but we won’t need this here



14 J. COGDELL AND P. MICHEL

for some A depending on L, the proof of the proposition follows. #

Finally, we define for |X| < 1 the following z-moment

Dz(X, ρ) :=
∫

G
D(X, ρ, g)zdg =

∫

G♮
D(X, ρ, g♮)zdg♮;

taking the Taylor expansion (2.4), we have

Dz(X, ρ) =:
∑

α!0

λz,α
ρ Xα

say with

λz,α
ρ =

∫

G
λz,α

ρ (g)dg = µz,α
ρ,1.

In particular, when ρ is not the trivial representation, one has from (2.5)

(2.7) λz,0
ρ = 1, λz,1

ρ = 0, λz,2
ρ = 1

2

[
(FrSc(ρ)z)2 + FrSc(ρ)z

]

where

FrSc(ρ) =
∫

G
[tr(Sym2ρ(g)) − tr(∧2ρ(g))]dg

is the Frobenius-Schur indicator of ρ, i.e.,

FrSc(ρ) =

⎧
⎪⎨

⎪⎩

0 if ρ is not self-dual
1 if ρ is orthogonally self-dual
−1 if ρ is symplectically self-dual

.

From these expressions and (2.3) , one has

(2.8) |λz,α
ρ | " Γ(d|z| + α)

Γ(d|z|)(α!)
= λd|z|,α

1 ,

so that one has

(2.9) Dz(X, ρ) =
∑

α"A

λz,α
ρ Xα + OA((d|z||X|)A+1)

uniformly for d|z|X " 1.

2.1. Euler products. We define several arithmetic multiplicative functions by their values on
primes powers pα:

λz
ρ,g(p

α) = λz,α
ρ (g), λz

ρ(p
α) = λz,α

ρ ,

µz
ρ(p

α) = µz,α
ρ,1 = λz

ρ(p
α).

When ρ = 1 is the trivial representation we use the notation

λz
1(n) = λz

1,g(n) =: dz(n)

since for z a positive integer, dz(n) equals the standard z-th divisor function
∑

d1...dz=n 1. With
these notations (2.3) and (2.8) can be rewritten as

(2.10) |λz
ρ,g(n)| " dd|z|(n) and |λz

ρ(n)| " dd|z|(n).
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For ℜe(s) > 0, we also define the local factors

Lp(s, ρ, g)z =
∑

α!0

λz
ρ,g(p

α)p−αs = D(p−s, ρ, g)z

Lz
p(s, ρ) =

∑

α!0

λz
ρ(p

α)p−αs = Dz(p−s, ρ)

and when ρ = 1 these are simply given by (1 − p−s)−z. Consider Ω a space and for each prime
p ∈ P a map

g(p, ·) : ω ∈ Ω → g(p,ω) ∈ G.

We define the Euler products

L(s, ρ,ω)z :=
∏

p

Lp(s, ρ, g(p,ω))z =
∑

n!1

λz
ρ,ω(n)n−s,

Lz(s, ρ) :=
∏

p

Lz
p(s, ρ) =

∑

n!1

λz
ρ(n)n−s.

Note that for ρ = 1 we have Lz(s,1) = ζ(s)z. In view of the bound (2.3), one sees easily that
L(s, ρ,ω)z and Lz(s, ρ) are absolutely convergent for ℜe(s) > 1. Suppose now that ρ is non-trivial
and irreducible. Then one has, by (2.9) and (2.7),

Lz
p(1, ρ) = 1 +

[
(FrSc(ρ)z)2 + FrSc(ρ)z

]
/2

p2
+ O

((
d|z|
p

)3
)

,

uniformly for p ! d|z| + 1; hence Lz(s, ρ) is an absolutely convergent Dirichlet series for ℜe(s) >
1/2. Notice that Lz

p(s, ρ) may vanish for ℜe(s) > 0; however given a fixed compact K, and some
fixed δ > 0, for p sufficiently large (depending on K) one has Lz

p(s, ρ) ̸= 0 and the Euler product
Lz(s, ρ) :=

∏
p Lz

p(s, ρ), is absolutely convergent uniformly for ℜe(s) ! 1/2 + δ and z ∈ K. In
particular Lz(1,Symk) is a continuous function of z.

In fact Lz(s,Symk) has the following probabilistic interpretation; suppose that Ω is a proba-
bility space with measure µ (say) and that the functions {g(p,ω)}p∈P are independent random
variables distributed following the Haar measure on G (i.e. µ({ω, g(p,ω) ∈ A}) = µG(A) for any
measurable subset A ⊂ G). For ℜes > 1/2, one has

log Lp(s, ρ,ω) =
tr(ρ(g(p,ω)))

ps
+ O

(
1

p2s

)

and since the variables g(p, .) are independent

E(|
∑

p"X

tr(ρ(g(p,ω)))
ps

|2) =
∑

p"X

E(|tr(ρ(g(p,ω)))|2)
p2ℜe(s)

+ 2ℜe
∑

p<p′"X

E(tr(ρ(g(p,ω))))E(tr(ρ(g(p′,ω′))))
psp′s

.

By assumption (since ρ is non-trivial and irreducible)

E(tr(ρ(g(p,ω)))) =
∫

G
tr(ρ(g))dµG(g) = 0

E(|tr(ρ(g(p,ω)))|2) =
∫

G
|tr(ρ(g))|2dµG(g) = 1
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so that

E(|
∑

p"X

tr(ρ(g(p,ω)))
ps

|2) =
∑

p"X

1
p2ℜe(s)

;

this show that the Euler product L(s, ρ,ω) is a.e. convergent for ℜe(s) > 1/2, and then Lz(s, ρ) is
interpreted as

E(L(s, ρ,ω)z) =
∏

p

E(Lp(s, ρ,ω)z) =
∏

p

∫

G
Lp(s, ρ, g)zdµG(g) = Lz(s, ρ);

in particular the function of the real variable t → Lit(s, ρ) is interpreted the characteristic function
of the random variable log L(s, ρ,ω).

2.2. Representations of SU(2). We restrict here to the case where G = SU(2), the maximal
compact subgroup of SL(2,C). In that case the irreducible representations of G are the symmetric
power representations Symk of the standard representation and are of dimension d = k + 1. The
space of conjugacy classes G♮ is identified in this case with the interval [0,π] through the map

θ → g♮(θ) =
(

eiθ 0
0 e−iθ

)♮

,

and the Sato/Tate measure dg♮ is identified with 2
π sin2 θdθ, moreover

Symkg♮(θ) =

⎛

⎜⎜⎜⎝

eikθ

ei(k−2)θ

. . .
e−ikθ

⎞

⎟⎟⎟⎠

♮

,

and

trSymk(g♮(θ)) = symk(θ) :=
sin((k + 1)θ)

sin θ
.

We set ρ = Symk and we consider for z ∈ C and α ! 1, the decomposition of the character

λz,α
Symk(·) =

∑

k′

µz,α

Symk,Symk′ tr(Symk′
(·)) ∈ R⟨G⟩ ⊗Z Q[z];

then it is not difficult to see that µz,α

Symk,Symk′ = 0 whenever k′ > kα so that

(2.11) λz,α
Symk(·) =

∑

k′"αk

µz,α

Symk,Symk′ tr(Symk′
(·)).

and the bound of Proposition 2.1 becomes

(2.12)
∑

k′"αk

|µz,α

Symk,Symk′ | " (αk + 1)1/2λ(k+1)|z|,α
1 (eG)
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2.2.1. Proof of Theorem 1.5.

Proof. Since Symk is a self-dual representation of G = SU(2) one has for g ∈ G

(1 + |X|)−(k+1) " D(X,Symk, g) " (1 − |X|)−(k+1)

for −1 < X < 1 so that for any p ! 2
(

1 ± 1
p

)∓(k+1)r

" L±r
p (1,Symk) "

(
1 ∓ 1

p

)∓(k+1)r

,

hence

(2.13) log L±r
p (1,Symk) = Ok

(
r

p

)
.

One has

log L±r(1,Symk) =
∑

p"(k+1)r

log L±r
p (1,Symk) +

∑

p>(k+1)r

log L±r
p (1,Symk).

For p > (k + 1)r one has, by (2.9) and (2.7),

L±r
p (1,Symk) = 1 +

(r2 ± (−1)kr)/2
p2

+ O

((
(k + 1)r

p

)3
)

,

so that by (2.13) and the above estimate

∑

p!(k+1)r

log L±r
p (1,Symk) = Ok

⎛

⎝
∑

p!(k+1)r

r2

p2

⎞

⎠ = Ok

(
r

log r

)
.

We consider the case where p " (k + 1)r. We set

Lp,+(1,Symk) := max
g∈G

Lp(1,Symk, g)

Lp,−(1,Symk) := min
g∈G

Lp(1,Symk, g) !
(

1 +
1
p

)−(k+1)

.

We also denote by θp,± ∈ [0,π] points where these extremes are achieved:

Lp,±(1,Symk) = Lp(1,Symk, g(θp,±)).

Set ηp = p/(k + 1)2r " 1/(k + 1), then for θ ∈ I(θp,±, ηp) = [0,π] ∩ [θp,± − ηp, θp,± + ηp] one has

log Lp(1,Symk, g(θ)) = log Lp,±(1,Symk) + Ok

(
η2

p

p

)

since
∂

∂θ
log Lp(1,Symk, g(θp,±)) = 0 and

∂2

∂θ2
log Lp(1,Symk, g(θ)) ≪k

1
p

for θ ∈ [0,π]. Hence

Lp,±(1,Symk)±r

(

1 + Ok

(
η2

p

p

))±r

µst(I(θp,±, ηp)) " L±r
p (1,Symk) " Lp,±(1,Symk)±r.

Since
| log µst(I(θp,±, ηp))| ≪ − log(ηp) + 1
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we conclude
∑

p"(k+1)r

log L±r
p (1,Symk) = r

∑

p"(k+1)r

log Lp,±(1,Symk)±1 + O

(
r

log r

)
;

in the above we have used the following consequences of the Prime Number Theorem
∑

p"(k+1)r

log
(

r(k + 1)
p

)
+ 1 +

p

r(k + 1)
= O

(
r

log r

)
.

It remains to compute
∑

p"(k+1)r

log Lp,±(1,Symk)±1. For g = g(θ)

Lp(1,Symk, g) =
k∏

i=0

(

1 − e(k−2i)θ

p

)−1

=
(

1 − 1
p

)−δ2|k k∏

0"i<k/2

(
1 − 2 cos(k − 2i)θ

p
+

1
p2

)−1

.

Clearly, one has for any k

Lp,+(1,Symk) = Lp(1,Symk, g(0)) =
(

1 − 1
p

)−(k+1)

= ζp(1)k+1

and for k odd

Lp,−(1,Symk) = Lp(1,Symk, g(π)) =
(

1 +
1
p

)−(k+1)

= (ζp(2)/ζp(1))k+1.

Hence by Mertens’ Theorem, one has for any k ! 1
∑

p"(k+1)r

log Lp,+(1,Symk) = (k + 1) log log r + (k + 1)γ + Ok

(
1

log r

)

and for k odd
∑

p"(k+1)r

log Lp,−(1,Symk)−1 = (k + 1) log log r + (k + 1)(γ − log ζ(2)) + Ok

(
1

log r

)
.

When k = 2, one has

Lp,−(1,Sym2) = Lp(1,Sym2, g(π/2)) =
(

1 − 1
p

)−1(
1 +

1
p

)−2

= ζp(2)2/ζp(1),

and
∑

p"3r

log Lp,−(1,Sym2)−1 = log log r + (γ − 2 log ζ(2)) + O

(
1

log r

)
.

In the remaining case, we set

Symk
− := max

θ

(
−tr(Symkg(θ))

)
> 0

and denote by θtr
− any solution of the equation tr(Symkg(θ)) = −Symk

−. For any g ∈ G, one has
Lp(1,Symk, g) = 1 + tr(Symk(g))

p + Ok(p−2); now, by the definition of Lp,−(1,Symk) and Symk
− one
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has

0 " Lp(1,Symk(g(θtr
−))) − Lp,−(1,Symk)

=
tr(Symk(g(θtr

−))) − tr(Symk(g(θp,−)))
p

+ Ok

(
1
p2

)
" Ok

(
1
p2

)

since
tr(Symk(g(θtr

−))) − tr(Symk(g(θp,−))) " 0.

Hence

Lp,−(1,Symk) = Lp(1,Symkg(θtr
−))

(
1 + Ok

(
1
p2

))
,

from which we conclude that
∑

p"(k+1)r

log Lp,−(1,Symk)−1 = −Symk
− log log r − Symk,1

− + Ok

(
1

log r

)

for some constant Symk,1
− .

We turn now to the proof of (1.10). One has for any prime p and t ∈ R,

|Lit
p (1,Symk)| =

∣∣∣
∫

G
det(I − p−1Symk(g))−itdg

∣∣∣ " 1,

hence

log |Lit(1,Symk)| "
∑

p!|t| log |t|

log |Lit
p (1,Symk)|

=
∑

p!|t| log |t|

log
(

1 +
−t2 + (−1)kit

p2
+ Ok

(
|t|3

p3

))
= − |t|

log2 |t|
(1 + ok(1))

as |t| → +∞. #

3. SYMMETRIC POWER L-FUNCTIONS, COMPUTATION OF THE LOCAL FACTORS

In this section we compute the local factor Lv(s,Symkf) = L(s,Symkπf,v) of the symmetric
k-th power lifting by using the local Langlands correspondence in the following cases:

– v = ∞ and πf,∞ ≃ Dℓ is the discrete series of of GL2(R) weight ℓ ! 2. (In our situation
ℓ = 2.)

– v = p is non-archimedean and πf,p = χp ⊗ St2,p is an unramified twist of the Steinberg
representation St2,p of GL2(Qp). (In our situation, χp will also be quadratic.)

These are the local ramified local factors that occur in our problem.
The results in this section are surely well known. However, since we do not know of a suitable

reference we present their derivation here.

3.1. Symmetric powers of the discrete series. Let Dℓ be the discrete series representation of
GL2(R) of weight ℓ ! 2. We index the discrete series so that the representation Dℓ corresponds
to the infinite component of the automorphic representation afforded by a classical cusp form
of weight ℓ. In this paper we are primarily interested in the case ℓ = 2 but we carry out the
computation in general for possible future use.
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3.1.1. The Langlands parameters. The Langlands parameter for the discrete series Dℓ with ℓ ! 2
is the following. The Weil group WR of R can be realized as WR = C×∪ jC× with j2 = −1 ∈ C×

and jzj−1 = z for z ∈ C×. Let µ , ν ∈ C such that ℓ − 1 = µ − ν ∈ Z and 2t = µ + ν ∈ C.
Consider the two dimensional representation ρ = ρℓ,t of WR on the two dimensional vector space
V2 = ⟨e0, e1⟩ given by

ρ(z)e0 = zµzνe0 ρ(z)e1 = zνzµe1

ρ(j)e0 = e1 ρ(j)e1 = (−1)µ−νe0

or in matrix form, writing z = reiθ,

ρ(z) =
(

r2tei(ℓ−1)θ

r2te−i(ℓ−1)θ

)
ρ(j) =

(
(−1)ℓ−1

1

)
.

Then under the local Langlands correspondence ρℓ,t corresponds to Dℓ ⊗ |det |t [17] (note that
our numbering of the discrete series differs from that of [17] by a shift of one). So to obtain Dℓ

we take t = 0 and write ρ = ρℓ so that

ρℓ(reiθ) =
(

ei(ℓ−1)θ

e−i(ℓ−1)θ

)
ρℓ(j) =

(
(−1)ℓ−1

1

)
.

3.1.2. The symmetric powers. One can easily compute the symmetric powers of the discrete series
representations. By the local Langlands correspondence, we may do the calculation in terms of
the representation ρℓ of WR.

Proposition 3.1. The symmetric powers of the representation ρℓ are given by

Sym2m+1(ρℓ) =
m⊕

a=0

ρ(2a+1)(ℓ−1)+1

and

Sym2m(ρℓ) = ρ±0 ⊕
m⊕

a=1

ρ2a(ℓ−1)+1

where ρ±0 are the one dimensional representations of WR defined by ρ±0 (z) = 1, ρ+
0 (j) = 1, and

ρ−0 (j) = −1 and the choice of representation occurring in the decomposition is determined by ρ±0 (j) =
(−1)m(ℓ−1).

Proof: For any positive integer k let Sk denote the symmetric group on k letters. For any com-
plex vector space V of finite dimension let sk : V ⊗k → Symk(V ) denote projection given by
symmetrization

sk(x1 ⊗ · · ·⊗ xk) =
1
k!

∑

σ∈Sk

xσ(1) ⊗ · · ·⊗ xσ(k).

In V ⊗k
2 we let eb

k denote the tensor

eb
k = e0 ⊗ · · ·⊗ e0 ⊗ e1 ⊗ · · ·⊗ e1

where e0 is repeated k − b times and e1 is repeated b times. For example

e0
3 = e0 ⊗ e0 ⊗ e0 and e1

3 = e0 ⊗ e0 ⊗ e1.



ON THE COMPLEX MOMENTS OF SYMMETRIC POWER L-FUNCTIONS AT s = 1 21

Then a natural basis for Symk(V2) consists of the symmetrization of these k + 1 vectors, that is,
the f b

k = sk(eb
k) for b = 0, . . . , k. For example, for the symmetric cube we have the basis

f0
3 = e0 ⊗ e0 ⊗ e0

f1
3 = 1

3(e0 ⊗ e0 ⊗ e1 + e0 ⊗ e1 ⊗ e0 + e1 ⊗ e0 ⊗ e0)

f2
3 = 1

3(e0 ⊗ e1 ⊗ e1 + e1 ⊗ e0 ⊗ e1 + e1 ⊗ e1 ⊗ e0)

f3
3 = e1 ⊗ e1 ⊗ e1

It is then easy to calculate that with respect to this basis we have

Symk(ρℓ)(reiθ)f b
k = ei(k−2b)(ℓ−1)θf b

k and Symk(ρℓ)(j)f b
k = (−1)b(ℓ−1)fk−b

k .

Hence each subspace ⟨f b
k, fk−b

k ⟩, for b = 0, . . . ,
[

k
2

]
, is stable under Symk(ρℓ). If dim⟨f b

k, fk−b
k ⟩ = 2

then this affords a copy of the irreducible representation ρ(k−2b)(ℓ−1)+1. If dim⟨f b
k, fk−b

k ⟩ = 1, so
that k = 2b is even, then this is a one dimensional representation of WR. If b(ℓ − 1) is even
this is the trivial representation ρ+

0 , so ρ+
0 (z) = ρ+

0 (j) = 1. If b(ℓ − 1) is odd then this is the
representation ρ−0 defined by ρ−0 (z) = 1 and ρ−0 (j) = −1.

Hence if k = 2m + 1 is odd we have

Sym2m+1(ρℓ) =
m⊕

b=0

ρ(2m+1−2b)(ℓ−1)+1

which gives the first formula in the proposition, and if k = 2m is even, then

Sym2m(ρℓ) = ρ±0 ⊕
m−1⊕

b=0

ρ(2m−2b)(ℓ−1)+1,

with the choice of ρ±0 indicated above, which gives the second formula. #
If we interpret this result in terms of the local functorial lift, then the direct sum of Weil group

representations correspond to the isobaric sums of representations of GLd(R) [35]. Thus if we
let Symk(Dℓ) denote the symmetric k-th power lift of the discrete series of weight ℓ with ℓ ! 2
and let D+

0 denote the trivial representation of GL1(R) and D−
0 denote the sign character sgn of

GL1(R) then we have the following corollary.

Corollary 3.2. The symmetric powers of the discrete series representation Dℓ with weight ℓ ! 2 are
given by

Sym2m+1(Dℓ) =
m
$

a=0
D(2a+1)(ℓ−1)+1

and

Sym2m(Dℓ) = D±
0 $

[
m
$

a=1
D2a(ℓ−1)+1

]

where again the sign of D±
0 is equal to the sign of (−1)m(ℓ−1).

3.1.3. The L-function. Let us set

ΓR(s) = π−s/2Γ
(s

2

)
and ΓC(s) = 2(2π)−sΓ(s).

Then one can compute [17, 35]

L(s,Dℓ) = L(s, ρℓ) = ΓC

(
s +

ℓ − 1
2

)
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for ℓ ! 2,

L(s,D+
0 ) = L(s, ρ+

0 ) = ΓR(s),

and

L(s,D−
0 ) = L(s, ρ−0 ) = ΓR(s + 1).

Then from the above calculation we arrive at

L(s,Sym2m+1(Dℓ)) =
m∏

a=0

L(s,D(2a+1)(ℓ−1)+1)

=
m∏

a=0

ΓC

(
s +

(2a + 1)(ℓ − 1)
2

)

and similarly

L(s,Sym2m(Dℓ)) = L(s,D±
0 )

m∏

a=1

L(s,D2a(ℓ−1)+1)

=

⎧
⎪⎨

⎪⎩

ΓR(s)
∏m

a=1 ΓC (s + a(ℓ − 1)) m(ℓ − 1) even

ΓR(s + 1)
∏m

a=1 ΓC (s + a(ℓ − 1)) m(ℓ − 1) odd
.

If we now specialize these to the case ℓ = 2 and use the definitions of ΓR and ΓC we arrive at
the formulas in Hypothesis Symk(f).

3.1.4. The root numbers. We would now like to compute the local root numbers for the symmetric
powers of the discrete series representations. Let ψ(x) be the standard additive character for R,
namely ψ(x) = e(x) = e2πix. Then one knows, from [17] for example, that

ε(s,Dℓ,ψ) = iℓ for ℓ ! 2,

while

ε(s,D+
0 ,ψ) = 1 and ε(s,D−

0 ,ψ) = i.

Note that these are in fact independent of s, and so equal to the local root number (the value at
s = 1/2) as well. Then from the calculation of the symmetric powers and the multiplicativity of
the local ε–factors over isobaric sums ($) we arrive at

ε(s,Sym2m+1(Dℓ),ψ) =
m∏

a=0

ε(s,D(2a+1)(ℓ−1)+1 ,ψ) =
m∏

a=0

i(2a+1)(ℓ−1)+1

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

iℓ m ≡ 0 (mod 4)
−1 m ≡ 1 (mod 4)
−iℓ m ≡ 2 (mod 4)
1 m ≡ 3 (mod 4)

.
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and similarly

ε(s,Sym2m(Dℓ),ψ) = ε(s,D±
0 ,ψ)

m∏

a=1

ε(s,D2a(ℓ−1)+1,ψ) = ε(s,D±
0 ,ψ)im(m+1)(ℓ−1)+m

=

{
1 ℓ even
im ℓ odd

.

To obtain the formula for ε(1
2 ,Symkπf,∞,ψ∞) used in Hypothesis Symk(f) we specialize these

to the case ℓ = 2 and find

ε(1
2 ,Symkπf,∞,ψ∞) = ε(1

2 ,Symk(D2),ψ) =

{
−1 k ≡ 1, 3 (mod 8)
1 k ̸≡ 1, 3 (mod 8)

.

3.2. Symmetric powers of the Steinberg representation. Now consider the Steinberg repre-
sentation of GL2(Qp). Representation theoretically this is the irreducible quotient of the in-
duced representation IndGL2

B2
(| |−1/2, | |1/2) associated to the segment ∆ = [ν−1/2, ν1/2] where,

as is common, we have used ν(x) = |det(x)| to denote the absolute value character of any
GLd. This is commonly denoted δ(1, 2). In general if ρ is a supercuspidal representation of some
GLd(Qp) then δ(ρ, a) is the discrete series representation of GLda(Qp) associated to the segment
∆ = [ν−(a−1)/2ρ, ν(a−1)/2ρ] which is the irreducible quotient of the induced representation

Ind(ν−(a−1)/2ρ ⊗ ν((−(a−1)/2)+1)ρ ⊗ · · ·⊗ ν(a−1)/2ρ).

Note that, in our notation, St2,p = δ(1, 2) and Stn,p = δ(1, n) is the Steinberg representation of
GLn(Qp) which is the irreducible quotient of IndGLn

Bn
(ν−(n−1)/2 ⊗ · · · ⊗ ν(n−1)/2).

If we consider the twisted Steinberg χp ⊗ Stn,p for a character χp of Q×
p then χp ⊗ Stn,p =

δ(χp, n) is the representation of GLn(Qp) given by the irreducible quotient of

IndGLn
Bn

(χpν
−(n−1)/2 ⊗ · · ·⊗ χpν

(n−1)/2).

3.2.1. The special representation of the Weil-Deligne group. Under the local Langlands correspon-
dence for GL2, the Steinberg representation of GL2(Qp) corresponds to a twist of the special
representation sp(2) of the Weil-Deligne group W ′

p of Qp [20, 35]. Recall that a representation of
the Weil-Deligne group corresponds to a pair (ρ, N) consisting of a representation ρ of the Weil
group WQp of Qp on a complex vector space V and a nilpotent endomorphism N of V such that
ρ(w)Nρ(w)−1 = ||w||N .

In general, the special representation sp(n) = (ρn, Nn) is the n-dimensional representation of
W ′

Qp
realized on the space Vn = ⟨e0, e1, . . . , en−1⟩ by

ρn(w)ei = ||w||iei and Nnei = ei+1

with the convention that en = 0. As is now common, we normalize the local class field theory
isomorphism so that the geometric Frobenius Φp = Frob−1

p corresponds to the uniformizer ϖp = p,
so that ||Φp|| = |p| = p−1. Then the L-function of sp(n) is given by

L(s, sp(n)) = det(I − p−sρn(Φp)|Ker(Nn)Ip)−1 = (1 − p−(n−1)p−s)−1 = ζp(s + n − 1).

In particular, sp(2) is realized on V2 = ⟨e0, e1⟩ by

ρ2(w)e0 = e0, ρ2(w)e1 = ||w||e1, N2e0 = e1, and N2e1 = 0

and L(s, sp(2)) = ζp(s + 1).
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If we let ωp be a character of W ′
Qp

, which we also view as a character of Q×
p via local class field

theory, then we may twist the special representation by ωp to obtain ωp ⊗ sp(n) = (ωp ⊗ ρn, Nn).
In this case, we have

L(s,ωp ⊗ sp(n)) = det(I − p−sωp(Φp)ρn(Φp)|Ker(Nn)Ip)−1 = L(s + n − 1,ωp).

3.2.2. The Langlands parameters. The special representation sp(n) corresponds to the irreducible
quotient of the induced representation Ind(1⊗ ν ⊗ · · ·⊗ νn−1). Thus Stn,p = δ(1, n), which is the
irreducible quotient of

Ind(ν−(n−1)/2 ⊗ · · ·⊗ ν(n−1)/2) = ν−(n−1)/2 ⊗ Ind(1 ⊗ ν ⊗ · · ·⊗ νn−1),

corresponds to the representation || ||−(n−1)/2 ⊗ sp(n) under the local Langlands correspondence
and the twisted Steinberg χp ⊗ Stn,p corresponds to χp|| ||−(n−1)/2 ⊗ sp(n) [20, 35]. Then

L(s, Stn,p) = L(s, || ||−(n−1)/2 ⊗ sp(n)) = L

(
s − n − 1

2
, sp(n)

)
= ζp

(
s +

n − 1
2

)

and similarly

L(s,χp ⊗ Stn,p) = L

(
s +

n − 1
2

,χp

)
.

In particular

L(s, St2,p) = ζp

(
s +

1
2

)
and L(s,χp ⊗ St2,p) = L

(
s +

1
2
,χp

)
.

3.2.3. The symmetric powers. In order to compute the symmetric powers of the Steinberg St2,p

or its twist χp ⊗ St2,p we will use the local Langlands correspondence. Thus our first task is to
compute the symmetric powers of the special representation sp(2) of W ′

Qp
. Again, this must be

well known.

Proposition 3.3. Symk(sp(2)) = sp(k + 1).

Proof: First, note that the tensor product of two Weil-Deligne representations is given by

(ρ, N) ⊗ (ρ′, N ′) = (ρ ⊗ ρ′, N ⊗ 1 + 1 ⊗ N ′).

Thus the k-th tensor power of a Weil-Deligne representation (ρ, N) is given by (ρ⊗k, N⊗k) where
we have set

N⊗k = N ⊗ 1 ⊗ · · ·⊗ 1 + 1 ⊗ N ⊗ · · ·⊗ 1 + · · · + 1 ⊗ 1 ⊗ · · ·⊗ N.

As before, for any complex vector space V of finite dimension let sk : V ⊗k → Symk(V ) denote
projection given by symmetrization

sk(x1 ⊗ · · ·⊗ xk) =
1
k!

∑

σ∈Sk

xσ(1) ⊗ · · ·⊗ xσ(k).

In V ⊗k
2 if we let ei

k denote the tensor

ei
k = e0 ⊗ · · ·⊗ e0 ⊗ e1 ⊗ · · ·⊗ e1

where e0 is repeated k − i times and e1 is repeated i times, then a natural basis for Symk(V2)
consists of the symmetrization of these k + 1 vectors, that is, the f i

k = sn(ei
k)for i = 0, . . . , k.

In this basis it is elementary to compute that

Symk(ρ2)(w)f i
k = ||w||if i

k
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and only slightly more difficult to compute that

Symk(N2)f i
k = N⊗k

2 f i
k = (k − i)f i+1

k .

Hence by scaling the f i
k appropriately we find

Symk(sp(2)) = (Symk(ρ2),Symk(N2)) ≃ (ρk+1, Nk+1) = sp(k + 1)

which completes the proof of the proposition. #
If we now apply this to the computation of the local symmetric powers of St2,p or χp ⊗St2,p via

the local Langlands correspondence, we have the following corollary.

Corollary 3.4. Symk(St2,p) = Stk+1,p and Symk(χp ⊗ St2,p) = χk
p ⊗ Stk+1,p.

Proof: From the fact that Symk(sp(2)) = sp(k + 1) it follows that for any character ωp of W ′
Qp

,
which we also view as a character of Q×

p , we have

Symk(ωp ⊗ sp(2)) = ωk
p ⊗ Symk(sp(2)) = ωk

p ⊗ sp(k + 1).

Since || ||−1/2⊗sp(2) corresponds to St2,p under the local Langlands correspondence and || ||−k/2⊗
sp(k + 1) corresponds precisely to Stk+1,p under the local Langlands correspondence, this gives
both Symk(St2,p) = Stk+1,p and Symk(χp ⊗ St2,p) = χk

p ⊗ Stk+1,p. #
Since we know the L-function associated to the special representations of W ′

Qp
and the Stein-

berg representations of GLn(Qp) we also obtain the following corollary.

Corollary 3.5. We have

L(s,Symk(St2,p)) = L(s, Stk+1,p) = ζp

(
s +

k

2

)

and in general

L(s,Symk(χp ⊗ St2,p)) = L(s,χk
p ⊗ Stk+1,p) = L

(
s +

k

2
,χk

p

)
.

3.2.4. The root number and conductor of the Steinberg representation. We now want to compute
the root number and conductor of either the symmetric powers of the Steinberg representation
Symk(St2,p) = Stk+1,p or the twisted version Symk(χp⊗St2,p) = χk

p⊗Stk+1,p. In order to consider
both situations simultaneously, we will compute the conductor of a simple twist ωp⊗Stk+1,p which
we can then specialize to ωp = 1 or ωp = χk

p. In the situation in which we are interested, χp is
quadratic and unramified, as is 1. Hence we can, and will, assume that ωp is unramified. In order
to simplify notation, let us also write, as is common, ωp ⊗ Stk+1,p = ωpStk+1,p.

The root number and conductor are defined in terms of the ε-factor of a representation. In
general, for an irreducible admissible generic representation πp of GLn(Qp) and for a normalized
unramified additive character ψp of Qp we have,

ε(s,πp,ψp) = ε(1
2 ,πp,ψp)p−f(πp)(s−1/2)

with ε(1
2 ,πp,ψp) the local root number and f(πp) the conductor.

For the Steinberg and its twist, if we compute the associated γ-factor, which we can do by
multiplicativity [13], then we have

γ(s,ωpStk+1,p,ψp) =
ε(s,ωpStk+1,p,ψp)L(1 − s,ω−1

p Stk+1,p)
L(s,ωpStk+1,p)
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and since we know the formula for the L-function we can then compute the ε-factor and hence
the root number and conductor.

Since ωpStk+1,p is the irreducible quotient of Ind(ωpν−k/2 ⊗ · · · ⊗ ωpνk/2) then by the multi-
plicativity of the local γ-factor [13], and assuming ψp is a normalized unramified character of Qp,
we have

γ(s,ωpStk+1,p,ψp) =
k∏

j=0

γ(s,ωpν
j−(k/2),ψp) =

k∏

j=0

ε(s,ωpνj−(k/2),ψp)L(1 − s,ω−1
p νj−(k/2))

L(s,ωpνj−(k/2))

=
k∏

j=0

L
(
1 − s + j − k

2 ,ω−1
p

)

L
(
s + j − k

2 ,ωp
)

=
L(1 − s,ω−1

p Stk+1,p)
L(s,ωpStk+1,p)

k−1∏

j=0

L
(
1 − s + j − k

2 ,ω−1
p

)

L
(
s + j − k

2 ,ωp
)

and thus

ε(s,ωpStk+1,p,ψp) =
k−1∏

j=0

L
(
1 − s + j − k

2 ,ω−1
p

)

L
(
s + j − k

2 ,ωp
) .

For each index 0 " j " k − 1 we have

L

(
1 − s + j − k

2
,ω−1

p

)
=
(
1 − ω−1

p (p)p−(1−s+j− k
2 )
)−1

=
[
−ωp(p)p(1−s+j− k

2 )
] (

1 − ωp(p)p−s+(j+1)− k
2

)−1

=
[
−ωp(p)p(1−s+j− k

2 )
]
L

(
s +

k

2
− (j + 1),ωp

)
.

Since
k−1∏

j=0

L

(
s + j − k

2
,ωp

)
=

k−1∏

j=0

L

(
s +

k

2
− (j + 1),ωp

)

we see that

ε(s,ωpStk+1,pψp) =
k−1∏

j=0

[
−ωp(p)p(1−s+j− k

2 )
]

which simplifies to
ε(s,ωpStk+1,p,ψp) = (−ωp(p))kp−k(s−1/2).

From here, we see that for the twisted Steinberg ωpStk+1,p the local root number and the
conductor are

ε(1
2 ,ωpStk+1,p,ψp) = (−ωp(p))k and f(ωpStk+1,p) = k.

If we specialize this to the cases of interest, we have the following proposition.

Proposition 3.6. (i) The local root number and conductor for Symk(St2,p) = Stk+1,p are

ε(1
2 ,Symk(St2,p),ψp) = (−1)k and f(Symk(St2,p)) = k.

(ii) If χp is the non-trivial unramified quadratic character of Q×
p , so χp(p) = −1, then the root

number and conductor of Symk(χpSt2,p) = χk
pStk+1,p are

ε(1
2 ,Symk(χpSt2,p),ψp) = (−1)kχp(p)k

2
= 1 and f(Symk(χpSt2,p)) = k.
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4. BOUNDS FOR SYMMETRIC POWER L-FUNCTIONS

In this section we quote a few results about the size the individual values L(s,Symkf) when
ℜe(s) is close to 1. The first is the upper bound (1.3).

Lemma 4.1. For f ∈ Sp
2(q) satisfying Hypothesis Symk(f) , one has

L(s,Symkf) ≪k (log q(|s| + 2))k+1,

uniformly for ℜe(s) ! 1 − 1/ log(q(|s| + 2)).

Proof. It suffices to consider s such that 3
2 > ℜe(s) ! 1 − 1/ log(q(|s| + 2)), the complementary

range being understood. Then by standard contour shifts one has for any ε > 0

∑

n!1

λk
f (n)
ns

e−n/X =
1

2πi

∫

(2)

L(u + s,Symkf)Γ(u)Xudu

= L(s,Symkf) +
1

2πi

∫

(1/2−ℜe(s))

L(u + s,Symkf)Γ(u)Xudu

= L(s,Symkf) + Ok,ε

(
(q|s|)εqk/4|s|(k+1)/4X1/2−ℜe(s)

)
;

the last estimate coming from the convexity bound (see [22] for instance): for ℜe(u) = 1/2

L(u,Symkf) ≪k,ε qk/4+ε|u|(k+1)/4+ε.

The bound follows by taking X = qk/2+1 and by using |λk
f (n)/ns| " dk+1(n)/nℜe(s). #

Under the assumption that L(s,Symkf) has no zeros in the standard zero-free region, we derive
the following lower bounds —these are certainly know to other people but we have not found it
in the literature—

Lemma 4.2. Let f ∈ Sp
2(q) satisfying Hypothesis Symk(f) . Suppose that there exists Ak > 0 such

that L(s,Symkf) does not vanish in the interval [1 − Ak/ log q, 1]. Then there is a constant Ck > 0
such that

L(s,Symkf) ≫k (log q(|s| + 2))−Ck ,

uniformly for ℜe(s) = 1. Here the implied constant and Ck depend only on k and Ak.

Proof. For simplicity, we give the details of the arguments for s = 1 and present the main modifi-
cation needed to get the general case.

The proof is a variant of Proposition 1.1 of [10]. Since L(s,Symkf) is automorphic, the stan-
dard Hadamard/de la Vallée-Poussin method (see [22] for instance ) and our assumptions show
that L(s,Symkf) does not vanish in the domain ℜe(s) ! 1 − Ak/ log(q(|s| + 3)) (up to a change
in the definition of Ak).

Let L1/(k+1)(s,Symkf) be the (k+1)-th root of L(s,Symkf) which takes the value 1 as s → +∞,
one sees that D(s) = ζ(s)L1/(k+1)(s,Symkf) is holomorphic, except for a simple pole at s = 1,
and, by Lemma 4.1, is bounded by by

(4.1) D(s) ≪k log |s| log(q(|s| + 1))/|s − 1|

in this domain. Moreover, by using the bound (which follows from the truth of the Ramanu-
jan/Petersson conjecture) |tr(Symk(gf (p)α))| " k + 1 one sees that, for ℜe(s) > 1, D(s) can be
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written as an absolutely convergent Dirichlet series

D(s) =
∑

n!1

ηk
f (n)n−s

where the coefficients ηk
f (n) are non-negative, bounded by the divisor function d(n) = d2(n) and

such that ηk
f (1) = 1. We set β = 1 − 1/ log2(3q) and X = exp(log2 q) and we consider

1
2πi

∫

(2)

D(s + β)Γ(s)Xsds =
∑

n!1

ηk
f (n)
nβ

e−n/X ! e−1/X ≫ 1.

We shift the line of integration to the left, up to the path given by

C := [−i∞,−i log2 q] ∪ [−i log2 q,−
A′

k

4 log(2q)
− i log2 q]

∪ [−
A′

k

4 log(2q)
− i log2 q,−

A′
k

4 log(2q)
+ i log2 q]

∪ [−
A′

k

4 log(2q)
+ i log2 q,+i log2 q] ∪ [+i log2 q,+i∞],

and in doing so we hit a pole at s = 1 − β and at s = 0 getting

1 ≪ L1/(k+1)(1,Symkf)Γ(1 − β)X1−β + D(β) +
1

2πi

∫

C

D(s + β)Γ(s)Xsds.

Note that D(β) < 0 (since D(s) has a simple pole at s = 1, takes positive values for s > 1 and does
not vanish on [1 − Ak/ log q, 1]) and moreover, by using (4.1) and Stirling’s formula, the integral
along C is bounded by

Ok

(
log4 q exp

(
−Ak

10
log q

))
= ok(1).

Consequently, one gets

1 ≪ L1/(k+1)(1,Symkf)X1−β

1 − β
≪ L1/(k+1)(1,Symkf)

1 − β

which gives (1.5) with Ck = 2(k + 1).
Given s0 = 1 + iτ0, the proof of the lower bound for L(s0,Symkf) follows the same method as

above, but with a different choice for the function D(s): one considers the function

D(s) = ζ(s)
(
L(s + iτ0,Symk)L(s − iτ0,Symk)

)1/2(k+1)

which is holomorphic for ℜe(s) ! 1 − Ak/ log(q(1 + |τ0| + |s|)) and has non-negative Dirichlet
coefficients. Taking β = 1 − 1/ log2(q(2 + |τ0|)), the same method shows that

|L(1 + iτ0,Symk)|2 ≫k 1/ log4(k+1)(q(|τ0| + 2)).

#
Remark 10. The proof of Lemma 4.2 uses an auxiliary Dirichlet series D(s) with non-negative
coefficients. In our case, we have taken advantage of the Ramanujan/Petersson conjecture to
exhibit a simple choice of D(s); however other choices are possible which enables one to avoid
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this conjecture (but then one has to assume other instances of functoriality): for example, one
may consider

D(s) = L(s,Symk/2f × Symk/2f) =
∏

i=0,...,k
i even

L(s,Symif)

if k is even and if k is odd

D(s) =
(
L
(
s, (Sym(k−1)/2f $ Sym(k+1)/2f) × (Sym(k−1)/2f $ Sym(k+1)/2f)

))1/2
.

One can improve substantially the above upper and lower bound when the L-function has a
large zero-free region; this is the content in the following lemma. It is proved in [7] (Lemmas 8.1
and 8.2) in the case of L-functions of Dirichlet characters; the proof in our case is entirely similar
(because the Ramanujan/Petersson conjecture holds in our case) so we omit it.

Lemma 4.3. Given q squarefree and f ∈ Sp
2(q) such Hypothesis Symk(f) is satisfied, let s = σ + it

with σ > 1/2 and |t| " 2q. Let y ! 2 be a real number, and let 1/2 " σ0 < σ. Suppose that there
are no zeros of L(u,Symkf) inside the rectangle {u : σ0 " ℜe(u) " 1, |ℑm(u) − t| " y + 3}. Put
σ1 = min(σ+σ0

2 ,σ0 + 1
log y ). Then

log L(s,Symkf) =
y∑

n=2

Λk
f (n)

ns log n
+ O

(
log q

(σ − σ0)2
y−(σ−σ1)

)
.

Here the implied constant depends on k only and Λk
f (n) is the n-th Dirichlet coefficient of minus the

logarithmic derivative of L(s,Symkf): if n is not a prime power, Λk
f (n) = 0, otherwise

Λk
f (pα) = tr(Symk(gα

f (p))) log p.

Corollary 4.4. Given η > 2(log2 q)−1 and f ∈ Sp
2(q) satisfying Hypothesis Symk(f) and such that

L(s,Symkf) has no zero in the rectangle {s : ℜe(s) ∈ [1 − η, 1], |ℑm(s)| " log2004/η q} then

| log L(s,Symkf)| ≪k,η log3(q)

uniformly for ℜe(s) ! 1 − 1/ log2 q and |ℑm(s)| " log10 q, the implied constant depending on k, η.

Proof. We apply Lemma 4.3 with σ0 = 1 − η, σ = ℜe(s) ! 1 − 1/ log2 q, σ − σ0 ! σ − σ1 ! η/2
and y = log10/η q. Since |Λk

f (pα)| " (k + 1) log p we have

| log L(s,Symkf)| =
∣∣∣

y∑

p=2

Λk
f (p)

ps log p

∣∣∣+ Oη,k(1)

" (k + 1)
log10/η q∑

p=2

1
p1−1/ log2 q

+ Oη,k(1) ≪k,η log3 q.

#
Next, we consider the problem of the existence of an exceptional zero for L(s,Symkf). As we

have said, for k = 1, 2, 4, L(s,Symkf) has no exceptional zero. We consider the case k = 3 and
prove

Lemma 4.5. Given f ∈ Sp
2(q), there exist an absolute constant A > 0 such that L(s,Sym3f) has a

zero (β say) in the interval [1 − A/ log q, 1] if and only if L(s,Sym5f) has a pole at β. Moreover if
this zero (or pole) exists it is necessarily simple.
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Proof. Since L(s,Sym3f) is automorphic cuspidal, if it has an exceptional zero β, this zero is
necessarily simple. By Rankin/Selberg theory, the L-function L(s,Sym2f×Sym3f) is holomorphic
everywhere and factors as L(s, f)L(s,Sym3f)L(s,Sym5f); this proves the ”if” part since L(s, f)
has no exceptional zero.

To prove the ”only if” part we follow the general strategy of [11], Section 4, and we consider
the representation Π = 1 $ Sym2πf $ Sym3πf and the L-function L(s,Π × Π), which has non-
negative Dirichlet coefficients and factors as

ζ(s)L(s,Sym2f × Sym2f)L(s,Sym3f × Sym3f)L(s,Sym2f)2L(s,Sym3f)2L(s,Sym2f × Sym3f)2

= ζ(s)3L(s, f)2L(s,Sym2f)4L(s,Sym3f)4L(s,Sym4f)2L(s,Sym5f)2L(s,Sym6f)3.
We appeal to Theorem D of [27] which shows that L(s,Sym6f) is holomorphic on the interval
[1−A/ log q, 1] for some A > 0; then Lemma c of [11] concludes the ”only if” part since L(s,Π×Π)
has a pole of order 3, and an exceptional zero of L(s,Sym3f) would provide a zero of order 4
near 1 (the latter is not canceled by any exceptional pole by assumption). #

5. A ZERO DENSITY RESULT AND SOME CONSEQUENCES

5.1. Multiplicity one for Symmetric powers. A principal tool for our purpose is the zero density
result below (Proposition 5.3) which shows that on average over f ∈ Sp

2(q), the L(s,Symkf) have
very few zeros close to 1. But first we need to show that any L(s,Symkf0) cannot occurs with too
high a multiplicity in the multiset

{L(s,Symkf) : f ∈ Sp
2(q)};

in other words we need to be able to distinguish two modular forms f and g by their local
symmetric k-th power lifts. This is the content of the next proposition and its corollary.

Proposition 5.1. Let f and g be two holomorphic primitive forms of even weight 2l and trivial
nebentypus, one of them, f say, not of CM type [28]. Suppose that, for some given k ! 1, one has

(5.1) Lp(s,Symkf) = Lp(s,Symkg)

for every prime p outside a set of density 0. Then there exist a character χ, of order at most 2, such
that g = f ⊗ χ. (If k is odd then χ is trivial.)

Such statement is certainly known to other people; in fact D. Ramakrishnan kindly informed
us that he had a proof of this result. For squarefree levels one has the following immediate
consequence.

Corollary 5.2. Suppose moreover that the level of f and g are squarefree, then f = g.

Proof. Our proof is by recursion on k. The case k = 1 is classical and the case k = 2 (from which
the case k = 1 follows) was proved in a stronger form by Ramakrishnan [24, 25]. Our assumption
is that outside a set of primes of density 0, the conjugacy classes Symk(gf (p))♮ and Symk(gg(p))♮
coincide, or in other terms one has equality of the multisets

{αk
f (p),αk−2

f (p), . . . ,α−(k−2)
f (p),α−k

f (p)} = {αk
g(p),αk−2

g (p), . . . ,α−(k−2)
g (p),α−k

g (p)}

We distinguish between two cases
(1) αk

f (p) = α±k
g (p).

(2) αk
f (p) = αk′

g (p) for some k′ ≡ k(2) with |k′| < k.
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Suppose we are in Case 2: we may assume that k′ > 0. Suppose that k is odd. Then αf (p) =
αk′′

g (p) for some k′′ ≡ k(2) and 1 < |k′′| " k (otherwise we would be in the first case). Then we
have

αkk′′−k′
g (p) = 1

and since |k′′| > 1 and |k′| < k, we have kk′′ − k′ ̸= 0 and hence αf (p), αg(p) are roots of unity
of order at most k2 + k. If k is even the same conclusion follows (more precisely α2

f (p), α2
g(p) are

roots of unity of order at most (k/2)2 + (k/2)). Next we show that Case 2 almost never happens:
recall that for ℓ a prime, there exists a finite extension Eλ of Qℓ and a Galois representation
ρf : Gal(Q/Q) → GL2(Eλ), unramified at primes not dividing ℓqf , such that for such p

tr(ρf (Frobp)) = (
√

p)2l−1(αf (p) + α−1
f (p)) and det(ρf (Frobp)) = p2l−1.

Since f is not of CM type, by a theorem of Ribet [28], Im(ρf ) is open in GL2(Eλ). We consider
the polynomial in two variables with coefficients in Z:

H(X,T ) =
∏

j"k2+k

∏

ζ∈µj

(
X2 − (ζ + ζ−1)2T

)
=

∏

j"k2+k

j∏

m=1

(
X2 − 4 cos2

(
2πim

j

)
T

)

where µj denotes the group of j-th roots of unity. If p is a prime satisfying Case 2 one has

H(tr(ρf (Frobp)),det(ρf (Frobp))) = 0,

and by the method of Serre ([33], Section 7.3), the set of such primes has zero density. Thus
outside a set of prime of density 0, we are in Case 1. Hence for such primes, one has the equality
of the multisets

{αk−2
f (p), . . . ,α−(k−2)

f (p)} = {αk−2
g (p), . . . ,α−(k−2)

g (p)},

i.e., Lp(s,Symk−2f) = Lp(s,Symk−2g), and we conclude by recursion. #

5.2. Approximation of L(s,Symkf)z by short sums of Hecke eigenvalues. We can now state
the following zero density result which is a immediate consequence of Theorem 2 of [19] and of
Corollary 5.2.

Proposition 5.3. For q a square-free integer, we assume that Hypothesis Symk(f) hold for all f ∈
Sp

2(q). For T ! 1 and σ > 1/2, we denote by N(Symkf ;σ, T ) the number of zeros of L(s,Symkf)
in the half-strip R(σ, T ) := {s : ℜe(s) ! σ, |ℑm(s)| " T}. Then for σ > 3/4 there exist constants
A,B > 0 depending on k only such that

∑

f∈Sp
2 (q)

N(Symkf ;σ, T ) ≪k TBqA(1−σ)/(2σ−1).

For instance one can take A = 5k(k + 1) + 2.

Given a fixed 0 < η < 1/4, we denote by Sp,+
2 (q)(η) (or Sp,+

2 (q) if the context is clear) the
subset of f ∈ Sp

2(q) such that L(s,Symkf) has no zeros in the half-strip R(1− η, (log q)2004/η) and
denote by Sp,−

2 (q)(η) (or Sp,−
2 (q)) the complementary subset. Hence we have

Corollary 5.4. Let q be a square-free integer such that Hypothesis Symk(f) hold for all f ∈ Sp
2(q).

For any 0 < η " 1/(2A + 2) there exist δ = δ(η) > 0 such that the number of f ∈ Sp
2(q) for which

L(s,Symkf) has at least one zero in the half-strip R(1 − η, (log q)2004/η) is bounded by ≪k,η q1−δ,
i.e., |Sp,−

2 (q)| ≪k,η q1−δ.
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Remark 11. We would like to point out that the multiplicity one result for symmetric powers,
Corollary 5.2, is important in establishing the zero density result above and the Corollary 5.4:
this is tied in with the duality method used in the proof of the large sieve inequality leading to
Theorem 2 of [19]. This issue seem to have been missed in [21] (see loc. cit. p. 225) in the case
of symmetric square lifts of Maass forms; fortunately, multiplicity one for symmetric squares of
Maass forms had been established later by Ramakrishnan [25]. In fact, for the proof of Corollary
5.4, it is sufficient —instead of Corollary 5.2— to have a bound of the form O(q1−δ) (for some
δ > 0 possibly depending on k) for the number of f ∈ Sp

2(q) having a given symmetric k-th power
lift. Such (much) weaker statement can be established easily by means of large sieve techniques
(see [22] Lecture 3 for instance) : an amplifier can be built out of the following relation, valid for
f, g ∈ Sp

2(q) and any prime p ̸ | q for which Lp(s,Symkf) = Lp(s,Symkg),

tr(Symk(gg(p)))tr(Symk(gf (p))) +
k∑

j=1

(−1)tr(Sym2j(gf (p))) =

λg(pk)λf (pk) +
k∑

j=1

(−1)λf (p2j) = 1

(5.2)

(under the above assumptions, one has tr(Symk(gg(p))) = tr(Symk(gf (p))), and (5.2) follows
from the well known identity between SL(2)-representations

(Symk)⊗2 =
k⊕

j=0

Sym2j ).

This latter method is interesting as it can be applied to Maass forms as well, thus enabling one
to generalize Theorem 1.2 to symmetric power lifts of Maass forms with large level or with large
eigenvalues (as in [21]). Indeed, in the case of Maass forms, an unconditional proof of Proposition
5.1 seems problematic.

For the complementary subset Sp,+
2 (q), we have from Corollary 4.4,

| log L(s,Symkf)| ≪k,η log3(q),

uniformly for ℜe(s) ! 1 − 1/ log2 q and |ℑm(s)| " log10 q.
Given z ∈ C, we consider L(s,Symkf)z which we write as a Dirichlet series

L(s,Symkf)z =
∑

n!1

λk,z
f (n)
ns

,

say where the λk,z
f (n) are the multiplicative functions given on prime powers by

λk,z
f (pα) = λz,α

Symk(g♮
f (p))

if p ̸ |q and by

(5.3) λk,z
f (pα) = dz(pα)λf (pkα)

if p|q (cf. (1.1)).

Proposition 5.5. Under the assumptions of Proposition 5.3, there exist 0 < η " 1/(2A + 2) such
that for any z ∈ C, any X ! 1, and any f ∈ Sp,+

2 (q), one has

L(1,Symkf)z = Lz
f (X) + Rz

f (X)
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where

(5.4) Lz
f (X) =

∑

n!1

λk,z
f (n)
n

e−n/X

and

(5.5) Rz
f (X) ≪k,η (log2(q) log2 q) exp

(
Ok(|z|log3 q) − log X

log2 q

)
+exp

(
Ok(|z|log2 q) − π

log2 q

8

)
.

Proof. We use the integral representation

Lz
f (X) =

1
2πi

∫

(2)

L(s + 1,Symkf)zΓ(s)Xsds.

Shifting the contour to C, where C is the path joining

−i∞, −i(log q)2, −η′ − i(log q)2, −η′ + i(log q)2, +i(log q)2, +i∞
with η′ = 1/ log2(q), we obtain

L(1,Symkf)z = Lz
f (X) + Rz

f (X)

with
Rz

f (X) =
1

2πi

∫

(C)

L(s + 1,Symkf)zΓ(s)Xsds.

To conclude the proof of (5.5), we use Stirling’s formula together with Lemmas 4.1 and 4.2 when
s is on the segments [−i∞, −i(log q)2] ∪ [+i(log q)2, +i∞] and Corollary 4.4 when s is on

[−η′ − i(log q)2,−i(log q)2] ∪ [−η′ − i(log q)2,−η′ + i(log q)2] ∪ [−η′ + i(log q)2, i(log q)2].

#
Finally we recall some easy bounds about the divisor functions dz(n) borrowed from [8]:

(5.6) |dz(n)| " d|z|(n) " dl(n)

for any integer l ! |z|. For any positive numbers a, b one has da(n)db(n) " da+b(n). Moreover one
has

(5.7)
∑

n"X

dl(n)/n "

⎛

⎝
∑

n"X

1/n

⎞

⎠
l

" (log 3X)l

and for any r ! 0,
∑

n!1

dl(n)nre−n/X ≪r (2(r + 1)X log X)r+1
∑

n"2(r+1)X log X

dl(n)
n

e−n/X

+
∑

n!2(r+1)X log X

dl(n)
n

e−n/(2X)

which gives

(5.8)
∑

n!1

dl(n)nre−n/X ≪r (X log X)r+1(2 log X)l.
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6. COMPUTATION OF THE MOMENTS

6.1. Proof of Theorem 1.2. Our goal is to evaluate

Mz
k (q) =

∑h

f∈Sp
2 (q)

L(1,Symkf)z.

The strategy is well known and as follows: we split the summation between the subset Sp,+
2 (q)

and Sp,−
2 (q). The latter sum is estimated trivially using (1.3) or (1.5) and Corollary 5.4. For

f ∈ Sp,+
2 (q), Proposition 5.5 shows that L(1,Symkf)z is well approximated by a very short Dirich-

let polynomial. We then average the corresponding short sums over the whole of Sp
2(q) (the cor-

responding contribution from Sp,−
2 (q) being negligible) and use Petersson’s formula to compute

the main term.
We have

Mz
k (q) = Mz,+

k (q) + Mz,−
k (q)

with
Mz,±

k (q) =
∑h

f∈Sp,±
2 (q)

L(1,Symkf)z.

By (1.5), Corollary 5.4 and (1.6) one find that

Mz,−
k (q) ≪ q−δ(log q)Ok(|ℜe(z)|)

which is smaller than the error term in (1.7) if |ℜe(z)| " |z| ≪k
log q
log2 q . To evaluate Mz,+

k (q) we
use Proposition 5.5. We choose X to be some power of q (depending on k only) getting

Mz,+
k (q) =

∑h

f∈Sp,+
2 (q)

Lz
f (X) + O

(

(log2 q log2 q) exp
(

Ok(|z|log3 q) − log X

log2 q

)

+ exp
(

Ok(|z|log2 q) − π
log2 q

8

))

;

for |z| ≪k log q/(log3 q log2 q) we see that the error term is bounded by Ok

(
exp(−η log q

log2 q )
)

for
some η > 0 depending on k only. In the main term of the right hand side above, we add back the
contribution of the f ∈ Sp,−

2 (q) at the cost of an error bounded by
∑h

f∈Sp,−
2 (q)

|Lz
f (X)| "

∑h

f∈Sp,−
2 (q)

∑

n!1

d(k+1)|z|(n)
n

e−n/X ≪ exp
(

O

(
(k|z| + 1) log log X − δ

2
log q

))

on using (2.8), (5.6) and (5.7). Again this term is smaller than the error term of (1.7) if |z| ≪k

log q(log3 q log2 q)−1. We are left with evaluation the complete sum
∑h

f∈Sp
2 (q)

Lz
f (X) =

∑

n

e−n/X

n

∑h

f∈Sp
2 (q)

λk,z
f (n).

We have by (2.11) and (5.3)

λk,z
f (n) = dz(qvq(n))λf (qkvq(n))

∏

pα||n
p ̸=q

⎛

⎝
∑

k′"kα

µz,α

Symk,Symk′λf (pk′
)

⎞

⎠ .
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Hence by applying Petersson’s formula (1.8) a main term arises from the n’s coprime with q and
is given by ∏

pα||n
µz,α

Symk,1
= λz

Symk(n) =: λk,z(n)

and we have
∑h

f∈Sp
2 (q)

λk,z
f (n) =δ(n,q)=1|S

p
2(q)|hλk,z(n)

+ Ok

⎛

⎜⎜⎜⎝
log(qn)

nk/2

q3/2
d|z|(qvq(n))

∏

pα||n
(p,q)=1

⎛

⎝
∑

k′"kα

|µz,α
symk,symk′ |

⎞

⎠

⎞

⎟⎟⎟⎠
.

By (2.12) one has
∑

k′"kα

|µz,α

Symk,Symk′ | " (kα + 1)1/2d(k+1)|z|(pα) " d(k+1)(|z|+1)(pα)

so that
∑h

f∈Sp
2 (q)

Lz
f (X) = |Sp

2(q)|h
∑

(n,q)=1

λk,z(n)
n

e−n/X + Ok

(
∑

n

e−n/X

n
log(qn)

nk/2

q3/2
d(k+1)(|z|+1)(n)

)

= |Sp
2(q)|h

∑

(n,q)=1

λk,z(n)
n

e−n/X + Ok,ε

(
(qX)ε

Xk/2+1

q3/2
(log X)Ok(1+|z|)

)

for any ε > 0. In the first sum, we remove the constraint (n, q) = 1 at the cost of an error term
bounded by

≪
∑

q|n

d|z|(k+1)(n)
n

e−n/X ≪k
(2 log X)|z|(k+1)+1

q
.

We now choose X = qη for some fixed η ∈]0, 3/(k + 2)[. Since |z| ≪k log q/(log3 q log2 q) we see
that these error terms are bounded by Ok(q−η′) for some η′ > 0 depending on k only. Now by a
contour shift

∑

n!1

λk,z(n)
n

e−n/X =
1

2πi

∫

(2)

Lz(1 + s,Symk)Γ(s)Xsds

= Lz(1,Symk) +
1

2πi

∫

(−σ)

Lz(1 + s,Symk)Γ(s)Xsds.

for σ = 1/ log2 q. For ℜe(s) = −σ one has

log |Lz(1 + s,Symk)| " |z|
∑

p"(|z|+2)1/(1−σ)

log(1 − 1
p1−σ

)−(k+1) +
∑

p>(|z|+2)1/(1−σ)

log
(

1 + O

(
|z|2

p2−2σ

))

≪k
|z|1/(1−σ)

σ log(2 + |z|) ,
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so that, for |z| ≪k log q(log3 q log2 q)−1, one has

1
2πi

∫

(−σ)

Lz(1 + s,Symk)Γ(s)Xsds ≪ exp

(

− log X

log2 q
+ Ok

(
|z|1/(1−σ)

σ log(2 + |z|)

))

= Ok

(
exp

(
−η′

log q

log2 q

))

for some η′ > 0 depending on k.
Collecting the above estimates, one sees that for |z| ≪k log q(log3 q log2 q)−1 (where the con-

stant implied is sufficiently small) there is δ = δ(k) > 0 such that
∑h

f∈Sp
2 (q)

Lz(1,Symkf) = |Sp
2(q)|hLz(1,Symk) + Ok

(
exp

(
−δ

log q

log2 q

))
. #

6.2. Proof of Corollary 1.7. Recall that t → Lit(1,Symk) is the characteristic function of the
random variable ω → log L(1,Symk,ω). In particular, the rapid decay of Lit(1,Symk) as |t| → +∞
given in (1.10), implies that the distribution function x → F (Symk, x) is smooth with uniformly
bounded derivative: indeed one has

F ′(Symk, x) =
1
2π

∫

R
e−itxLit(1,Symk)dt ≪k 1.

We can now apply the Berry/Esseen inequality (see [36], §II.7.6) which gives

||Fq(Symk) − F (Symk)||∞ ≪ ||F ′(Symk)||∞
T

+
∫

[−T,T ]

∣∣∣
Lit

q (1,Symk) − Lit(1,Symk)
t

∣∣∣dt

for any T > 0 and where the constant implied is absolute. We choose T = ck log q(log3 q log2 q)−1

for some ck > 0 small enough, set T0 = 1/ log2 q and split the integral into
∫

[−T,T ]
· · · =

∫

[−T0,T0]
· · · +

∫

[−T,T ]\[−T0,T0]
. . .

By Theorem 1.2, we obtain

||Fq(Symk) − F (Symk)||∞ ≪k
log3 q log2 q

log q
+ exp

(
−δ

log q

log2 q

)

+
∫

[−T0,T0]

∣∣∣
Lit

q (1,Symk) − Lit(1,Symk)
t

∣∣∣dt

for some δ = δ(k) > 0. We need to bound the remaining integral; to do this we repeat the
argument leading to Theorem 1.2 but now taking into account the fact that z = it is very small.

Lemma 6.1. Given q a prime such that Hypothesis Symk(f) holds for every f ∈ Sp
2(q) and such that

Hypothesis LSZk(q) holds, one has uniformly for |z| " 1/ log2 q

Lz
q(1,Symk) − Lz(1,Symk) = Ok

(
|z|

log q

)
.

Proof. By Lemmas 4.1 and 4.2, one has for |z| " 1/ log2 q

Lz(1,Symkf) = 1 + z log L(1,Symkf) + Ok(|z|2 log2 q)
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hence
∑h

f∈Sp
2 (q)

Lz(1,Symkf) = |Sp
2(q)|h + z

∑h

f∈Sp
2 (q)

log L(1,Symkf) + Ok(|z|2 log2 q).

As in Section 6.1, we split the middle sum on the left as
∑h

f∈Sp
2 (q)

log L(1,Symkf) =
∑h

f∈Sp,+
2 (q)

log L(1,Symkf) +
∑h

f∈Sp,−
2 (q)

log L(1,Symkf).

By Corollary 5.4, the last sum is bounded by (log2 q)q−δ for some δ > 0. On the other hand, in the
first sum, we use Lemma 4.3 to obtain

∑h

f∈Sp,+
2 (q)

log L(1,Symkf) =
∑h

f∈Sp,+
2 (q)

∑

2"pα"y

1
αpα

tr
(
Symk(gα

f (p))
)

+ Ok
(
log−4 q

)

with y = log10/η q. For α ! 1 we decompose the central function on G given by g → tr(Symk(gα))
as a sum of irreducible characters

(6.1) tr
(
Symk(gα)

)
=
∑

k′"kα

ηα
Symk,Symk′ tr

(
Symk′

(g)
)

with

ηα
Symk,Symk′ =

∫

G
tr
(
Symk(gα)

)
tr
(
Symk′(g)

)
dg.

In particular

|ηα
Symk,Symk′ | " (k + 1)(k′ + 1) " (k + 1)(kα + 1).

We add back the corresponding contribution from Sp,−
2 (q) at the cost of a small error term:

∑h

f∈Sp,+
2 (q)

∑

2"pα"y

1
αpα

tr
(
Symk(gα

f (p))
)

=
∑h

f∈Sp
2 (q)

· · ·−
∑h

f∈Sp,−
2 (q)

. . .

with, on using the bound |tr(Symk(gα
f (p)))| " k + 1,

∑h

f∈Sp,−
2 (q)

· · · = Ok

(
(log3 q)q−δ

)

for some δ > 0. From (6.1), we have

tr
(
Symk(gα

f (p))
)

=
∑

k′"kα

ηα
Symk,Symk′λf (pk′

)

and we are in position to apply Petersson’s formula to obtain

∑h

f∈Sp
2 (q)

∑

2"pα"y

1
αpα

tr
(
Symk(gα

f (p))
)

=
∑

2"pα"y

1
αpα

ηα
Symk,1

+ Ok

(
yk/2 log3(qy)

q3/2

)

.
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Notice that η1
Symk,1

= 0, so that the main term can rewritten as

∑

2"pα

1
αpα

ηα
Symk,1

+ Ok(y−1) =
∑

p!2

∫

G

∑

α!1

1
αpα

tr
(
Symk(gα)

)
dg + Ok(y−1)

=
∑

p!2

∫

G
log
(

det
(
I − p−1Symk(g)

)−1
)

dg + Ok(y−1).

On the other hand, one has

Lz(1,Symk) = exp

(

log

(
∏

p

∫

G
det
(
I − p−1Symk(g)

)−z
dg

))

= exp

(
∑

p

log
(∫

G
det
(
I − p−1Symk(g)

)−z
dg

))

and
∫

G
det
(
I − p−1Symk(g)

)−z
dg =

∫

G

(
1 + z log

(
det
(
I − p−1Symk(g)

)−1
)

+ Ok

(
|z|2

p2

))
dg

= 1 + z

∫

G
log
(

det
(
I − p−1Symk(g)

)−1
)

dg + Ok

(
|z|2

p2

)
,

hence

Lz(1,Symk) = exp

(

z
∑

p

∫

G
log
(

det
(
I − p−1Symk(g)

)−1
)

dg

)

+ Ok(|z|2)

= 1 + z
∑

p

∫

G
log
(

det
(
I − p−1Symk(g)

)−1
)

dg + Ok(|z|2).

Collecting the above estimates, we have

1
|Sp

2(q)|h

∑h

f∈Sp
2 (q)

L(1,Symkf)z = Lz(1,Symk) + |z|Ok

(
1
y

+
log2 q

qδ
+

yk/2 log3(qy)
q3/2

+ |z|
)

= Lz(1,Symk) + Ok

(
|z|

log q

)
. #

This final estimate then concludes the proof of Corollary 1.7. #
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